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A B S T R A C T   

Cell-wise outliers are outliers in single entries of a compositional data matrix, and they can lead to a certain bias 
in the statistical analysis. Traditional row-wise robust methods downweight outlying observations for the esti-
mation, independent of how many or which cells of an observation are contaminated. Cell-wise robustness still 
makes use of the information contained in non-contaminated cells. Here, cell-wise robustness is used for the 
estimation of the variation and the covariance matrix. For higher dimensional data also a regularized estimator is 
introduced. The advantages of the cell-wise robust estimators are demonstrated in simulation experiments and in 
a geochemistry application in the context of clustering and principal component analysis.   

1. Introduction 

The field of compositional data analysis (CoDA) has received a lot of 
attention after the publication of the book (Aitchison, 1986) of John 
Aitchison in 1986. The approach followed there is often called log-ratio 
methodology, as the building blocks are pairwise log-ratios between the 
variables (compositional parts). If D denotes the number of parts, then 
there are D(D − 1)/2 (relevant) pairwise log-ratios for the analysis, thus 
each part is involved in D − 1 different log-ratios. These pairwise log- 
ratios are usually not used separately as new variables within a multi-
variate statistical analysis, but they are appropriately aggregated, e.g. to 
form a coordinate system with D − 1 coordinates (Filzmoser et al., 
2018). This, however, creates difficulties if an observation has outliers 
only in single parts, since their effect in the coordinate representation 
will very much depend on the type of aggregation, as well as on the parts 
which are contaminated. 

Outliers in single variables of traditional non-compositional data are 
called cell-wise outliers. If an observation contains cell-wise outliers, the 
remaining non-contaminated cells usually still contain valuable infor-
mation for the analysis. This can be very different for compositional 
data. Contamination in single parts of a composition can be caused by 
atypical values in this part, or it can result from an improper imputation 
of zeros or missing values. When forming pairwise log-ratios with 
contaminated cells, also the resulting log-ratio pairs can be outlying, and 
the same is true for other types of aggregation with contaminated parts. 

Robust multivariate statistical methods commonly downweight 
complete observations if they are deviating, independent of how many 
cells (variables) of such observations are contaminated. Since observa-
tions are usually arranged in the rows of a data matrix, this procedure is 
often called row-wise robustness (Maronna et al., 2019). Especially for a 
growing number of variables, this would lead to a severe loss of valuable 
information if only few cells of an observation are deviating. Therefore, 
methods have been developed to identify and downweight deviating 
cells rather than only outlying rows, and this is called cell-wise robust-
ness (Rousseeuw and Van Den Bossche, 2018). 

Row-wise robustness is well established in the context of CoDA 
(Filzmoser et al., 2018). Since many multivariate methods are based on 
an estimated covariance matrix, a robust version can be obtained by 
expressing the composition in coordinates, and performing robust 
covariance estimation with any of the proposed methods (Maronna 
et al., 2019, p 195–224), for example with the widely used MCD (min-
imum covariance determinant) estimator (Rousseeuw, 1985; Rousseeuw 
and Van Driessen, 1999). Since a complete row is downweighted (or 
not), it does not matter which parts are contaminated, and which form of 
coordinate representation is used. 

It is not straightforward to implement cell-wise robustness for the 
CoDA case, especially after the compositions are expressed in co-
ordinates. Depending on the parts which are contaminated, as well as on 
the coordinate representation used, it might be hardly possible to trace 
back which compositional parts caused cell-wise outliers, detected in the 
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space of the coordinates. It is much more straightforward to investigate 
pairwise log-ratios in order to identify those parts which caused the 
outlyingness. Several attempts in this direction have already been done, 
e.g. in Štefelová et al. (2021) and Walach et al. (2020) in the context of 
regression and outlier detection. 

In this paper we focus on cell-wise robustness, but limited to the 
problem of robust covariance estimation. Nevertheless, a robustly esti-
mated covariance matrix opens the door to many multivariate methods, 
and in the application part we will focus on cell-wise robust principal 
components. The main idea is to estimate the elements of the variation 
matrix robustly, and these elements contain the estimated variances of 
pairwise log-ratios (Aitchison, 1986). Afterwards, we make use of the 
well-known relationship between the variation matrix and the compo-
sitional covariance matrix (Aitchison, 1986). 

The paper is organized as follows. Section 2 recalls some of the CoDA 
concepts which are needed to introduce the cell-wise robust covariance 
estimators in Section 3. Simulation studies in Section 4 reveal robustness 
properties of the new proposals, and a comparison of the methods based 
on geochemical data is provided in Section 5. The final Section 6 
concludes. 

2. Some CoDA concepts 

Denote by ℝD
+ the space of D dimensional strictly positive real values. 

In the classical approach of CoDA the D-part simplex is of central 
importance: it is defined as the space S

D
=

{
x = (x1,…, xD)

Τ
∈ ℝD

+ |ΣD
i=1xi = 1

}
. Considering also a composition 

y = (y1,…, yD)
Τ , the D-part simplex is equipped with the Aitchison inner 

product 

〈x, y〉A :=
1

2D
Σ
D

i,j=1
ln
(

xi

xj

)

ln
(

yi

xj

)

and the so-called perturbation x ⊕ y := 1
ΣD

j=1xjyj
(x1y1,⋯, xDyD)

Τ and pow-

ering α ⊙ x := 1
ΣD

j=1xα
j

(
xα

1,⋯, xα
D
)Τ operation, for any α ∈ ℝ, see Pawlow-

sky-Glahn and Egozcue (2001) and Billheimer et al. (2001). With these 
definitions it can be shown that 

(
S

D
, 〈⋅, ⋅〉A ,⊕,⊙

)
is a Hilbert space 

with neutral element 1
D(1,…,1)Τ

∈ ℝD
+ and norm ‖x‖A :=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
〈x, x〉A

√
, see 

Pawlowsky-Glahn et al. (2015), p.23–30. Of central importance in CoDA 
is the clr (centered log-ratio)-map 

clr : S
D→ℝD, clr(x) :=

⎛

⎜
⎝ln

⎛

⎜
⎝

x1
̅̅̅̅̅̅̅̅̅̅̅̅̅∏D

j=1xj
D
√

⎞

⎟
⎠ ,…, ln

⎛

⎜
⎝

xD
̅̅̅̅̅̅̅̅̅̅̅̅̅∏D

j=1xj
D
√

⎞

⎟
⎠

⎞

⎟
⎠

Τ

. (1) 

It is well known that the clr-map is distance preserving on S D, see 
Pawlowsky-Glahn et al. (2015), p 35. Additionally, the clr-map pos-
sesses the following properties, 

clr(x ⊕ y) = clr(x)+ clr(y) (2)  

clr(α ⊙ x) = αclr(x) (3)  

〈x, y〉A = 〈clr(x) , clr(y) 〉2 (4)  

with 〈⋅, ⋅〉2 denoting the standard inner product in ℝD, and α ∈ ℝ 
(Pawlowsky-Glahn et al., 2015, p 35). A drawback of the clr-map is that 
it is not bijective onto ℝD and its components are constrained to sum to 
zero. The clr-map can also be written as a linear map of the coordinate- 
wise log-transformed variables of x, i.e. clr(x) = LA ln(x), where LA is 
the so-called centering matrix 

LA :=
1
D

⎛

⎜
⎜
⎝

D − 1 − 1 − 1
− 1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ − 1
− 1 − 1 D − 1

⎞

⎟
⎟
⎠

which will play a role in the next section. Alternatively, the so-called ilr 
(isometric log-ratio)-map (Egozcue et al., 2003) is often considered as it 
preserves properties (2)–(4) and is bijective. It is defined as 

ilrV : S
D→ℝD− 1, ilrV(x) := VΤ clr(x) , (5)  

where V ∈ ℝD×(D− 1) is any matrix with orthogonal columns that span the 

D − 1 dimensional subspace 
{

z ∈ ℝD|ΣD
j=1zj = 0

}
⊂ℝD. The centering 

matrix has the following important properties that also connect it to any 
admissible V as just described, 

LA = LΤ
A , LA 1 = 0, LA = VVΤ ,

where 1 is a vector of ones. 
There are multiple ways to characterize the dependence structure 

between different compositional parts of x in CoDA depending on the 
transformation used. Given two different random vectors u, v, then the 
covariance matrix is given as Cov(u, v) := E((u − E(u) )(v − E(v) )Τ

), 
where E denotes the expectation. Then we write in the following Σclr :=

Cov(clr(x) , clr(x) ) for the covariance matrix of clr(x), Σln := Cov(ln 
(x) , ln(x) ) for the covariance matrix of ln(x) and ΣilrV :=

Cov(ilrV(x) , ilrV(x) ) for the covariance matrix of ilrV(x), for any fixed V. 
Additionally, we write T ∈ ℝD×D for the variation matrix which is 

defined entry-wise for any i, j = 1,…,D as Tij = Cov
(

ln
(

xi
xj

)
, ln

(
xi
xj

))
=

Var
(

ln
(

xi
xj

))
. Thus, the entries of the variation matrix are the variances 

of all pairwise log-ratios. Values near zero represent proportionality of 
the respective parts and consequently also their close relationship. 

As noted in Aitchison (1986), there are the following relations be-
tween the covariance matrix Σclr and the variation matrix T, 

T = 1σ2Τ + σ21Τ − 2Σclr, (6)  

Σclr = −
1
2

LA TLA , (7)  

where σ2 = diag
(
Σclr) denotes the vector of the diagonal elements of Σclr. 

These relationships will be very helpful for cell-wise robustness, as they 
link associations between pairs of compositional parts with covariances. 

3. Cell-wise robust covariance estimation 

Denote by x1,…, xN ∈ S
D a sample of N independent observations 

which are arranged as rows in the data matrix X ∈ ℝN×D. The classical 

sample covariance matrix estimate of Σclr is given as Σ̂
clr

=

1
N− 1ΣN

n=1
(
clr(xn) − μ̂clr )( clr(xn) − μ̂clr )Τ , where μ̂clr

:= 1
NΣN

n=1clr(xn). It is 
a well-known fact that any contaminated data point xn can have a huge 
effect on the classical sample covariance estimate of Σclr (Maronna et al., 
2019, p 196–198). The same holds true if only a single entry of xn, say 
the k-th entry, is contaminated. A part of a composition is understood as 
contaminated, when it has an unusually high (or low) absolute value and 
which therefore distorts the whole relative structure of the respective 
composition. As we can write any l-th entry of clr(xn) also in terms of 
pairwise log-ratios 

clr(xn)l = ln

⎛

⎜
⎝

xnl
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∏D

j=1xnj
D
√

⎞

⎟
⎠ =

1
D

(

ln
xnl

xn1
+…+ ln

xnl

xnk
+…+ ln

xnl

xnD

)

,

we can see that a contamination in xnk propagates to clr(xn)l, for any 
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l ∈ {1,…,D}, which in consequence also can have an impact on μ̂clr, see 
also Mert et al. (2016). Something similar also holds for the ilr-map. 
Therefore, if a row of X contains only a single cell that displays 
outlying behavior, taking the clr- or ilr-map of this row can lead to a 
whole outlying vector. The goal is to find a covariance estimator which 
protects against outlying cells in compositional data. 

The main idea to achieve cell-wise robustness is thus to restrict the 
influence of cell-wise outliers at the log-ratio level. The relationship (7) 
is of particular interest as it permits to estimate Σclr in terms of the 
variation matrix, which consists solely of the variances at the log-ratio 
level. To construct a robust estimator of Σclr, or equivalently ΣilrV , we 
suggest to replace each entry of the variation matrix T, tij =

Var
(

ln
(

xi
xj

))
, by a robust counterpart. This simplifies things not only 

because we focus on pairwise log-ratios, but also because robust vari-
ance estimation is a simpler task compared to robust covariance 
estimation. 

Several robust estimators of the variance have been proposed in the 
literature. A highly robust and efficient estimator of scale (standard 
deviation) is the Qn estimator (Rousseeuw and Croux, 1993), which is 
essentially defined as the first quartile of the absolute pairwise differ-
ences. To be more precise, for a vector z = (z1,…, zN)

Τ , the Qn estimator 
of scale is defined as 

ρ(z) = ρn=1,…,N(zn) = 2.219⋅
{⃒
⃒zi − zj|;i < j

}

(k), (8)  

where k =

(
h
2

)

≈

(
N
2

)/

4 and h = �N / 2� + 1, and (k) is the k-th 

value of the sorted absolute pairwise differences (in ascending order) 
(Rousseeuw and Croux, 1993). A further advantage of this estimator is 
that it does not require a (robust) location estimation. These properties 
make the Qn estimator preferable over other robust scale estimators, 
such as the more well-known median absolute deviation (MAD). 

3.1. The cell-wise robust Qn covariance estimator 

We will use the Qn estimator for the elements of the variation matrix 

to obtain tρ
ij = ρn=1,…,N

(
ln
(

xni
xnj

))2
. We denote the resulting robust vari-

ation matrix by T̂ρ := tρ
ij. To construct a valid estimate of Σclr we then 

transform T̂ρ according to Eq. (7). This estimate should however fulfill 
the following three properties that Σclr has.  

• Σclr is a positive semi-definite matrix.  
• Σclr has an eigenvector 1 to the zero eigenvalue, i.e. Σclr1 = 0.  
• Σclr is invariant under multiplication with LA , thus Σclr = LA ΣclrLA . 

Note that the second point is a direct consequence of the third point, 
and the third point directly follows from the idempotency of LA and the 
representation of the clr-map through the latter. Therefore, to construct 
a positive semi-definite estimator we propose to take the nearest positive 
semidefinite matrix to − 1

2LA T̂ρLA and adjust the median quantile. All 
together we perform the following steps:  

1. Estimate the elements tρ
ij of T̂ρ by tρ

ij = ρn=1,…,N

(
ln
(

xni
xnj

))2
, where i ∕= j 

(otherwise, the entries are zero).  

2. Project T̂ρ on the appropriate subspace by Σ̂
clr
0 := − 1

2LA T̂ρLA .  

3. Find the nearest positive semi-definite matrix (p.s.d) Σ̂
clr
1 by solving 

minΣ̂clr
1 isp.s.d

⃦
⃦Σ̂

clr
0 − Σ̂

clr
1
⃦
⃦

F, where ‖⋅‖F denotes the Frobenius norm. 

Note that also other measures could be considered that take into 
account the symmetry of the matrix.  

4. The final estimator is Σ̂
clr

= cΣ̂
clr
1 where c is chosen such that the 

median of the squared Mahalanobis distances is equal to the quantile 
0.5 of the χ2 distribution with degrees of freedom equal to the rank of 

Σ̂
clr
1 . This alignment allows to use the quantile 0.975 of this χ2 dis-

tribution as outlier cutoff value for the squared Mahalanobis dis-
tances (Maronna et al., 2019, p 206). 

For these steps to lead to an admissible estimate of Σ̂
clr 

we need to 

check that the three properties as described above hold. Clearly Σ̂
clr
1 is 

positive semi-definite by definition and so we only need to check the 

latter two properties. As LA 1 = 0 holds, we can follow directly Σ̂
clr
0 1 = 0. 

Step 3. does not affect the eigenvectors, as the solution to the nearest 
positive semi-definite matrix problem is equal to a zero thresholding of 

the eigenvalues, see Higham (1988). Therefore, Σ̂
clr
1 1 = 0 holds, and 

consequently the same is true for Σ̂
clr

. The third property directly follows 

from the second one by LA Σ̂
clr

LA =
(
I − 1

D11Τ)Σ̂
clr(

I − 1
D11Τ) = Σ̂

clr
−

1
DΣ̂

clr
11Τ − 1

D11Τ Σ̂
clr 

+ 1
D211Τ Σ̂

clr
11Τ = Σ̂

clr
. 

In the following, we will refer to Σ̂
clr 

as the cell-wise robust Qn 
estimator, abbreviated simply as “Qn”. 

3.2. The cell-wise robust regularized Qn covariance estimator 

In the case where N ≤ D, it is known in the non-compositional data 
setting, that non-robust as well as robust covariance estimates display an 
increased estimation error, and that estimates can be approved upon by 
adding a shrinkage term, often in form of a unit matrix, see Ledoit and 
Wolf (2004); Chen et al. (2011) and Hubert et al. (2018). Note, however, 
that also other shrinkage matrices can be used. Inspired by these ideas 
we also propose a shrinkage version. We first perform steps 1. to 3. as 

described above obtaining Σ̂
clr
1 . Instead of continuing to step 4., we now 

define Σ̂
clr
2 := (1 − α)Σ̂clr

1 + αLA , where α is a fixed chosen constant, see 

below. Lastly, we obtain the final estimator as Σ̂
clr

:= cΣ̂
clr
2 , where c is 

chosen such that the median of the squared Mahalanobis distances is 
equal to the quantile 0.5 of the χ2 distribution with degrees of freedom 

equal to the rank of Σ̂
clr
2 . Note that equivalently we could also compute 

instead step 1. to 2., replace Σ̂
clr
0 by a shrunk version (1 − α)Σ̂

clr
1 + αI and 

then continue with step 3. to 4., with (1 − α)Σ̂
clr
1 + αI instead of Σ̂

clr
1 . The 

motivation for adding LA instead of the unit matrix is that the latter does 
not fulfill the properties of an admissible covariance estimator. LA 

however trivially does. One can also argue that LA can be considered the 
compositional pendant to the unit matrix. This can easily be seen from 
the fact that if a compositional variable x is standard Gaussian distrib-
uted, ilrV(x) ∼ N (0,I), then the covariance of ln(x) is given by VΤ V =

LA as ilrV(x)Τ ilrV(x) = ln(x)VVΤ ln(x) and VVΤ = (VVΤ )
+, where + is the 

Moore-Penrose generalized inverse. This shrinkage step introduces an 
additional tuning parameter α. In the non-compositional literature, 
optimal choices of α are well-known. For an unbiased estimate Σ̂ of Σ, 
the optimal choice of α such that the expected Frobenius distance be-

tween Σ and (1 − α)Σ̂ + αΓ, i.e. E
(
‖Σ − ((1 − α)Σ̂ + αΓ ) ‖

2
F

)
, is mini-

mized, with Γ being a shrinkage target matrix, is given by 

α =
ΣD

i,j=1

(
Var

(
Σ̂ij

)
− Cov

(
Γij , Σ̂ij

))

ΣD
i,j=1E

((
Γij − Σ̂ij

)2
) ,

see Schäfer and Strimmer (2005), where subscripts ij denote the corre-
sponding matrix entries. Taking Γ = LA we can drop Cov

(
Γij, Σ̂ij

)
due to 
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Γ having constant expectation. With this choice of Γ and taking Σ̂ = Σ̂
clr
1 

(here, for simplicity, Σ̂
clr
1 denotes the estimator in terms of random 

variables), the expectation in the denominator becomes 

ΣD
i,j=1E

((
Γij −

(
Σ̂

clr
1
)

ij

)2
)

= Σi∕=jE

((
− 1

D −
(

Σ̂
clr
1
)

ij

)2
)

+

ΣD
i=1E

(((
1 − 1

D
)
−
(

Σ̂
clr
1
)

ii

)2
)

, leading to 

α =
ΣD

i,j=1Var
((

Σ̂
clr
1

)

ij

)

ΣΣi∕=jE

(((
Σ̂

clr
1

)

ij +
1
D

)2
)

+ ΣD
i=1E

(((
Σ̂

clr
1

)

ii +
1
D − 1

)2
).

Recently, also in the non-robust compositional setting, such 
shrinkage estimators have been proposed (Jin et al., 2022). As an esti-

mate of α requires knowledge of the variance of terms involving Σ̂
clr
1 , and 

as these might be error-prone due to cell-wise outliers in the data, we 
propose to replace the variance and expectation by robust counterparts, 
and to estimate α by 

α=
ΣD

i,j=1

(
ρk=1,…,K

((
Σ̂

clr,k
1

)

ij

))2

Σi∕=jmedk=1,⋯,K

(((
Σ̂

clr,k
1

)

ij+
1
D

)2
)

+ΣD
i=1medk=1,⋯,K

(((
Σ̂

clr,k
1

)

ii+
1
D − 1

)2
),

where med denotes the median, and Σ̂
clr,k
1 is the k-th estimate, for 

k ∈ {1,…,K}, and K is the number of bootstrap samples of size N (with 
replacement), see Wilcox (2010) and Efron and Tibshirani (1994), p 
87–108. More precisely, we sample with replacement N times full ob-
servations, not cell-wise, from the observed samples x1,…, xN and 

calculate Σ̂
clr
1 by the proposed algorithm, which we denote instead by 

Σ̂
clr,k
1 , where k denotes the number of bootstrap samples we draw; in our 

computations we set K = 500. 
We will refer to the resulting estimator as the cell-wise robust 

regularized Qn estimator, abbreviated simply as “Qnr”. 

4. Simulation study 

In this section we conduct a simulation study to compare the per-
formance of the proposed estimators in comparison with other existing 
non-robust and row-wise robust versions. For different dimensions D ∈

{25,50} and different numbers of samples N = Dk with 
k ∈ {0.2,0.4,0.6, 0.8, 1,1.5, 2,3, 4}, we simulate a random covariance 
matrix Σclr and a mean vector μclr ∈ ℝD from a standard Gaussian dis-
tribution. More precisely, we generate a D − 1 dimensional correlation 
matrix Σ as in Agostinelli et al. (2015), with code adapted from the R 
cellWise package (Raymaekers, 2022), and turn it into an admissible 
covariance matrix in clr coordinates by Σclr = VΣVΤ , where V is the 
same matrix as for an ilr coordinate function. Note that our setup differs 
in that we include an additional step to turn these into admissible 
covariance matrices in clr coordinates. Following this, we generate an 
N × D data matrix X such that the log-transformation of each row xn ∈

S
D is singular normally distributed ln(xn) ∼ N

(
μclr,Σclr). To corrupt the 

data, two different setups are used, which we denote in the following by 
“row-wise” and “zero” corruption.  

• Row-wise corruption: A given percentage of observations is 
randomly selected and replaced by observations that are sampled as 

Fig. 1. Results of the simulation study in terms of the mean relative Frobenius error. The classical estimate based on the clr representation (clr) and row-wise robust 
estimate (MCD) are compared with two newly proposed cell-wise robust estimates (Qn and Qnr). The column blocks correspond to different levels of corruption and 
the horizontal axis is given by the value of k = N/D, with D being number of compositional parts. 
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above, but from another randomly generated covariance matrix, and 
a different mean sampled from a standard Gaussian distribution.  

• Zero corruption: We randomly select a certain percentage of the 
columns of the data matrix X and set for each selected column all 
entries below the quantile 0.25 to zero. Finally, in accordance with 
the common CoDA practice, we replace the zeros by 0.5 times the 
smallest non-zero entry of the corresponding values of the column. 

Thus, with row-wise corruption we would expect that the new esti-
mators show similar performance as a row-wise robust estimator. The 
setting with zero corruption mimics a typical scenario observed with 
geochemical data, where a proportion of samples falls below a detection 
limit for specific variables. Here we should see the benefits of a cell-wise 
robust method. 

Each simulation is repeated 500 times, and we will report averages 
over these replications. To evaluate the performance of the methods we 
use mean values of two different error measures between an estimated 

Σclr and the true Σ̂
clr

. These measures are  

• Relative Frobenius error: ‖Σ̂
clr
− Σclr‖F

‖Σclr‖F  

• Angle error between eigenvalues: 1 − â
Τ

a̅̅̅̅̅̅̅
â

Τ
â

√ ̅̅̅̅̅̅
aΤ a

√
, 

where â resp. a are the vectors of eigenvalues of Σ̂
clr 

resp. Σclr. Big values 
of the relative Frobenius error indicate difficulties in the estimation of 
the elements of the covariance matrix. The angle error between the ei-
genvalues is in the interval [0,1], and a big value means that the shape of 

the covariance matrix is not appropriately estimated. From this point of 
view, the two measures complement each other to a certain extent. 

Figs. 1 and 2 compare the considered estimators in terms of mean 
relative Frobenius error and mean angle error between eigenvalues, 
respectively. The top panels refer to row-wise corruption, and the bot-
tom panels to zero corruption. In the panels from left to right we increase 
the amount of contamination. The horizontal axes show the ratio k =

N/D, and thus in the left part we have a higher-dimensional low-sample 
size situation, in the right part “classical” tall data matrices with N > D. 
Note that some repetitions (less than 1 %) of the simulation resulted in 
extremely high values of the relative Frobenius error for the Qn esti-
mator, which can particularly happen in the setting with zeros, leading 
to degenerate solutions for robust scale estimation. These failures were 
removed from the following considerations. Based on the respective 
plots, the performance of the estimators differs between scenarios with 
and without contamination. When no contamination is present (left 
column) and D ≤ N, the classical estimate, denoted in the plots as clr, 
performs well. Moreover, the mean values of both errors considered are 
similar to errors obtained for the Qn and Qnr estimators. Slightly worse 
but still comparable values of the mean angle error are obtained for the 
MCD estimate. Even in the case of no contamination, but for D > N, we 
can already see an advantage of Qn and Qnr over clr; in this case, the 
MCD does not give a solution since it is ill-defined for such a situation. 

When contamination increases, the classical estimate is naturally 
distorted by the presence of outliers. For both corruption types, this 
effect gets more serious with increasing number of variables D and, on 
the contrary, is quite stable with respect to the N to D ratio. The per-
formance of the other considered estimators depends on the corruption 
type. The use of the MCD estimator is appropriate for the case of row- 
wise contamination. The upper panel of Fig. 2 clearly shows that 

Fig. 2. Results of the simulation study in terms of the mean angle error between eigenvalues. The classical estimate based on the clr representation (clr) and row-wise 
robust estimate (MCD) are compared with two newly proposed cell-wise robust estimates (Qn and Qnr). The column blocks correspond to different levels of cor-
ruption and the horizontal axis is given by the value of k = N/D, with D being number of compositional parts. 
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particularly with higher percentage of outlying rows, the MCD estimator 
results in the lowest mean angle error between eigenvalues (if N is 
sufficiently large). On the other hand, for a lower percentage of the 
outlying rows, both the Qn estimator and its regularized version Qnr 
give comparable results as MCD, but these two estimators are also able 
to cope with settings where D is close or even bigger than N. 

The lower panels of Figs. 1 and 2 mimic the scenario of cell-wise 
outliers, where downweighting of the whole observations may yield 
too much information loss. The MCD estimator therefore results in a 
very high error, which is in term of the mean relative Frobenius distance 
even worse than the one of the classical estimate. The Qn estimator 
copes with the cell-wise outliers significantly better. This estimator 
brings valuable results for both high- and low-dimensional settings and 
its performance enhances with increasing number of observations. The 
Qn estimate can be refined with its regularized version Qnr, which, 
particularly under the high-dimensional setting, results in a very low 
error rate. For all levels of corruption considered and the N to D ratio 
above 0.5, the performance of the Qnr estimator is comparable to the 
situation where there is no corruption in the data. 

5. Application to a dataset from geochemistry 

The performance of the proposed covariance estimators will be 
demonstrated on a dataset which originates from the large-scale 
geochemical mapping project GEMAS. This dataset, which is freely 
available in the R package robCompositions (Templ et al., 2011), con-
sists of the concentration of chemical elements, measured at 2108 lo-
cations in most countries of Europe, see Reimann et al. (2014) for 
details. Here we consider elements measured by XRF (as total element 
concentrations), and they should provide a close link to the lithology. 
Elements with more than 3 % of values below the detection limit were 
excluded, and thus we considered the 18 elements Al, Ba, Ca, Cr, Fe, K, 

Mg, Mn, Na, Nb, P, Si, Sr, Ti, V, Y, Zn, and Zr. Our goal here is to compare 
different versions of estimating the variation matrix and the corre-
sponding covariance matrix, and their effect on Q-mode clustering and 
on principal component analysis (PCA). All computations were done in 
the software environment R (R Core Team, 2023). 

It is unknown if this dataset contains outliers (row-wise or cell-wise) 
or not. However, according to the results from the simulations we might 
not have to expect a huge difference between the row-wise and cell-wise 
robust covariance estimations. 

5.1. Estimates of covariance and variation matrices 

As a first step, we compare the estimated covariance and variation 
matrices:  

• Classical: Σclr is estimated by the sample covariance matrix of the clr- 
transformed data. The estimated variation matrix is obtained by the 
relationship given in Eq. (6).  

• Row-wise robust: The data are first expressed in (any) ilr coordinates. 
Then the MCD estimator is used to obtain a row-wise robust 
covariance estimate, which is then transformed to the clr represen-
tation. The row-wise robust variation matrix is again obtained 
through Eq. (6).  

• Cell-wise robust: The cell-wise robust variation and covariance 
matrices are computed as explained in Section 3. 

Note that here we do not compare with a robust covariance based on 
shrinkage, as introduced in Section 3, because the estimated value of α is 
essentially zero, implying that no shrinkage would be done, and the 
number of observations is big enough in comparison to the number of 
measured elements. 

The resulting variation and covariance matrices are visualized as 

Fig. 3. Variation matrices scaled by the maximum of the entries over all three methods.  

Fig. 4. Clr covariance matrices estimated by the different methods.  
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heatmaps in Figs. 3 and 4. Note that the elements have been reordered 
by the order given from the cell-wise robust dendrogram for the Q-mode 
clustering, see Section 5.2, which might simplify the comparison. The 
estimated variation matrices, visualized in Fig. 3 with a common 
normalized scale, reveal that Ca is to some extent different from most of 
the other elements, and to a lesser extent also Mg and Cr. 

The most obvious difference in the covariances in Fig. 4 is the 
negative relationship between clr representations of Ca and Na in the 

classical version, while the robust estimates indicate a positive covari-
ance. This phenomenon is explained visually in Fig. 5. The upper left 
panel shows the clr-transformed variables Ca and Na, and the red color 
refers to observations which are identified as outliers with the row-wise 
robust MCD estimator. Indeed, the two variables show a negative trend 
if the outliers are included, and a positive if they are downweighted. The 
upper right panel shows the color information at the sample locations in 
the map. As an example, a row-wise robust analysis would downweight 

Fig. 5. Top left: clr-transformed Ca versus 
Na, with row-wise outliers in red; classical 
covariance is negative, robust one is posi-
tive. Top right: row-wise outliers in red in 
the map. Bottom left: log-ratio Ca/Na versus 
index, with extremes indicated by values 
outside median plus/minus 2 times Qn, with 
color as above. Bottom right: extremes 
detected according to value of the Ca to Na 
log-ratio in red. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   

Fig. 6. Dendrograms resulting from the Q-mode clustering, based on the classical (left), row-wise robust (middle) and cell-wise robust (right) estimate of the 
variation matrix. 
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almost all samples from Spain. The bottom plots try to show the dif-
ferences to a cell-wise treatment. The lower left panel shows the log- 
ratio Ca versus Na, for which the Qn estimator is used. The horizontal 
lines indicate median (dashed), and median ± 2 times the Qn estimator 
of this log-ratio (dot-dashed). Thus, values outside the solid lines are 
“extremes” of this log-ratio. The color information is the same as before, 
and thus we can see that row-wise outliers are not only found in the 
extremes but in the entire range. The map at the bottom right has as 
color information the extremes in red and “normal” values of the log- 
ratio in blue, and it clearly differs from the coloring in the map above. 
Here, Ca-rich sediments, e.g. in the eastern and southern part of Spain 
are highlighted and thus downweighted in a cell-wise robust analysis. 
The cell-wise robust method thus tries to incorporate information of the 
trend visible in the data majority, but acts pairwise, and thus in-
corporates also other relevant information of a particular log-ratio. 

5.2. Q-mode clustering 

Q-mode clustering generally performs a grouping of the variables. In 
the CoDA context, the basis for Q-mode clustering is the estimated 
variation matrix, see Fig. 3, and usually Ward’s hierarchical clustering is 

used (Filzmoser et al., 2018, p 113). The results are presented as den-
drograms in Fig. 6. As already seen in Fig. 3, Ca makes the most 
important difference in the three versions: while Ca joins as a single 
element at the very last stage for the classical and the row-wise version, 
it is in a cluster with Na and Sr in the cell-wise version. From a 
geochemical point of view, this cluster is meaningful, and we will 
discuss these and other relationships in more detail for the PCA results. 

5.3. Principal component analysis 

The estimated covariance matrix is the basis for computing the 
principal components. Accordingly, differences identified in Fig. 4 are 
also supposed to be visible in the different versions of PCA (classical, 
row-wise and cell-wise robust). The corresponding results are shown as 
biplots in Fig. 7, and the PCA scores are plotted in the maps in Figs. 8–10. 
The results of the row-wise robust version can also be compared to the 
results in Reimann et al. (2014), where almost the same elements have 
been used for row-wise robust PCA. 

When comparing the different versions of PCA, we can immediately 
see a bigger difference from classical PCA to the robust counterparts, 
which obviously is based on the effect of outliers on the covariance 

Fig. 7. Biplot of the PCA results based on the classical (left), row-wise robust (middle) and cell-wise robust (right) estimates of the clr covariance matrix.  
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estimation. Differences between row-wise and cell-wise robust PCA are 
not so clearly pronounced, but the element Ca plays a key role: in 
contrast to the row-wise robust version, the element Ca is practically not 
affecting PC2 and PC3 in the cell-wise robust version. Ca is related to 
calcareous rocks, which are very diverse as a parent material in the form 
of chalk, limestone, dolomite, or marble. Thus, having a component 
which is not involving Ca might be of advantage to better distinguish the 
parent material. 

Focusing now on the results of the cell-wise robust PCA version, we 
can conclude:  

• PC1 has positive loadings for Ca, Sr, Na, Mg, which characterize 
calcareous rocks (e.g. in eastern and southern Spain, south France, 
the Apennines in Italy), ophiolites (e.g. in Greece and Cyprus), 
greenstones and the crystalline less weathered rocks in Scandinavia. 
Negative contributions from Zr and Si relate to parent materials as 

Fig. 8. Scores of PC1 based on the classical (left), row-wise robust (middle) and cell-wise robust (right) estimates of the clr covariance matrix. Map tiles by Stamen 
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL. 

Fig. 9. Scores of PC2 based on the classical (left), row-wise robust (middle) and cell-wise robust (right) estimates of the clr covariance matrix. Map tiles by Stamen 
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL. 
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coarse grained, sandy soil, and soil developed on granite, typically in 
central and southern Europe.  

• PC2 has positive loadings for Na, Sr, Zr, Si, Ba, K, Sr, which are 
indicative of felsic lithologies. Negative loadings are for Mg, Cr, V, 
Fe, Zn, Mn, which indicate mafic bedrocks. Overall, this component 
shows a separation into northern and southern Europe, following the 
boundary of the last glaciation.  

• PC3 is unique, with high loadings for P, Zn and Mn. This might be 
related to climatic conditions (north-western parts of Spain, western 
part of UK, south-west of Scandinavia), where wet and cold climate 
favor the build-up of organic material. Negative loadings are for Ca, 
Cr, Zr, Ti, indicative of ophiolite (e.g. Greece, Balkan States, Cyprus), 
but also limestone (southern/eastern Spain). 

6. Summary and conclusions 

In the field of robust statistics, research in cell-wise robustness, i.e., 
robustness with respect to outliers in single cells of a data matrix, 
received a lot of attention in the last years. This started with an inves-
tigation on error propagation of outliers in single cells (Alqallaf et al., 
2009), where it has been demonstrated that the effect becomes worse 
especially if the number of variables increases. Even a small proportion 
of contaminated cells could then result in a high proportion of rows 
containing outliers (i.e. outlying cells), which could cause breakdown of 
traditional row-wise robust methods (Rousseeuw and Van Den Bossche, 
2018; Agostinelli et al., 2015). 

Cell-wise outliers play also an important role in CoDA, and 
depending on the specific log-ratio transformation they may also prop-
agate to the entire row (observation) (Mert et al., 2016). The goal is to 
avoid this form of propagation, and to still make use of the non- 
contaminated cells (log-ratios) in a statistical analysis. 

The focus here was on cell-wise robust covariance estimation by 
robustly estimating the elements of the variation matrix and by making 
use of the well-known relationship between both matrices. Robust 
estimation of the variation matrix is straightforward, by simply applying 
robust variance estimation to all elements of this matrix. What is not so 
straightforward is to obtain a covariance estimator which (a) fulfills the 
properties of a clr covariance matrix and (b) has reasonable robustness 

properties. We proposed two estimators which are appropriate in the 
sense of (a), both based on the highly robust and efficient Qn scale 
estimator. One proposed estimator has an additional regularization, 
which has advantages especially if the ratio of the number of observa-
tions to the number of variables gets small (smaller than 1). Simulations 
(Section 4) have shown that even without contamination, the estimators 
are comparable to the classical clr sample covariance estimator, or even 
preferable if the dimension gets larger than the sample size. In case of 
contamination, they are clearly preferable over the classical estimator, 
but in many cases also preferable over a row-wise robust estimator. 
Particularly if the dimension is close to or even bigger than the sample 
size, the regularized cell-wise version shows excellent properties, and it 
achieves good results in cases where the row-wise estimator even cannot 
be computed. The simulation settings with zero corruption might be of 
special interest to applications, where detection limit problems occur, 
and it is surprising how well the regularized Qn estimator performs in 
this situation. 

A covariance estimate is the basis for many multivariate methods, 
such as PCA, and in CoDA also the variation matrix estimate is very 
useful, e.g. for Q-mode clustering. Both methods have been demon-
strated at a geochemistry dataset, based on classical and robust versions 
of the estimates. Generally speaking, the principle of robustness is to fit 
the model to the data majority, and thus to downweight observations 
which deviate from this majority trend (Maronna et al., 2019, p 
195–224). While in row-wise robustness the downweighting is done for 
complete observations, cell-wise methods here in the variation matrix 
context only downweight deviating values of particular pairwise log- 
ratios, and thus they incorporate all “useful” information of the obser-
vations from pairwise log-ratios. 

One of the proposed estimators of the variation matrix was a 
shrinkage estimator. Note that the same type of estimator could also be 
defined in a non-robust manner. The resulting estimator could then 
serve as a classical counterpart in situations where the dimension ex-
ceeds the number of observations. This use-case is of increasing 
importance in areas where more and more variables are measured, e.g. 
in bioinformatics (Gloor et al., 2017). In our future research we will 
investigate this case in more detail, also in combination with sparsity 
constraints. 

Fig. 10. Scores of PC3 based on the classical (left), row-wise robust (middle) and cell-wise robust (right) estimates of the clr covariance matrix. Map tiles by Stamen 
Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL. 
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