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a b s t r a c t

Traditional methods for the analysis of compositional data consider the log-ratios
between all different pairs of variables with equal weight, typically in the form of
aggregated contributions. This is not meaningful in contexts where it is known that a
relationship only exists between very specific variables (e.g. for metabolomic pathways),
while for other pairs a relationship does not exist. Modeling absence or presence of
relationships is done in graph theory, where the vertices represent the variables, and the
connections refer to relations. This paper links compositional data analysis with graph
signal processing, and it extends the Aitchison geometry to a setting where only selected
log-ratios can be considered. The presented framework retains the desirable properties of
scale invariance and compositional coherence. A real data example from bioinformatics
underlines the usefulness of this approach.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Since the fundamental work of Aitchison [2], the field of compositional data analysis (CoDa) has received a lot of
ttention. Analyzing positive multivariate data from a compositional point of view shifts the focus from the Euclidean
erspective of absolute quantities to the view of relative information. Many data sets have since then been recognized to
e of compositional nature. Examples include Microbiome data Gloor et al. [20], omics data Quinn et al. [44], time-use
ata Dumuid et al. [12], economical data and many more. Good overviews of standard theory on CoDa can be found
n Aitchison [3], Pawlowsky-Glahn and Egozcue [41] or Filzmoser et al. [16].

In the following we will denote the space of multivariate positive real values {(x1, . . . , xD)⊤ ∈ RD
| xj > 0∀j ∈

{1, . . . ,D}} by RD
+

and define the D-part simplex as

SD
:=

{
(x1, . . . , xD)⊤ ∈ RD

+

⏐⏐⏐⏐ D∑
j=1

xj = 1
}
⊂ RD

+
.

For two compositions x = (x1, . . . , xD)⊤, y = (y1, . . . , yD)⊤ ∈ RD
+

and α ∈ R the following two operations called
perturbation and powering are defined,

• x⊕ y := (x1y1, . . . , xDyD)⊤
• α ⊙ x := (xα

1 , . . . , x
α
D)
⊤,
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s well as their scaled versions

• x⊕A y := 1∑D
j=1 xjyj

x⊕ y

• α ⊙A x := 1∑D
j=1 xαj

α ⊙ x,

ee Billheimer et al. [6], Pawlowsky-Glahn and Egozcue [40]. The D-part simplex SD is equipped with an inner product,
nown as the Aitchison inner product,

⟨x, y⟩A :=
1
2D

D∑
i,j=1

ln
(
xi
xj

)
ln

(
yi
yj

)
, (1)

such that (SD, ⟨·, ·⟩A,⊕A,⊙A) is a Hilbert space with neutral element 1
D (1, . . . , 1)

⊤
∈ RD

+
and norm ∥x∥A :=

√
⟨x, x⟩A,

see Pawlowsky-Glahn et al. [43]. A common tool for the analysis of compositional data is the clr (centered log-ratio)-map

clr : SD
→ RD, clr (x) :=

(
ln

(
x1

D
√∏D

j=1 xj

)
, . . . , ln

(
xD

D
√∏D

j=1 xj

))⊤
, (2)

which can be shown to be distance preserving on SD, Pawlowsky-Glahn et al. [43]. Further, the clr-map has the following
properties,

clr(x⊕A y) = clr(x)+ clr(y), (3)

clr(α ⊙A x) = α clr(x), (4)

⟨x, y⟩A = ⟨clr(x), clr(y)⟩2, (5)

where ⟨·, ·⟩2 denotes the standard inner product in RD Pawlowsky-Glahn et al. [43]. As the clr-map is not bijective onto
RD, a modification has been considered by Egozcue et al. [15], called the ilr (isometric log-ratio)-map

ilrV : SD
→ RD−1, ilrV(x) := V⊤ clr(x) , (6)

where V ∈ RD×(D−1) is a matrix with orthogonal columns spanning the D− 1 dimensional subspace {z ∈ RD
|
∑D

j=1 zj =
0} ⊂ RD. The ilr-map is not unique depending on the chosen basis, but is an isometric bijective map onto RD−1 that
fulfills (3), (4) and (5). Thus, the purpose of a clr (ilr)-map is to transform compositional data to the standard Euclidean
geometry for which classical tools in statistical data analysis are appropriate and designed. Note that the ℓ-th component
of the clr-map can be written in terms of pairwise log-ratios, since

ln
(

xℓ

D
√∏D

j=1 xj

)
=

1
D

(
ln

xℓ

x1
+ · · · + ln

xℓ

xℓ−1
+ ln

xℓ

xℓ+1
+ · · · + ln

xℓ

xD

)
,

for ℓ ∈ {1, . . . ,D}, and thus clr (ilr)-maps consider the information of all pairwise log-ratios, and they receive equal
weight in the analysis. This is not always desirable, because log-ratios of pairs which are not in a meaningful relationship
might not be considered at all for the analysis.

In this paper we investigate the connections between CoDa and signal processing on graphs, and it will be shown that
CoDa can be viewed as calculus on finite graphs. The goal is to extend tools of the latter by defining a scale invariant
inner product that depends on the graphical structure. Subsequently, a scale invariant isometric bijective map shall be
identified that depends on the graph structure and on weights, such that after transforming the original data one can
work again in a Euclidean space. The main idea of the paper is thus to modify the Aitchison inner product in such a way
that only certain log-ratios influence the geometry of the space. This can be done by looking at a weighted version of the
Aitchison inner product (1), with weights wij:

1
2

D∑
i,j=1

ln
(
xi
xj

)
ln

(
yi
yj

)
wij.

hese weights can be fixed before the analysis to only let the information of certain important log-ratios play a role, or
hey can be chosen in a data dependent way.

The idea of weighting in CoDa has been considered before, see Van den Boogaart et al. [7], Egozcue and Pawlowsky-
lahn [14], Hron et al. [27], Greenacre [22], Greenacre et al. [24] and Hron et al. [26]. Greenacre [22] also considers only
eeping a few log-ratios which represent the data well and draws connections to graph theory. Our contribution differs,
owever, from the mentioned ones in that the underlying geometry is adapted through distinct wij, and that we are able
fter transforming the data to work in the standard Euclidean geometry.
Before introducing the new concepts in detail, we will recapture some important results from graph theory.
2
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.1. Some results from graph theory

In this subsection we use the notation (f1, . . . , fD) ∈ RD and (g1, . . . , gD) ∈ RD for two sets of variables, in order to avoid
any confusion with the compositional case. We define a graph as a fixed pair (V,W), where V := {1, . . . ,D} denotes a set
of indices, and W = (wij)1≤i,j≤D ∈ RD×D is a symmetric matrix with zero diagonal and non-negative entries, corresponding
to weights between indices. Graphs are useful to model the relation between variables (f1, . . . , fD) ∈ RD. The idea is that
the bigger a weight wij, the bigger the relationship between the two variables fi and fj is. Whenever wij is zero there is
o relation.
The edge-set of a graph is defined as E := {(i, j) | wij ̸= 0} ⊂ V2. We write in the following i ∼ j whenever (i, j) ∈ E .
e say that there exists a path from the vertex i to the vertex j if there are vertices i1, . . . , ik, with i = i1, j = ik, and
i1 i2 ̸= 0, wi2i3 ̸= 0, . . . , wik−1 ik ̸= 0. A subset of indices {i1, . . . , ik} ⊂ V is called connected if there is a path from each
ertex in the subset to another vertex in the subset. If the subset is equal to V then the graph is said to be connected,
therwise we say it is disconnected. The set of vertices V can always be written as a union of its connected components

V = ∪M
m=1Vm, with disjoint sets V1, . . . ,VM , for any graph. Such a decomposition can be obtained by starting with one

ertex, say v1 = 1, and looking for all other vertices connected with v1 through a path to obtain V1. Deleting V1 from V
e can restart the procedure to get V2, and so on.
An important analytical tool for finite graphs is the so called Laplacian-matrix, defined as

LW := diag
( D∑

j=1

w1j, . . . ,

D∑
j=1

wDj

)
−W, (7)

here diag is the diagonal matrix of the corresponding entries. The definition of LW is motivated by the following key
quality

1
2

∑
(i,j)∈E

(fi − fj)(gi − gj)wij = f ⊤LWg, (8)

for any f , g ∈ RD, see Merris [37].
The properties of LW have been analyzed extensively. In this paper we will need the following standard results in

spectral graph theory, see Mohar [38] for a proof.

Lemma 1. Assume that W is symmetric with zero diagonal and non-negative entries, then:

(i) LW is a symmetric positive semi-definite matrix;
(ii) The vector of all ones 1 := (1, . . . , 1)⊤ ∈ RD is always an eigenvector to zero of LW, i.e., LW1 = 0;
(iii) If V is the union of more than one connected component, V = ∪M

m=1Vm, then for each connected component Vm, the
vector in RD with ones at position i ∈ Vm and otherwise zeros, 1i∈Vm ∈ RD, is an eigenvector to zero, i.e., LW1i∈Vm = 0.
The vectors 1i∈Vm span the kernel of LW;

(iv) There exists a permutation matrix P such that PLWP⊤ is in block diagonal form with blocks L1, . . . , LM for the weights
PWP⊤;

(v) The Laplacian-matrix LW has exactly M many zero eigenvalues.

From now on we will assume for non-connected graphs that the Laplacian-matrix LW is always in block diagonal form.
This can always be achieved by simply relabeling the vertices using Lemma 1.

For a more thorough introduction to graph theory we refer to Gross and Yellen [25] or Chung [9].

2. Compositional data on graphs

2.1. Graph simplex space, norms and inner products

Eq. (8) allows us to make the connection to compositional data: When taking the weight matrix W = 1
D (11

⊤
− ID),

wij =
1
D , where ID denotes the identity matrix of dimension D, and LA := (1 − 1

D )ID −
1
D (11

⊤
− ID) = ID − 1

D11
⊤, we

ecover for any x, y ∈ SD

⟨x, y⟩A = ln(x)⊤LA ln(y).

LA is known as the centering matrix, see Marden [35]. It has exactly one eigenvalue equal to zero, with eigenvector 1.
ll other eigenvalues are equal to 1. The eigenvector 1 corresponds to the null space of LA and so the scale invariance of the
itchison inner product is a direct consequence of the Laplacian matrix LA, as LA ln(x⊕c1) = LA(ln(x)+ln(c)1) = LA ln(x)
olds for any positive constant c. We can see that on (RD

+
,⊕,⊙) the bilinear form ln(x)⊤LA ln(y) is not an inner product

as we can only deduce from ln(x)⊤LA ln(x) = 0 that ln(x) is in the null space of LA. Instead of considering quotient spaces
nd modified operations, an additional condition, such as

∑D x = 1, is used in compositional data.
j=1 j

3
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Given a graph (V,W), with a partition into connected components V = ∪M
m=1Vm, this leads to the definition of the

D-part Graph Simplex as

SD
W :=

{
(x1, . . . , xD)⊤ ∈ RD

+

⏐⏐ ∑
j∈Vm

xj = κm,m ∈ {1, . . . ,M}
}
, (9)

for some κ1, . . . , κM > 0, and scaled versions of the perturbation and the powering operations such that the latter map
into SD

W:

• (x⊕W y)i∈Vm :=
κm∑

j∈Vm xjyj
(xiyi)⊤i∈Vm

• (α ⊙W x)i∈Vm :=
κm∑

j∈Vm
xαj
(xα

i )
⊤

i∈Vm

for all m ∈ {1, . . . ,M}, where the subscript i ∈ Vm denotes the entries with index in Vm. Note that in the definition
f SD

W other conditions could be used, provided that the perturbation and the power operation is changed accordingly.
he natural extension of the Aitchison inner product to a graph structure on ln(x) is to equip SD

W with the inner product
n(x)⊤LW ln(y), defining:

⟨x, y⟩W := ⟨ln(x), LW ln(y)⟩2, (10)

∥x∥W :=
√
⟨x, x⟩W, (11)

or any x, y ∈ RD
+
. We have the following Lemma:

emma 2. The space (SD
W,⊕W,⊙W) equipped with ⟨x, y⟩W is a Hilbert space.

The proof can be found in Appendix A.

2.2. Negative weights

We can generalize the theory developed for the space (SD
W, ⟨·, ·⟩W,⊕W,⊙W) even further. One important extension

that comes to mind is to allow the weights wij to also take negative values as the following example shows:

Example 1. Assume that through expert knowledge we are interested in analyzing only certain weighted combinations,

say
∑D

j=1 ln(
xi
xj
)wij = ln

(
xd(i)i∏D
j=1 x

wij
j

)
, where d(i) :=

∑D
j=1 wij, for i ∈ {i1, . . . , iL} ⊂ {1, . . . ,D} and wij ∈ R, not necessarily

symmetric. We can collect these weighted combinations in a vector, L̃W ln(x), where L̃W ∈ RL×D is a rectangular matrix,
L ≤ D, with (̃LW)ℓiℓ =

∑D
j=1 wij for ℓ ∈ {1, . . . , L} and (̃LW)lj = −wlj, for j ̸= il. The matrix LW := L̃W (̃LW)⊤ is symmetric,

positive semi-definite, has real valued entries and 1 in its null space, LW1 = 0. L̃W can be used as a building block for a
scale-invariant Hilbert-space as explained below.

Dropping the assumption of non-negative weights wij but still assuming that LW is positive semi-definite, the goal is
to again be able to define scale-invariant spaces. As before, the idea is to define a Hilbert-space based on a bilinear form

(x, y) ↦→ ⟨x, y⟩∼ := ⟨ln(x), LW ln(y)⟩2, (12)

for a symmetric and positive semi-definite matrix LW with LW1 = 0. Definition (12) does not define a proper inner product
on (RD

+
,⊕,⊙) as it is degenerated, i.e., ⟨x, x⟩∼ = 0 is satisfied by infinitely many x, and RD

+
equipped with the standard

operations needs to be modified.
More formally, we start by defining the equivalence relation ln(x) ∼ ln(y) ⇔ ln(x) − ln(y) ∈ Ker(LW), where Ker

denotes the kernel of the linear operator LW. This equivalence relation induces the equivalence classes [ln(x)] := {ln(y) |
ln(x) ∼ ln(y)}. In the following we write " ≡ " whenever two elements belong to the same equivalence class. From
the theory of quotient spaces, see Roman [46], we get that the space of equivalence classes, namely {[ln(x)] | x ∈ RD

+
},

which can be also written as [ln(x)] = {ln(x) + q | q ∈ Ker(LW)}, is a linear vector space equipped with the operations
[ln(x)] + [ln(y)] := [ln(x) + ln(y)] and α[ln(x)] := [α ln(x)] for any x, y ∈ RD

+
and α ∈ R. Therefore to define a scale

invariant Hilbert space on SD
∼
:= {exp([ln(x)]) | x ∈ RD

+
} we set for x, y ∈ SD

∼
and α ∈ R

x⊕∼ y := exp([ln(x)] + [ln(y)]), (13)

α ⊙∼ x := exp(α[ln(x)]), (14)

⟨x, y⟩∼ := ⟨[ln(x)], LW[ln(y)]⟩2. (15)

ith this we again have

emma 3. The space (SD ,⊕ ,⊙ ) equipped with ⟨x, y⟩ is a Hilbert space.

∼ ∼ ∼ ∼

4
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The proof can be found in Appendix A.
Note that in the case of compositional data, LW = LA, (15) is equivalent to the Aitchison inner product (1) and (13)

as well as (14) is proportional to the scaled versions of perturbation and powering in the former. By definition of the
quotient space any two elements are the same if their difference lies in the kernel. For compositional data this means
ln(x) ≡ ln(x) + α1 for any α ∈ R. The usual condition

∑D
j=1 xj = 1 as used in the definition of SD, is simply a matter

of fixing a representative for each equivalence class [ln(x)], but others could be chosen as well. The same goes for the
graphical extension represented so far in this paper.

The quotient space nature of regular compositional data has been investigated extensively in Barceló-Vidal et al. [4].
The graphical approach presented here is thus a natural extension. Note, however, that if we allow also for negative
weights then, depending on the kernel of the Laplacian, we might allow for more than invariance under rescaling on
subgraphs, as the latter might contain more than the constant vectors 1Vm .

We finish this subsection by noting that for any matrix LW that is symmetric and fulfills LW1 = 0 we have the following
dentity

⟨ln(x), LW ln(y)⟩2 =
1
2

D∑
i,j=1

ln
(
xi
xj

)
ln

(
yi
yj

)
wij, (16)

here W is defined through the decomposition LW = diag (W1)−W. The proof is the same as the proof for (8).

2.3. Compositional normal distribution and total variance

In classical CoDa x is assumed to be normally distributed if and only if for some fixed V the ilr-transformed data
follows a multivariate normal, i.e., ilrV(x) ∼ N (η,Σ), where Σ ∈ R(D−1)×(D−1) is a positive definite matrix and η ∈ RD−1,
see Pawlowsky-Glahn et al. [42]. ilrV(x) can be written as V⊤LA ln(x), and so we conclude that ln(x) follows a degenerate
multivariate normal distribution with covariance matrix (LAVΣ−1V⊤LA)+ and mean Vη, ln(x) ∼ N (Vη, (LAVΣ−1V⊤LA)+),
see also the next section, where the superscript + indicates the Moore–Penrose inverse, Ben-Israel and Greville [5]. The
matrix L := LAVΣ−1V⊤LA is symmetric and positive semi-definite. Furthermore, 1 is in its nullspace. Any symmetric
matrix L with L1 = 0 can be decomposed into L = diag (W1) − W for a symmetric matrix W, with possibly negative
entries wij, for i ̸= j, and zero diagonal. Therefore we define the graph compositional normal distribution more generally:

Definition 1. A random vector x ∈ SD
∼

is said to be graph compositionally normal distributed, with E(ln(x)) = µ, if and
only if

ln(x) ∼ N (µ, (LW)+),

where LW is symmetric, positive semi-definite, has real valued entries and fulfills LW1 = 0.

Note that this definition includes the classical CoDa case, but also allows for more general LW as seen in the previous
chapters.

The total variance of a classical compositional random vector x ∈ SD, with E(ln(x)) = µ, denoted by totvar (x), is an
appropriate measure of global dispersion, see Hron and Kubáček [29], and defined as

totvar (x) :=
1
2D

D∑
i,j=1

E
((

ln(xµ

i )− ln(xµ

j )
)2

)
,

here xµ denotes the centered variable xµ
:= exp(ln(x)− µ).

We define the graph version of the total variance in an analogous way.

efinition 2. For a random vector x ∈ SD
∼
, with E(ln(x)) = µ, we define the graph total variance

totvarLW (x) := E(⟨ln(x), LW ln(y)⟩2) =
1
2

D∑
i,j=1

E
((

ln(xµ

i )− ln(xµ

j )
)2

)
wij, (17)

where the second equality is a consequence of (16).

2.4. Centered and isometric log-ratio transforms

In the classical compositional setting, where LW = LA, the clr and the ilrV mappings play an important role in
stablishing isometry of SD to RD−1, as well as in the interpretation of results. In the notation of the Laplacian-matrix
he clr map in classical CoDa is given by

clr (x) = L ln(x).
A

5
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t is well known that LA is idempotent, LA = L2A, from which follows that clr is distance preserving, see (5). This motivates
s to define the weighted clr map as

clr (x)W := PW ln(x),

or any matrix PW that fulfills P⊤WPW = LW. From the definition of clr (·)W we immediately have ⟨x, y⟩W =

⟨LW ln(x), LW ln(y)⟩2 for any x, y. In the case of non-negative as well as negative weights, as described in Sections 2.1

and 2.2, the matrix PW = L
1
2
W is a natural choice. However, more interpretable choices might be appropriate depending on

he setting. In Example 1 and the subsequent discussion we saw that any rectangular matrix L̃W with the property L̃W1 = 0
an be used as a building block to define a Hilbert space starting from ⟨x, y⟩∼ := ⟨ln(x), LW ln(y)⟩2 with LW = (̃LW)⊤̃LW. In
his example PW = L̃W seems to be the more appropriate choice as the coordinates of PW ln(x) amount to

∑D
j=1 ln(

xi
xj
)wij.

Although clr (·)W is distance preserving it is not bijective. In the classical CoDa approach the ilr map (6) is often used
to map data into the Euclidean space RD−1 where common statistical methods can be used. Additionally, depending on
the choice of V one obtains very interpretable maps, see Filzmoser et al. [16] or Fišerová and Hron [17], that are of the
form

(ilr(x)V)j :=

√
D− j

D− j+ 1
ln

( xj
D−j
√∏D

i=j+1 xi

)
. (18)

ere the jth coordinate (ilr(x)V)j only incorporates information of xi with i ≥ j and x1 only appears in the first coordinate,
which can thus be interpreted as carrying the main information about the latter. As the order of variables is arbitrary,
simply permuting the variables leads to maps with first coordinate only containing any chosen variable. In the graph
setting we would also like to obtain interpretable isometries. The idea is to use a modified version of the Cholesky
decomposition for positive semi-definite matrices to write LA = C⊤C, with C being an upper triangular matrix with non-
negative diagonal elements. The jth entry of the mapping x ↦→ C ln(x) contains only the information of ln(xj), . . . , ln(xD)
as a weighted sum similar to (18).

Without loss of generality we will assume in the following for ease of notation that the graph leading to LW is
connected. This is no restriction as the two Lemmata which follow can otherwise simply be applied to each subgraph
separately.

Lemma 4 (Graph Isometric Log-ratio Map (GILR1)). Let P be a permutation matrix of the nodes V . Computing the eigen-
decomposition of PLWP⊤, that is PLWP⊤ = UΣU⊤, followed by a QR decomposition UΣ

1
2 U⊤ = QR, with Q,R ∈ RD×D, we set

C = R−{ℓ1,...,ℓk}, where R−{ℓ1,...,ℓk} is the matrix R with zero rows, given by the indices ℓ1, . . . , ℓM , deleted. Then the map

x ↦→ CP ln(x), (19)

is a linear bijective isometry from (SD
∼
,⊕∼,⊙∼), equipped with ⟨·, ·⟩∼, to (RD−M ,+, ·) equipped with ⟨·, ·⟩2. Additionally the

matrix C is an upper triangular matrix that fulfills C1 = 0.

A proof to this Lemma can be found in Appendix A. The role of the permutation matrix in Lemma 4 is to be able to
put focus on a coordinate of interest similar to the ilr map (18). After the choice of a permutation matrix P, which can

be identified with the mapping π : {1, . . . ,D} → {1, . . . ,D}, we see that for (19), the first element is ln
( x

c11
π (1)∏D

i=2 x
−c1i
π (i)

)
=

ln
(∏D

i=2

( xπ (1)
xπ (i)

)−c1i), the second element ln
( x

c22
π (2)∏D

i=3 x
−c2i
π (i)

)
= ln

(∏D
i=3

( xπ (2)
xπ (i)

)−c1i) and so on; where the equalities hold because

rom C1 = 0 follows cii = −
∑D

j=i+1 cij.
Although the map in (19) is a bijective isometry, the rows of CP are not orthogonal. A linear bijective isometry with

rthogonal rows can however be constructed in the following way.

emma 5 (Graph Isometric Log-ratio Map 2 (GILR2)). Taking the eigen-decomposition of LW, LW = UΣU⊤, where the diagonal
lements λ1, . . . , λD of Σ are ordered from biggest to smallest and denoting the ith column of U by ui and M the number of
ero eigenvalues, we can define a bijective isometric map by

x ↦→ (
√

λi⟨ui, ln(x)⟩2)⊤i∈1,...,D−M ∈ RD−M . (20)

ts inverse is given by z ↦→
∑D−M

i=1 zi 1
√

λi
ui.

A proof can be found in Appendix A.

. The weights wij

In many cases there will not be any expert knowledge about the weights wij. In this section we will look at different
odels to find such weights. In the context of graphical models, it has been shown that if a random vector x follows a
6
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ultivariate Gaussian, x ∼ N (µ,Σ), with positive definite Σ, that the precision matrix Σ−1 reveals a graph structure
in form of conditional independence [32]. For ease of notation we assume in the following that x is replaced with its
centered version x−µ. In Yuan and Lin [48] and Friedman et al. [18], a penalized log-likelihood problem is solved to find
an estimate Σ̂−1

Σ̂−1 := argmin
A∈Rd×d

A⊤=A,A p.d.

ln(| A |)− tr
(
A(N−1X⊤X)

)
+ λ

D∑
i,j=1

| Aij |, (21)

where p.d. is short for positive definite, X ∈ RN×D is the data matrix and λ is a parameter controlling the sparsity of the
entries of Aij which give the edge weights. Another common approach to finding a graph structure and corresponding
weights, besides (21), is to solve a series of problems of the form, see Meinshausen and Bühlmann [36]:

min
β∈RD−1

1
N

X i − X−iβi

2
2 + λ

D−1∑
j=1

| (βi)j |, (22)

or i ∈ {1, . . . ,D} and λ ≥ 0, where X i denotes the ith column of the data matrix X and X−i the latter with the ith column
deleted. To obtain a weight matrix a post-processing step is applied by setting each weight to w̃ij := |

1
2 (βij + βji) |

for i ̸= j and w̃ii := 0 for i = j. For compositional data an approach for finding an underlying graph structure has been
proposed in Kurtz et al. [31] and is based on solving (21) or (22) after clr transforming the data. In the area of graph signal
processing various other methods for finding meaningful weights have been developed in a non-compositional context,
see Dong et al. [11], Kalofolias [30] and Egilmez et al. [13]. The weights are found such that a given signal, is considered
smooth for the found weights, whereas smoothness is measured by

∑D
i,j=1(xi − xj)2wij. Finally, in [22] an algorithm for

finding important log-ratios was explored. However, there was no connection made to weights that could be used as
building blocks for a geometry.

All the mentioned methods have in common that they lead to bigger weights between two variables ln(xi) and ln(xj)
the bigger their dependence is. Depending on the goals in mind and the specific setting, it might be more interesting
to find weights that put a larger emphasis on log-ratios that explain a lot of variance, as we believe that those are of
major interest. Log-ratios which have low variance should get small weights. Note that this is, in its core, similar to
principal component analysis. We propose to maximize the weighted total variance as defined in (17), totvarLW (·), with
an additional sparsity penalty and under convex constraints. Defining the following sets

Ωsym
:= {LW = diag (W1)−W | diag (W) = 0, LW = L⊤W}, (23)

Ωpos
:= {LW = diag (W1)−W | diag (W) = 0, wij ≥ 0 ∀i ̸= j}, (24)

Ω2
:= {LW = diag (W1)−W | diag (W) = 0, ∥LW∥2 ≤ 1}, (25)

we suggest to solve either

max
LW∈RD×D

1
N

N∑
n=1

⟨ln(xn), LW ln(xn)⟩2 − λ

D∑
i,j=1

| wij | s.t. LW ∈ Ω2
∪Ω (26)

r

max
LW∈RD×D

1
N

N∑
n=1

⟨ln(xn), L⊤WLW ln(xn)⟩2 − λ

D∑
i,j=1

| wij | s.t. LW ∈ Ω2
∪Ω, (27)

here λ > 0 is a tuning parameter that controls the sparsity and Ω is Ωsym
∪Ωpos for the first problem (26) and either

mpty or a combination of Ωsym and Ωpos for the second problem (27). The constraint ∥LW∥2 ≤ 1 is always present and
voids graphs that have nodes with too many edges similar than done in Dong et al. [11] or Kalofolias [30]. Both problems
orrespond to the models described in Section 2.1 resp. 2.2 and depend on the modeling choice. If one is rather interested
n the natural choice of the weighted clr as described in Section 2.4 then problem (27) seems to be more appropriate.
ote that problem (27) is not convex and thus harder to solve than (26). To solve both problems we first define a matrix
and a vector w such that vec (LW) = Sw, where vec is the vectorization of a matrix, i.e., each column of a matrix is
tacked into one big vector. Then it is easy to see that the sample weighted total variance in both cases can be written as
vec (Γ), Sw⟩2 with Γ =

∑N
n=1 ln(xn) ln(xn)

⊤ in the first case and Γ = LW(
∑N

n=1 ln(xn) ln(xn)
⊤) in the second. In the second

ase the strategy is thus to fix one LW in the LWL⊤W term of the objective function and optimize in the other, similar to
deas as described in sparse principal component analysis in Witten et al. [47]. Therefore we need to solve problems of
he type

max ⟨
1

vec (Γ), Sw⟩2 − λ ∥w∥1 s.t. ∥Sw∥2 ≤ 1 and w ∈ Φ, (28)

w∈RD(D−1) N

7
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here Φ is a set of linear (in)equalities corresponding to Ωsym and Ωpos. To solve (28) we decouple the constraint
∥Sw∥2 ≤ 1 by rewriting it as

min
w∈RD(D−1)

− ⟨
1
N

vec (Γ), Sw⟩2 + λ ∥w∥1 + χ (w ∈ Φ)+ χ (∥η∥2 ≤ 1), (29)

Sw = η (30)

here χ is a function that assigns +∞ if the condition is not satisfied and zero else. As the objective function of problem
29) is a sum of two separate functions in w and η with linear constraints it is amendable to the ADMM (alternating
irection method of multipliers) algorithm, see Boyd et al. [8]. The ADMM algorithm applied to this problem has the
ollowing substeps, Algorithm 1, that are executed till convergence.
Algorithm 1
• Input: vec (Γ ) and λ > 0
• Initialize: u, η ∈ RD2

and ρ > 0
1: while not converged do
2: w← argminw∈Φ −

1
N ⟨vec (Γ ), Sw⟩2 + λ ∥w∥1 +

ρ

2 ∥η+ u− Sw∥22
3: η← argminη χ (∥η∥2 ≤ 1)+ ρ

2 ∥η+ u− Sw∥22
4: u← u+ η− Sw
5: end while
Solving the problem in step 2 in Algorithm 1 amounts to solving a Lasso problem, as the objective function can be

reformulated, modulo a constant not dependent on w, as 1
2N

η+ u+ 1
ρ
vec (Γ)− Sw

2

2
+

λ
ρ
∥w∥1. Possible positivity

constraints in Φ can be handled easily by state of the art algorithms as coordinated descent, see Friedman et al. [19],
and a possible symmetric constraint corresponds to linearly reparametrizing w by a quantity of half its dimension. Note
also that the matrix S is extremely sparse and known beforehand. Solving the problem in step 3 in Algorithm 1 simply
amounts to a projection of u − Sw onto the unit ball. The convergence of the ADMM algorithm is highly dependent on
the choice of ρ. From the above reformulation into a Lasso problem in step 2 of Algorithm 1 the appearance of ρ in a
uotient with λ suggests setting ρ = λ, which we found to be a good choice. We also see that the norm in step 3 could
e replaced by any other norm leading to a projection problem. As mentioned, Algorithm 1 can be used to directly solve
26) using Γ =

∑N
n=1 ln(xn) ln(xn)

⊤ and a λ > 0 as input. For solving Problem (27) we can use Algorithm 2.

Algorithm 2

• Input: Σ =
∑N

n=1 ln(xn) ln(xn)
⊤ and λ > 0.

• Initialize: wii = 0 and wij =
1
D for i ̸= j. Set LW = diag (W1)−W.

1: while not converged do
2: Update Γ = LWΣ

3: Get w by using Algorithm 1 with input (Γ , λ)
4: Update LW = vec−1 (Sw)
5: end while
An implementation in Fortran and R of Algorithms 1 and 2 as well as for the maps of Lemmas 4 and 5 for different

structural constraints of LW is available at https://github.com/Kristats/Graph-CoDa-Public.git.
We conducted a small simulation study to examine the suggested method. For different dimensions D ∈ {5, 10, 20, 30},

and number of samples N = 5D we first generated a variation matrix T ∈ RD×D. To do so we pick at random about
thirty percent of the rows, and as T is symmetric the same columns, and set the entries of each to a separate uniformly
distributed number between [1, 1

D ]. The rest of the rows and columns are set to some uniformly distributed numbers
between [0, 1

D2 ]. To obtain an appropriate covariance matrix Σclr in clr-coordinates we use the relation Σclr
= −

1
2LATLA,

ee Aitchison [2]. A data matrix X ∈ RN×D is then generated in clr-coordinates according to a multivariate normal
istribution with mean sampled at random from a univariate standard normal and the singular covariance Σclr. This
rocess guarantees that the simulated data has some high variation log-ratios and many low variation ones. Each
imulation setting was performed 100 times. Table 1 shows the median computation times, in seconds, and the mean
f the best possible F-score, concerning the high variation ratios, that can be found in the path of lambdas on average.
n Table 1 sym stands for problem (26) with Ω = Ωsym

∪ Ωpos, nsym for problem (27) with empty Ω , symp as
well as nsymp for the parallelized versions in lambda with ten cores and step for the algorithm used in Lin et al.
[33] and implemented in the easyCODA R package [23]. We can see that the F-scores are very similar for the first
four methods (sym,nsym,symp,nsymp) and constantly beat the step algorithm by a large margin. The computation time
grows very quickly for the non-parallelized algorithms (sym,nsym) and becomes unfeasible with growing dimension.
However, we can see that the parallelized versions with ten cores lead to a significant speed up. As the F-scores for the
parallelized method of problem (26) are very similar to the other ones, with the step algorithm excluded, with much
lower computation times, we can conclude that (symp) should be the method of choice in this setting.
8
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Table 1
Mean F-scores and median computation time in seconds of the algorithms presented in this paper compared with the
step algorithm as implemented in the easyCODA R package [23].

D = 5 D = 10 D = 20 D = 30

F-score Time F-score Time F-score Time F-score Time

sym 0.83 0.99 s 0.69 10.85 s 0.66 93.97 s 0.68 321.16 s
nsym 0.84 0.75 s 0.72 14.75 s 0.69 203.44 s 0.68 909.76 s
symp 0.83 5.00 s 0.69 5.80 s 0.66 18.11 s 0.67 66.49 s
nsymp 0.84 5.03 s 0.72 6.00 s 0.69 25.89 s 0.67 127.87 s
step 0.46 0.04 s 0.27 0.4 s 0.13 6.86 s 0.09 46.29 s

4. Nugent data set

To illustrate the proposed framework we look at a dataset consisting of vaginal bacterial communities data, i.e., mi-
robiome data, which is best treated as compositional, see Gloor et al. [20] or Lubbe et al. [34]. This data set consists of
= 388 samples of 16 s ribosomal RNA sequences recorded as D = 84 different operational taxonomic units (OTUs), see

Ravel et al. [45]. As a preprocessing step only OTUs present in at least 5% of the samples were kept and subsequently the
82% of zeros of the remaining resulting data matrix X ∈ RN×D

+ were replaced by a value of 0.5, compare to Lubbe et al.
[34]. Additionally to X, a response y ∈ {0, . . . , 10}D of 11 categories was recorded indicating the risk of bacterial vaginosis,
from low risk, given by 0, to high risk, given by 10. We scale y and center column-wise the log-transformed data matrix
n(X). Following this, we solve problem (27) by using algorithm 2 for two different settings, once with Ω = Ωsym

∪Ωpos

nd once with Ω = Ωpos, to obtain for a range of different λ solutions LW(λ). In each setting we propose to continue with
W(λmin) where λmin is chosen such that the following BIC type criterion is minimized over the whole range of possible λ

BIC(λ) = − R2(λ)+ df (λ)
ln(N)
N

,

with R2(λ) denoting the R-squared coefficient regressing ln(xn) onto LW(λ) ln(xn), n ∈ {1, . . . ,N}, and df (λ) denoting the
umber of non-zero weights of LW(λ), similar to ideas in the robust and sparse principal component setting [10]. Fig. 1
hows the number of non-zero weights, df (λ), plotted against the explained information, R2(λ), of the solutions for both
odel choices, Ω = Ωsym

∪ Ωpos in black and Ω = Ωpos in blue, for all λ (dots) as well as for the λmin (vertical lines).
oth models show the typical behavior that with increasing non-zero weights more information of the data is retained.
he non-symmetric solutions always explain more information (blue dots) and the final solution LW(λmin) retains more
nformation with only a very slight increase of non-zero weights (vertical lines).

In Fig. 2 we visualize LW(λmin) for the Ω = Ωpos case only by a directed graph where the nodes without any connections
re not shown. The line width of an arrow leaving a node i and pointing to a node j is proportional to the weight wij. We
an see that Lactobacillus crispatus as well as Lactobacillus iners are central nodes with many high ingoing and outgoing
dges. Thus they seem to play a central role in explaining much of the information in the data. This is in accordance
ith Ravel et al. [45]. Furthermore, Atopobium vaginae and Prevotella timonensis seem to be also central phylotypes to
xplaining these data. In Fig. 3 which shows the diagonal elements of LW(λmin), i.e., the sum of outgoing edge weights
D
j=1 wij, these phylotypes are also clearly the most influential ones.
Next, we randomly split the data set a hundred times into a training and a test data set (80%–20%) and fit a

ompositional linear model and a linear model in the weighted case

min
a

N∑
n=1

(yn − ⟨ln(a), L⊤WLW ln(xn)⟩2)2, (31)

n the training set, where we dropped the λmin in the notation. To solve (31) we map the covariate data X using the GILR2
ap (20) and then use the standard linear model in the Euclidean space. Fig. 4 shows the boxplots for the mean squared
rror on the test set for these three different models. We can see that the classical compositional model performs worse
han the weighted cases. Again the weighted model with only positivity constraints performs best. Interpreting linear
odels in the classical compositional context is in general harder due to the constrained nature of the data. However, the
o called pivot coordinates (18) can be used to interpret resulting coefficients, see Hron et al. [28] or Filzmoser et al. [16].
n the graph setting we can analogously use the map (19). Choosing a permutation matrix P that permutes the covariate
ector such that any chosen xj is on the first place, i.e., (P ln(x))1 = ln(xj), allows to interpret the first compositional part
CP ln(x))1 as a quantity that carries only information about the jth coordinate, as mentioned in Section 2.4. Multiplying
ach coefficient, (CP ln(a))1, by the standard deviation of former permits us to interpret the size as the effect a covariate
as on the outcome. Fig. 5 shows these scaled coefficients. We can see that Lactobacillus crispatus and Atopobium vaginae
s well as Prevotella timonensis and Lactobacillus jensenii contribute most to a lower risk of bacterial vaginosis. Higher
isk can mostly be attributed to Lactobacillus gasseri.
9
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Fig. 1. Plot of df (λ) versus R2(λ) for the solutions LW(λ) of problem (27) with Ω = Ωsym
∪ Ωpos (in black) and Ω = Ωpos (in blue). The vertical

ines show the minima of BIC(λ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

. Conclusions

This paper is an attempt to link compositional data analysis with the concepts of signal processing on graphs. We
tarted from the observation that the Aitchison norm is equally influenced by all pairwise log-ratios between the variables,
egardless if these are meaningful from the problem context or not. Modifying the Aitchison norm by putting a non-
egative weight onto each (squared) pairwise log-ratio led to a norm that gives different log-ratios a different impact.
ith this change comes a semi-inner product induced by the Laplacian matrix, well known in graph theory, and a different

eometry that still satisfies the most important property for compositional data analysis, namely scale invariance. This
adically differs from previous approaches that did consider weighting, for example by constructing an ilr map with the
irst coordinate being a weighted sum of log-ratios, and the others being such that they form an appropriate basis, without
hanging the underlying (Aitchison) geometry.
The framework we propose is very flexible and it includes many extensions that allow for different additional modeling

hoices, such as only considering a low number of interesting subsets of weighted balances — that is, coordinates that
onsist of a few variables in the numerator as well as denominator. We could show that such modeling choices do not
ead to any loss in interpretability and that in fact mappings, such as clr and ilr, which are of central importance in
ompositional data analysis, have an analog in the graph setting. To find appropriate weights we resorted to an algorithm
hat selects log-ratios and their weighting based on explained variance of the whole data set.

To show its utility, we applied the proposed methodology to a real data set. In this data set we looked at a regression
roblem by modeling the risk of getting bacterial vaginosis as being depended on different phylotypes. We showed that
he graph perspective leads to a considerably better model which can also be used to gain different interpretable insights
y first reducing the dimension and then visualizing the resulting model as a graph. The risk was mainly driven by only
few central phylotypes having strong connections to others.
In the future we intend to look into the performance and possible extensions of the methods presented in this paper to

ifferent settings such as classification and regression. Also, we plan to investigate further the problem of finding weights
nder deviations from the assumptions to more robust cases.
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t

Fig. 2. Directed graph visualization of LW(λmin) with positive weights and non-symmetric structure. The arrow width is proportional to the according
weight.
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Appendix A. Scale-invariant q-norms

An important tool in graph theory is the incidence matrix dW ∈ R|E|×|V |. For fixed positive weights W it is defined as

(dW)e,l :=

⎧⎨⎩
wℓj, e = (ℓ, j),
−wiℓ, e = (i, ℓ),
0, else.

The incidence matrix defines a graph theoretic analog to usual differentiation, see Ostrovskii [39], or Grady and Polimeni
[21], along weighted edges. For a fixed edge e = (ℓ, j) we get (dWf )e = (wℓj(fℓ − fj)) which measures the weighted
difference between values in the nodes ℓ and j. A standard result in graph theory is the equality d⊤

W
1
2
d
W

1
2
= 2LW, where

he superscript 1
2 is understood as a coordinate-wise operation. With the latter property we can write Eq. (8) also as

1
2

∑
(fi − fj)(gi − gj)wij = f ⊤LWg =

1
2
⟨d

W
1
2
f , d

W
1
2
g⟩2. (32)
(i,j)∈E

11
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Fig. 3. Plot of the diagonal elements of LW(λmin) with positive weights and non-symmetric structure for the retained nodes ordered from highest
to lowest.

Fig. 4. Boxplots of mean squared errors on the test set for the classical compositional model (far left) and for the weighted one (31) with LW ,
constrained by Ω = Ωsym

∪Ωpos (middle) and Ω = Ωpos (far right), as found by the BIC(λ) criterion.

The bilinear form (f , g) ↦→ ⟨f , LWg⟩2 can be thought of as the graph analog to the bilinear form (f , g) ↦→
∫
f ′(x)g ′(x)dx, for

functions f , g : R→ R in a suitable function space, giving rise to the Sobolev semi-norm in functional analysis, see Adams
and Fournier [1]. Adding

∫
f (x)g(x)dx to

∫
f ′(x)g ′(x)dx turns it into an inner product.

Eq. (32) motivates us to define scale-invariant q-norms. The standard q-norm on the Euclidean space — f ∈ RD is given
as

∥f ∥q :=

{(∑D
i=1 | fi |

q
) 1

q 1 ≤ q <∞,
maxi=1,...,D | fi | q = ∞.

12
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Fig. 5. Transformed estimated coefficients of problem (31) by the map (19) with according permutation and rescaling.

or any x ∈ RD
+

we define

∥x∥q,α :=

{d
W

1
q
ln(x)


q

1 ≤ q <∞,

∥dW ln(x)∥∞ q = ∞.

t can be shown that ∥·∥q, is a norm on (SD
W,⊕W,⊙W). The proof is in Appendix B.

ppendix B. Proofs

roof of Lemma 2.
As (SD

W,⊕W,⊙W) can be seen as M separate D-part simplices, Sm, m ∈ {1, . . . ,M} – not taking into account any inner
products for the moment – we conclude that (SD

W,⊕W,⊙W) is also a vector space. What is left is to show is that from
⟨x, x⟩W = 0 we can conclude x =

∑M
m=1

κm
|Vm|

1i∈Vm . Using the eigenvalue decomposition of LW = UΣU⊤ we can write,
x, x⟩W = ln(x)⊤UΣU⊤ ln(x) =

∑D
j=1 λj(⟨uj, ln(x)⟩)2, with λj ≥ 0 and λj = 0 if and only if an eigenvalue of LW is zero.

Therefore ⟨uj, ln(x)⟩ must be zero whenever λj > 0 which is equivalent to saying that ln(x) is in the kernel. We know
from Lemma 1 that the kernel of LW is spanned by 1i∈Vm , so there exist c1, . . . , cm ∈ R such that ln(x) =

∑M
m=1 cm1i∈Vm .

rom the latter we get ln(xVm ) = cm1, where xVm denotes the entries of x with index in Vm, and thus xVm = exp(cm)1. As,
y definition,

∑
i∈Vm

xi = κm holds, we conclude xVm =
κm
|Vm|

1, x =
∑M

m=1
κm
|Vm|

1i∈Vm . □

Proof of Lemma 3. To prove that (SD
∼
,⊕∼,⊙∼) equipped with ⟨x, y⟩∼ is a Hilbert space we only need to check that (15)

is indeed an inner product. Linearity follows trivially from the definitions (13) and (14) as the log is taken in (15). The
property ⟨x, x⟩∼ ≥ 0 holds for any x ∈ SD

∼
as LW is assumed to be positive semi-definite. When ⟨x, x⟩∼ = 0 we get by

taking the eigen-decomposition of LW = UΣU⊤ and writing (15) as
∑D−M

i=1 (⟨ui, [ln(x)]⟩2)2 that [ln(x)] is orthogonal to the
eigenvectors of the non-zero eigenvalues of ui, and therefore [ln(x)] ∈ Ker(LW), ln(x) ∈ [0]. □

Proof of Lemma 4. From the decomposition of PLWP⊤ we have

PLWP⊤ = UΣU⊤ = (UΣ
1
2 U⊤)⊤UΣ

1
2 U⊤ = R⊤Q⊤QR = R⊤

−{ℓ1,...,ℓk}
R−{ℓ1,...,ℓk}.

e then have

ln(x)⊤L ln(y) = (P ln(x))⊤(PL P⊤)(P ln(y)) = (P ln(x))⊤(R⊤ R )(P ln(y)) = (CP ln(x))⊤(CP ln(y))
W W −{ℓ1,...,ℓk} −{ℓ1,...,ℓk}

13
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F
r

rom this follows that x ↦→ CP ln(x)(19) preserves distances and inner products and is thus injective. As the map (19) has
ank D−M by definition it is also (19) is surjective onto RD−M . □

Proof of Lemma 5. The proof of this Lemma follows directly from the eigen-decomposition. The mapping (20) is per
definition an isometry and therefore also injective. Surjectivity follows as ui form an orthonormal system. The inverse
can easily be checked by plugging in one expression into the other. □

Proof that ∥·∥q,α is a norm on (SD
W,⊕W,⊙W). As mentioned in the proof of Lemma 2, (SD

W,⊕W,⊙W) is a vector space.
Because the standard q-norm ∥·∥q is a norm on RD all conditions for ∥·∥q,α being a norm, but one are trivially fulfilled,
as x ↦→ ln(x) maps into a subset of RD. We only need to proof that from ∥x∥q = 0 we can deduce that x is the neutral
element. From ∥x∥q = 0 we get for each connected subgraph that the pairwise log-ratios to the corresponding edges
are zero. As the subgraphs are connected this is equals to xi∈Vm = cm1. Again we can conclude, as

∑
i∈Vm

xi = κm holds,
x =

∑M
m=1

κm
|Vm|

1i∈Vm . □
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