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A B S T R A C T   

Data sets derived from practical experiments often pose challenges for (robust) statistical methods. In high- 
dimensional data sets, more variables than observations are recorded and often, there are also data present 
that do not follow the structure of the data majority. In order to handle such data with outlying observations, a 
variety of robust regression and classification methods have been developed for low-dimensional data. The high- 
dimensional case, however, is more challenging, and the variety of robust methods is much more limited. The 
choice of the method depends on the specific data structure, and numerical problems are more likely to occur. 
We give an overview of selected robust methods as well as implementations and demonstrate the application 
with two high-dimensional data sets from tribology. We show that robust statistical methods combined with 
appropriate pre-processing and sampling strategies yield increased prediction performance and insight into data 
differing from the majority.   

1. Introduction 

The advance of digital technologies has transformed the way data are 
collected and analyzed. In tribology, these developments have moti
vated the use of data-driven methods for the design and validation of 
tribological systems. For oil condition monitoring, for example, several 
authors investigate the application of spectroscopic methods to monitor 
the lubricant’s degradation process over time: FTIR (Fourier-transform 
infrared) spectra can be used to predict oil attributes [1–3]. Other 
modeling objectives include the comparison of oil degradation in 
different laboratory alterations and field settings [4,5]. Another aspect 
linked to oil condition is lubrication performance, i.e. friction and wear 
behavior. To investigate lubrication performance, SRV® 
(Schwing-Reib-Verschleiß) tribometer experiments (a steel ball sliding 

against a steel disk with the lubricant of interest in between) are carried 
out, resulting in a collection of several types of data for one oil, including 
functions of the coefficient of friction and optical data of wear scar areas. 

However, in data produced from experiments, there may also be 
observations present that behave differently from the majority of data 
points. Those observations are called outliers in statistics and the data set 
is said to be contaminated. While for traditional methods one outlying 
observation can have a huge impact on the resulting model, robust 
methods aim to identify and downweight unusual data points. This way, 
observations that do not follow the majority of the data can be uncov
ered and further investigated. 

In addition, high numbers of measured variables make the applica
tion of classical statistical methods difficult. A given data set is called 
high-dimensional if the number of variables p exceeds the number of 
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observations n. In this setting, both the classical as well as robust 
regression and classification estimators are not well-defined and run into 
numerical problems. These can be handled by dimension reduction, 
using PCR (Principal Component Regression) or PLS (Partial Least 
Squares), for example. Other approaches for high-dimensional data are 
penalized regression or classification estimators such as Ridge [6], 
LASSO [7] or Elastic Net [8] regression or penalized discriminant 
analysis [9], as well as sparse logistic regression, available in the R 
package glmnet [10]. These approaches are suitable for 
high-dimensional data, however, they are not robust in the presence of 
outliers. 

While there are many robust methods available for the low- 
dimensional case, the portfolio of robust methods for a high- 
dimensional setting is not that rich. In the following we will mention 
some of these approaches, and also put emphasis on sparse methods, 
which are based on the underlying assumption that only a few variables 
of the high-dimensional data contribute to explaining the response. This 
work does not aim to give an exhaustive review of available methods, 
but rather demonstrate the application of selected robust statistical 
methods for practitioners. 

The remainder of the paper is organized as follows: In Section 2, an 
overview of selected sparse and robust methods as well as available 
implementations for regression and classification tasks is given. Section 
3 illustrates the application of these statistical methods using two data 
sets from lubricant analysis and tribological experiments: FTIR spectra 
and image data of wear scar areas resulting from a tribometrical 
experiment, and Section 4 concludes with recommendations for the 
application of robust statistical methods in practice. 

2. Robust statistical methods 

First, selected robust regression and classification estimators are 
introduced for the low-dimensional setting. Then, approaches to extend 
robust methods to the high-dimensional case are discussed. For all 
mentioned methods, the availability of implementations in R software 
packages is indicated. 

2.1. Robust linear regression 

Consider n samples (xi, yi) with i = 1, …, n, where xi = (xi1, …, xip) 
contains information about the measurements on p variables. In a 
regression setting, the values yi are collected in the vector y, which is our 
response, and the information (1, xi) is collected as rows of the predictor 
matrix X. The linear regression model is given as y = Xβ + ϵ, where β =

(β0, β1,…, βp)
′ are the regression coefficients, with the intercept term β0, 

and ϵ = (ϵ1,…, ϵn)
′ are the error terms. Let β̂ denote an estimate for the 

unknown regression coefficients. Then the residuals r ∈ Rn are given as 
r(β̂) = (r1(β̂),…, rn(β̂))′ = y − Xβ̂. 

The well-known Least Squares (LS) estimator is then defined as 

β̂LS = argminβ

∑n

i=1
ri(β)2

. (1)  

The solution can be easily computed in explicit form: β̂LS = (X′X)
− 1X′y. 

However, this only holds if the matrix X′X is invertible, which would not 
be the case for high-dimensional settings (n < p). 

As the LS estimator is based on the squared residuals, the influence of 
potential outliers is not bounded and therefore even one unusual 
observation can distort the estimation. One important step towards 
robustness is to introduce observation weights ωi ∈ [0, 1], for i ∈ {1, …, 
n}. Outlying observations will receive a small weight. Outliers in 
regression are observations with large residuals, and they could either 
be outliers in the space of the x-variables (bad leverage points), or they 
could be in the normal x-range (vertical outliers). Observations with 
abnormal x-values but small residuals are often called good leverage 

points, because they could stabilize the regression fit. On the other hand, 
they could lead to underestimating the residual scale. For a robust 
estimator, the objective function (1) can be generalized as 

β̂M = argminβ

∑n

i=1
ρ
(

ri(β)
σ̂

)

, (2)  

where ρ denotes an appropriate (bounded) function applied to the re
siduals and σ̂ the residual scale estimate [11]. The resulting estimator is 
called M-estimator of regression and is computed by solving the system 
of estimating equations 

∑n
i=1ωi(ri(β))xi = 0 with a weight function ω(u) 

= ρ′(u)/u that determines the robustness of the estimator. This can be 
accomplished by using an iterative reweighted LS algorithm: For a given 
β̂t in iteration step t, the residuals and weights can be computed and the 
estimating equations solved for β̂t+1. The starting value β̂0 and the re
sidual scale σ̂ need to be estimated robustly. A popular choice is the 
M-estimator of scale or S-estimator, given as the solution σ̂ of 

1
n
∑n

i=1
ρ
(ri

σ̂

)
= b (3)  

where ρ denotes an appropriate (bounded) function and b is a constant. 
Using the S-estimator (Equation (3)) as the initial estimator for the M- 
estimator leads to the MM-estimator, leading to a compromise between 
good efficiency and robustness [11]. It is implemented as lmrob() in 
the R package robustbase [12]. 

An intuitive and computationally efficient alternative is given by the 
Least Trimmed Squares (LTS) estimator [13,14]. It is defined as 

β̂LTS = argminβ

∑h

i=1
ri:n(β)2 (4)  

with the order statistics of the squared residuals r1:n(β)2 ≤ ⋯ ≤ rn:n(β)2. 
The efficiency and robustness of the estimator are determined by the 
parameter h, which is typically chosen as half or 3/4 of the number of 
observations. As for the above regression estimators, a limitation is that 
they can only be applied to settings with n > p, here, depending on the 
choice of h, even n > 2p. The LTS estimator is also available in the R 
package robustbase as ltsReg(). 

2.2. Robust regression for high-dimensional data 

For the case p > n, the PLS estimator is often chosen in chemometrics 
[15]. Several proposals exist to make this estimator robust against out
liers: They are based on robust covariance estimation [16] or replace LS 
regression by a robust estimator [17–21]. A discussion of robust PLS 
approaches and respective advantages and disadvantages can be found 
in Ref. [22]. In the following, we describe the Partial Robust M (PRM) 
estimator [20]. As for the M-estimator (Equation (2)), observation 
weights ωi ∈ [0, 1], for i ∈ {1, …, n} are introduced to downweight 
outlying observations. The weights are collected in the diagonal of the 
diagonal matrix Ω = Diag(ω1, …, ωn), and the weighted data informa
tion is obtained as X̃ = ΩX and ̃y = Ωy. In PLS regression we construct 
latent components (or scores), which are linear combinations of the 
original variables with weighting vectors. The weighting vectors ah for h 
∈ {1, …, hmax} are obtained by the maximization problem 

ah = argmax
a

cov2(y,Xa), (5)  

for h ∈ {1, …, hmax} under the constraints that 

‖ah‖= 1 and a′
hX′Xai = 0 for ​ 1≤ i< h. (6)  

Here, hmax is the maximum number of components we want to retrieve, 
and it is assumed that the response, as well as the predictor variables, are 
mean-centered. In PRM regression, the centering is done robustly, e.g. 
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by the column-wise median. For estimating the covariance in Equation 
(5), the sample covariance matrix with the weighted observations has 
been proposed, and thus we maximize 

cov2
(

ỹ, X̃a
)
=

1
(n − 1)2a′X̃

′
ỹỹ′X̃a, (7)  

and the constraints (6) are also based on weighted predictors. The 
resulting weighting vectors are collected as columns in the matrix A, and 
thus the matrix of scores is T̃ = X̃A, with rows ̃ti, for i = 1, …, n. The 
crucial point is to obtain the weights. As the name already suggests, the 
PRM regression estimator makes use of the concept of the robust M- 
estimator, see Equation (2), by regressing the weighted response on the 
robustified scores, 

γ̂ = argmin
γ

∑n

i=1
ρ
(
ỹi − t̃′iγ

)
, (8)  

where ̃yi are the elements in ̃y. This yields robust residuals ̃ri = ỹi − t̃′i γ̂, 
and by employing a robust scale estimator, such as the MAD, a robustly 
estimated residual scale σ̂ can be obtained. The weights are defined by 

ω2
i = ωR

(
r̃i

σ̂

)

ωT

( ⃦
⃦̃ti − medj (̃t.j)

⃦
⃦

medi
⃦
⃦̃ti − medj (̃t.j)

⃦
⃦

)

, (9)  

where ̃t.j is the jth column of T̃, for j = 1, …, hmax. The weight function 
ωR(u) takes care about downweighting large (scaled) residuals, whereas 
the weight function ωT(u) downweights leverage points. The specific 
choice of appropriate weight functions, as well as initial weights to start 
the iterative algorithm, are discussed in Ref. [20]. More recently, the 
effects of different weight functions have been studied in Ref. [23], and 
better guidance has been offered to select the most appropriate one. 

The PRM method has been extended to a sparse PRM regression 
procedure in Ref. [24] which, similar to LASSO regression, yields zeros 
in the regression coefficient vector, and thus, in fact, performs variable 
selection. In the R package sprm [25], both PRM and SPRM regression 
are available via the functions prms() and sprms(). In Python, the 
package direpack [26] provides robust dimensionality reduction 
techniques for high-dimensional data. 

Combining the LTS estimator with L1 regularization yields the sparse 
LTS estimator [27], a robust version of the LASSO. It is given by 

β̂sparseLTS = argminβ

∑h

i=1
ri:n(β)2

+ n⋅λP(β), (10)  

where P(β) =
∑p

j=1|βj|. 
Least Angle Regression (LARS) was proposed by Ref. [28] and is 

closely related to the LASSO [7]. LARS provides an ordered sequence in 
which the variables enter the regression model. While this sequence is 
the same as for the LASSO, it is derived in a computationally more 
efficient way from the correlation matrix of the data. Based on this 
property, the authors of [29] propose a robustification of LARS by 
replacing mean, variance and correlation with robust location, scatter 
and correlation estimators. 

Both methods are available in the R package robustHD [30] as 
sparseLTS() and rlars(). 

2.3. Robust classification 

It is assumed that a training set of multivariate data observations is 
available, together with information about their group membership. The 
task is to train a classifier which reliably assigns test set observations to 
the groups. For linear discriminant analysis consider g multivariate 
normally distributed populations πi, i = 1, …, g with means μi and the 
same covariance Σ. Let pi denote the prior probabilities that an obser
vation belongs to group i. Then the discriminant values for an 

observation x are given by 

di(x) = μ′
iΣ

− 1x −
1
2
μ′

iΣ
− 1μi + lnpi, (11)  

for i = 1, …, g [31]. An observation x is assigned to group k, if 

dk(x) = max
i

di(x). (12)  

The discriminant values (11) depend on the group means and the joint 
covariance matrix. In the classical case, the arithmetic means of the data 
groups and a pooled sample covariance can be used as estimators [31]. 
In order to achieve a robust classifier in presence of outliers, these es
timators can be substituted with robust location and scatter estimates. In 
Ref. [32], for example, the S-estimator is proposed, while in Ref. [33] 
the FastMCD estimator is used. The authors of [34] provide a compar
ative study between different robust covariance estimators. An imple
mentation is available as Linda() in the R package rrcov [35]. 

Robust classification can also be performed by applying robust 
regression estimators for a logistic regression model, where the posterior 
class probabilities with the group variable G are modeled by linear 
functions, 

log
P(G = k|x)
P(G = g|x)

= βk0 + β′
kx, ​ for ​ i = 1,…, g − 1, (13)  

with the constraint that the probabilities remain in the interval [0, 1] 
and that they sum up to 1. The model parameters are commonly esti
mated using the maximum likelihood (ML) method. In the classical case, 
this corresponds to an iteratively reweighted LS algorithm. In the R 
package robustbase [12], several different algorithms for a robust 
estimator are implemented in the function glmrob(). 

2.4. Robust classification for high-dimensional data 

As discussed in Section 2.2, several proposals for robust regression in 
high dimensions have been developed. For classification purposes, 
however, fewer methods are available. One approach to robust 
discriminant analysis is by directly plugging in a regularized version of a 
robust covariance estimator to compute the discriminant values in (11). 
This can be done for example by applying the Minimum Regularized 
Covariance Determinant (MRCD) estimator from Ref. [36] to the 
group-wise robustly centered observations. Another approach is based 
on applying robust regression estimators in logistic or multinomial 
regression. The authors of [37] combine a trimmed estimator with the 
Elastic Net penalty to achieve a robust estimator suitable for 
high-dimensional data. An implementation is available in the R package 
enetLTS [38]. Another strategy to perform robust classification for 
high-dimensional data is to first reduce the dimensionality before 
applying a robust classification method. If the resulting classifier should 
be adjusted to a response variable, this can be done by constructing 
latent variables based on PCR or PLS, or selecting variables based on a 
robust and sparse regression method like sparseLTS. An example for this 
two-step approach will be given in Section 3.1.2. 

The robust methods discussed in the above sections downweight 
potentially outlying rows xi of a given data set X. Especially in the high- 
dimensional case, however, it might be desirable to consider the concept 
of cellwise robustness: In contrast to rowwise robustness, outlying cells 
xij, not rows xi, are flagged. Rather recent proposals for cellwise robust 
estimators have been made by Refs. [39,40], though unfortunately, their 
algorithms are not available in R packages yet. 

3. Examples 

3.1. Sparse robust regression and classification with FTIR spectra 

Some of the methods above are illustrated on a data set consisting of 
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FTIR spectra of ten automotive engine oils. The underlying engine oils 
are commercially available SAE 5W-30 and SAE 0W-20 engine oils. FTIR 
spectra and other conventional analyses indicate the application of ad
ditives commonly used in automotive engine oils, like ZDDP (zinc dia
lkyldithiophosphates), antioxidants, detergents with a base reserve, and 
dispersants.The fresh oils were subjected to an artificial small-scale 
alteration as described in Ref. [41], once with a temperature of 
180 ◦C, and once with 160 ◦C, denoted by Group A and Group B, 
respectively. For both groups, samples were taken regularly during the 
total duration of 96 h, yielding a data set of in total 50 samples per 
group. 

For all of these samples, FTIR spectra were recorded, each consisting 
of the absorbance at 1814 wavenumbers. The resulting data set contains 
p = 1814 explanatory variables and n = 100 observations and includes 
two types of response: a grouping variable denoting the membership to 
Group A or B, respectively, and a numeric response referring to the 
alteration duration in hours. Hence, the statistical tasks at hand are 
classification according to group membership and regression on the 
alteration duration for each group separately. In this application, the 
interpretability of those models is also of interest: A sparse model with 

only few non-zero coefficients corresponding to specific wavenumbers 
can help to understand the underlying chemical processes distinguishing 
the groups or contributing to oil degradation. 

As there are only 50 samples per group (the same ten oils in each 
temperature group, with varying levels of alteration duration in the 
groups), we have a high-dimensional setting with low sample sizes. In 
order to make the tasks even more challenging, we added 6 samples 
from a large-scale artificial alteration series according to Ref. [42] to 
Group A (same temperature of 180 ◦C). We will refer to these data as 
“contaminated” samples. This will call for robust methods, and their 
performance will be compared to non-robust counterparts. 

The wavenumbers between 3030 and 2770 cm− 1 and 1480-1430 
cm− 1 are areas of high or total absorption, i.e. are not reliable mea
surements. This is caused by vibrations of hydrocarbons that are always 
present in engine oils. As a result, these regions not only exhibit total 
absorption but also do not provide any useful information and are 
generally disregarded during evaluation. These sections are sometimes 
removed manually by domain experts but can also be identified as un
informative variable ranges by statistical methods, as proposed by 
Ref. [5]. After the filtering process applied in Ref. [5], the spectra consist 

Fig. 1. FTIR spectra of the training set of Group A, for robust and non-robust sparse regression on the contaminated data. The vertical lines indicate the wavenumbers 
selected by the models. For sparse LTS, the selected wavenumbers are 3836.62, 3815.40, 2449.73, 1720.60, 1635.72, 1055.12, 877.66, 688.62, and 597.96 cm− 1. For 
LASSO on clean data, the selected wavenumbers are 3223.22, 2451.66, 1720.60, 1635.72, 1057.05, 1055.12, and 877.66 cm− 1, and for LASSO on contaminated data, 
the selected wavenumbers are 3690.02, 3688.09, 2440.08, 1932.78, 1635.72, 597.96, and 563.24 cm− 1. 

Fig. 2. Measured versus predicted response for training (half transparent) and test set, where the prediction is based on the selected variables from Fig. 1. The robust 
method (Fig. 2a) fully downweights the contaminated samples, while the classical method (Fig. 2c) is severely influenced by those samples. 
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of 1668 out of 1814 wavenumbers. 

3.1.1. Sparse regression 
Due to the nature of FTIR data, neighboring variables are highly 

correlated and we can expect that only a few wavenumbers are sufficient 
for a reasonable prediction accuracy. We use the LASSO estimator [7] to 
perform sparse regression with high-dimensional data, separately for the 
Group A and the Group B measurements. 

Since Group A has been contaminated by 6 observations, we also fit a 
LASSO model to the uncontaminated Group A measurements for com
parison. As a robust counterpart, the sparse LTS estimator, see Equation 
(10), is used separately for the contaminated Group A and for Group B. 
All methods are applied on randomly selected training sets: When fitting 
a model to the uncontaminated Group A and to Group B, about 2/3 of 
the samples were selected; when fitting the contaminated Group A, all 6 
large-scale samples were added to the training set. The test sets consist of 
all remaining samples from both data sets. 

Fig. 1 shows the (selected) FTIR spectra of the training data, here for 
Group A, together with vertical lines indicating the selected variables 
from the three approaches. All methods yield only very few variables. 
The variable selection by the robust method should not be influenced by 
the contamination. For the LASSO, however, a rather big difference on 
the clean and contaminated training data can be observed: not only the 
number, but also the position of selected variables is different. 

Fig. 2 shows the measured (horizontal axes) versus the predicted 
(vertical axes) response of Group A, for the three models, with the 
selected variables shown in Fig. 1. The colors correspond to training 
(half transparent) or test dataset and the symbols show whether an 
observation is regular, contaminated, or identified as an outlier by the 
robust procedure. The solid line refers to the equality y = ŷ. The plot for 
the robust method (Fig. 2a) reveals that the model does not follow the 
contaminated samples. This can also be verified by inspecting the ob
servations flagged as outliers (encoded as squares): the contaminated 
samples in the training set, and also some additional observations, were 
fully downweighted when fitting the model. In addition to the 
contaminated samples, two additional observations are flagged as 
outlying. These two outliers consist of atypical x-information, but their 
prediction is still in a normal range (good leverage points). Since the 
procedure also yields a robustly estimated standard deviation, this 
outlying information can also be computed for the test set data: here, 
outliers are defined as observations with standardized absolute residuals 
larger than 2. 

Fig. 2b and c reveal the effect of contamination on the non-robust 
LASSO estimator: When contamination is present, the LASSO fit 
changes significantly, as the model also tries to accommodate the 
contaminated samples. This implies that the selected variables are also 
influenced by these samples. In Fig. 2b and c this difference between a fit 
on clean and contaminated data is illustrated. 

The presented methods can identify outliers, and if there is the need 
to further investigate why an observation is outlying, i.e. which variable 
(s) contribute most to the outlyingness, some recently developed algo
rithms can be applied: In Ref. [43], the outlyingness is decomposed 
using Shapley values, and in Ref. [44], the outlyingness is regarded as a 
regression problem. In the latter approach, it is possible to use the 
weights, that are output of a robust linear regression fit, as input to the 
SPADIMO algorithm, which is implanted in the R package crmReg [45]. 
We use the function spadimo together with the weights from sparse LTS 
regression and show the resulting outlyingness scores for each obser
vation that has been identified as outlying in Fig. 3. The lines have been 
colored according to the outlyingness scores, and upon inspection of the 
figures the usefulness of robust methods becomes apparent: As several 
variables, that are selected for the resulting sparse model, also corre
spond to variables with high outlyingness scores, it is crucial to apply a 
statistical method that can deal with outliers. 

3.1.2. Sparse classification 
The second statistical task is to predict the group membership of the 

samples based on the wavenumbers. In our high-dimensional setting, a 
penalized estimator such as sparse logistic regression, see Ref. [46], with 
a LASSO penalty on the negative log-likelihood is applied. This yields 
again variable selection among the wavenumbers. As a robust counter
part, the robust version of the Elastic Net estimator for logistic regres
sion (enetLTS) is used [37]. We use again the same training data as in 
Section 3.1.1, and evaluate based on the test data; for the non-robust 
method, the estimator is also applied to the clean data set. The result
ing misclassification errors are given in Table 1. For computing the 
misclassification rates in Table 1 we used the cutoff value 0.5 for the 
probabilities. 

In contrast to the results from the regression, outliers do not seem to 
have a negative influence on the classical estimators. When inspecting 
the corresponding plots of group probability over duration in Fig. 4, 
however, it becomes apparent that the misclassification error is not 
evenly distributed over the different values of duration. In Fig. 4, the 
cutoff value is displayed as a horizontal line, the colors refer to group 
membership and the symbols distinguish regular, contaminated and 
observations identified as outliers by the robust procedure (encoded as a 
square). The training data are again shown as half transparent points. 
While the clean data is classified almost perfectly (Fig. 4b), the 

Fig. 3. FTIR spectra of the training set of Group A, as well as the outlyingness scores for each variable resulting from the SPADIMO algorithm [44]. The lines have 
been colored according to the outlyingness direction and strength. 

Table 1 
Misclassification errors based on sparse (robust) logistic regression.  

Misclassification error in % training set test set 

enetLTS for contaminated data 7.46 9.68 
Sparse logistic regression for clean data 1.53 0 
Sparse logistic regression for contaminated data 4.35 0  
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prediction for the sparse logistic regression model for contaminated data 
is worst for observations with duration zero (Fig. 4c). The resulting plot 
for enetLTS is given in Fig. 4a. While the robust method yields more 
confident predictions, it fails to detect the contaminated samples 
correctly. The misclassification error also seems biased and is worse at 
both minimum and maximum duration. This might be due to the 
enetLTS algorithm that evaluates all possible subsets of a given size of 
the explanatory variables. This process can become unstable in the 
presence of many correlated predictors. 

In order to better adjust the classifier to the response duration, 
modeling the respective duration for Group A and Group B can be used 
as a variable screening step. Using the set of selected variables resulting 
from this first step, a classification model can now be fitted to discrim
inate the two groups. Again, the same training and test data as for step 1 
are used. Here we did not employ a robust procedure for classification, 
as the first step as described in Section 3.1.1 already protected against a 
variable selection bias due to contamination. Moreover, a unified 
framework in this second step makes the effect of robust estimation in 

the first step easier identifiable. 
The misclassification errors resulting from the different approaches 

are presented in Table 2. While the robust procedure yields low errors 
for both training and test data, the errors for the classical procedure with 
the contaminated data are much higher. 

Sparse logistic regression yields estimated posterior probabilities for 
each sample. Fig. 5 shows the posterior probabilities of the samples to 
belong to Group B, again based on the models from the robust (Fig. 5a) 
and the classical approach (Fig. 5c for clean, Fig. 5b for contaminated 
data). The horizontal axis in the plots is the response variable duration, 
which has been used in the screening step. Again, the colors correspond 
to group membership and the symbols refer to regular, contaminated, 
and identified outlying observations. One can see that the non-robust 
models suffer from bias: for the smallest value of duration, only Group 
A observations are misclassified. In fact, this bias can already be seen in 
Fig. 2c. For LASSO on the clean data, the model seems to be too much 
adjusted to the training data, as several test set observations are wrongly 
classified for small values of duration, see also Table 2. The robust pro
cedure seems much more balanced for the two groups (Fig. 5a). Here, 
the outliers as identified in the first step (see also Fig. 2a) are indicated 
by pink squares. All these outliers, including the contaminated samples, 
are clearly assigned to the correct groups by the classifier, indicating an 
appropriate pre-selection of the variables. 

3.2. Robust regression with image data 

The performance of lubricants is measured in terms of friction and 
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Fig. 4. Response variable duration, used in the regression step, against the posterior probability for Group B, with the cutoff at 0.5. Misclassified observations from 
the training (half transparent) and test set are shown “on the wrong side” of this cutoff. 

Table 2 
Misclassification errors based on sparse logistic regression with the pre-selected 
variables from Section 3.1.1.  

Misclassification error in % training set test set 

sparseLTS for contaminated data 2.86 3.03 
LASSO for clean data 5.88 3.03 
LASSO for contaminated data 7.46 6.25  

0.00

0.25

0.50

0.75

1.00

25 50 75 100
Duration measured

G
ro

up
 B

 p
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

25 50 75 100
Duration measured

G
ro

up
 B

 p
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

25 50 75 100
Duration measured

G
ro

up
 B

 p
ro

ba
bi

lit
y

Group A
Group B

Regular
Contaminated

Outlier

Fig. 5. Response variable duration, used in the regression step, against the posterior probability for Group B, with the cutoff at 0.5. Misclassified observations from 
the training and test set are shown “on the wrong side” of this cutoff. 
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wear, and a reliable model associating the degradation stage of the en
gine oil with wear would therefore be useful for practitioners. Wear 
properties under laboratory conditions can be evaluated in a tribo
metrical experiment, where a steel ball and disc with the oil of interest in 
between are sliding against each other in a reciprocating contact on an 
SRV® tribometer (see Ref. [47] for a more detailed description of the 
experiment). For the present data set, wear scars were created from 
experiments with oil samples that were used on an engine test rig (ac
cording [48]) for up to 100 h, with 38 samples taken at 0 min, 20 min, 
20 h, 50 h and 100 h. Then, images of the wear scars were recorded with 
an optical microscope. The statistical task is to predict the duration the 
engine oil was used based on the image data of the wear scar areas. For 
this analysis, only the wear scar images of the balls were used. The 
original image data are recorded as RGB images in high resolution 
(2600 × 2000 pixels), and have to be pre-processed before training a 
regression model. In a first step, the images were converted to greyscale 
based on brightness. Then, the images were annotated to segment two 
classes: the wear scars in the foreground and the background, which was 
discarded. Next, the images were scaled to size 128 × 128 pixels and 
pixel values were normalized to the same range using the minimax 
method, before Histogram of Gradients (HoG) features (see Ref. [49], for 
example) were extracted using the Python version of opencv [50]. HoG 
features can encode the texture of an image and therefore seem to be 
especially suitable for the presented case. The input image is first 
devided into cells, then the gradient magnitude and orientation for each 
pixel are computed, before they are normalized and collected in histo
grams. Depending on the cell and bin size for the histogram, a certain 
number of features is extracted from the input image. Note that there is a 
variety of textural image features available, with features based on Deep 
Learning being the most powerful ones [51]. However, training such 
models on as few as 38 images would only be feasible in combination 
with a suitable pre-trained model, while HoG features in combination 
with robust statistical models already lead to a good predictive 
performance. 

Fig. 6 shows example images of the ball as a result of wear experi
ments with oil at different degradation stages: from left to right, the 
duration the oil was used on the engine test rig is 0 min, 20 min, 10 h, 50 
h, and 100 h. It can be observed that with a longer duration on the 
engine test rig (and therefore worse oil condition) there are more and 
more artifacts in the images. The visible lines correspond to ridges along 
the direction the balls were moved in. Moreover, the shape of the wear 
scar gets more and more distorted with the degradation of the oil and the 
image. The 100 h experiment also shows a dark spot, which might be 
due to soot or other small particles on the wear scar area. 

Since the distortion caused by the experiments is heavily varying 
(shape of the wear scar, type of striation, appearance of spots, etc.), the 
model needs to be robust against such effects. The method of choice here 
is linear regression, but there are some challenges for a robust approach:  

● Our data set consists of only n = 38 images, and every image is 
encoded by p = 7730 variables. With a cell size of 8, bin size of 9, and 
block size of 2, the HoG feature extraction initially results in 8100 
variables. After the removal of columns with only zeros due to the 

border, the final dimension is reached. This number is already much 
lower than unfolding the image pixels to 16384 variables, but still, 
the number of variables exceeds the number of observations by far. 
For this “flat” data set, sparse regression methods such as LASSO 
regression yield very poor models, because they can select at most n 
variables, which seems to be far too low in order to describe the 
rather complex information of the images. Robust estimators using 
the Elastic Net penalty, like implemented in the enetLTS package, 
could be a compromise. However, due to the very high number of 
variables, the robust algorithm is not computationally feasible 
anymore.  

● 26 out of the 38 images are taken at the beginning of the experiments 
(duration 0), and for the remaining durations (20 min, 10 h, 50 h, 
and 100 h) we only have 3 images per duration time. Since this 
response variable y is extremely skewed, we will work with the 
transformed variable y1/3. Still, robust regression methods either 
lead to very poor models, or the procedures even stop with an error. 
The reason is the imbalancedness of the response: The robust 
methods try to fit the data majority, which is for the group y = 0, and 
data with duration larger than zero are treated as outliers. A 
regression model only for the zero-group is of course useless. 

In contrast to robust procedures, non-robust methods such as PLS 
regression work without any problem. Thus, the question is whether 
robustness can still be employed, and whether it leads to any advantage. 

A first naive attempt is to exclude outliers in the x-space, i.e. we 
perform outlier detection only for the image data information. However, 
since we do not want to exclude images for the small groups with pos
itive values of duration, outlier detection is only applied for the 26 
images where the duration is zero. We use the method pcout as described 
in Ref. [52], implemented as function pcout() in the R package 
mvoutlier, which also works for very high-dimensional data. The al
gorithm identified 6 out of the 26 observations as multivariate outliers. 
PLS regression, as well as PRM regression, can then be applied to the 
cleaned data. 

In order to evaluate and compare the different strategies, we 
randomly select around 2/3 of the observations (once for the complete 
and once for the cleaned data), and fit a model. We compare PLS 
regression with PRM, however, for PRM the internal weights are only 
used for the group with duration zero, and otherwise the weights are set 
to 1 in order to avoid downweighting of the observations for these small 
groups. The models are evaluated with the remaining test set observa
tions by the RMSE as the measure of prediction quality. Here another 
issue occurs: As the discrete values of the response are very unevenly 
distributed, a pure random selection of observations could lead to 
training data where data groups are underrepresented or even absent. 
Therefore, we also compare the results for a stratified sampling 
approach: the training sets will consist of about 2/3 of the observations 
for the group with duration zero, and 2 out of the 3 randomly selected 
samples from every of the other groups. Each experiment is repeated 50 
times. 

The resulting RMSE values are presented as boxplots in Fig. 7. There 
is not much difference between using all observations or the cleaned 

Fig. 6. Example images of the wear experiments with varying oil condition. From left to right, the duration the oil was used is 0 min, 20 min, 10 h, 50 h, and 100 h.  
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data if no stratification is used. PRM (modified) performs a bit better 
than PLS. Stratification clearly improves the results, and for PLS based 
on the uncleaned data, there are several outliers in the predictions. PRM 
on the uncleaned data gives very stable and good results, and the in
ternal weighting seems to be better than first removing outliers. 

More insights can be gained by the plots of the measured versus 
predicted (transformed) response, shown in Fig. 8, for the different 
strategies and the two estimators. The predictions are separately shown 
for the training and test set observations, and for PLS and PRM. In order 

to avoid overplotting, the values on the horizontal axis have been 
slightly changed in the plots. Overall, all models fit the training data 
quite well, but the test set prediction is rather poor, especially for higher 
values of duration. For all models 3 components were used, but the 
picture is the same when using e.g. 5 components, and it would become 
worse for a higher number. 

For the approach with sample stratification we can see a reduction of 
the variability of the test set predictions for higher values of duration. 
This means that the main problem for these poor predictions is the 
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Fig. 7. Prediction errors for classical (PLS) and robust (PRM) estimation, following different strategies for data cleaning and training/test sample selection.  

Fig. 8. Training and test set predictions for all 50 PLS and PRM models, based on different strategies for data cleaning and selection.  
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imbalancedness of the data set. In the groups with duration zero there is 
a clear difference whether outliers are removed or not; in the latter case, 
outliers are visible in the test set predictions, for PLS as well as for PRM. 
However, as for PRM one also obtains a robust scale estimate of the 
residuals, these observations would be reliably identified as outliers. The 
same applies to the deviating predictions for higher values of duration. 

To gain a better understanding of what the three latent components 
represent, the PRM and PLS loadings can be shown in the image domain 
(up to a normalization factor). In Fig. 9, the loadings from an exemplary 
train-test split are shown as sections of the original images. The color 
scale ranges from red (negative) to blue (positive), and the intensity can 
be interpreted as the importance of the respective sections. While both 
PLS and PRM rely on similar features of the images, it can be observed 
that PRM is more confident, yielding more intense colorings. This is 
especially visible in the first, and most important, loading. Also, the first 
loading clearly corresponds to wear marks such as horizontal scratches 
on the ball’s surface, while higher-order loadings also have contribu
tions from the border of the wear scars. This emphasizes the usefulness 
of the presented methods to analyze the given data, also in terms of 
interpretation. 

Overall, we can conclude that the high-dimensional image infor
mation yields good models for predicting the duration of the experi
ments, with the exception of the trials with duration 100 h. A main 
difficulty here was the imbalancedness of the values of the response, but 
outliers also had a negative effect. Outlier cleaning before fitting the 
models makes almost no difference, for PLS as well as for PRM, but 
stratification clearly improves the results. The robust PRM method 
performs best in general; only for the stratified version on (robustly!) 
cleaned data, PLS can compete. 

4. Conclusions 

Imbalanced and flat data sets with fewer observations than variables 
pose challenges for statistical methods, especially for robust estimators, 
where outlying observations are downweighted. In this paper it was 
demonstrated how robust methods can still be applied, and that they 
lead to an improved performance. To handle difficulties in model esti
mation, approaches that split the task in two or more steps have been 
shown to be successful. Especially for very imbalanced data sets, an 
appropriate sampling strategy was found to be crucial for the derivation 
of a good model as well. For a data set consisting of FTIR spectra of 
engine oils, a robust and sparse regression estimator was applied for the 
prediction of oil degradation, measured in the duration the oil was 
subjected to alteration. The resulting model was also demonstrated to be 
useful as a variable screening procedure: The selected variables, now 
adjusted to the different degradation stages, were used as input for a 
classification model. For very high-dimensional data like textural image 
features, sparse estimators like LASSO were found to yield very poor 
results, as they cannot select enough variables to represent the image 
information. PRM, a robust PLS method, could however be applied in 
combination with a stratified sampling strategy. 

The given examples illustrate that, even when the direct application 
of robust methods is not possible, combined approaches with appro
priate pre-processing and sampling methods yield improved results 
when compared to traditional methods. What is more, they can identify 
observations that do not follow the majority of the data and therefore 
offer additional insights. 

Fig. 9. The loadings traced back to the image domain for both PLS (top row) and PRM (bottom row) loadings. The loadings that are shown are those from the best- 
case scenario when the extracted features were robustly cleaned before applying stratified sampling and estimating the model. The color scale ranges from red 
(negative) to blue (positive) and the intensity corresponds to the respective section’s contribution. It can be seen that while both methods seem to rely on similar 
areas in the original images, PRM is more precise and confident in its choice. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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