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A R T I C L E  I N F O   

Keywords: 
Deep neural network (DNN) 
Airborne laser scanning (ALS) 
Tree component biomass 
DGCNN 
Octree-CNN (OCNN) 
Model comparison 

A B S T R A C T   

Airborne laser scanning (ALS) data has been widely used for total aboveground tree biomass (AGB) modelling, 
however, there is less research focusing on estimating specific tree biomass components (wood, branches, bark, 
and foliage). Knowledge about these biomass components is essential for carbon accounting, understanding 
forest nutrient cycling, and other applications. In this study, we compare additive AGB estimation (sum of 
estimated components) with direct AGB estimation using deep neural network (DNN) and random forest (RF) 
models. We utilise two point cloud DNNs: point-based Dynamic Graph Convolutional Neural Network (DGCNN) 
and Octree-based Convolutional Neural Network (OCNN). DNN and RF models were trained using a dataset 
comprised of 2336 sample plots from a mixed temperate forest in New Brunswick, Canada. Results indicate that 
additive AGB models perform similarly to direct models in terms of coefficient of determination (R2) and root- 
mean square error (RMSE), and reduced the mean absolute percentage error (MAPE) by 22% on average. 
Compared to RF, the DNNs provided a small improvement in performance, with OCNN explaining 5% more 
variation in the data (R2 

= 0.76) and reducing MAPE by 20% on average. Overall, this study showcases the 
effectiveness of additive tree AGB models and highlights the potential of DNNs for enhanced AGB estimation. To 
further improve DNN performance, we recommend using larger training datasets, implementing hyperparameter 
optimization, and incorporating additional data such as multispectral imagery.   

1. Introduction 

Forest biomass stores approximately 861 billion metric tons of car
bon globally, amounting to 50–65% of all terrestrial carbon (Pan et al., 
2011; Reichstein and Carvalhais, 2019). As such, modelling tree biomass 
is critical for improving our understanding of the terrestrial carbon 
cycle, and assessing the effects of climate change on forest biomes. Ac
curate estimation of tree biomass is vital for sustainable forest man
agement and is required for a variety of applications such as mapping 
forest fuels. Tree biomass modelling is also becoming increasingly 
important worldwide with the rise of carbon credit systems (Duncanson 
et al., 2019; Kumar et al., 2021). 

To date, most of the research focused on estimating tree biomass has 
implemented models that estimate the total aboveground biomass 

(AGB) of trees. However, in many situations, estimates of total AGB are 
insufficient, and specific knowledge about the components of tree 
biomass is necessary (Magalhães and Seifert, 2015). For example, total 
AGB is too broad of a carbon pool to be used in many terrestrial carbon 
cycle models that require more specific allocation to carbon pools (e.g., 
foliage) as inputs (Bloom et al., 2016). In addition, the quantification of 
unmerchantable tree biomass components is necessary in situations 
where biomass components are targeted for use as bioenergy, fiber, or 
other purposes (Peter and Niquidet, 2016; Turrado Fernández et al., 
2016). 

Generally, tree AGB is partitioned into four distinct components: 
wood (i.e., stem), branches, bark, and foliage (Sanquetta et al., 2015). A 
common method for estimating tree biomass components is to fit sepa
rate models for each component in addition to a total AGB model (e.g., 
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Popescu, 2007). However, this approach implies that component esti
mates are not relative, and do not necessarily sum to equal the estimated 
total AGB. In contrast, an additive approach to AGB estimation involves 
modelling biomass components simultaneously in a single model and 
then summing the components to get total AGB. The additive approach 
is useful in biomass components modelling because it ensures: 1) rela
tive estimation of biomass components; and 2) that the sum of compo
nent biomass equals total AGB (Affleck and Diéguez-Aranda, 2016; 
Parresol, 2001; Zhao et al., 2019). The use of additive biomass equations 
is also a common practice when deriving individual tree biomass esti
mates in the field (Lambert et al., 2005; Ung et al., 2008). 

There are several other reasons why estimating biomass components 
is beneficial. Component-based biomass estimation is essential for many 
ecological applications, such as forest nutrient cycling (Rodrí
guez-Soalleiro et al., 2018) and evaluating plant productivity (Benomar 
et al., 2012). It is also crucial for achieving precise forest carbon models 
as different components typically have different carbon concentrations 
(Rodríguez-Soalleiro et al., 2018). Many carbon models assume that 
50% of tree biomass is carbon; however, several studies have demon
strated that the carbon concentration can vary between components 
depending on species, age, diameter at breast height (DBH), site con
ditions and other factors (Dong et al., 2016; Rodríguez-Soalleiro et al., 
2018; Widagdo et al., 2020). Similarly, the duration of time that carbon 
remains in a specific component can vary (Zhang et al., 2010). Lastly, 
many large-scale carbon models, such as the Carbon Budget Model of the 
Canadian Forest Sector (CBM-CFS3), use information regarding carbon 
estimates by tree component (Kurz et al., 2009; Natural Resources 
Canada, 2022). 

When a model is developed for direct AGB estimation, it is optimized 
to estimate a single value. In contrast, estimating tree biomass compo
nents through multi-output regression becomes a more challenging task 
as it must balance multiple objectives. Ayrey et al. (2021) highlighted 
this challenge when estimating multiple forest attributes (e.g., AGB, tree 
count, species composition, etc.) within a single model. However, it 
should be noted that modelling the biomass of tree components is likely 
more feasible compared to the different types of variables (e.g., volume, 
count, proportion) targeted by Ayrey et al. (2021). As such, it is worth 
investigating whether additive tree biomass models are as effective as 
models that are optimized to directly estimate AGB. 

Over the past two decades, lidar has proven to be useful for esti
mating tree AGB due to its ability to measure three-dimensional (3D) 
forest structure. Unlike passive optical approaches (such as photo
grammetry), lidar can penetrate gaps in the tree canopy to capture a 
detailed representation of the forest’s vertical structure (Nguyen et al., 
2018; White et al., 2016). A variety of lidar systems have been applied 
for AGB estimation, with airborne laser scanning (ALS) being the most 
prevalent (Kristensen et al., 2015; Zhao et al., 2009). There are also a 
growing number of studies implementing terrestrial laser scanning (TLS) 
(e.g., Momo Takoudjou et al., 2018), and spaceborne systems such as 
ICESat and GEDI (e.g., Duncanson et al., 2020; Narine et al., 2019; 
Shendryk, 2022), among other lidar systems such as backpack laser 
scanning (Xu et al., 2021). 

The most common workflow for estimating tree AGB with ALS data 
involves using allometry-derived biomass estimates in ground reference 
plots to develop a model with co-located, area-based lidar metrics (i.e., 
statistics summarizing lidar returns). For example, McRoberts et al. 
(2015) estimated forest AGB across 825 ha of Norwegian coniferous 
stands using 20 ALS height metrics in an ordinary least squares (OLS) 
model, achieving R2 values between 0.69 and 0.91. A similar approach 
in Finland developed nationwide OLS biomass models using two lidar 
metrics as predictors, and achieved a relative Root Mean Square Error 
(rRMSE) between 20% and 25% (Kotivuori et al., 2016). Other research 
has leveraged lidar metrics to estimate tree AGB using more advanced 
Machine Learning (ML) frameworks such as K-Nearest Neighbor (KNN), 
Random Forest (RF) and Support Vector Regression (SVR) (Cosenza 
et al., 2021; Navarrete-Poyatos et al., 2019; Rex et al., 2020). For 

example, Cosenza et al. (2021) compared OLS, KNN and RF biomass 
models using ALS metrics across study sites in Brazil, Finland, Norway, 
and the USA. The results showed that both RF and OLS were effective (R2 

between 0.89 and 0.96), whereas the KNN was less accurate due to 
overfitting. Overall, the relative performance of a specific lidar biomass 
model appears to be dependent on the forest type and input data char
acteristics (e.g., sensor type, spatial error) for a given study. However, 
more complex ML models often outperform their simpler OLS counter
parts (Ayrey and Hayes, 2018; Zhang et al., 2022; Zolkos et al., 2013). 

Compared to total AGB estimation, there are fewer studies that apply 
lidar to estimate tree component biomass. Early research used lidar- 
derived individual tree DBH estimates in generalized allometric equa
tions to estimate tree component biomass in small stands (e.g., Popescu, 
2007). While this approach was effective for modelling tree component 
biomass in a monoculture plantation, it did not transfer well to complex 
stands (Xu et al., 2021). More recently, different approaches have been 
applied for lidar-based tree component biomass estimation, using indi
vidual tree- and area-based methods (Tsitsi, 2016; Xu et al., 2021). For 
example, García et al. (2010) used lidar height and intensity metrics in 
an OLS model to estimate foliage and branch biomass at the plot scale in 
a mixed stand, achieving R2 values of 0.58 for foliage and 0.67 for 
branches. A subsequent study by Kankare et al. (2015) used ALS metrics 
in an RF model to predict tree component biomass, achieving rRMSEs of 
26.7%, 32.6% and 49.6%, for stem, canopy and branches, respectively. 
Domingo et al. (2019) estimated forest residual biomass (FRB; sum of 
foliage, branches, and stem tops) in a managed stand using SVR, RF and 
multiple linear regression (MLR), and other decision tree models with 
height metrics derived from ALS data and achieved an R2 between 0.77 
and 0.82 and an rRMSE between 26.4% and 30.4%. In general, studies 
modelling tree component biomass using ALS metrics have been limited 
to smaller datasets (e.g., 45–226 plots) and attain lower accuracy 
compared to studies modelling total AGB. Moreover, many studies 
develop separate models for biomass components that do not preserve 
inter-component relationships or maintain additivity (e.g., García et al., 
2010; Popescu, 2007). 

Deep learning (DL) is a type of ML that has increased in prominence 
as a result of its predictive accuracy and capacity to harness big data (Ma 
et al., 2019; Zhang et al., 2016). Deep learning models, also referred to 
as Deep Neural Networks (DNNs), can learn abstract features from input 
data using several layers of interconnected “neurons” (mathematical 
models of brain neurons; LeCun et al., 2015). These learned features are 
numerical representations of the original input data that guide the DNN 
towards making a prediction. Since the development of the benchmark 
Convolutional Neural Network (CNN) called AlexNet in 2012 (Kriz
hevsky et al., 2012), DNNs have rapidly become widespread in the fields 
of forestry and remote sensing (RS) (Hamedianfar et al., 2022; Ma et al., 
2019). DNNs have been adopted for several reasons, including their 
capacity to capture complex nonlinear interactions between input var
iables and their ability to learn nuanced patterns in large datasets 
(LeCun et al., 2015). There is a growing body of evidence that DNNs 
outperform conventional ML models across a variety of tasks, including 
tree segmentation (Weinstein et al., 2020), species identification (Mäyrä 
et al., 2021), and multi-output forest attribute regression (Ayrey et al., 
2021). 

Unlike conventional ML models where input features (e.g., ALS 
metrics) must be selected by a human based on expert-knowledge or 
through feature selection algorithms (e.g., Boruta; Kursa and Rudnicki, 
2010), DNNs can learn features directly from the raw data (e.g., the ALS 
point cloud). This aspect of deep learning removes a degree of modeler 
bias and uncertainty in metric selection (Ayrey and Hayes, 2018). In the 
case of ALS modelling, DNNs are useful because they do not require 
dimensionality or resolution adjustment typically required for engi
neered input features. Since machine learning models tend to perform 
better given larger and more diverse datasets (Jang and Cho, 2019), it 
has been hypothesized that using the original lidar point cloud as input 
in a DNN, rather than lidar metrics, will result in improved tree biomass 
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predictive accuracy (Ayrey et al., 2021; Ayrey and Hayes, 2018; 
Oehmcke et al., 2022). 

Despite the emerging potential of DNNs, applying these models to 
estimate tree biomass directly from ALS point clouds is challenging. 
Point clouds are unordered, unstructured, and irregular datasets. This 
means that conventional CNNs which require ordered data without 
sparsity are unsuitable for point cloud data (Bello et al., 2020; Qi et al., 
2017a). Recently, a growing body of DL research has addressed these 
challenges using DNN architectures that can learn from a point cloud or 
similar 3D representation (e.g., voxel, octree). DNN architecture refers 
to the design and arrangement of the model, including several hyper
parameters such as the number of layers, the number of neurons in each 
layer, and the mathematical operations connecting neurons. A DNN 
architecture is dependent on the structure of the input data, the desired 
model output, and the learning mechanisms implement in the model (e. 
g., convolutions). Architecture is thus an important determinant for the 
performance of a given DNN (Alzubaidi et al., 2021). 

In the case of point cloud DNNs, there are three broad types of ar
chitectures (Bello et al., 2020; Zhao et al., 2021), all of which have been 
applied for forest attribute modelling: projection/view-based, vox
el/octree-based, and point-based. Projection- and view-based point 
cloud DNNs use an approach where the point cloud is converted into 2D 
rasters viewed from potentially multiple perspectives, which are then 
fed through 2D CNNs (e.g., Briechle et al., 2021). Voxel- and 
octree-based models convert the point cloud into an ordered format, and 
then perform 3D convolutions on the reformatted data. Point-based 
DNNs learn directly from the point cloud using a combination of tech
niques such as multi-layered perceptrons (MLPs), point downsampling, 
and graph representation (e.g., Liu et al., 2022b). Depending on the 
dataset and modelling task, some types of point cloud DNNs perform 
better than others. As such, a comparison of different point cloud DNN 
architectures is beneficial for new applications such as biomass 
modelling. 

Recently, point cloud DNNs have been applied instead of conven
tional OLS and ML lidar metric models to estimate forest AGB. For 
example, a study conducted by Ayrey and Hayes (2018) tested five 
voxel-based 3D CNNs to estimate plot-level tree AGB in the New England 

Acadian forest. In a similar vein, Oehmcke et al. (2022) modeled tree 
AGB in Denmark using the point-based DNNs PointNet and KPConv in 
addition to the voxel-based Minkowski Network. Both studies observed 
that point cloud DNNs outperformed conventional ML models (e.g., RF), 
reducing RMSE by up to 17% compared to their simpler ML and OLS 
counterparts. The early success of modelling total tree AGB using point 
cloud deep learning suggests that tree component biomass estimation 
could also be improved using similar methods. 

The objective of this study is to compare the application of conven
tional ML and point cloud DNNs for additive and direct tree AGB 
regression. Specifically, this study will explore two research questions:  

1. How does estimating total tree AGB through biomass components 
using an additive approach compare to estimating total AGB 
directly?  

2. How do point cloud DNNs compare to conventional ML in terms of 
tree biomass estimation accuracy? 

2. Methods 

2.1. Study area 

The province of New Brunswick in Canada was selected as the study 
area due to the availability of wall-to-wall ALS coverage (GeoNB, 2022) 
and a large network of forest sample plots (Fig. 1). New Brunswick is 
located along the coast in Eastern Canada and covers an area of 
approximately 72,908 km2. The province has an average temperature of 
11 ◦C and has 1110 mm of annual precipitation. The forests of New 
Brunswick cover approximately 85% of the province (6.1 million hect
ares) and are divided between public and private ownership (Martin, 
2003). Roughly half the provincial forests are government crownland, 
with the remaining managed as private woodlots (29%) and industrial 
freehold (18%) (Martin, 2003). New Brunswick forests are characterized 
by a mixture of tree species resulting from a transition between the 
maritime broadleaf forests to the South and the boreal coniferous forests 
to the North (Martin, 2003; Zelazny et al., 2007). Dominant broadleaf 
species in the province include birch and maple, and dominant conifers 

Fig. 1. Map of Continuous Landscape Inventory (CLI) plots in Province of New Brunswick (study area) in Canada. Panel A shows aboveground biomass (AGB) in 
metric tons per hectare (Mg/ha) for each ground plot. Note that only CLI plots which met the criteria described in the text are shown. Panel B shows the location of 
the study area in North America. Panel C shows the lidar acquisitions used in this study, which are summarized in more detail in Table 1. 
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include fir and spruce. The forests of New Brunswick are some of the 
most productive in Canada with an estimated mean net primary pro
ductivity of 302 g C/m2 annually (Liu et al., 2002). New Brunswick 
forests have a relatively balanced age distribution with a mean age of 66 
years and old forest (>150 years) comprising <5% of the forested area 
(Maltman et al., 2023). 

2.2. Field data 

Ground plot data from New Brunswick used in this study comes from 
the Continuous Landscape Inventory (CLI) dataset, which includes 
sample plots located on a fixed 2 × 2 kilometer grid spanning the 
province. Ground plots were primarily sampled in 2017 and 2018 be
tween May and September. Plot centre coordinates were collected using 
survey grade GPS, generally providing a spatial error margin <25 cm. 
While there are over 7000 plots in the CLI dataset, only a subset of 
samples from the plot network were selected for use in this study. Based 
on the recommendations for handling forest plot outliers described in 
Knott et al. (2023), four criteria were implemented in this study to 
ensure accurate ground reference plots: 1) complete spatial overlap with 
lidar data; 2) field sampling within ± 3 years of lidar acquisition; 3) 95th 
height percentile in plot is greater than 1.5 m (i.e., significant tree 
biomass is present); and 4) an absolute difference of less than 3 m be
tween ground-estimated Lorey’s height (average height of all trees in a 
stand weighted by tree basal area) and the 95th height percentile 
measured by lidar. A total of 2336 plots met these criteria. Each CLI plot 
had a 11.28 m radius (400 m2 plot area). For trees within a plot with 
DBH≥7.1 cm and small trees (DBH≥1 cm) in the inner 4 m radius of the 
plot, DBH, species, and health (alive vs. dead) were recorded. In each 
plot, a prism-sweep with a Basal Area Factor (BAF) of 2 was performed, 
and the height of every 10th sample tree was measured with a hyp
someter, and subsequently used to calculate plot-level Lorey’s height. 

2.3. Lidar data 

This study uses the publicly available ALS data spanning New 
Brunswick (GeoNB, 2022). Table 1 summarizes the ALS data collected 
over the course of nine different acquisitions from 2015 to 2018 between 
the months of June and October. ALS point density ranged from 13 to 31 
points/m2, with an average density of 21 points/m2. Flight character
istics varied between acquisitions, including a flying height ranging 
from 1000 m–1200 m, horizontal accuracy between 0.20 m–0.31 m, and 
vegetated vertical accuracy between 0.07 m–0.59 m. The scan angles 

were between − 40◦ and 38◦ off-nadir. 
The preprocessing steps for lidar point clouds included filtering 

duplicate points, creating a digital terrain model, and performing height 
normalization. Outlier points were classified and removed using the 
Statistical Outlier Removal (SOR) function with 9 neighbors and a dis
tance multiplier of 3 (Rusu and Cousins, 2011). While many studies 
using lidar data for biomass estimation remove ground returns, recent 
research by Mahoney et al. (2022) demonstrated that ground point in
clusion can improve ALS biomass model performance. As such, ground 
points were included in the analysis. All lidar pre-processing was per
formed using the lidR package (v. 4.0.1; Roussel et al., 2020) in R 
Software (v. 4.2.2; R Core Team, 2023). 

2.4. Deriving reference component biomass 

The Canadian national biomass equations developed by Lambert 
et al. (2005) and Ung et al. (2008) were applied to the ground reference 
data to estimate tree component biomass. These equations were devel
oped for 24 common Canadian tree species using 9209 destructively 
sampled trees from across Canada. Unlike some allometric equations 
which are generalized, these equations are species-specific. Equations 
(1)–(4) show how DBH is used to estimate tree component biomass (y), 
where the parameters (β1 and β2) and error (e) differ depending on the 
tree species. Equation (5) shows how all biomass components (wood, 
bark, branches, and foliage) for a tree sum to derive the tree total AGB 
(ytotal). Plot total AGB in tons (Mg) is derived by summing ytotal for all 
trees in a plot, and is converted to a tons per hectare value (Mg/ha). For 
trees in the dataset that did not have a matching allometric equation (4% 
of all trees in ground data), equation parameters of a similar surrogate 
species were substituted. Fig. 1 shows the distribution of ground plots 
across New Brunswick coloured by total AGB in tons per hectare. 

ywood = βwood1DBHβwood2 + ewood Equation 1  

ybark = βbark1DBHβbark2 + ebark Equation 2  

ybranches = βbranches1DBHβbranches2 + ebranches Equation 3  

yfoliage = βfoliage1DBHβfoliage2 + efoliage Equation 4  

ytotal = ywood + ybark + ybranches + yfoliage Equation 5  

2.5. Preparing data for machine learning 

DNNs are sensitive to large variations in magnitude for both input 
and target variables (Krizhevsky et al., 2012). Tree component biomass 
values can vary substantially in magnitude, as values of wood and 
branch biomass are typically much larger relative to bark and foliage. In 
the New Brunswick plot dataset, the majority of total tree AGB is wood 
(66%) with the remaining components comprising smaller proportions 
(14% branch, 10% bark, 10% foliage). To account for the imbalance in 
component biomass, following the methods of Ayrey et al. (2021), target 
biomass values were normalized to Z-score values using the mean and 
standard deviation of the plot level values for each component. Z-score 
normalizing ensures that all biomass components contribute the same 
magnitude of error to avoid biasing the model towards components with 
greater biomass. For direct AGB models, Z-score normalization was not 
implemented as it did not improve model performance in early experi
ments. The XYZ coordinates of each input point cloud were reduced by 
subtracting the mean from each coordinate value following the 
approach of Winiwarter et al. (2019). This subtraction centered the 
point cloud around the origin, aligning its centroid with (0, 0, 0) in the 
XYZ space. The reduction of coordinates ensures a consistent value 
range across all sample point clouds, thus preventing large values from 
influencing neuron weights. Lidar intensity values were rescaled using 
max-min normalization for each plot separately. Other lidar attributes 

Table 1 
Lidar acquisition information for the ALS data used in this study.  

Name Start 
Date 

End 
Date 

Mean 
Point 
Density 
(pts/m2) 

Number 
of Plots 

Horizontal 
Accuracy 
(m) 

Vegetated 
Vertical 
Accuracy 
(m) 

2015- 
A 

2015- 
08-02 

2015- 
09-28 

15.19 186 0.26 0.28 

2016- 
A 

2016- 
06-17 

2016- 
10-04 

19.50 675 NA 0.12 

2016- 
B 

2016- 
06-24 

2016- 
06-24 

13.18 4 0.31 0.28 

2017- 
A 

2017- 
06-12 

2018- 
06-23 

23.12 22 0.30 0.59 

2017- 
B 

2017- 
07-06 

2017- 
08-16 

19.39 791 0.30 0.39 

2018- 
A 

2018- 
06-11 

2018- 
08-25 

23.23 536 0.20 0.33 

2018- 
B 

2018- 
07-11 

2018- 
08-11 

29.39 129 0.20 0.07 

2018- 
C 

2018- 
07-30 

2018- 
08-24 

17.46 6 0.20 0.27 

2018- 
D 

2018- 
07-31 

2018- 
08-31 

31.77 1 0.20 0.23  
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including classification, scan angle, return number, and number of 
returns were not rescaled as they fell within the same value range as the 
coordinates and intensity. Finally, plots were split into train (70%, n =
1635), validation (15%, n = 350), and test (15%, n = 351) sets using 
random sampling. Since individual plots are spatially separated by > 2 
km, a spatial split was not deemed necessary. 

Data augmentation is a common preprocessing step in DL where 
distortions, noise addition, and other modifications are made to pre
dictor variables in the train set to increase input data diversity and 
reduce overfitting (Oubara et al., 2022). Importantly, data augmenta
tion is only applied to the predictor variables (point clouds), not the 
target variables (reference biomass values). Data augmentation was 
applied to the training point clouds in the form of random rotation 
around the Z-axis, random noise addition to individual points (i.e., jit
tering), and shifting all points by a randomly chosen distance along each 
axis. For the DNNs, training data was augmented on-the-fly through 
rotation, jittering, and shifting prior to each epoch during training (Qi 
et al., 2017a). For RF, the same data augmentation was treated as a 
hyperparameter and was implemented prior to lidar metric calculation. 

Fig. 2 compares the three modelling pathways we used to estimate 
tree biomass in this study: conventional ML using random forest, octree- 
based DNN, and point-based DNN. The three following sections describe 
the details of how these models were applied, including information 
regarding input data structure and the learning mechanism. 

2.6. Conventional machine learning approach 

Random forest (RF) represents a conventional ML approach 
commonly used in conjunction with lidar metrics for tree biomass esti
mation (Ayrey and Hayes, 2018; Kanmegne Tamga et al., 2023; Zhou 
et al., 2022). RF often outperforms other ML models such as KNN and 
SVR and is widely used in remote sensing research (Belgiu and Drăguţ, 
2016). The major strength of RF is its nature as an ensemble model 
through the generation of many classification and regression trees 
(CARTs), each of which casts a vote contributing to the final prediction 
(Breiman, 2001). RF models have many benefits, such as the capacity to 
handle high dimensionality data, in addition to being robust towards 
multicollinearity and overfitting (Belgiu and Drăguţ, 2016). RF was 
implemented in this study using the Scikit-Learn package (v. 1.3.0; 
Pedregosa et al., 2011) with Python version 3.8. 

RF models were trained with plot-level lidar metrics summarized in a 
tabular format. A suite of 86 lidar metrics were selected as candidate 
predictors in the RF model based on their use in previous forest attribute 
modelling (e.g., White et al., 2015; Woods et al., 2008; Xu et al., 2019). 
These included common height statistics (e.g., height percentiles), 
vegetation metrics (e.g., leaf area density) and canopy metrics (e.g., 
canopy relief ratio). A full list of lidar metrics used in this study is 
available in Appendix A. Lidar metrics were calculated using the 
pyForMetrix Python package (v. 0.0.6; Winiwarter, 2023), which is an 
adaptation of the lidRmetrics package (Tompalski et al., 2023). Variable 
selection was performed based on the methods of Ayrey and Hayes 

Fig. 2. Comparing the raw data, model input, and learning mechanisms for random forest (RF), Octree CNN (OCNN) HRNet and Dynamic Graph CNN (DGCNN) 
models. Visual representation for OCNN and DGCNN are adapted from Wang et al. (2017, 2019), respectively. *The downsampled point cloud shown was derived 
using random sampling. 
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(2018), where after an initial run of RF using all variables, those with an 
importance score below a threshold (treated as a hyperparameter) were 
dropped. Fig. 2A summarizes the RF model workflow used in this study 
including the input data format and learning mechanism. 

2.7. Octree-based deep neural network 

Octree-CNNs (OCNNs) have been demonstrated across several 
studies to be simple, efficient, and effective approaches to point cloud 
deep learning (Wang et al., 2017, 2018, 2020, 2021). OCNNs operate 
similarly to voxel based networks such as the Minkowski Engine (Choy 
et al., 2019) and SparseConvNet (Schmohl and Sörgel, 2019), but are 
typically faster and more memory-efficient. OCNNs adapt conventional 
CNN model architectures (e.g., LeNet) to perform 3D convolutions on an 
octree representation of a point cloud (Wang et al., 2017). 
High-Resolution Net, or HRNet, (Sun et al., 2019) is an established CNN 
commonly used in image analysis for a variety of tasks such as seg
mentation (Zhang et al., 2020) and classification (Xu et al., 2022). As 
such, the HRNet-OCNN model architecture developed by Wang et al. 
(2021) was selected for this study and applied using the OCNN-Pytorch 
Python package (Wang, 2023). 

As shown in Fig. 2B, converting a lidar point cloud into an octree 
structure means recursively subdividing the point cloud into 8 child 
cubes (octants) until the maximum octree depth is reached. In this study, 
a max octree depth of 6 was used, meaning that due to variation in point 
cloud height, the smallest octant (i.e., cube) ranged between 33 cm and 
50 cm and was 34 cm on average. Each octant had associated XYZ co
ordinates, intensity, classification, return number, number of returns, 
scan angle, and estimated XYZ components of the surface normal (i.e., 
the directional vector on the point cloud surface). Surface normals were 
estimated using the Open3D Python package (v. 0.17.0) through the KD 
Tree Search KNN algorithm with a max nearest neighbor value of 30 
(Zhou et al., 2018). In cases where multiple points lay within an octant, 
the average value was taken for each lidar attribute. Empty octants were 
labelled as zero across all attributes. OCNN-HRNet learns 
multi-resolution features by performing 3D convolutions on each octree 
depth along parallel subnetworks (Fig. 2B; Wang et al., 2021). Batch 
normalization is implemented throughout the network, and learned 
features are aggerated through mean and max pooling operations. A 
fully-connected (FC) module at the back-end of the network provides a 
final predicted biomass value. 

2.8. Point-based deep neural network 

A variety of point-based DNN architectures have been applied for 
forest attribute modelling in prior research (e.g., Hell et al., 2022; Liu 
et al., 2022a; Turgeon-Pelchat et al., 2021). These architectures include 
PointNet++ (Qi et al., 2017b), ConvPoint (Boulch, 2020), and 
PointCNN (Li et al., 2018). The Dynamic Graph CNN, or DGCNN (Wang 
et al., 2019), was selected for this study as it has been demonstrated to 
be a versatile and effective architecture across a variety of modelling 
tasks (Bello et al., 2020; Diab et al., 2022; Liu et al., 2022b). Like most 
point-based DNNs, DGCNN requires each input point cloud to have the 
same number of points (Liu et al., 2022b; Wang et al., 2019). This 
requirement was addressed by randomly downsampling input point 
clouds to the target number of points prior to each epoch. This random 
downsampling approach meant that each epoch, the model would view 
a slightly different set of points for each training point cloud, thus 
providing additional data augmentation. In contrast, validation and test 
datasets were downsampled using the farthest point sampling (FPS) 
approach to maintain their fidelity. FPS involves randomly selecting an 
initial starting point, repeatedly calculating the distance to all other 
points, and retaining the farthest point in each iteration until the target 
number of points is reached (Liu et al., 2022a). Although we did not 
perform a thorough investigation of the optimal number of points to use 
with DGCNN, early experimentation suggested that 5120 points per plot 

(13 pt/m2) provided the best results. In plots that had fewer than 5120 
returns, points were randomly sampled with replacement and dupli
cated with a small amount of noise until the target number was reached. 
Though DGCNN can operate using additional features such as surface 
normal vectors, DGCNN was applied in this study using only the XYZ 
coordinates as input features. 

Fig. 2C summarizes key characteristics of DGCNN, including the type 
of input data and the learning mechanism. DGCNN is based on PointNet 
(Qi et al., 2017a), and learns from a point cloud by building a graph 
around a given point using the 20 nearest neighbor points. The graph 
used in DGCNN represents each neighboring point as a node and pair
wise connections between points as edges. DGCNN then applies a 
specialized convolution-like operation called EdgeConv to the neigh
borhood graph to learn features. As the point cloud passes through 
DGCNN, the neighborhood graphs are dynamically updated for each 
point, allowing the model to learn the local and global point cloud 
structure. Finally, DGCNN uses a series of MLPs and pooling operations 
to summarize and extract information from the learned features to make 
predictions (Wang et al., 2019). 

2.9. Hyperparameter configurations and model training 

An important aspect of DL models is their sensitivity to hyper
parameter configuration (Agrawal, 2021). Hyperparameters are the 
parameters that govern how a DNN learns, including but not limited to: 
learning rate, batch size, number of epochs, weight decay, and dropout 
probability. While many DL studies perform hyperparameter tuning for 
each model (e.g., Dimitrovski et al., 2023), this was not done in this 
study. This is because point cloud DNNs are demanding in terms of 
computational resources and require significant time and computer 
memory to train. For example, training times with the available com
puter resources in this study (two NVIDIA RTX A4000 GPUs, 16 GB 
memory each) required up to 37 h for 200 epochs. Instead of performing 
hyperparameter tuning, a single hyperparameter configuration was 
implemented for both DL models similar to that used by Oehmcke et al. 
(2022) which is shown in Table 2. 

As shown in Equation (6), for additive AGB models, a customized 
Mean Squared Error (MSE) loss function was implemented to ensure that 
models evenly estimated biomass components while also encouraging 
additivity. MSE loss using only total AGB was implemented for direct 
AGB models. DNN parameter states were saved after each epoch if the 
validation loss was lower than any prior epoch. The DNN state that 
achieved the lowest loss (Eq. (2)) on the validation set was applied to the 
testing dataset to derive performance metrics. DNN training was 
implemented using the PyTorch package (v. 1.13.0) in Python (Paszke 
et al., 2019). 

Loss=MSEWood + MSEBranch + MSEBark + MSEFoliage + MSETree

Equation 6 

Table 2 
Hyperparameter configuration used to train the Dynamic Graph CNN and the 
Octree CNN-HRNet. This configuration was not derived from hyperparameter 
tuning, but was instead based on that used by Oehmcke et al. (2022). We used 
the AdamW optimizer and cosine annealing warm restarts learning rate sched
uler developed by Loshchilov and Hutter (2019, 2017).  

Hyperparameter Value 

Number of Training Data Augmentations 3 
Initial Learning Rate 0.001 
Batch Size 8 
Number of Epochs 200 
Dropout Probability 0.8 
Optimizer AdamW 
Weight Decay 0.01 
Learning Rate Scheduler Cosine Annealing Warm Restarts 
N iterations for first restart (T0) 20 
Increases after restart (Tmult) 2  
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Unlike the DNNs implemented in this study, RF models are relatively 
fast to train, allowing for automated hyperparameter tuning regimes. 
The Optuna Python package (v. 3.2.0; Akiba et al., 2019) was used to 
perform a random hyperparameter search for RF over a 12 h time frame. 
Table 3 summarizes the hyperparameters included in the random search 
with their respective value ranges. The optimal hyperparameter 
configuration for RF was selected based on lowest tree RMSE on the 
validation dataset achieved by the additive biomass model. 

2.10. Comparing models 

Fig. 3 provides an overview of the methods implemented in this 
study to address the research questions. Two versions of each model 
were trained: one as a multi-output regressor estimating tree biomass 
components and subsequently additive AGB (AGBAdditive), and another 
as a single variable regressor estimating total AGB directly (AGBDirect). 
Both the additive and direct AGB versions of each model were trained 
with the same hyperparameter configuration. Performance metrics were 
computed for all models using the testing dataset. For each target var
iable (wood, branch, bark, and foliage biomass, in addition to AGBAd

ditive and AGBDirect) three performance metrics were computed for 
comparison: the coefficient of determination (R2), root mean square 
error (RMSE), and mean absolute percentage error (MAPE). These per
formance metrics were selected based on previous studies comparing 
DNNs to conventional ML for tree AGB estimation (Ayrey et al., 2021; 
Ayrey and Hayes, 2018; Oehmcke et al., 2022). To account for stochastic 
variation in model training inherent in DL and RF, each model was 
trained and tested three times for additive and direct AGB estimation 
using randomly initialized weights for the DNNs. For each performance 
metric, the mean and standard deviation were computed from the three 
training runs (reported in results as mean ± standard deviation). This 
provided confidence that the metrics captured a component of the 
variation in model performance given different random starting weights 
in the DNNs. Finally, the performance of the best model overall was 
evaluated by dominant species to identify model biases for different 
species. The dominant species in a given plot was determined based on 
species total AGB in that plot. Plots in the test dataset were grouped by 
dominant species and performance metrics were calculated separately 
for each species. Python code used for DNN architectures and model 
training is indexed with Zenodo (Seely, 2023) and is available the 
following link: https://github.com/harryseely/Biomass-DL. 

3. Results 

3.1. Random forest hyperparameter tuning 

RF hyperparameter tuning implemented in Optuna evaluated a total 
of 4000 trial configurations over 12 h. RF performance did not vary 

substantially between trials, with an average RMSE of 30.2 Mg/ha and 
standard deviation of 1.2 Mg/ha. Hyperparameter tuning results showed 
that data augmentation did not benefit RF performance, with 0 aug
mentations to the training dataset yielding the best results. The optimal 
variable importance threshold was 0.005, which included 29–33 metrics 
for additive models, and 19–22 metrics for direct models (depending on 
the run). The most important features for direct and additive AGB 
models included mean height (zmean), 45th height percentile (zq45), 
height of median energy (HOME), voxel elevation standard deviation 
(vzsd), and the percentage of returns above 5 m (pzabove5). 

3.2. Deep learning training 

Fig. 4 shows the learning curves for the best performing training runs 
of the DGCNN and OCNN-HRNet additive and direct AGB models. DNN 
training achieved the best performance on the validation dataset (i.e., 
the model converged) between epochs 55 and 181 depending on the run. 
The generalization gap (i.e., difference between training and validation 
loss curves) was larger for OCNN-HRNet (Fig. 4 A, C) than for DGCNN 
(Fig. 4 B, D). DGCNN consistently had larger training loss than valida
tion loss. OCNN-HRNet and DGCNN training with two GPUs required an 
average of 36.9 h (~11 min/epoch) and 16.5 h (~5 min/epoch), 
respectively. This training lasted 17,000 times longer on average 
compared to RF training time (~6 s with 16 CPU cores). 

3.3. Additive versus direct AGB estimation 

Additive and direct AGB estimation performed similarly when 
averaged across training runs, with the most notable differences 
expressed in terms of MAPE (Fig. 5). The difference between additive 
and direct models in terms of R2 averaged across all models was minor 
(0.77 ± 0.005 for additive; 0.78 ± 0.003 for direct). The same was true 
of RMSE (26.9 Mg/ha ±0.3 Mg/ha for additive; 26.6 Mg/ha ±0.2 Mg/ 
ha for direct). In terms of MAPE, additive models demonstrated an 
average 22% reduction compared to direct models (59.5 % ± 7.9 % and 
81.6 % ± 18.8 %, respectively). This finding was most pronounced for 
DGCNN, which had an additive MAPE of 56.8 % ± 7.8% compared to a 
direct MAPE of 118.9 % ± 44.1% (difference of 62%). DGCNN additive 
models also outperformed direct models in terms of R2 and RMSE, 
though this difference was smaller compared to that found for MAPE 
(Fig. 5). RF additive models provided an average 11% reduction in 
MAPE (69.3 % ± 0.8 % for additive; 80.6 % ± 3.0 % for direct). OCNN- 
HRNet additive models were outperformed by the direct models across 
all metrics on average. The most notable improvement afforded by the 
OCNN-HRNet direct model over the additive model was a RMSE 
reduction of 1 Mg/ha (26.6 Mg/ha ±0.3 Mg/ha for additive; 25.6 Mg/ha 
±0.3 Mg/ha for direct). 

3.4. Comparing RF and DNN models 

As shown in Figs. 5 and 6, all three models performed similarly for 
estimating tree biomass, with OCNN-HRNet slightly outperforming 
DGCNN and RF, especially for direct AGB. The spread of residuals was 
similar across all three models, with residual error increasing for larger 
AGB values (Fig. 7). Fig. 7 also shows the presence of some outlier plots 
in the test dataset with large errors. As shown in Table 4, there are three 
performance metrics for each of the six target variables, comprising a 
total of 18 metrics averaged across training runs to compare between 
models (Table 4). Across all metrics, OCNN-HRNet performed best on 
average for 12/18, DGCNN for 2/18, and RF for 3/18. Together, DNNs 
outperformed RF across 15/18 metrics. 

In terms of MAPE, OCNN-HRNet reduced error by 20% on average 
across all target variables (Table 4) compared to RF (56.5% ± 14.6 % for 
OCNN-HRNet; 76.7% ± 1.4% for RF). DGCNN did not demonstrate the 
same performance, only reducing MAPE by 2% on average compare to 
RF (74.1% ± 15.0% for DGCNN). R2 and RMSE experienced less 

Table 3 
Tuning ranges for Random Forest (RF) random hyperparameter search and the 
best values identified from the search for each hyperparameter. Note that for 
maximum number of features for splitting a node, nfeatures is the number of lidar 
metrics selected to be used in the model based on the variable importance 
threshold.  

Parameter Value Search Range Best 
Value 

Number of training data augmentations 0–5 0 
Variable importance threshold 0–0.1 0.005 
Number of estimators (trees) 100–3000 200 
Max depth 80–110 90 
Minimum number of samples per split 8–16 12 
Minimum number of samples per leaf 3–5 4 
Maximum number of features for splitting 

a node 
1–3, ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅nfeatures

√ , 
log2(nfeatures)

1 

Proportion of samples for bootstrap 0.5–1.0 0.9  

H. Seely et al.                                                                                                                                                                                                                                    

https://github.com/harryseely/Biomass-DL


Science of Remote Sensing 8 (2023) 100110

8

variation between the three models. The most notable differences in R2 

scores were for bark and foliage estimates. For bark estimates, OCNN- 
HRNet and DGCNN achieved R2 scores of 0.79 (±0.006) and 0.77 
(±0.008), compared the RF score of 0.48 (±0.009). For foliage esti
mates, RF outperformed both DNNs with an R2 score of 0.75 (±0.003) 
compared to 0.66 (±0.015) and 0.53 (±0.061) for OCNN-HRNet and 
DGCNN, respectively. RMSE primarily differed for bark estimates, with 
OCNN-HRNet and DGCNN achieving 2.6 (±0.04) Mg/ha and 2.7 
(±0.05) Mg/ha, respectively, compared to 4.3 (±0.04) Mg/ha for RF. 

Overall, OCNN-HRNet was the best model in terms of additive and 
direct AGB estimation with an R2 of 0.79 (±0.005) and 0.8 (±0.004), 
respectively. OCNN-HRNet biomass component estimation yielded R2 

ranging from 0.66 to 0.78 across wood, branch, bark, and foliage 
biomass estimates. Notably, OCNN-HRNet achieved an average Direct- 
AGB MAPE of 45.4% (±9.3%), providing a 35.1% improvement 
compared to that of RF (80.5% ± 3.0%). 

3.5. Model performance by species 

Model performance as represented by OCNN-HRNet (best overall 
model) varied by species and component (Fig. 8). Common species 
(dominant in 87% of plots) including fir, spruce, maple, birch, and 
aspen, had good model fits, with R2 between 0.7 and 0.8. Less common 
species including cedar, pine, and beech (dominant in 10% of plots) had 
generally poorer and more variable model fits, with R2 ranging between 
0.4 and 0.8. Species that were rare in the dataset, including tamarack, 
alder, ash, hemlock, and poplar (dominant in only 4% of plots), yielded 
less accurate biomass predictions and had insufficient samples to pro
vide reliable estimates of model fit. For all coniferous species, model fit 
for biomass components was good, with R2 between 0.7 and 0.8. A 
similar trend was true for broadleaf species, except that model fit was 
poor for foliage, with R2 of 0.07. 

3.6. Applying DNN to map tree biomass 

To demonstrate the inference capacity of OCNN-HRNet, we applied 
the model to a subset of the study area containing a variety of forest 
management regimes, species compositions, and biomass values (Fig. 9). 
It is apparent that tree component biomass is spatially correlated; 
however, in some areas the amount of biomass differs substantially 
between components. This pattern is highlighted in Fig. 10, which shows 
a Red–Green–Blue (RGB) colour composite generated using the 

normalized predicted branch, bark, and foliage biomass values. In 
Fig. 10 we can see that the Northwest of the subset area is dominated by 
branch and bark biomass, whereas the Southeast is dominated by foliage 
biomass. 

4. Discussion 

4.1. Modelling tree AGB using additive and direct approaches 

This study compared additive and direct approaches to tree AGB 
estimation for RF and DNN models. Our results indicate that additive 
AGB models perform similarly to direct models, and in some cases even 
provide improved performance. Although additive models can result in 
a minor reduction in the accuracy of estimated total AGB in some cases, 
this approach provides significantly more information about tree 
biomass and carbon storage. As shown in Figs. 9 and 10, when mapped 
across the landscape, patterns in tree component biomass can reveal 
interesting structural characteristics of a forest which are less obvious 
when looking at a total AGB map. These findings are in line with a 
similar study by Sanquetta et al. (2015), which compared additive 
Seemingly Unrelated Regression (SUR) and direct regression of tree 
AGB. They found that both approaches yielded similar results, with the 
additive SUR demonstrating no significant reduction in AGB estimation 
accuracy compared to the direct approach. 

By splitting tree biomass into individual components and calculating 
the MSE loss (Eq. (6)) for each of them separately, the DNN models are 
provided with additional information during training. These results 
suggest that they can make use of that information and understand that 
different parts of the point cloud correspond to different biomass com
ponents. Additionally, since the squared term in the loss function is 
applied to each component separately, large deviations in individual 
components are unlikely. This can be understood like a regularization 
term, where unrealistically large (or small) estimates for the compo
nents are discouraged. We also applied Z-score normalization to the 
biomass components to avoid biasing the models towards components 
with greater biomass (i.e., wood, branches). However, weighting the 
loss function (Eq. (6)) towards higher biomass contributors may be 
desirable in some cases, and is worth pursuing in future research. 

4.2. Comparing random forest and deep learning models 

This study evaluated whether point cloud DL can improve upon the 

Fig. 3. Overview of approach for addressing the study objectives. Processes and outcomes focused on specific objectives are colour coded. Three models are 
compared for additive and direct aboveground biomass (AGB) estimation: Random Forest (RF), Octree CNN (OCNN) HRNet, and Dynamic Graph CNN (DGCNN). The 
“Obs.” and “Pred.” abbreviations represent observed and predicted biomass values. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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use of conventional ML and lidar metrics by using the point cloud 
directly. The point-based DGCNN and octree based OCNN-HRNet were 
compared to RF which served as a baseline lidar metric model. Gener
ally, the two DNNs implemented in this study outperformed RF for both 
additive and direct AGB estimation, with OCNN-HRNet providing the 
greatest improvement relative to RF. This improvement was most pro
nounced in terms of MAPE. However, it should be noted that MAPE 
experienced large standard deviations for both DNNs across the target 
variables due to random initial weights and the stochastic deep learning 
process. Though MAPE varied between DNN runs (Figs. 5 and 6), the 
standard deviation of MAPE for both DNNs was typically lower than the 
difference in MAPE relative to RF, indicating that this difference was 
significant. A similar study by Oehmcke et al. (2022) also observed a 
substantial improvement in MAPE for point cloud DNNs compared to 
conventional ML models using lidar metrics. The higher MAPE values 
observed for the RF model compared to the DNNs may be a result of the 
differences in model structure between RF and DNNs resulting in certain 

prediction biases (Hamraz et al., 2019). Overall, these results suggest 
that point cloud DNNs, especially OCNN based models, can outperform 
RF in terms of both additive and direct AGB estimation, and should be 
considered viable options for future lidar-based tree AGB modelling. 
These results also suggest that features learned from point cloud DNNs 
provide more effective predictors for tree AGB than conventional lidar 
metrics. 

While the DNNs implemented in this study did outperform RF in 
general, they did not achieve the large performance gains that have been 
reported in prior research comparing DNN and RF forest attribute 
models (Ayrey et al., 2021; Ayrey and Hayes, 2018; Hamraz et al., 
2019). For example, a 3D CNN implemented by Ayrey and Hayes (2018) 
for AGB estimation provided an R2 of 0.69 compared to the RF R2 of 
0.61, whereas the differences in terms of R2 between DNN and RF in this 
study were not as pronounced. This may be due to several reasons. One 
explanation is that error in the reference data (e.g., fieldwork errors, 
GPS mismatch) and the range of different lidar acquisitions (e.g., 

Fig. 4. Learning curves for the best training runs of Octree CNN (OCNN) HRNet (A, C) and Dynamic Graph CNN (DGCNN; B, D). Direct (A, B) and additive (C, D) 
aboveground (AGB) tree biomass models are shown. Note that the loss axis for additive AGB (C, D) represents a unitless value since the target is z-score normalized, 
whereas the direct AGB loss is mean squared error (MSE). The dashed line shows the observed loss and the bolded line shows the smoothed loss (moving average with 
a window size of 7). The red diamond represents the epoch where the model achieved the lowest loss on the validation dataset. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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instrument and platform effects) may have negatively influenced the 
DNNs more than RF (Knott et al., 2023). RF is robust to noise and out
liers due to its ensemble approach (Breiman, 2001) and lidar metrics 
may have added a smoothing effect by aggregating the points to statis
tical descriptors. In contrast, DNNs operating directly on the point cloud 
may be more sensitive to outliers, noise, and error in input reference 
data compared to RF. To that end, a recent study found that adding even 
a single outlier point to a point cloud can significantly reduce DNN 
performance (Tan and Kotthaus, 2023). Moreover, more complex data 
augmentation may also help reduce the effect of noise and outliers in 
point cloud data. For example, Li et al. (2020) implemented a generative 
adversarial network (GAN) which learns to optimize point cloud data 
augmentation on-the-fly during training. Future work should ensure that 
training data are appropriately pre-processed and adopt suitable data 
augmentation methods to minimize the negative effects of noise and 
outliers on point cloud DNN performance. 

Another factor that may have narrowed the performance gap be
tween DNNs and RF models in our study is the size of the training 
dataset. Ayrey and Hayes (2018) used a much larger training dataset 
consisting of 17,537 sample plots, which may have provided a more 
substantial benefit to their DNN compared to their RF model. The need 
for very large training datasets is a well studied concept in DL research, 
and may have been an important factor for the model comparison in this 
study (Hamedianfar et al., 2022; LeCun et al., 2015). Finally, the RF 

model implemented in this study was subject to rigorous hyper
parameter tuning (4000 trials) to optimize performance, whereas DNN 
hyperparameters were pre-selected based on those used by Oehmcke 
et al. (2022) due to constraints imposed by lengthy DNN training times. 

It is also useful to compare the point cloud DNNs implemented in this 
study to inform future application of such models. Across many point 
cloud DL tasks, point-based DNNs such as DGCNN typically outperform 
octree/voxel-based DNNs (Diab et al., 2022); however, this was not the 
case in this study. Notably, OCNN-HRNet outperformed DGCNN across 
12 of the 18 metrics used in this study (Table 4). However, the im
provements afforded by OCNN-HRNet compared to DGCNN were rela
tively small (Figs. 5 and 6). These minor improvements may be because 
OCNN-HRNet used additional features from the point cloud, such as 
intensity, return number, and scan angle, whereas DGCNN only used 
XYZ coordinates. Furthermore, OCNN-HRNet is a more complex model 
(3.6 M parameters) compared to DGCNN (2.1 M parameters). Ayrey and 
Hayes (2018) compared 3D CNNs with varying degrees of complexity 
and found that more complex models performed better for biomass 
regression. As such, additional complexity may have contributed to the 
performance gains of OCNN-HRNet. 

The improved performance of the octree-based DNN compared to the 
point-based DNN is consistent with some prior studies dealing with ALS 
point clouds. For example, Oehmcke et al. (2022) found that a 
voxel-based DNN (Minkowski CNN) outperformed a point-based DNN 

Fig. 5. Averaged performance metrics for additive versus direct approaches for modelling tree aboveground biomass (AGB) with Random Forest (RF), Octree CNN 
(OCNN) HRNet, and Dynamic Graph CNN (DGCNN). Error bars show the standard deviation of a given metric summarized across three training runs for each additive 
and direct AGB model. 

Fig. 6. Comparing performance metrics between Random Forest (RF), Octree CNN (OCNN)-HRNet, and Dynamic Graph CNN (DGCNN). Metrics are shown for tree 
biomass components and additive total aboveground biomass (Add-AGB). Error bars show the standard deviation of a given metric summarized across three training 
runs for each additive AGB model. 
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(KPConv) for AGB estimation, with R2 values of 0.81 and 0.79, respec
tively. Another study by Li et al. (2021) comparing DNNs for urban ALS 
point cloud classification found that the Submanifold Sparse CNN 
(voxel-based) outperformed PointNet++ and KPConv (both 
point-based) models by 1% and 5%, respectively. Overall, while 
point-based DNNs excel when applied to indoor point clouds (e.g., 
chairs, tables, lamps, etc.), there is increasing evidence that voxel or 
octree-based methods are better suited for forest point clouds, especially 
when acquired with ALS. 

4.3. Understanding biomass error by species 

A key benefit to modelling tree component biomass is the capacity to 
compare which biomass components contribute error for different spe
cies. This study highlighted several interesting error patterns for 
different dominant species in the plot data. For example, coniferous 
species had improved model fit for foliage compared to deciduous spe
cies (Fig. 8). This finding may be due to several factors, such as decid
uous species typically having less accurate allometric equations for 
foliage (Lambert et al., 2005; Ung et al., 2008). In addition, residuals for 
all broadleaf dominated plots show that total AGB was underestimated 
by 5.4 Mg/ha on average, whereas coniferous dominated plots demon
strated overestimated total AGB by 1.2 Mg/ha on average. There are 
several possible explanations for these outcomes such as different 

canopy structures and leaf traits between tree species. It is also possible 
that lidar acquisition timing (Table 1) influenced the underestimation of 
broadleaf tree biomass since some acquisitions ranged from September 
to October during foliage senescence. Other interesting patterns in 
species biomass component error included plots dominated by maple 
exhibiting large residuals for branch, bark and foliage estimates 
compared to relatively low residuals for wood estimates. In contrast, 
plots dominated by fir exhibited the largest residuals for wood. Inves
tigating biomass component error patterns by species can help modellers 
diagnose species specific biases in their model. Similarly, this knowledge 
can help identify potential issues with ground reference data or allo
metric equations (Vorster et al., 2020). 

The substantial variation in model performance between different 
tree species highlights the importance of including species information 
in tree biomass models. For example, Latifi et al. (2015) demonstrated 
that stratifying their tree biomass model using species groups (conifer, 
deciduous, mixed) allowed their model to explain 11% more variation in 
biomass. Providing information about species to DNN and RF models 
may help account for species specific biases, and improve model per
formance overall. 

4.4. Study limitations 

An important limitation of the DNNs implemented in this study is the 

Fig. 7. Additive tree aboveground biomass (AGB) observed-predicted scatterplots (A, B, C) in addition to fitted-residual plots (D, E, F) for Random Forest (RF), 
Octree CNN (OCNN)-HRNet, and Dynamic Graph CNN (DGCNN). Predicted and residual values are taken from the best training run of each model. 
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lack of hyperparameter tuning. Hyperparameter tuning is an essential 
aspect of applying DNNs, but requires large amounts of time and 
computational resources (Hamedianfar et al., 2022). The trade-off be
tween resources and performance is important to consider when 
comparing DNNs with conventional ML models such as RF which can be 
trained rapidly. Some experimentation with hyperparameters for 
OCNN-HRNet and DGCNN such as learning rate, batch size, and dropout 
rate, was observed to have a significant impact on model performance. 
However, this study ultimately adopted a hyperparameter configuration 
described in previous work by Oehmcke et al. (2022), and in-depth 
hyperparameter tuning for OCNN-HRNet and DGCNN may have 

resulted in improved outcomes. Due to long DNN training times (16–37 
h using 2 GPUs), performing an effective hyperparameter search could 
require hundreds of hours of compute time, and was not feasible in this 
study. Future work in this area should explore more efficient methods 
for hyperparameter optimization, such as only using a subset of the 
training data for hyperparameter tuning or implementing early stopping 
(DeCastro-García et al., 2019). For a more reasonable model compari
son, each model should undergo comparable hyperparameter tuning 
regimes. 

Another limitation in this study was the risk of DNN overfitting. 
DNNs are more susceptible to overfitting compared to other models such 
as RF due to the large number of trainable parameters (Hamedianfar 
et al., 2022). Complex DNNs trained on a relatively small dataset can 
memorize the training data, thus resulting in an overfit model that does 
not generalize to the test dataset. Multiple regularization techniques 
were implemented in this study to limit overfitting, including the use of 
small batch sizes (8 samples), high dropout (80%), and learning rate 
scheduling (Table 2). Despite these efforts, as can be seen in Fig. 4, the 
generalization gap (difference between validation and training learning 
curves) was wide for OCNN-HRNet. In contrast, the DGCNN validation 
loss was actually lower (better) than the training loss. This unexpected 
outcome may be an artifact of the high dropout rate (80%) implemented 
in this study. The need for multiple regularization methods to limit 
overfitting suggests that the DNNs used in this study may be overly 
complex for the task of tree component biomass regression. Hame
dianfar et al. (2022) argue that complex DNNs may be less suited for 
1-dimensional modelling tasks such as regression, and are better suited 
for 2D or 3D tasks such as image or point cloud segmentation. It is 
possible that implementing a simpler DNN for tree biomass estimation 
may be more effective than the models evaluated in this study. 

Another important limitation in this research is the rigid input data 
formats needed for point-based and octree-based DNNs. For DGCNN, 
input point clouds had to be downsampled to a specific number of 
points, and for OCNN-HRNet point clouds were converted to octrees 
with a minimum octant size of 34 cm on average. The conversion of the 
original point clouds to useable formats may have hindered the capacity 
of the DNNs to effectively model tree biomass. Although the number of 

Table 4 
Regression metrics for Random Forest (RF), Octree CNN (OCNN)-HRNet, and 
Dynamic Graph CNN (DGCNN), averaged across three training runs. Metrics 
include the coefficient of determination (R2), Root Mean Square Error (RMSE), 
and Mean Absolute Percentage Error (MAPE). The best performing metric across 
the three models is shaded in grey. Add-AGB represents the additive AGB model 
whereas Direct-AGB represents the direct model.  

Metric Component RF OCNN-HRNet DGCNN 

R2 Direct-AGB 0.772 0.797 0.774 
Add-AGB 0.763 0.780 0.780 
Wood 0.765 0.773 0.774 
Branch 0.768 0.769 0.753 
Bark 0.477 0.788 0.773 
Foliage 0.754 0.664 0.535 

RMSE Direct-AGB 27.125 25.585 26.998 
Add-AGB 27.513 26.639 26.650 
Wood 18.869 18.540 18.506 
Branch 4.865 4.858 5.019 
Bark 4.267 2.577 2.666 
Foliage 2.124 2.619 3.075 

MAPE Direct-AGB 80.547 45.417 118.9 
Add-AGB 69.258 52.393 56.790 
Wood 91.723 56.926 62.825 
Branch 104.762 74.101 79.063 
Bark 60.027 55.706 57.618 
Foliage 54.007 54.218 69.354  

Fig. 8. Observed (O), predicted (P) and residual biomass component values in tons per hectare (Mg/ha) for OCNN-HRNet averaged by dominant species across all 
the test plots. Observed and predicted values from OCNN-HRNet are taken from the best training run of the model. The number of plots shown beneath each species 
name is the total number of plots across the training, validation, and testing datasets. 
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points in each plot varied from 5000 to 12,000, each point cloud was 
downsampled to 5120 points to be used in DGCNN as this provided the 
best results in early experiment. However, it should be noted that a 
different number of points may have provided better results given a 

different hyperparameter configuration. A study by Liu et al. (2022a) 
performing tree species classification on backpack laser scanning data 
compared the effect on the number of points on PointNet++ perfor
mance. The authors found that when PointNet++ was trained using 
between 1024 and 9216 points per sample, the model performed best 
with 3072 points. A similar experiment could be used to identify the 
optimal number of points for DGCNN when applied to biomass regres
sion. Likewise, identifying the optimal octree depth (i.e., changing the 
size of the smallest possible octant) could improve the performance of 
OCNN-HRNet. While it was beyond the scope of this study to investigate 
the optimal number of points for DGCNN or octree depth for 
OCNN-HRNet, optimizing the input data structure likely has the po
tential to improved point cloud DNN performance. 

4.5. Future research 

The current body of research applying point cloud DL for tree 
biomass regression is limited (Ayrey et al., 2021; Ayrey and Hayes, 
2018; Oehmcke et al., 2022). This is likely because DNNs are not 
commonly designed for or applied to regression tasks (Letzgus et al., 
2022). In contrast, there is an increasingly large body of research that 
applies point cloud DNNs to many forest modelling tasks involving 
classification and segmentation (e.g., Hamraz et al., 2019; Krisanski 
et al., 2021a, 2021b; Liu et al., 2022a). As such, there is potential for 
repurposing models developed for forest classification and segmentation 
tasks to new regression tasks such as tree biomass estimation. Beyond 
adapting DNNs found in other research, there are several other areas 
that should be explored in future research. 

Unlike this study, which used a single data source (ALS), many 
contemporary studies modelling tree biomass using remote sensing 
adopt a data fusion approach (e.g., Luo et al., 2017; Zhang et al., 2019). 
Data fusion has been shown to improve modelling accuracy by over
coming single data source shortcomings (Fassnacht et al., 2014). Data 
fusion models combine multiple sources of active and passive remote 
sensing data such as radar, lidar, multispectral, and hyperspectral, in 
addition to ancillary datasets, such as stand age, species composition, 

Fig. 9. Predicted tree component biomass maps generated using OCNN-HRNet for a subset of the study area shown in panel A in red. Panel B shows a Landsat-8 true 
colour composite from 2018 (same year lidar was collected in the area). Panels C – F show the predicted biomass for each component across the subset area at a 
22.56 m resolution. Areas where the 95th height percentile is below 1.5 m are assumed to have no significant tree biomass and are shown in white. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Red–Green–Blue (RGB) colour composite generated for a subset of the 
study area using the predicted bark, branch, and foliage biomass values from 
OCNN-HRNet. The biomass of each component is normalized and then assigned 
to a colour channel (branch-red, foliage-green, and bark-blue). (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

H. Seely et al.                                                                                                                                                                                                                                    



Science of Remote Sensing 8 (2023) 100110

14

disturbance history, and climate information in a unified model (Gha
misi et al., 2019). For example, Zeng et al. (2022) used lidar metrics in 
combination with X-band SAR data in an OLS model to estimate tree 
biomass components in China. The authors observed that combining 
both data sources improved the lidar-only model R2 from 0.46 to 0.82. 

Adopting a data fusion approach could improve the capacity of point 
DNNs to estimate tree biomass by contextualizing features learned by a 
point cloud DNN. Features learned from the point cloud could be further 
refined based on the climatic history of the area, spectral reflectance, 
and other characteristics relating to tree biomass. However, one key 
barrier to data fusion in point cloud deep learning is the way in which 
additional datasets are incorporated into a DNN. Several studies have 
proposed novel ways of doing this. For example, Chang et al. (2019) 
developed a DNN that uses Landsat and aerial imagery in combination 
with terrain and climate data in multiple branches of CNNs and Den
seNets (Huang et al., 2017) to perform forest attribute regression. An 
alternative approach by Zhang et al. (2019) implemented a stacked 
sparse autoencoder DNN which fused Landsat derived spectral indices 
and lidar derived metrics to estimate forest AGB. The approaches 
developed in these studies could be adapted to include point cloud DNNs 
such as DGCNN or OCNN-HRNet instead of CNNs or autoencoders. 

A final area of research that is critical for the improvement of point 
cloud DNNs for forest biomass regression is DL explainability. Explain
ability in the context of DL refers to our ability to understand how and 
why a model makes a certain prediction (Nguyen et al., 2022). For point 
cloud DNNs, an example of explainability could be identifying patterns 
in the point cloud, such as neighborhoods of points, that are most 
important for predicting a certain biomass value. In the case of foliage 
biomass estimation, one could visualize point importance to determine 
if the model is placing more importance on points located in the tree 
canopy. If all the important points for foliage estimation are ground 
returns, this may indicate that a model is not learning effectively. 
Without the capacity to explain a DNN, it becomes difficult to trace 
sources of error in the model and to determine whether the model is 
learning properly (i.e., making logical decisions). This “black box” na
ture ultimately limits the usefulness of DNNs in real world applications. 

There has been progress in recent years towards explainable DL, with 
the development of frameworks such as LIME (Ribeiro et al., 2016) and 
DeepLIFT (Shrikumar et al., 2017) that can highlight important features 
in a trained DNN. Some methods have even been adapted specifically for 
point cloud DNNs (e.g., Tan and Kotthaus, 2022; Zhou et al., 2016). For 
example, Liu et al. (2022b) used class activation mapping (CAM; Zhou 
et al., 2016) in a study classifying tree species with point cloud DNNs to 
visualize which points were most important to the model’s decision. 
Despite the growing uptake of explainable DL methods for classification 
tasks, there remains a lack of similar methods for regression tasks 
(Letzgus et al., 2022). This is because it is easier to relate specific DNN 
features to categorical outputs than it is to do so for quantitative numeric 
outputs. Overall, the usefulness of point cloud DNNs for regression will 
remain limited until advances are made in explainable DL regression. 

5. Conclusions 

This study compared direct and additive approaches for tree AGB 
estimation using RF and DNN models. Additive AGB estimation per
formed similarly and, in some cases, better than direct AGB estimation. 
This finding supports the use of additive AGB models in future research 
and practice. The point cloud DNNs implemented in this study out
performed RF for additive and direct biomass estimation. However, the 
performance gains were not as substantial as those observed in previous 
studies. We suspect that larger training datasets, hyperparameter tun
ing, and data fusion will lead to better performance from point cloud 
DNNs going forward. Moreover, improved methods for explaining point 
cloud DNNs will improve our capacity to identify flaws with deep 
learning methods and to trace model error. 
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