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Introduction

One of the most important results in convex geometry is the Brunn-Minkowski inequality.
In its multiplicative formulation, it states that

vol𝑛((1− 𝜆)𝐾 + 𝜆𝐾) ≥ vol𝑛(𝐾)1−𝜆vol𝑛(𝐿)
𝜆 (1)

for all convex bodies 𝐾,𝐿 ⊆ ℝ𝑛 and 𝜆 ∈ [0, 1] and the equality conditions are well-
understood. The Brunn-Minkowki inequality is closely related to other important geomet-
ric inequalities and has significant generalizations. For instance, the volume functional
vol𝑛 in (1) can be replaced by the intrinsic volumes V𝑖 for 𝑖 ∈ {0, . . . , 𝑛}.

In the past two decades, efforts were made to relate the Brunn-Minkowski inequality
to Minkowski valuations. These are operators Φ mapping convex bodies of ℝ𝑛 to convex
bodies of ℝ𝑛 which satisfy the equation

Φ(𝐾 ∪ 𝐿) + Φ(𝐾 ∩ 𝐿) = Φ(𝐾) + Φ(𝐿),

whenever 𝐾, 𝐿, and 𝐾∪𝐿 are convex bodies. Minkowski valuations arise naturally in con-
vex geometry, such as the projection body operator in the context of the famous Shephard
problem. Hence, it is natural to ask whether the volume functional in (1) can be replaced
by V𝑖 ∘ Φ𝑗 , where Φ𝑗 is a Minkowski valuation homogeneous of degree 𝑗 ∈ {0, . . . , 𝑛}.
The most recent result on this question is from 2014 and due to A. Berg, F. Schuster,
L. Parapatits, and M. Weberndorfer, and gives a positive answer for a fairly large class

MVal
SO(𝑛)
𝑗,𝑖−1 of Minkowski valuations of order 𝑗. More precisely, if 𝑖, 𝑗 ∈ {0, . . . , 𝑛} and

Φ𝑗 ∈ MVal
SO(𝑛)
𝑗,𝑖−1 , then

V𝑖(Φ𝑗((1− 𝜆)𝐾 + 𝜆𝐿)) ≥ V𝑖(Φ𝑗(𝐾))1−𝜆V𝑖(Φ𝑗(𝐿))
𝜆 (2)

for all convex bodies 𝐾,𝐿 ⊆ ℝ𝑛 and 𝜆 ∈ [0, 1].
There are, however, some relevant homogeneous Minkowski valuations that are not yet

covered by this result. Explicit examples of such Minkowski valuations are provided by
the mean section operators, which were first introduced by P. Goodey and W. Weil in
1992. For 𝑘 ∈ {0, . . . , 𝑛}, the 𝑘-th mean section operator 𝑀̃𝑘 maps a convex body to its
𝑘-th mean section body, which is an (infinitesimal) Minkowski sum of its sections with
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𝑘-dimensional flats. In 2014, P. Goodey and W. Weil gave an integral representation of the
support function of 𝑀̃𝑘(𝐾) in terms of the (𝑛− 𝑘 + 1)-th area measure of 𝐾 that involve
the so-called Berg functions. These functions were originally introduced in the context
of Christoffel’s problem, which concerns the characterization of the first area measures of
convex bodies. Said integral representation ultimately implies that mean sections operators

are generally not of class MVal
SO(𝑛)
𝑗,𝑖−1 if 𝑖 > 𝑗+1. Therefore the question whether (2) holds

if 𝑖 > 𝑗 + 1 and we put a mean section operator for Φ𝑗 remains open.
In Chapter 1 and Chapter 2, we summarize the standard theory on convex geometry

and integral geometry, which we will later use repeatedly in our arguments. In Chapter 3
we introduce mean section operators and expound P. Goodey and W. Weil’s proof for
the integral representation mentioned before. In Chapter 4, we give an exposition of the
research done on Brunn-Minkowski inequalities for Minkowski valuations including the
proof for (2). In Chapter 5, we explain why (2) is not known for mean section operators
and give a brief outlook on how this open problem could perhaps be tackled.
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Conventions and Notation

In this thesis, we mainly follow the conventions and notations of [21].
In order to avoid ambiguity on whether zero is a natural number, we exclusively use

the notations
ℕ0 := {0, 1, 2, . . .} and ℕ+ := {1, 2, 3, . . .}.

We shall work in 𝑛-dimensional real Euclidean vector space ℝ𝑛 with origin 𝑜, inner
product 𝑥 · 𝑦 and induced norm ‖·‖. Furthermore, we fix the notation 𝐴⊥ := {𝑥 ∈ ℝ𝑛 |
∀𝑦 ∈ 𝐴 : 𝑥 · 𝑦 = 0} for subsets 𝐴 ⊆ ℝ𝑛.

In the entire thesis, we assume 𝑛 ≥ 2.
We denote by 𝕊 ⊆ ℝ𝑛 the unit sphere in ℝ𝑛 and by 𝐵 ⊆ ℝ𝑛 the closed unit ball in ℝ𝑛,

that is
𝕊 := {𝑥 ∈ ℝ𝑛 : ‖𝑥‖ = 1} and 𝐵 := {𝑥 ∈ ℝ𝑛 : ‖𝑥‖ ≤ 1}

For a linear subspace 𝐸 ⊆ ℝ𝑛, we denote by 𝕊(𝐸) the unit sphere of 𝐸.
For 𝑥 ∈ ℝ𝑛 and a linear subspace 𝐸 ⊆ ℝ𝑛, we denote the orthogonal projection of 𝑥 onto

𝐸 by 𝑥|𝐸. For a linear subspace 𝐸 ⊆ ℝ𝑛, and 𝑢 ∈ 𝕊∖𝐸⊥ we define pr𝐸𝑢 := ‖𝑢|𝐸‖−1𝑢|𝐸.
We denote by co(𝐴), aff(𝐴), and lin(𝐴) the convex, affine, and linear hull of a sbuset

𝐴 ⊆ ℝ𝑛, respectively.
Moreover, we fix the notations

𝜔𝑛 := 𝜆𝕊(𝕊) =
𝜋𝑛/2

Γ
(︀
𝑛+2
2

)︀ and 𝜅𝑛 := 𝜆𝑛(𝐵) =
2𝜋𝑛/2

Γ
(︀
𝑛
2

)︀ ,
where 𝜆𝑛 denotes the 𝑛-dimensional Lebesgue measure, 𝜆𝕊 denotes the spherical Lebesgue
measure (which is precisely the (𝑛−1)-dimensional Hausdorff measure on 𝕊) and Γ denotes
the Gamma function. Furthermore, we define the flag coefficient as[︂

𝑛

𝑗

]︂
:=

(︂
𝑛

𝑗

)︂
𝜅𝑛

𝜅𝑗𝜅𝑛−𝑗

for 𝑗 ∈ {0, . . . , 𝑛}.
Throughout this thesis, 𝑒 ∈ 𝕊 will be an arbitrary but fixed point in 𝕊.
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When working with symmetric functions of multiple arguments, we use the notation

𝐾 [𝑗] = 𝐾, . . . ,𝐾⏟  ⏞  
𝑗 times

to indicate that 𝑗 of the arguments that we plug in shall be 𝐾.
For a subset 𝐴 ⊆ ℝ𝑛, we denote by 1𝐴 the indicator function of 𝐴, that is 1𝐴(𝑥) = 1

if 𝑥 ∈ 𝐴 and 1𝐴(𝑥) = 0 if 𝑥 ∈ ℝ𝑛∖𝐴.
When working with topological vector spaces, we will only consider Hausdorff spaces

over ℝ and we will always consider the topology of a certain topological vector space as
fixed. If X is a topological vector space, we denote its topological dual space by X*. We
denote the canonical evaluation map by

⟨·, ·⟩ : X×X* → ℝ : ⟨𝑥, 𝑥*⟩ := 𝑥*(𝑥).

Later on, we will expand this notation to objects that we chose to identify with elements
of X*. If 𝑇 : X → Y is a continuous linear operator between two topological vector spaces
X and Y, we denote its adjoint operator by

𝑇 * : Y* → X* : ⟨𝑥, 𝑇 *𝑦*⟩ := ⟨𝑇𝑥, 𝑦*⟩
If X = Y, the linear space X can be naturally identified with a subspace of X*, and
𝑇 : X → X is self-adjoint in the sense that ⟨𝑇𝑥1, 𝑥2⟩ = ⟨𝑥1, 𝑇𝑥2⟩ for all 𝑥1, 𝑥2 ∈ X, then
we write 𝑇 * = 𝑇 .

We denote by GL(𝑛) the group of bijective linear maps, by O(𝑛) the group of linear
isometries, by SO(𝑛) the group of proper rotations, and by E(𝑛) the group of rigid motions
in ℝ𝑛. We denote by SO(𝑛 − 1, 𝑒) the subgroup of rotations in SO(𝑛) that leave 𝑒 fixed.
We denote by G(𝑛, 𝑘) the Grassmannian of 𝑘-dimensional linear subspaces of ℝ𝑛 and
by A(𝑛, 𝑘) the affine Grassmannian of 𝑘-dimensional affine subspaces of ℝ𝑛. Moreover,
for 𝐸 ∈ G(𝑛, 𝑘) and 𝑗 ≤ 𝑘, we denote by G(𝐸, 𝑗) ∼= G(𝑘, 𝑗) the Grassmannian of 𝑗-
dimensional subspaces of 𝐸 and for 𝐸 ∈ A(𝑛, 𝑘) and 𝑗 ≤ 𝑘, we denote by A(𝐸, 𝑗) the
affine Grassmannian of 𝑗-dimensional affine subspaces of 𝐸.

The spaces G(𝑛, 𝑘) and A(𝑛, 𝑘) will be endowed with the usual topologies. G(𝑛, 𝑘) will
be equipped with a suitably normalized SO(𝑛) invariant Borel measure and A(𝑛, 𝑘) with
a suitably normalize E(𝑛) invariant Borel measure.

Since we fix the measures on 𝕊, G(𝑛, 𝑘), and A(𝑛, 𝑘), and we will mostly use them in
the context of integration (and not in the context of expressing the measure of a Borel
set), we will simply use the notations∫︁

𝕊
𝑓(𝑢) 𝑑𝑢,

∫︁
G(𝑛,𝑘)

𝑔(𝐸) 𝑑𝐸, and

∫︁
A(𝑛,𝑘)

ℎ(𝐸) 𝑑𝐸.

We denote the 𝑘-dimensional Hausdorff measure by ℋ𝑘.
The word “if” in a definition is to be understood as “if and only if”.
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Chapter 1

Analytic Preliminaries

In this chapter, we give an overview of the analytic notions and results from the standard
literature that will be employed in this thesis.

1.1 Homogeneous spaces

As a reference for this section, we cite [21].
If 𝑀 is a non-empty set and 𝐺 is a group, a (left) group action of 𝐺 on 𝑀 is a function

𝐺×𝑀 → 𝑀 : (𝑔, 𝑝) ↦→ 𝑔 · 𝑝

such that

• 𝑒 · 𝑝 = 𝑝 for all 𝑝 ∈ 𝑀 and

• 𝑔 · (ℎ · 𝑝) = (𝑔ℎ) · 𝑝 for all 𝑔, ℎ ∈ 𝐺 and 𝑝 ∈ 𝑀 .

If an action of a group 𝐺 on𝑀 is fixed, a mapping 𝑓 : 𝑀 → 𝑁 , where 𝑁 is a non-empty
set, is called 𝐺-invariant, if 𝑓(𝑔 · 𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝑀 and 𝑔 ∈ 𝐺. If actions of a group
𝐺 are fixed on 𝑀 and 𝑁 , a mapping 𝑓 : 𝑀 → 𝑁 is called 𝐺-equivariant or 𝐺-intertwining,
if 𝑓(𝑔 · 𝑥) = 𝑔 · 𝑓(𝑥) for all 𝑥 ∈ 𝑀 and 𝑔 ∈ 𝐺.

We say that 𝐺 acts transitively on 𝑀 if for every 𝑝, 𝑞 ∈ 𝑀 there exists some 𝑔 ∈ 𝐺
such that 𝑔 · 𝑝 = 𝑞.

A non-empty set 𝑀 equipped with a group action of 𝐺 is called a homogeneous space

for 𝐺, if 𝐺 acts transitively on 𝑀 . A topological space 𝑀 equipped with a group action
of 𝐺 is called a homogeneous space for 𝐺, if 𝐺 acts transitively on 𝑀 and the maps
𝑀 → 𝑀 : 𝑝 ↦→ 𝑔 · 𝑝 are continuous for all 𝑔 ∈ 𝐺.
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The Unit Sphere The unit sphere 𝕊, endowed with the usual group action of SO(𝑛), is
a homogeneous space for SO(𝑛). Note that the spherical Lebesgue measure 𝜆𝕊 is invariant
under the group action of SO(𝑛), that is 𝜆𝕊(𝜗𝐴) = 𝜆𝕊(𝐴) for every 𝜗 ∈ SO(𝑛) and for every
Borel set 𝐴 ⊆ 𝕊. Moreover, the measure 𝜆𝕊 is uniquely determined by its SO(𝑛)-invariance
and normalization.

The Grassmannian The usual group action of SO(𝑛) on G(𝑛, 𝑘) acts transitively on
G(𝑛, 𝑘). Now fix some 𝐸 ∈ G(𝑛, 𝑘) and consider the final topology on G(𝑛, 𝑘) induced by
the map

𝑓𝑛,𝑘 : SO(𝑛) → G(𝑛, 𝑘) : 𝜗 ↦→ 𝜗𝐸.

This topology is independent of the choice of 𝐸 and makes G(𝑛, 𝑘) a second countable
compact Hausdorff topological space. Equipped with this topology, G(𝑛, 𝑘) becomes a
homogeneous space for SO(𝑛).

Denote by 𝜆SO(𝑛) the Haar measure on SO(𝑛) with total mass 1. Then the image mea-
sure 𝜇𝑛

𝑘 := 𝑓𝑛,𝑘(𝜆SO(𝑛)) is a Borel measure on G(𝑛, 𝑘) with total mass 1 which is invariant
under the group action of SO(𝑛). Moreover, the measure 𝜇𝑛

𝑘 is uniquely determined by its
SO(𝑛)-invariance and normalization.

The Affine Grassmannian We proceed similarly with the affine Grassmannian A(𝑛, 𝑘).
The usual group action of E(𝑛) onA(𝑛, 𝑘) acts transitively onA(𝑛, 𝑘). Obviously, the group
E(𝑛) of rigid motions is isomorphic to SO(𝑛)×ℝ𝑛 (endowed with suitable operations) and
the left group action of E(𝑛) on A(𝑛, 𝑘) can be described as

(SO(𝑛)× ℝ𝑛)×A(𝑛, 𝑘) → A(𝑛, 𝑘) : ((𝜗, 𝑥), 𝐸) ↦→ 𝜗𝐸 + 𝑥.

Now fix some 𝐸 ∈ A(𝑛, 𝑘) and consider the final topology on A(𝑛, 𝑘) induced by the map

𝑔𝑛,𝑘 : SO(𝑛)× 𝐸
⊥ → A(𝑛, 𝑘) : (𝜗, 𝑥) ↦→ 𝜗(𝐸 + 𝑥).

This topology is independent of the choice of 𝐸 and makes A(𝑛, 𝑘) a second countable
locally compact Hausdorff topological space. Equipped with this topology, A(𝑛, 𝑘) becomes
a homogeneous space for E(𝑛).

The image measure 𝜈𝑛𝑘 := 𝑔𝑛,𝑘(𝜆SO(𝑛) ⊗ 𝜆𝑛) of the product measure is a Borel measure
on A(𝑛, 𝑘) that is invariant under the group action of E(𝑛). Moreover, the measure 𝜈𝑛𝑘 is
uniquely determined by its E(𝑛)-invariance and normalization.

1.2 Integral Formulas for the Unit Sphere

For 𝑘 ∈ {1, . . . , 𝑛}, 𝐸 ∈ G(𝑛, 𝑘), and an integrable function 𝑓 : 𝕊 → ℝ, we have∫︁
𝕊
𝑓(𝑢) 𝑑𝑢 =

∫︁
𝕊(𝐸)

∫︁
ℍ(𝐸,𝑢)

𝑓(𝑣)(𝑢 · 𝑣)𝑘−1 𝑑𝑣 𝑑𝑢,

2



where
ℍ(𝐸, 𝑢) := {𝑣 ∈ 𝕊∖𝐸⊥ | pr𝐸𝑣 = 𝑢}.

This integral formula is proven in [27, Lemma 2.1] using spherical coordinates. In the
special case where 𝑢0 ∈ 𝕊 and 𝐸 = 𝑢⊥0 ∈ G(𝑛, 𝑛 − 1), we obtain a formula for spherical
cylinder coordinates, namely∫︁

𝕊
𝑓(𝑢) 𝑑𝑢 =

∫︁ 1

−1

∫︁
𝕊(𝑢⊥

0 )
𝑓(𝑡𝑢0 +

√︀
1− 𝑡2𝑣) 𝑑𝑣 (1− 𝑡2)(𝑛−3)/2 𝑑𝑡

for every integrable function 𝑓 : 𝕊 → ℝ. Putting 𝑓 ≡ 1 yields∫︁ 1

−1
(1− 𝑡2)(𝑛−3)/2 =

𝜔𝑛

𝜔𝑛−1
. (1.1)

1.3 Integral Formulas for the Affine Grassmannian

As references for this section, we cite [12,18,22].
The measure 𝜈𝑛𝑘 is normalized so that

𝜈𝑛𝑘 ({𝐸 ∈ A(𝑛, 𝑘) | 𝐸 ∩𝐵 ̸= ∅}) = 𝜅𝑛−𝑘.

Moreover it is homogeneous of degree 𝑛 − 𝑘 in the sense that for a Borel subset 𝐴 ⊆
A(𝑛, 𝑘) and 𝜆 > 0, we have

𝜈𝑛𝑘 (𝜆𝐴) = 𝜆𝑛−𝑘𝜈𝑛𝑘 (𝐴).

Hence, integration by substitution yields∫︁
A(𝑛,𝑘)

𝑓(𝜆−1𝐸) 𝑑𝐸 = 𝜆𝑛−𝑘

∫︁
A(𝑛,𝑘)

𝑓(𝐸) 𝑑𝐸

for all 𝑓 ∈ C(A(𝑛, 𝑘)) and 𝜆 > 0.
If 𝑗 ≤ 𝑘, then ∫︁

A(𝑛,𝑘)

∫︁
𝐴(𝐹,𝑗)

𝑓(𝐸) 𝑑𝐸 𝑑𝐹 =

∫︁
A(𝑛,𝑗)

𝑓(𝐸) 𝑑𝐸 (1.2)

for all 𝑓 ∈ C(A(𝑛, 𝑗)). Due to the uniqueness of the measure 𝜈𝑛𝑘 , both sides of the equation
must be equal up to some multiplicative constant. The constant can be computed from
Crofton’s intersection formula (2.10) by putting 𝑓(𝐸) := V𝑗(𝐵 ∩ 𝐸).

If 𝐹 ∈ A(𝑛, 𝑗), then for almost all 𝐸 ∈ A(𝑛, 𝑘), we have 𝐸 ∩ 𝐹 ∈ A(𝑛, 𝑘 + 𝑗 − 𝑛). It
holds that ∫︁

𝐴(𝑛,𝑘)
𝑓(𝐸 ∩ 𝐹 ) 𝑑𝐸 =

[︀
𝑘

𝑘+𝑗−𝑛

]︀[︀
𝑛
𝑗

]︀ ∫︁
A(𝐹,𝑘+𝑗−𝑛)

𝑓(𝐸) 𝑑𝐸 (1.3)

3



for all 𝑓 ∈ C(A(𝑛, 𝑘 + 𝑗 − 𝑛)). Again, we immediately obtain equality up to some mul-
tiplicative constant which can be computed from Crofton’s intersection formula (2.9) by
putting 𝑓(𝐸) := V𝑘+𝑗−𝑛(𝐵 ∩ 𝐸).

If 𝑘 ≥ 1, then for almost all (𝐸1, . . . , 𝐸𝑘) ∈ A(𝑛, 𝑛 − 1)𝑘, we have 𝐸1 ∩ · · · ∩ 𝐸𝑘 ∈
A(𝑛, 𝑛− 𝑘). It holds that∫︁

A(𝑛,𝑛−1)
· · ·

∫︁
A(𝑛,𝑛−1)

𝑓(𝐸1 ∩ · · · ∩ 𝐸𝑘) 𝑑𝐸1 · · · 𝑑𝐸𝑘 =
𝑘!𝜅𝑘

[︀
𝑛
𝑘

]︀
2𝑘

[︀
𝑛
1

]︀𝑘 ∫︁
A(𝑛,𝑛−𝑘)

𝑓(𝐸) 𝑑𝐸 (1.4)

for all 𝑓 ∈ C(A(𝑛, 𝑛− 𝑘)). This formula follows from (1.3) by induction on 𝑘, where (1.2)
is needed in the induction step.

1.4 Group Representations

A representation of a group 𝐺 on a topological vector space X is a group homomorphism

𝜚 : 𝐺 → Aut(X),

where Aut(X) denotes the group of all automorphisms of X.
A representation 𝜚 of a group 𝐺 on a topological vector space X induces a group action

𝐺×X → X : (𝑔, 𝑥) ↦→ 𝜚(𝑔)𝑥

of 𝐺 on X.
A subrepresentation of a representation 𝜚 of a group 𝐺 on a topological vector space

X is a representation 𝜚|Y of 𝐺 on a closed subspace Y of X such that (𝜚|Y)(𝑔) = 𝜚(𝑔)|Y
for every 𝑔 ∈ 𝐺.

A representation 𝜚 : 𝐺 → Aut(X) is called irreducible, if it only has the trivial subrep-
resentations 0 and 𝜚. Otherwise, it is called reducible.

A homomorphism between two representations 𝜚 : 𝐺 → Aut(X) and 𝜋 : 𝐺 → Aut(Y)
is a linear map 𝑇 : X → Y such that 𝑇 ∘𝜚(𝑔) = 𝜋(𝑔)∘𝑇 for all 𝑔 ∈ 𝐺. If two representations
𝜚 and 𝜋 are fixed, a homomorphism is a 𝐺-equivariant continuous linear map 𝑇 : X → Y.

Example 1.1. Suppose that a compact Hausdorff space 𝑀 is a homogeneous space for a
group 𝐺, and denote by C(𝑀) the space of all continuous functions on 𝑀 , endowed with
the maximum norm. Then

𝜚 : 𝐺 → Aut(C(𝑀)) : (𝜚(𝑔)𝜑)(𝑝) := 𝜑(𝑔−1𝑝)

is a representation of 𝐺 on C(𝑀).
For instance, the usual group action of SO(𝑛) on the unit sphere 𝕊 induces a repre-

sentation of SO(𝑛) on C(𝕊) and L2(𝕊). Furthermore, the maps 𝑓 ↦→ 𝜗𝑓 are isometric
automorphisms on C(𝕊) and L2(𝕊), respectively.
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Zonal Vectors We fix a point 𝑒 ∈ 𝕊, and denote by SO(𝑛− 1, 𝑒) the subgroup of SO(𝑛)
fixing 𝑒, that is

SO(𝑛− 1, 𝑒) := {𝜗 ∈ SO(𝑛) | 𝜗𝑒 = 𝑒}.
Clearly, SO(𝑛−1, 𝑒) ∼= SO(𝑛−1). Given a representation 𝜚 of SO(𝑛) on a topological vector
space X, we call a vector 𝑥 ∈ X zonal if it is invariant under the action of SO(𝑛 − 1, 𝑒).
The zonal vectors form a closed subspace of X.

1.5 Spherical Harmonics

As references for this section, we cite [15,21].
For a function 𝑓 : 𝕊 → ℝ, we define its radial extension 𝑓 : ℝ𝑛∖{𝑜} → ℝ by

𝑓(𝑥) := 𝑓

(︂
1

‖𝑥‖𝑥
)︂
, 𝑥 ∈ ℝ𝑛∖{𝑜}.

The unit sphere 𝕊 ⊆ ℝ𝑛 is an (𝑛− 1)-dimensional smooth manifold. For 𝑘 ∈ ℕ0 ∪ {∞}
and a smooth atlas {(𝑈𝑖, 𝜙𝑖) : 𝑖 ∈ 𝐼} on 𝕊, we denote by C𝑘(𝕊) the space of all functions
𝑓 : 𝕊 → ℝ, for which 𝑓 ∘ 𝜙𝑖 ∈ C𝑘(𝑈𝑖) for all 𝑖 ∈ 𝐼. It is easy to see that this definition is
independent of the choice of the smooth atlas.

Since the radial projection ℝ𝑛∖{𝑜} → 𝕊 : 𝑥 ↦→ 1
‖𝑥‖𝑥 is a smooth map, it follows that

𝑓 ∈ C𝑘(𝕊) implies 𝑓 ∈ C𝑘(ℝ𝑛−1). This allows us to make the following definition:
The Beltrami operator or Laplace-Beltrami operator is defined by

Δ∘𝑓 := (Δ𝑓)|𝕊, 𝑓 ∈ C2(𝕊),

where Δ denotes the usual Laplace operator on ℝ𝑛.
The Beltrami operator is self-adjoint in the sense that

⟨Δ∘𝑓, 𝑔⟩ = ⟨𝑓,Δ∘𝑔⟩
for all 𝑓, 𝑔 ∈ C2(𝕊).

A spherical harmonic (of degree 𝑘) is the restriction of a harmonic polynomial in 𝑛
variables (of degree 𝑘) to 𝕊. We denote by ℋ𝑛 the space of all spherical harmonics and by
ℋ𝑛

𝑘 the space of all spherical harmonic of degree 𝑘.
Due to the maximum principle, the map 𝑓 ↦→ 𝑓 |𝕊 is injective on harmonic functions.

Hence the degree or order of a spherical harmonic is well-defined and ℋ𝑛
𝑘 ∩ ℋ𝑛

ℓ = {𝑜}
whenever 𝑘 ̸= ℓ. In particular,

ℋ𝑛 =
⨁︁
𝑘∈ℕ0

ℋ𝑛
𝑘

in the sense of a direct sum of vector spaces.
Moreover, due to the SO(𝑛)-equivariance of the Laplace operator, each space ℋ𝑛

𝑘 is
SO(𝑛) invariant. In the language of group representations, this means that each space ℋ𝑛

𝑘

admits a subrepresentation of SO(𝑛).
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Theorem 1.2. The dimension of the spaces ℋ𝑛
𝑘 is given by

𝑁(𝑛, 𝑘) := dimℋ𝑛
𝑘 =

(︂
𝑛+ 𝑘 − 1

𝑘

)︂
−

(︂
𝑛+ 𝑘 − 3

𝑘 − 2

)︂
.

We denote by L2(𝕊) the Hilbert space of all square integrable Lebesgue functions on
the measure space 𝕊, endowed with the usual inner product ⟨·, ·⟩ and induced norm ‖·‖2.
Theorem 1.3. The spaces ℋ𝑛

𝑘 are pairwise orthogonal and ℋ𝑛 is dense in L2(𝕊). In

particular,

L2(𝕊) =
⨁︁
𝑘∈ℕ0

ℋ𝑛
𝑘

in the sense of a direct sum of Hilbert spaces.

Theorem 1.4. For 𝑘 ∈ ℕ0, the only SO(𝑛) invariant subspaces of ℋ𝑛
𝑘 are {0} and ℋ𝑛

𝑘 .

In the language of group representations, that means that the representation of SO(𝑛)
on ℋ𝑛

𝑘 is irreducible.
A standard sequence of (𝑛-dimensional) spherical harmonics is a union of orthogonal

bases of the spaces ℋ𝑛
𝑘 , 𝑘 ∈ ℕ0. Due to the previous theorem, every standard sequence of

spherical harmonics is an orthogonal basis of L2(𝕊).
If ℎ0, ℎ1, . . . is a standard sequence of 𝑛-dimensional spherical harmonics and 𝑓 ∈ L2(𝕊),

then the Fourier series of 𝑓 is given by
∑︀∞

𝑗=0 𝑐𝑗ℎ𝑗 , where 𝑐𝑗 = ⟨𝑓, ℎ𝑗⟩/‖ℎ𝑗‖2. To indicate
that this is the Fourier series of 𝑓 , we write

𝑓 ∼
∞∑︁
𝑗=0

𝑐𝑗ℎ𝑗 ,

and we call
∑︀∞

𝑗=0 𝑐𝑗ℎ𝑗 a harmonic expansion of 𝑓 .
From now on, we denote by

𝜋𝑘 : L2(𝕊) → ℋ𝑛
𝑘

the orthogonal projection onto ℋ𝑛
𝑘 .

If 𝑓 ∈ L2(𝕊) and 𝑓𝑘 = 𝜋𝑘𝑓 , we call
∑︀∞

𝑘=0 𝑓𝑘 the condensed harmonic expansion of 𝑓
and we write again

𝑓 ∼
∞∑︁
𝑘=0

𝑓𝑘.

Obviously, the condensed harmonic expansion of 𝑓 can be constructed from any harmonic
expansion of 𝑓 by grouping terms of the same order.
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Theorem 1.5. If ℎ𝑘 ∈ ℋ𝑛
𝑘 , then

Δ∘ℎ𝑘 = −𝑘(𝑛+ 𝑘 − 2)ℎ𝑘.

Furthermore, if 𝑓 ∈ C2(𝕊) has the condensed harmonic expansion

𝑓 ∼
∞∑︁
𝑘=0

𝑓𝑘,

then Δ∘𝑓 ∈ C(𝕊) has the harmonic expansion

𝑓 ∼ −
∞∑︁
𝑘=0

𝑘(𝑛+ 𝑘 − 2)𝑓𝑘.

Theorem 1.6. For every 𝑛 ≥ 2 and 𝑘 ≥ 0, there exists exactly one polynomial 𝑃𝑛
𝑘 (in one

variable) such that for every orthogonal basis (ℎ1, . . . , ℎ𝑁(𝑛,𝑘)) of ℋ𝑛
𝑘 ,

𝑁(𝑛,𝑘)∑︁
𝑖=1

ℎ𝑖(𝑢)ℎ𝑖(𝑣) =
𝑁(𝑛, 𝑘)

𝜔𝑛
𝑃𝑛
𝑘 (𝑢 · 𝑣), 𝑢, 𝑣 ∈ 𝕊.

Furthermore, deg𝑃𝑛
𝑘 = 𝑘 and 𝑃𝑛

𝑘 (𝑒 · .) is, up to a multiplicative constant, the unique zonal

harmonic in ℋ𝑛
𝑘 .

The polyomial 𝑃𝑛
𝑘 is called the Legendre polynomial of dimension 𝑛 and degree 𝑘.

Due to Theorem 1.6, for every 𝑓 ∈ C(𝕊),

(𝜋𝑘𝑓)(𝑢) =

𝑁(𝑛,𝑘)∑︁
𝑖=1

⟨𝑓, ℎ𝑖⟩ℎ𝑖(𝑢) = 𝑁(𝑛, 𝑘)

𝜔𝑛

∫︁
𝕊
𝑃𝑛
𝑘 (𝑢 · 𝑣)𝑓(𝑣) 𝑑𝑣, 𝑢 ∈ 𝕊. (1.5)

A linear map 𝑇 : ℋ𝑛 → ℋ𝑛 is called a multiplier transform if it acts as a multiple of
the identity on each space ℋ𝑛

𝑘 . Its eigenvalues on ℋ𝑛
𝑘 are called multipliers and denoted

by 𝜆𝑛
𝑘 [𝑇 ]. Later on, we will extend this notion to continuous linear operators on certain

topological vector spaces.
Multiplier transforms often arise naturally in convex geometry, and they are very pleas-

ant to work with. For instance, in order to show that a multiplier transform 𝑇 : ℋ𝑛 → ℋ𝑛

is injective, it suffices to show that of all of its multipliers are non-zero. A central result on
the existence of multiplier transforms is the Funk-Hecke theorem. It states that for every
𝐹 ∈ C[−1, 1], the integral transform

𝑇 : ℋ𝑛 → ℋ𝑛 : (𝑇ℎ)(𝑢) :=

∫︁
𝕊
𝐹 (𝑢 · 𝑣)ℎ(𝑣) 𝑑𝑣

is a multiplier transform and it gives an explicit formula for the multipliers.
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Theorem 1.7 (Funk-Hecke). If 𝐹 ∈ C[−1, 1] and ℎ𝑘 ∈ ℋ𝑛
𝑘 , then∫︁

𝕊
𝐹 (𝑢 · 𝑣)ℎ𝑘(𝑣) 𝑑𝑣 = 𝑎𝑛𝑘 [𝐹 ]ℎ𝑘(𝑢),

where

𝑎𝑛𝑘 [𝐹 ] := 𝜔𝑛−1

∫︁ 1

−1
𝐹 (𝑡)𝑃𝑛

𝑘 (𝑡)(1− 𝑡2)(𝑛−3)/2 𝑑𝑡.

1.6 Function Spaces on the Unit Sphere

For the following two sections, we give [15,19, 21] as general references.

Duality If X is a topological vector space, the weak* topology on X is defined as the
initial topology on X* induced by the maps ⟨𝑥, ·⟩ : X* → ℝ, 𝑥 ∈ 𝑋. Endowed with the
weak* topology, X* becomes a locally convex space and its topological dual space (X*)*

can be canonically identified with X.
Whenever 𝑇 : X → Y is a continuous linear operator between two topological vector

spaces and we endow their topological dual spaces X* and Y* each with the respective
weak* topology, then the adjoint operator 𝑇 * : Y* → X* is again continuous.

The space L2(𝕊) We have already introduced the Hilbert space L2(𝕊) with the inner
product ⟨·, ·⟩ and the induced norm ‖·‖2.
Theorem 1.8 (Riesz). The map

L2(𝕊) → L2(𝕊)* : 𝑔 ↦→ ⟨·, 𝑔⟩
is an isometric isomorphism between Banach spaces.

The Riesz representation theorem yields a natural identification of L2(𝕊) with its topo-
logical dual space that makes our double-use of the notation ⟨·, ·⟩ both for the inner product
and for the canonical evaluation map consistent.

The spaces C(𝕊) and M(𝕊) We denote by C(𝕊) the space of all continuous real valued
functions on 𝕊. Endowed with the maximum norm ‖·‖∞, the space C(𝕊) becomes a Banach
space. Furthermore, we denote by M(𝕊) the space of all finite signed Borel measures on
𝕊. Endowed with the total variation norm, M(𝕊) also becomes a Banach space.

Theorem 1.9 (Riesz-Markov-Kakutani). The map

M(𝕊) → C(𝕊)* : 𝜇 ↦→
∫︁
𝕊
· 𝑑𝜇

is an isometric isomorphism of Banach spaces.
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The Riesz-Markov-Kakutani representation theorem yields a natural identification of
C(𝕊)* with M(𝕊) that motivates the notation

⟨·, ·⟩ : C(𝕊)×M(𝕊) → ℝ : ⟨𝑓, 𝜇⟩ :=
∫︁
𝕊
𝑓 𝑑𝜇.

From now on, we endow C(𝕊) with the topology induced by the maximum norm and
we endow M(𝕊) with the weak* topology.

It follows from (1.5) that the projection 𝜋𝑘 : C(𝕊) → C(𝕊) is a continuous linear
operator. Since 𝜋𝑘 is self-adjoint in the sense that ⟨𝜋𝑘𝑓, 𝑔⟩ = ⟨𝑓, 𝜋𝑘𝑔⟩ for all 𝑓, 𝑔 ∈ C(𝕊),
projection operator 𝜋𝑘 extends to a continuous linear operator 𝜋𝑘 : M(𝕊) → M(𝕊) :
⟨𝑓, 𝜋𝑘𝜇⟩ := ⟨𝜋𝑘𝑓, 𝜇⟩.

One can easily see that for all 𝜇 ∈ M(𝕊),

(𝜋𝑘𝜇)(𝑢) =
𝑁(𝑛, 𝑘)

𝜔𝑛

∫︁
𝕊
𝑃𝑛
𝑘 (𝑢 · 𝑣) 𝑑𝜇(𝑣), 𝑢 ∈ 𝕊.

A representation of SO(𝑛) on C(𝕊) is given by means of (𝜗𝑓)(𝑢) := 𝑓(𝜗−1𝑢) for 𝑓 ∈
C(𝕊). We obtain a representation of SO(𝑛) on M(𝕊) by defining ⟨𝑓, 𝜗𝜇⟩ := ⟨𝜗−1𝑓, 𝜇⟩ for
𝑓 ∈ C(𝕊), 𝜇 ∈ M(𝕊), and 𝜗 ∈ SO(𝑛). Clearly, 𝜗𝜇 is the image measure 𝜗(𝜇).

The spaces C∞(𝕊) and C−∞(𝕊) We denote by C∞(𝕊) the space of all smooth functions
on 𝕊.

A sequence (𝑎𝑘)𝑘∈ℕ0 of real numbers is called rapidly decreasing if sup{𝑘𝑚 |𝑎𝑘| : 𝑘 ∈
ℕ0} < ∞ for every 𝑚 ∈ ℕ0.

Lemma 1.10 ([19, Theorem 2.45]). If 𝑓 ∈ C∞(𝕊), then the sequence (‖𝜋𝑘𝑓‖∞)𝑘∈ℕ0 is

rapidly decreasing.

Conversely, if 𝑓𝑘 ∈ ℋ𝑛
𝑘 , 𝑘 ∈ ℕ0, is a sequence of spherical harmonics such that

(‖𝑓𝑘‖∞)𝑘∈ℕ0 is rapidly decreasing, then there is a unique function 𝑓 ∈ C∞(𝕊) such that

𝜋𝑘𝑓 = 𝑓𝑘 for 𝑘 ∈ ℕ0.

If 𝑓 ∈ C∞(𝕊) has the condensed harmonic expansion

𝑓 ∼
∞∑︁
𝑘=0

𝑓𝑘,

we define

(−Δ∘)
𝑚
2 𝑓 :=

∞∑︁
𝑘=0

(𝑘(𝑛+ 𝑘 − 2))
𝑚
2 𝑓𝑘

for 𝑚 ∈ ℕ0. Due to the previous lemma, (−Δ∘)
𝑚
2 maps C∞(𝕊) functions to C∞(𝕊)

functions.
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For every 𝑚 ∈ ℕ0, define

𝑝𝑚 : C∞(𝕊) → ℝ : 𝑝𝑚(𝑓) := ‖(−Δ∘)
𝑚
2 𝑓‖∞.

Then 𝔭 := (𝑝𝑚)𝑚∈ℕ0 is a separating family of seminorms on C∞(𝕊). We endow C∞(𝕊)
with the locally convex topology induced by this family of seminorms. This topology is
also induced by the metric 𝑑𝔭 defined by

𝑑𝔭(𝑓, 𝑔) :=

∞∑︁
𝑚=0

2−𝑚 𝑝𝑚(𝑓 − 𝑔)

1 + 𝑝𝑚(𝑓 − 𝑔)
, 𝑓, 𝑔 ∈ C∞(𝕊).

In particular, C∞(𝕊) is a metrizable topological space and a sequence (𝑓𝑖)𝑖∈ℕ converges to
𝑓 in C∞(𝕊) if and only if lim𝑖→∞ 𝑝𝑚(𝑓𝑖 − 𝑓) = 0 for all 𝑚 ∈ ℕ0.

A topological vector space is a Fréchet space if it is complete and if its topology may
be induced by countable separating family of seminorms. The above characterization of
convergence in C∞(𝕊) shows that C∞(𝕊) is a complete topological space. Hence C∞(𝕊) is
a Fréchet space.

Furthermore, if 𝑓 ∈ C∞(𝕊), then any harmonic expansion of 𝑓 as well as the condensed
harmonic expansion of 𝑓 converge to 𝑓 in C∞(𝕊). Consequently, ℋ𝑛 is dense in C∞(𝕊);
in particular, the space C∞(𝕊) is separable.

Note also that Δ∘ : C∞(𝕊) → C∞(𝕊) is a continuous linear map with respect to the
Fréchet topology.

A distribution or generalized function on 𝕊 is a continuous linear functional on C∞(𝕊).
We denote the space of distributions on 𝕊 by C−∞(𝕊) := (C∞(𝕊))* and endow it with the
weak* topology.

Since C∞(𝕊) is separable, the space C−∞(𝕊) is metrizable.
From the fact that 𝜋𝑘 : C(𝕊) → C(𝕊) is a continuous linear operator one can easily

deduce that 𝜋𝑘 : C∞(𝕊) → C∞(𝕊) is also a continuous linear operator. Like we did before,
𝜋𝑘 extends to a continuous linear operator 𝜋𝑘 : C−∞(𝕊) → C−∞(𝕊) : ⟨𝑓, 𝜋𝑘𝜂⟩ := ⟨𝜋𝑘𝑓, 𝜂⟩.

A sequence (𝑎𝑘)𝑘∈ℕ0 of real numbers is slowly increasing if sup{𝑘−𝑚 |𝑎𝑘| : 𝑘 ∈ ℕ+} < ∞
for some 𝑚 ∈ ℕ0.

Lemma 1.11 ([19, Theorem 2.50]). If 𝜂 ∈ C−∞(𝕊), then 𝜋𝑘𝜂 ∈ ℋ𝑛
𝑘 for 𝑘 ∈ ℕ0 and the

sequence (‖𝜋𝑘𝜂‖∞)𝑘∈ℕ0 is slowly increasing.

Conversely, if 𝑓𝑘 ∈ ℋ𝑛
𝑘 , 𝑘 ∈ ℕ0, is a sequence of spherical harmonics such that

(‖𝑓𝑘‖∞)𝑘∈ℕ0 is slowly increasing, then there is a unique distribution 𝜂 ∈ C−∞(𝕊) such

that 𝜋𝑘𝜂 = ℎ𝑘 for 𝑘 ∈ ℕ0. Moreover, the series
∑︀∞

𝑘=0 𝑓𝑘 converges to 𝜂 in C−∞(𝕊).

As a consequence of this lemma, ℋ𝑛 is dense in C−∞(𝕊), so C−∞(𝕊) is separable.
Like before, a representation of SO(𝑛) on C∞(𝕊) is given by means of (𝜗𝑓)(𝑢) :=

𝑓(𝜗−1𝑢). We obtain a representation of SO(𝑛) on C−∞(𝕊) by defining ⟨𝑓, 𝜗𝜂⟩ := ⟨𝜗−1𝑓, 𝜂⟩.
for 𝑓 ∈ C∞(𝕊), 𝜂 ∈ C−∞(𝕊), and 𝜗 ∈ SO(𝑛).
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Natural Inclusions Of all the function spaces on 𝕊 introduced so far, some can be
identified with subspaces of others in a natural way. Making these natural identifications,
one obtains the following chain of inclusions:

C∞(𝕊) ⊆ C(𝕊) ⊆ L2(𝕊) ⊆ M(𝕊) ⊆ C−∞(𝕊). (1.6)

Moreover, all of these inclusions are to be understood as continuous maps (but not em-
beddings) between topological vector spaces.

It is obvious that the first three inclusions in (1.6) are valid and continuous. The
validity and continuity of the fourth inclusion follows from the validity and continuity of
the first one by duality.

Spaces of centered and zonal functions We say that a (generalized) function 𝑓 on
𝕊 is centered if 𝜋1𝑓 = 0. If X(𝕊) is one of the function spaces in (1.6), we define

X𝑜(𝕊) := {𝑓 ∈ X(𝕊) | 𝜋1𝑓 = 0}
as the space of centered X(𝕊) functions. Since 𝜋1 : X(𝕊) → X(𝕊) is a continuous linear
operator, X𝑜(𝕊) is a closed subspace of X(𝕊) (in the respective topology of X(𝕊)).

Similarly, we define

X(𝕊, 𝑒) := {𝑓 ∈ X(𝕊) | ∀𝜗 ∈ SO(𝑛− 1, 𝑒) : 𝜗𝑓 = 𝑓}
as the space of all zonal X(𝕊) functions. Since X(𝕊) → X(𝕊) : 𝑓 ↦→ 𝜗𝑓 is a continuous
linear operator, X(𝕊, 𝑒) is a closed subspace of X(𝕊).

Moreover, we define
X𝑜(𝕊, 𝑒) := X𝑜(𝕊) ∩X(𝕊, 𝑒)

as the space of all centered zonalX(𝕊) functions. As the intersection of two closed subspaces
of X(𝕊), this is again a closed subspace of X(𝕊).

For instance, L2
𝑜(𝕊) = (ℋ𝑛

1 )
⊥ is the Hilbert space of all centered L2(𝕊) functions on 𝕊,

the space M(𝕊, 𝑒) is the topological vector space of all zonal signed Borel measures on 𝕊,
and C∞

𝑜 (𝕊, 𝑒) is the Fréchet space of all centered zonal smooth functions on 𝕊.

1.7 Zonal Functions and Functions on [−1, 1]

Obviously, zonal functions on 𝕊 naturally correspond to functions on the interval [−1, 1].
We define the zonal lifting of a function 𝐹 : [−1, 1] → ℝ as the function

𝐹 : 𝕊 → ℝ : 𝐹 (𝑢) := 𝐹 (𝑒 · 𝑢).
Obviously, the zonal lifting operator

·̆ : C[−1, 1] → C(𝕊, 𝑒) : 𝐹 ↦→ 𝐹

11



is an isometric isomorphism of Banach spaces that extends to an isomorphism

·̆ : M[−1, 1] → M(𝕊, 𝑒) : 𝜇 ↦→ 𝜇̆.

For 𝐹 ∈ C[−1, 1] and 𝜇 ∈ M[−1, 1], we have

⟨𝐹 , 𝐺̆⟩ = 𝜔𝑛−1

∫︁ 1

−1
𝐹 (𝑡)(1− 𝑡2)(𝑛−3)/2 𝑑𝜇(𝑡).

We define L2[−1, 1]𝑛 as the Hilbert space of all Lebesgue functions on [−1, 1] that are
square-integrable with respect to the measure (1 − 𝑡2)(𝑛−3)/2𝑑𝑡 and we denote its inner
product by [·, ·]𝑛, that is

[𝐹,𝐺]𝑛 =

∫︁ 1

−1
𝐹 (𝑡)𝐺(𝑡)(1− 𝑡2)(𝑛−3)/2 𝑑𝑡.

The zonal lifting operator extends to an isomorphism

·̆ : L2[−1, 1]𝑛 → L2(𝕊, 𝑒) : 𝐹 ↦→ 𝐹

of Hilbert spaces, and
⟨𝐹 , 𝐺̆⟩ = 𝜔𝑛−1[𝐹,𝐺]𝑛

for 𝐹,𝐺 ∈ L2[−1, 1]𝑛.
The Legendre polynomials 𝑃𝑛

𝑘 , 𝑘 ∈ ℕ0, form an orthogonal basis of L2[−1, 1]𝑛 and

[𝑃𝑛
𝑘 , 𝑃

𝑛
𝑘 ]𝑛 =

𝜔𝑛

𝜔𝑛−1𝑁(𝑛, 𝑘)
.

For 𝜇 ∈ M[−1, 1], we fix the notation

𝑎𝑛𝑘 [𝜇] := 𝜔𝑛−1

∫︁ 1

−1
𝑃𝑛
𝑘 (𝑡)(1− 𝑡2)(𝑛−3)/2 𝑑𝜇(𝑡).

Moreover, we use the notation

𝜇 ∼
∞∑︁
𝑘=0

𝑐𝑘𝑃
𝑛
𝑘

to indicate that 𝑐𝑘 = 𝜔−1
𝑛 𝑁(𝑛, 𝑘)𝑎𝑛𝑘 [𝜇] for all 𝑘 ∈ ℕ0.
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1.8 Spherical Convolution

For this section, we give [14,24] as references.
The spherical convolution of a continuous function 𝑓 ∈ C(𝕊) with a zonal signed mea-

sure 𝜇 ∈ M(𝕊, 𝑒) is defined as

(𝑓 * 𝜇)(𝜗𝑒) := ⟨𝑓, 𝜗𝜇⟩ = ⟨𝜗−1𝑓, 𝜇⟩ =
∫︁
𝕊
𝑓(𝜗𝑢) 𝑑𝜇(𝑢), 𝜗 ∈ SO(𝑛).

The spherical convolution is a continuous function, that is 𝑓 * 𝜇 ∈ C(𝕊). For every 𝜗 ∈
SO(𝑛), we have

(𝜗𝑓) * 𝜇 = 𝜗(𝑓 * 𝜇).
Moreover,

‖𝑓 * 𝜇‖∞ ≤ ‖𝑓‖∞‖𝜇‖TV,

where ‖·‖TV denotes the total variation norm. This shows in particular that the convolution
operator

𝑇𝜇 : C(𝕊) → C(𝕊) : 𝑓 ↦→ 𝑓 * 𝜇
is a SO(𝑛) intertwining continuous linear operator on C(𝕊). This operator is also self-
adjoint in the sense that

⟨𝑓 * 𝜇, 𝑔⟩ = ⟨𝑓, 𝑔 * 𝜇⟩ (1.7)

for all 𝑓, 𝑔 ∈ C(𝕊) and 𝜇 ∈ M(𝕊, 𝑒). Hence, 𝑇𝜇 extends to an SO(𝑛) intertwining continuous
linear operator

𝑇𝜇 : M(𝕊) → M(𝕊) : 𝜈 ↦→ 𝜈 * 𝜇,
⟨𝑓, 𝜈 * 𝜇⟩ := ⟨𝑓 * 𝜇, 𝜈⟩, 𝑓 ∈ C(𝕊).

Consequently, the spherical convolution of a signed measure 𝜇 ∈ M(𝕊) and a zonal contin-
uous function 𝑓 ∈ C(𝕊, 𝑒) ⊆ M(𝕊, 𝑒) is given by

(𝜇 * 𝑓)(𝜗𝑒) = ⟨𝜗𝑓, 𝜇⟩ = ⟨𝑓, 𝜗−1𝜇⟩ =
∫︁
𝕊
𝑓(𝜗−1𝑢) 𝑑𝜇(𝑢).

In particular, 𝜇 * 𝑓 ∈ C(𝕊) and ‖𝜇 * 𝑓‖∞ ≤ ‖𝜇‖TV‖𝑓‖∞ like before. If we write 𝑓 = 𝐹 , we
obtain the representation

(𝜇 * 𝐹 )(𝑢) =

∫︁
𝕊
𝐹 (𝑢 · 𝑣) 𝑑𝜇(𝑣), 𝑢 ∈ 𝕊. (1.8)

With the representation formula (1.8) and an argument of density and continuity, one
can show that any two convolution operators 𝑇𝜇 and 𝑇𝜈 commute. More precisely,

(𝜌 * 𝜇) * 𝜈 = (𝜌 * 𝜈) * 𝜇 (1.9)
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for all 𝜌 ∈ M(𝕊) and 𝜇, 𝜈 ∈ M(𝕊, 𝑒). Note also that the Dirac measure 𝛿𝑒 is the right
neutral element, that is

𝜇 * 𝛿𝑒 = 𝜇

for all 𝜇 ∈ M(𝕊).
Moreover, if 𝜇, 𝜈 ∈ M(𝕊, 𝑒), then

𝜇 * 𝜈 = 𝜈 * 𝜇 ∈ M(𝕊, 𝑒).

Again, this can easily be shown for continuous functions. Consequently, 𝛿𝑒 acts as a left
neutral element on zonal measures, that is

𝛿𝑒 * 𝜇 = 𝜇

for all 𝜇 ∈ M(𝕊, 𝑒).
The representation formula (1.8) lets us express the orthogonal projection 𝜋𝑘 : M(𝕊) →

ℋ𝑛
𝑘 as a convolution operator:

𝜋𝑘𝜇 =
𝑁(𝑛, 𝑘)

𝜔𝑛
𝜇 * 𝑃𝑛

𝑘 .

Due to (1.9), it follows that
(𝜋𝑘𝜌) * 𝜇 = 𝜋𝑘(𝜌 * 𝜇)

for all 𝑘 ∈ ℕ0, 𝜌 ∈ M(𝕊), and 𝜇 ∈ M(𝕊, 𝑒).
This observation leads to the following addition to the Funk-Hecke theorem (for which

we will give a proof later on):

Theorem 1.12 ([23, Theorem 5.1]). If 𝑇 : C(𝕊) → C(𝕊) is an SO(𝑛)-equivariant bounded
linear operator, then 𝑇 = . * 𝜇 for some 𝜇 ∈ M(𝕊, 𝑒), and 𝑇 is a multiplier transform.

Obviously, the concept of spherical convolutions can be extended to smooth functions
and distributions. However, the definitions made above will suffice for our purposes because
almost all distributions we will be working with that will appear on the right hand side of
convolutions can also be looked at as finite signed measures.
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Chapter 2

Geometric Preliminaries

For this whole chapter, we give [21] as a general reference.

2.1 Convex Bodies

A convex body is a non-empty convex compact subset of ℝ𝑛. The space of convex bodies
will be denoted by 𝒦𝑛. For 𝑗 ∈ {0, . . . , 𝑛} and a 𝑗-dimensional affine subspace 𝐸 ∼= ℝ𝑗 of
ℝ𝑛, we denote by 𝒦𝑗(𝐸) ⊆ 𝒦𝑛 the space of convex bodies in 𝐸.

The dimension of a convex body is defined as the dimension of its affine hull aff𝐾. An
𝑛-dimensional convex body 𝐾 ∈ 𝒦𝑛 is also called full dimensional.

The relative interior int𝐾 ⊆ ℝ𝑛 of a convex body 𝐾 ∈ 𝒦𝑛 is defined as the interior of
𝐾 relative to its affine hull aff𝐾 and is always non-empty. The relative boundary bd𝐾 of
a convex body 𝐾 ∈ 𝒦𝑛 is defined as the boundary of 𝐾 relative to its affine hull aff𝐾 and
is always non-empty, except if dim𝐾 = 0.

A full dimensional convex body is strictly convex, if (1 − 𝜆)𝑥 + 𝜆𝑦 ∈ int𝐾 for every
𝑥, 𝑦 ∈ 𝐾 and 𝜆 ∈ (0, 1).

A face of a convex body 𝐾 ∈ 𝒦𝑛 is a subset 𝐹 ⊆ 𝐾 with the property that 𝑥, 𝑦 ∈ 𝐾
and 1

2(𝑥 + 𝑦) ∈ 𝐹 implies 𝑥, 𝑦 ∈ 𝐹 . Every non-empty face of 𝐾 is again a convex body.
A non-empty face of dimension dim𝐾 − 1 is referred to as a facet. An 𝑖-face is an 𝑖-
dimensional non-empty face of 𝐾. The set of all non-empty faces of 𝐾 is denoted by ℱ(𝐾)
and the set of all 𝑖-faces of 𝐾 is denoted by ℱ𝑖(𝐾). Clearly, ∅ and 𝐾 are faces of 𝐾; every
other face of 𝐾 is called a proper face of 𝐾.

For 𝐾 ∈ 𝒦𝑛 and 𝑢 ∈ ℝ𝑛∖{𝑜}, we define the support plane of 𝐾 with outer normal
vector 𝑢 as

𝐻(𝐾,𝑢) := {𝑦 ∈ ℝ𝑛 | 𝑥 · 𝑢 = max
𝑧∈𝐾

𝑧 · 𝑢}
and for 𝑥 ∈ ℝ𝑛, we define the normal cone of 𝐾 at 𝑥 as

𝑁(𝐾,𝑥) := {𝑢 ∈ ℝ𝑛∖{𝑜} | 𝑥 ∈ 𝐻(𝐾,𝑢)} ∪ {𝑜}.
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For a face 𝐹 of 𝐾, we define 𝑁(𝐾,𝐹 ) := 𝑁(𝐾,𝑥), where 𝑥 ∈ int𝐹 .

The space 𝒦𝑛 The space of convex bodies 𝒦𝑛 and can be equipped with some interesting
structures.

For 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆 ≥ 0, define

𝐾 + 𝐿 := {𝑥+ 𝑦 | 𝑥 ∈ 𝐾, 𝑦 ∈ 𝐿} and 𝜆𝐾 := {𝜆𝑥 | 𝑥 ∈ 𝐾}.
This defines operations on the space 𝒦𝑛, called the Minkowski operations with the former
being calledMinkowski addition. Endowed with Minkowski addition, the space (𝒦𝑛,+) be-
comes a commutative semigroup with neutral element {𝑜} and cancellation law. Moreover,
the Minkowski operations are compatible in the sense that 𝜆(𝜇𝐾) = (𝜆𝜇)𝐾, 𝜆(𝐾 + 𝐿) =
𝜆𝐾 + 𝜆𝐿 and (𝜆+ 𝜇)𝐾 = 𝜆𝐾 + 𝜇𝐾 for 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆, 𝜇 ≥ 0.

We equip 𝒦𝑛 with the Hausdorff metric, which is defined as

𝑑(𝐾,𝐿) := max

{︂
min
𝑥∈𝐾

max
𝑦∈𝐿

‖𝑥− 𝑦‖,min
𝑥∈𝐿

max
𝑦∈𝐾

‖𝑥− 𝑦‖
}︂
, 𝐾, 𝐿 ∈ 𝒦𝑛,

and can also be expressed as

𝑑(𝐾,𝐿) = min{𝜆 ≥ 0 | 𝐾 ⊆ 𝜆𝐿,𝐿 ⊆ 𝜆𝐾}, 𝐾, 𝐿 ∈ 𝒦𝑛.

Due to Blaschke’s selection theorem, (𝒦𝑛, 𝑑) is a locally compact complete metric space,
and the Minkowski operations are continuous on (𝒦𝑛, 𝑑).

Endowed with set inclusion, (𝒦𝑛,⊆) is a partially ordered set. Clearly this partial order
is closed in 𝒦𝑛 ×𝒦𝑛 and is respected by the Minkowski operations.

The support function ℎ(𝐾, ·) = ℎ𝐾 of a convex body 𝐾 ∈ 𝒦𝑛 is defined as

ℎ(𝐾,𝑢) := max{𝑢 · 𝑥 | 𝑥 ∈ 𝐾}, 𝑢 ∈ 𝕊,

where we also make the convention ℎ(∅, ·) ≡ 0. Its homogeneous extension of degree onê︀ℎ(𝐾, ·) is a sublinear function on ℝ𝑛, that iŝ︀ℎ(𝐾,𝜆𝑥) = 𝜆̂︀ℎ(𝐾,𝑥) and ̂︀ℎ(𝐾,𝑥+ 𝑦) ≤ ̂︀ℎ(𝐾,𝑥) + ̂︀ℎ(𝐾, 𝑦)

for all 𝑥, 𝑦 ∈ ℝ𝑛 and 𝜆 ≥ 0. Consequently, ̂︀ℎ(𝐾, ·) is a convex function and thus continu-
ous. In particular, the support function ℎ(𝐾, ·) is continuous. Conversely, every sublinear
function on ℝ𝑛 is the support function of a unique convex body. 1

By means of the support function, the space 𝒦𝑛 can be identified with a closed convex
cone of C(𝕊). More precisely, the map

𝜄 : 𝒦𝑛 → C(𝕊) : 𝐾 ↦→ ℎ(𝐾, ·)
1The support function can naturally be defined as a function on ℝ𝑛. However, defining the support

function as a function on 𝕊 is more suitable to our purposes.
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is an embedding of metric spaces such that ℎ(𝜆𝐾 + 𝜇𝐿, ·) = 𝜆ℎ(𝐾, ·) + 𝜇ℎ(𝐿, ·) for all
𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆, 𝜇 ≥ 0. Moreover, 𝐾 ⊆ 𝐿 if and only if ℎ(𝐾,𝑢) ≤ ℎ(𝐿, 𝑢) for all 𝑢 ∈ 𝕊.

For every 𝑓 ∈ C2(𝕊), there is a convex body 𝐾 ∈ 𝒦𝑛 and some 𝑟 > 0 such that
𝑓 = ℎ(𝐾, ·)− 𝑟ℎ(𝐵, ·). Hence, 𝜄(𝒦𝑛)− 𝜄(𝒦𝑛) is dense in C(𝕊).

Moreover, note that a group action of SO(𝑛) on 𝒦𝑛 is given in a natural way.

Centered Convex Bodies The Steiner point of a convex body 𝐾 ∈ 𝒦𝑛 is defined as

𝑠(𝐾) :=
1

𝜅𝑛

∫︁
𝕊
ℎ(𝐾,𝑢)𝑢 𝑑𝑢 ∈ ℝ𝑛.

The map
𝑠 : 𝒦𝑛 → ℝ𝑛 : 𝐾 ↦→ 𝑠(𝐾)

is called the Steiner point map. Clearly, the Steiner point map is continuous and Minkowski
linear, that is 𝑠(𝜆𝐾 + 𝜇𝐿) = 𝜆𝑠(𝐾) + 𝜇𝑠(𝐿) for all 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆, 𝜇 ≥ 0. Moreover,
𝑠({𝑥}) = {𝑥} for all 𝑥 ∈ ℝ𝑛.

A convex body 𝐾 ∈ 𝒦𝑛 is called centered if 𝑠(𝐾) = 𝑜. It is easy to see that a
convex body is centered if and only if its support function is centered. Moreover, the
centered convex bodies form a closed subspace of𝒦𝑛 that is also closed under the Minkowski
operations.

We also introduce the centering operator

𝐽 : 𝒦𝑛 → 𝒦𝑛 : 𝐽𝐾 := 𝐾 − 𝑠(𝐾)

and the centered support function

ℎ𝑜(𝐾, ·) := (𝐼 − 𝜋1)ℎ(𝐾, ·) ∈ C𝑜(𝕊).

With these definitions in place,

ℎ𝑜(𝐾,𝑢) = ℎ(𝐽𝐾, 𝑢) = ℎ(𝐾,𝑢)− 𝑠(𝐾) · 𝑢, 𝑢 ∈ 𝕊.

Smooth Convex Bodies A convex body is called smooth if its support function is
smooth. The space of smooth convex bodies is dense in 𝒦𝑛 and also closed under the
Minkowski operations.

Polytopes The convex hull of a subset of ℝ𝑛 is the intersection of all of its convex
supersets. The convex hull of a finite subset of ℝ𝑛 is called a polytope. Equivalently,
polytopes are precisely the bounded finite intersections of closed half-spaces.

We denote the space of all non-empty polytopes by 𝒫𝑛. The space 𝒫𝑛 is dense in 𝒦𝑛 and
also closed under the Minkowski operations. For 𝑃 ∈ 𝒫𝑛, the sets ℱ𝑘(𝑃 ), 𝑘 ∈ {0, . . . , 𝑛},
are finite.

17



For a polytope 𝑃 ∈ 𝒫𝑛 and 𝐹 ∈ ℱ𝑘(𝑃 ), we define the external angle of 𝑃 at its face 𝐹
as

𝛾(𝐹, 𝑃 ) :=
1

𝜔𝑛−𝑘
ℋ𝑛−𝑘−1(𝑁(𝑃,𝐹 ) ∩ 𝕊).

Zonoids A Minkowski sum of finitely many closed line segments is a zonotope. A limit
of zonotopes in the Hausdorff metric is a zonoid.

Theorem 2.1 ([21, Theorems 3.5.3, 3.5.4]). A convex body 𝐾 ∈ 𝒦𝑛 is a centered zonoid

if and only if there exists an even positive measure 𝜇 ∈ M(𝕊) such that

ℎ(𝐾,𝑢) =

∫︁
𝕊
|𝑢 · 𝑣| 𝑑𝜇(𝑣), 𝑢 ∈ 𝕊. (2.1)

In this case, the even positive measure 𝜇 is uniquely determined by 𝐾.

If the support function of a zonoid 𝐾 can be represented in the form (2.1) with an even
positive measure 𝜇, then 𝜇 is called the generating measure of 𝐾.

2.2 Mixed Volumes

The volume of convex bodies behaves in some sense like a polynomial. More precisely,
there is unique a symmetric function V : (𝒦𝑛)𝑛 → ℝ, the mixed volume, such that, for
𝑚 ∈ ℕ0,

V𝑛(𝜆1𝐾1 + · · ·+ 𝜆𝑚𝐾𝑚) =

𝑚∑︁
𝑖1,...,𝑖𝑛=1

𝜆𝑖1 · · ·𝜆𝑖𝑛V(𝐾𝑖1 , . . . ,𝐾𝑖𝑛)

for all 𝐾1, . . . ,𝐾𝑚 ∈ 𝒦𝑛 and 𝜆1, . . . , 𝜆𝑚 ≥ 0.
The mixed volume V : (𝒦𝑛)𝑛−1 → ℝ is continuous, non-negative, invariant under

independent translations of its arguments, monotone, Minkowski linear in each argument,
and V(𝐾 [𝑛]) = V𝑛(𝐾) for all 𝐾 ∈ 𝒦𝑛. Moreover, the mixed volume is SO(𝑛)-invariant in
the sense that

V(𝜗𝐾1, . . . , 𝜗𝐾𝑛) = V(𝐾1, . . . ,𝐾𝑛)

for all 𝐾1, . . . ,𝐾𝑛 ∈ 𝒦𝑛 and 𝜗 ∈ SO(𝑛).
If convex bodies 𝐾1, . . . ,𝐾𝑛 ∈ 𝒦𝑛 are fixed, then V(𝐾1, . . . ,𝐾𝑛) > 0 if and only if

dim(𝐾𝑖1 + · · · + 𝐾𝑖𝑘) ≥ 𝑘 for all 𝑘 ∈ {1, . . . , 𝑛} and for each choice of indices 1 ≤ 𝑖1 <
· · · < 𝑖𝑘 ≤ 𝑛.

For fixed 𝑖 ∈ {0, . . . , 𝑛} and convex bodies 𝐶𝑖+1, . . . 𝐶𝑛 ∈ 𝒦𝑛, the function

𝜙 : 𝒦𝑛 → ℝ : 𝜙(𝐾) := V(𝐾 [𝑖], 𝐶𝑖+1, . . . , 𝐶𝑛)
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has the property that 𝜙(𝐾 ∪ 𝐿) + 𝜙(𝐾 ∩ 𝐿) = 𝜙(𝐾) + 𝜙(𝐿) for all 𝐾,𝐿 ∈ 𝒦𝑛 with
𝐾 ∪ 𝐿 ∈ 𝒦𝑛. Although we have excluded the empty set from the space 𝒦𝑛, we make the
convention 𝜙(∅) = 0.

We fix the notations

W𝑛−𝑖−1(𝐾,𝐿) := V(𝐾 [𝑖], 𝐵[𝑛−𝑖−1], 𝐿)

and
W𝑛−𝑖(𝐾) := W𝑛−𝑖(𝐾,𝐾) = V(𝐾 [𝑖], 𝐵[𝑛−𝑖]).

The functions W𝑛−𝑖 : 𝒦𝑛 → ℝ are also called quermassintegrals. Note that W𝑛−𝑖(𝐾) > 0
if and only if dim𝐾 ≥ 𝑖.

We define the 𝑖-th intrinsic volume as

V𝑖(𝐾) :=

(︂
𝑛

𝑖

)︂
1

𝜅𝑛−𝑖
W𝑛−𝑖(𝐾) =

(︂
𝑛

𝑖

)︂
1

𝜅𝑛−𝑖
V(𝐾 [𝑖], 𝐵[𝑛−𝑖]).

Then V𝑛 is the usual volume and V0 is the Euler characteristic. Moreover, these functions
are intrinsic in the sense that their definition does not depend on the ambient space. More
precisely, for 𝑘 ∈ {0, . . . , 𝑛}, 𝐸 ∈ A(𝑛, 𝑘), and 𝑖 ∈ {0, . . . , 𝑘}, denote by V𝐸

𝑖 the 𝑖-th
intrinsic volume on the space 𝒦𝑘(𝐸) ⊆ 𝒦𝑛. Then V𝐸

𝑖 (𝐾) = V𝑖(𝐾) for every 𝐾 ∈ 𝒦𝑘(𝐸).
Consequently, V𝑖(𝐾) is the 𝑖-dimensional volume of any 𝑖-dimensional convex body 𝐾 ∈
𝒦𝑛.

Example 2.2. For the intrinsic volumes of the unit ball, one has

V𝑖(𝐵) =

(︂
𝑛

𝑖

)︂
𝜅𝑛
𝜅𝑛−𝑖

=

[︂
𝑛

𝑖

]︂
𝜅𝑖.

Example 2.3. For a polytope 𝑃 ∈ 𝒫𝑛, the intrinsic volumes are given by

V𝑖(𝑃 ) =
∑︁

𝐹∈ℱ𝑖(𝑃 )

𝛾(𝐹, 𝑃 )ℋ𝑖(𝐹 ).

2.3 Area Measures

By means of the Riesz-Markov-Kakutani representation theorem, it can be shown that
there is a unique symmetric map 𝑆 : (𝒦𝑛)𝑛−1 → M(𝕊), the mixed area measure, such that

V(𝐾1, . . . ,𝐾𝑛) =
1

𝑛
⟨ℎ(𝐾1, ·), 𝑆(𝐾2, . . . ,𝐾𝑛; ·)⟩

for all 𝐾1, . . . ,𝐾𝑛 ∈ 𝒦𝑛.
The mixed area measure 𝑆(𝐾1, . . . ,𝐾𝑛−1; ·) of convex bodies 𝐾1, . . . ,𝐾𝑛−1 ∈ 𝒦𝑛 is

always a centered positive measure. The mixed area measure 𝑆 : (𝒦𝑛)𝑛−1 → M𝑜(𝕊) is

19



continuous, Minkowski linear in each argument, and invariant under independent transla-
tions of its arguments.

The mixed area measure is SO(𝑛) invariant in the sense that

𝑆(𝜗𝐾1, . . . , 𝜗𝐾𝑛−1;𝜗𝐴) = 𝑆(𝐾1, . . . ,𝐾𝑛−1;𝐴)

for all 𝐾1, . . . ,𝐾𝑛−1 ∈ 𝒦𝑛, Borel subsets 𝐴 ⊆ 𝕊, and 𝜗 ∈ SO(𝑛).
For fixed 𝑖 ∈ {0, . . . , 𝑛− 1} and convex bodies 𝐶𝑖+1, . . . 𝐶𝑛−1 ∈ 𝒦𝑛, the function

𝜙 : 𝒦𝑛 → M(𝕊) : 𝜙(𝐾) := 𝑆(𝐾 [𝑖], 𝐶𝑖+1, . . . , 𝐶𝑛−1; ·)
has the property that 𝜙(𝐾 ∪ 𝐿) + 𝜙(𝐾 ∩ 𝐿) = 𝜙(𝐾) + 𝜙(𝐿) for all 𝐾,𝐿 ∈ 𝒦𝑛 with
𝐾 ∪ 𝐿 ∈ 𝒦𝑛.

For 𝑖 ∈ {0, · · · , 𝑛− 1}, we define the area measure of 𝐾 of order 𝑖 as

𝑆𝑖(𝐾, ·) := 𝑆(𝐾 [𝑖], 𝐵[𝑛−𝑖−1]; ·).
The area measure 𝑆𝑛−1(𝐾, ·) of order 𝑛−1 is also called the surface area measure, since for
an 𝑛-dimensional convex body 𝐾 ∈ 𝒦𝑛 and a Borel subset 𝐴 ⊆ 𝕊, we have 𝑆𝑛−1(𝐾,𝐴) =
ℋ𝑛−1(𝜏(𝐾,𝐴)), where 𝜏(𝐾,𝐴) ⊆ bd𝐾 denotes the set of all boundary points of 𝐾 at
which there exists a unit normal vector belonging to 𝐴.

By definition, we have

W𝑛−𝑖(𝐾,𝐿) =
1

𝑛
⟨ℎ(𝐿, ·), 𝑆𝑖−1(𝐾, ·)⟩

and

W𝑛−𝑖(𝐾) = W𝑛−𝑖(𝐾,𝐾) =
1

𝑛
⟨ℎ(𝐾, ·), 𝑆𝑖−1(𝐾, ·)⟩.

Example 2.4. If 𝑃 ∈ 𝒫𝑛 is an 𝑛-dimensional polytope with facets 𝐹1, . . . , 𝐹𝑘 ∈ ℱ𝑛−1(𝑃 )
and corresponding outer unit normals 𝑢1, . . . , 𝑢𝑘 ∈ 𝕊, its surface area measure is given by

𝑆𝑛−1(𝑃, ·) =
𝑘∑︁

𝑖=1

ℋ𝑛−1(𝐹𝑖)𝛿𝑢𝑖 , (2.2)

where 𝛿𝑢𝑖 denotes the Dirac measure with mass concentrated in 𝑢𝑖.

Example 2.5. The mixed area measure of smooth convex bodies has a smooth density
function. In order to describe this density function, we need to make two definitions.

If 𝑓 is a C2(𝕊) function, then its 1-homogeneous extension ̂︀𝑓 is a C2(ℝ𝑛∖{𝑜}) function.
For every 𝑢 ∈ 𝕊, the Hessian ∇2 ̂︀𝑓(𝑢) is a self-adjoint linear map on ℝ𝑛 that maps 𝑢 to 𝑜
and maps 𝑢⊥ into itself. We define

𝐷2𝑓(𝑢) := (∇2 ̂︀𝑓(𝑢))|𝑢⊥ ∈ End(𝑢⊥).

20



For an (𝑛− 1)-dimensional real vector space 𝑋, the mixed discriminant of linear maps
𝑓1, . . . , 𝑓𝑛−1 ∈ End(𝑋) is defined as

D(𝑓1, . . . , 𝑓𝑛−1) :=
1

(𝑛− 1)!

𝜕𝑛−1

𝜕𝜆1 · · · 𝜕𝜆𝑛−1
det(𝜆1𝑓1 + · · ·+ 𝜆𝑛−1𝑓𝑛−1).

The mixed discriminant D : End(𝑋)𝑛−1 → ℝ is symmetric, linear in each argument, and
uniquely determined by its property that

det(𝜆1𝑓1 + · · ·+ 𝜆𝑚𝑓𝑚) =

𝑚∑︁
𝑖1,...,𝑖𝑛−1=1

𝜆𝑖1 · · ·𝜆𝑖𝑛−1D(𝑓𝑖1 , . . . , 𝑓𝑖𝑛−1)

for all 𝑚 ∈ ℕ+, 𝑓1, . . . , 𝑓𝑚 ∈ End(𝑋), and 𝜆1, . . . , 𝜆𝑚 ∈ ℝ. Moreover, D(𝑓 [𝑛−1]) = det 𝑓
for 𝑓 ∈ End(𝑋).

With these definitions in place, the mixed area measure of smooth convex bodies
𝐾1, . . . ,𝐾𝑛−1 ∈ 𝒦𝑛 has a smooth density given by

D(𝐷2ℎ𝐾1 , . . . , 𝐷
2ℎ𝐾𝑛−1).

Minkowski’s Existence Theorem It is a natural question to ask which spherical mea-
sures appear as surface area measures of convex bodies. A characterization is provided by
Minkowski’s existence theorem, which is stated below.

Theorem 2.6 (Minkowski). A positive measure 𝜇 ∈ M(𝕊) is the surface area measure of

an 𝑛-dimensional convex body if and only if it is centered and if 𝜇(𝕊 ∩ 𝑢⊥) < 𝜇(𝕊) for all
𝑢 ∈ 𝕊.

As a consequence, the linear space spanned by surface area measures,

{𝑆𝑛−1(𝐾, ·)− 𝑆𝑛−1(𝐿, ·) | 𝐾,𝐿 ∈ 𝒦𝑛}
is dense in M𝑜(𝕊). Consequently, if 𝑓 ∈ C(𝕊) such that ⟨𝑓, 𝑆𝑛−1(𝐾, ·)⟩ = 0 for all 𝐾 ∈ 𝒦𝑛,
then 𝑓 is a linear harmonic.

Christoffel’s Problem It is natural to ask for a characterization of the other area
measures 𝑆𝑗(𝐾, ·). For the area measure of order 𝑗 = 1, this is known as Christoffel’s

problem.
A central role in Christoffel’s problem plays the Helmholtz-like operator

□𝑛 : C∞(𝕊) → C∞(𝕊) : □𝑛 :=
1

𝑛− 1
Δ∘ + 𝐼.

Namely, if 𝐾 ∈ 𝒦𝑛 is a smooth convex body then all of its area measures have a smooth
density and

□𝑛ℎ(𝐾, ·) = 𝑆1(𝐾, ·).
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Let us therefore further investigate this operator. Since the Beltrami operator Δ∘ is
an SO(𝑛)-equivariant continuous linear operator on C∞(𝕊), the operator □𝑛 is too. Since
□𝑛 is self-adjoint in the sense that ⟨□𝑛𝑓, 𝑔⟩ = ⟨𝑓,□𝑛𝑔⟩ for all 𝑓, 𝑔 ∈ C∞(𝕊), it extends to
an SO(𝑛)-equivariant continuous linear operator

□𝑛 : C−∞(𝕊) → C−∞(𝕊).

Clearly, □𝑛 is a multiplier map with its multipliers given by

𝜆𝑛
𝑘 [□𝑛] = 1− 𝑘(𝑛+ 𝑘 − 2)

𝑛− 1
= −(𝑘 − 1)(𝑛+ 𝑘 − 1)

𝑛− 1
.

Note that 𝜆𝑛
𝑘 [□𝑛] = 1, 𝜆𝑛

𝑘 [□𝑛] = 0, and 𝜆𝑛
𝑘 [□𝑛] < 0 for 𝑘 ≥ 2. In particular, all multipliers

except for 𝑘 = 1 are non-zero, so □𝑛 is injective on centered functions and distributions.
Since the multipliers 𝜆𝑛

𝑘 [□𝑛] are slowly decreasing, it follows from Lemma 1.10 that

□𝑛 : C∞
𝑜 (𝕊) → C∞

𝑜 (𝕊)

is an SO(𝑛)-equivariant automorphism of C∞
𝑜 (𝕊). Analogously to Theorem 1.12, there

exists a zonal centered distribution 𝜓𝑛 ∈ C−∞
𝑜 (𝕊, 𝑒) such that □−1

𝑛 𝑓 = 𝑓 * 𝜓𝑛 for all
𝑓 ∈ C∞

𝑜 (𝕊). In the context of Christoffel’s problem, this means that ℎ𝑜(𝐾, ·) = 𝑆1(𝐾, ·)*𝜓𝑛

for every smooth convex body 𝐾 ∈ 𝒦𝑛.
These zonal distributions 𝜓𝑛 were described by C. Berg in [5]. He constructed in-

ductively a sequence 𝑔𝑛, 𝑛 ≥ 2, of smooth functions 𝑔𝑛 : (−1, 1) → ℝ, known as Berg’s
functions, with the property that 𝑔𝑛 ∈ L1[−1, 1]𝑛 and that

1

𝜔𝑛−1
𝑔𝑛 ∼ 𝑃𝑛

0 +

∞∑︁
𝑘=2

𝑁(𝑛, 𝑘)

𝜔𝑛

𝑛− 1

(𝑘 − 1)(𝑛+ 𝑘 − 1)
𝑃𝑛
𝑘 .

Consequently, 𝜓𝑛 = 𝜔−1
𝑛−1𝑔𝑛 ∈ M𝑜(𝕊, 𝑒) ⊆ C−∞

𝑜 (𝕊, 𝑒). Christoffel’s problem was solved by
C. Berg in the sense that he showed that a positive measure 𝜇 ∈ M(𝕊) is the first area
measure of a convex body if and only if 𝜔−1

𝑛−1𝜇 * 𝑔𝑛 is the support function of a convex
body.

We also want to note that the linear span of first area measures,

{𝑆1(𝐾, ·)− 𝑆1(𝐿, ·) | 𝐾,𝐿 ∈ 𝒦𝑛}

is dense in M𝑜(𝕊). This follows from the fact that C∞
𝑜 (𝕊) is spanned by support functions

of convex bodies and that □𝑛 is an automorphism of C∞
𝑜 (𝕊).
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2.4 Valuations on Convex Bodies

A function 𝜙 : 𝒦𝑛 → 𝐺, where (𝐺,+) is a commutative semigroup, is called a (𝐺-valued)
valuation if

𝜙(𝐾 ∪ 𝐿) + 𝜙(𝐾 ∩ 𝐿) = 𝜙(𝐾) + 𝜙(𝐿)

for all 𝐾,𝐿 ∈ 𝒦𝑛 with 𝐾 ∪ 𝐿 ∈ 𝒦𝑛.
If (𝐺,+) has a neutral element 0𝐺, then 𝜙 : 𝒦𝑛 → 𝐺 : 𝜙(𝐾) := 0𝐺 is called the trivial

(𝐺-valued) valuation and we fix the convention 𝜙(∅) = 0𝐺 for all valuations 𝜙 : 𝒦𝑛 → 𝐺.
If 𝑋 is a vector space and 𝜙 is an 𝑋-valued valuation, then 𝜙 is called homogeneous of

degree 𝑖, if 𝜙(𝜆𝐾) = 𝜆𝑖𝜙(𝐾) for all 𝐾 ∈ 𝒦𝑛 and 𝜆 ≥ 0. Furthermore, 𝜙 is called even if
𝜙(−𝐾) = 𝜙(𝐾) for all 𝐾 ∈ 𝒦𝑛 and odd if 𝜙(−𝐾) = −𝜙(𝐾) for all 𝐾 ∈ 𝒦𝑛.

A real valued valuation is just called a valuation and a 𝒦𝑛-valued valuation (where 𝒦𝑛

is endowed with Minkowski addition) is called a Minkowski valuation.

Example 2.7. For 𝑖 ∈ {0, . . . , 𝑛} and fixed convex bodies 𝐶𝑖+1, . . . , 𝐶𝑛 ∈ 𝒦𝑛, the map

𝜙 : 𝒦𝑛 → ℝ : 𝜙(𝐾) := V(𝐾 [𝑖], 𝐶𝑖+1, . . . , 𝐶𝑛)

is a continuous translation invariant valuation, homogeneous of degree 𝑖. In particular, the
intrinsic volumes V𝑖 are examples of rigid motion invariant continuous valuations.

McMullen’s decomposition Much of the modern theory on valuations concerns trans-
lation invariant continuous valuations taking values in a topological vector space. A very
important theorem on these valuations is the following polynomiality result:

Theorem 2.8 (McMullen). If X is a topological vector space, then for every continuous

translation invariant valuation 𝜙 : 𝒦𝑛 → X, there exists a unique continuous symmetric

mapping 𝜙 : (𝒦𝑛)𝑛 → X which is translation invariant and Minkowski linear in each

variable such that

𝜙(𝜆1𝐾1 + · · ·+ 𝜆𝑚𝐾𝑚) =

𝑚∑︁
𝑖1,...,𝑖𝑛=1

𝜆𝑖1 · · ·𝜆𝑖𝑛𝜙(𝐾𝑖1 , . . . ,𝐾𝑖𝑛) (2.3)

for all 𝐾1, . . . ,𝐾𝑚 ∈ 𝒦𝑛 and 𝜆1, . . . , 𝜆𝑚 ≥ 0. Moreover, the mapping 𝐾 ↦→ 𝜙(𝐾 [𝑖], 𝒞) is a
continuous translation invariant valuation, homogeneous of degree 𝑖, for each 𝑖 ∈ {0, . . . , 𝑛}
and fixed family of convex bodies 𝒞 = (𝐶𝑖+1, . . . , 𝐶𝑛) ∈ (𝒦𝑛)𝑛−𝑖.

A direct consequence is McMullen’s decomposition theorem, which can be stated as
follows:

Theorem 2.9 (McMullen). If X is a topological vector space, then for every continuous

translation invariant valuation 𝜙 : 𝒦𝑛 → X, there exist continuous translation invariant

valuations 𝜙𝑖 : 𝒦𝑛 → X, homogeneous of degree 𝑖 ∈ {0, . . . , 𝑛}, such that 𝜙 = 𝜙0+ · · ·+𝜙𝑛.
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Hence, the space XVal of all translation invariant continuous X-valued valuations can
be written as

XVal =
𝑛⨁︁

𝑖=0

XVal𝑖,

whereXVal𝑖 denotes the space of valuations inXVal homogeneous of degree 𝑖. This direct
sum is called theMcMullen decomposition of the spaceXVal. We also call 𝜙 = 𝜙0+· · ·+𝜙𝑛

the McMullen decomposition of 𝜙.
If (X, ‖·‖X) is a normed space, then XVal can be made a normed space my means of

‖𝜙‖ := max{‖𝜙(𝐾)‖X | 𝐾 ∈ 𝒦𝑛,𝐾 ⊆ 𝐵}.
Moreover, if X is a Banach space, then XVal, endowed with this norm, also becomes a
Banach space.

The Steiner Formula A special case of (2.3) is Steiner’s formula for valuations:

Theorem 2.10 (Steiner’s formula). If X is a topological vector space, then for every

continuous translation invariant valuation 𝜙 : 𝒦𝑛 → X, there exist continuous translation

invariant valuations 𝜙(𝑗) : 𝒦𝑛 → X such that

𝜙(𝐾 + 𝜀𝐵) =

𝑛∑︁
𝑗=0

𝜀𝑛−𝑗𝜙(𝑗)(𝐾)

for all 𝐾 ∈ 𝒦𝑛 and 𝜀 ≥ 0.

Historically, Steiner’s formula for the usual volume V𝑛 was one of the most influential
results of the early days of convex geometry.

The Spaces Val, MVal, and CVal We denote byVal the space of translation invariant
continuous real valued valuations and by Val𝑖 the space of valuations in Val homogeneous
of degree 𝑖. Furthermore, we denote by Val+ and Val− the spaces of even and odd
valuations in Val, respectively. Then due to McMullens decomposition theorem, we have

Val =
𝑛⨁︁

𝑖=0

Val𝑖 =
𝑛⨁︁

𝑖=0

(Val+𝑖 ⊕Val−𝑖 ),

whereVal±𝑖 := Val𝑖∩Val±. We endowVal with the Banach space topology defined above.
We denote by CVal the space of translation invariant, continuous C(𝕊) valued valua-

tions and by CVal𝑖 the space of valuations in CVal homogeneous of degree 𝑖. Then

CVal =

𝑛⨁︁
𝑖=0

CVal𝑖.
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We endow CVal with the Banach space topology defined above.

Moreover, we denote by CValSO(𝑛) and CVal
SO(𝑛)
𝑖 the space of SO(𝑛)-equivariant

valuations in CVal and CVal𝑖, respectively.
We denote by MVal the space of translation invariant, continuous Minkowski valua-

tions and by MVal𝑖 the space of valuations in MVal homogeneous of degree 𝑖. Note that
since 𝒦𝑛 is not a vector space, MVal is also not a vector space and we can not apply
McMullen’s decomposition theorem on MVal.

Moreover, we denote by MValSO(𝑛) and MVal
SO(𝑛)
𝑖 the space of SO(𝑛)-equivariant

Minkowski valuations in MVal and MVal𝑖, respectively. The SO(𝑛)-equivariance implies
that for every Φ ∈ MVal, there is a unique number 𝑟(Φ) ≥ 0 such that Φ𝐵 = 𝑟(Φ)𝐵.

We can consider MVal a subspace of CVal by means of the support function. As
mentioned before, the mapping

𝜄 : 𝒦𝑛 → C(𝕊) : 𝐾 ↦→ ℎ(𝐾, ·)
is an embedding of metric spaces that respects the algebraic structure. Then

𝜂 : MVal → CVal : Φ ↦→ 𝜂 ∘ Φ
is also injective and respects the algebraic structure. We endow MVal with the metric
induced by the norm on CVal and 𝜂. Then 𝜂 automatically becomes an embedding of
metric spaces. In particular, every Minkowski valuation can be considered as a valuation
in CVal. Conversely, a valuation in CVal can be considered as a Minkowski valuation if
an only if it only takes support functions as values.

For a valuation Φ ∈ CVal, Φ : 𝐾 ↦→ 𝑔(𝐾, ·), we define its associated real valued

valuation 𝜙 ∈ Val by
𝜙 : 𝒦𝑛 → ℝ : 𝜙(𝐾) := 𝑔(𝐾, 𝑒).

It is easy to see that 𝜙 is zonal if and only if Φ is SO(𝑛)-equivariant.
We denote the space of zonal valuations in Val by Val𝑒, and for a zonal valuation

𝜙 ∈ Val𝑒, we define its associated C(𝕊) valued valuation Φ ∈ CValSO(𝑛) by

Φ : 𝒦𝑛 → C(𝕊) : 𝐾 ↦→ 𝑔(𝐾, ·),
𝑔(𝐾,𝜗𝑒) := 𝜙(𝜗−1𝐾), 𝜗 ∈ SO(𝑛).

These definitions give rise to an isometric isomorphism

Val𝑒 → CValSO(𝑛).

The notion of an associated real valued valuation is very helpful when dealing with
valuations in CVal and MVal, because it allows us to reduce questions concerning such
valuations to questions about real valued valuations, on which there exists a rich theory
that is discussed in the following paragraphs.
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Characterization Theorems In this paragraph we list some important characterization
results for translation invariant continuous valuations. It is easy to see that the space Val0
is spanned by the Euler characteristic V0. The non-trivial counterpart to this theorem for
Val𝑛 is known as Hadwiger’s volume characterization theorem:

Theorem 2.11 (Hadwiger). The space Val𝑛 is spanned by the volume V𝑛.

The following useful description of the space Val𝑛−1 is due to P. McMullen:

Theorem 2.12 (McMullen). For every 𝜙𝑛−1 ∈ Val𝑛−1, there exists a unique 𝑓 ∈ C𝑜(𝕊)
such that

𝜙𝑛−1(𝐾) = ⟨𝑓, 𝑆𝑛−1(𝐾, ·)⟩, 𝐾 ∈ 𝒦𝑛.

Another famous result is the following characterization of the intrinsic volumes due to
H. Hadwiger:

Theorem 2.13 (Hadwiger). If 𝜙 ∈ Val is rigid motion invariant, then 𝜙 is a linear

combination of the intrinsic volumes.

As was shown by R. Schneider, the Steiner point map has th following important
uniqueness property:

Theorem 2.14 (Schneider). The Steiner point map 𝑠 : 𝒦𝑛 → ℝ𝑛 is the unique vector

valued, rigid motion equivariant, and continuous valuation.

As a consequence of this characterization theorem, we will obtain later on that all
Minkowski valuations in MValSO(𝑛) map convex bodies to centered convex bodies.

Smooth Valuations A group action of GL(𝑛) is given on Val by means of

(𝐴𝜙)(𝐾) := 𝜙(𝐴−1𝐾), 𝐴 ∈ GL(𝑛), 𝐾 ∈ 𝒦𝑛.

We call a valuation 𝜙 ∈ Val smooth if the mapping

GL(𝑛) → Val : 𝐴 ↦→ 𝐴𝜙

is smooth. Note that this notion makes sense because GL(𝑛) can be considered as an open
subset of ℝ𝑛×𝑛 and Val is a Banach space. We denote the space of smooth valuations by
Val∞. Consider the linear map

𝜄∞ :

{︂
Val∞ → C∞(GL(𝑛);Val)
𝜙 ↦→ (𝐴 ↦→ 𝐴𝜙)

where C∞(GL(𝑛);Val) denotes the space of smooth functions GL(𝑛) → Val, endowed
with the usual Fréchet topology. The map 𝜄∞ is well-defined and injective, so it allows us
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to identify Val∞ with a linear subspace of C∞(GL(𝑛);Val). The initial topology on Val∞

with respect to 𝜄∞ is called the Gårding topology and is finer than the trace topology of
the norm topology. Endowed with the Gårding topology, Val∞ becomes a Fréchet space,
the inclusion map Val∞ ⊆ Val is continuous, and Val∞ is dense in Val.

We obtain the McMullen decomposition

Val∞ =

𝑛⨁︁
𝑖=0

Val∞𝑖 =

𝑛⨁︁
𝑖=0

(Val∞,+
𝑖 ⊕Val∞,−

𝑖 ).

Example 2.15. The intrinsic volumes are examples of smooth translation invariant valu-
ations.

Example 2.16. If 𝐾 ∈ 𝒦𝑛 is strictly convex and smooth, then

𝜂𝐾 : 𝒦𝑛 → ℝ : 𝜂𝐾(𝐶) := V𝑛(𝐶 +𝐾)

is a smooth translation invariant valuation, that is 𝜂𝐾 ∈ Val∞.

We define the space of generalized valuations as Val−∞ := (Val∞)* and endow it with
the weak* topology. Furthermore, for 𝑖 ∈ {0, . . . , 𝑛}, we define the space of generalized
valuations of degree 𝑖 as Val−∞

𝑖 := (Val∞𝑛−𝑖)
* and endow it with the weak* topology. This

choice of notation will become plausible after the introduction of the Alesker product.

Alesker’s Irreducibility Theorem A group action of GL(𝑛) on Val is given by means
of

(𝐴𝜙)(𝐾) := 𝜙(𝐴−1𝐾), 𝐴 ∈ GL(𝑛), 𝐾 ∈ 𝒦𝑛.

Clearly, the spaces Val±𝑖 are closed in Val and GL(𝑛) invariant. A deep result of Alesker,
known as Alesker’s Irreducibility Theorem, states that these subspaces are also irreducible:

Theorem 2.17. For 𝑖 ∈ {0, . . . , 𝑛}, the only closed GL(𝑛) invariant subspaces of Val±𝑖
are {0} and Val±𝑖 .

In the language of group representations, a natural continuous representation of GL(𝑛)
on Val is given and the spaces Val±𝑖 are irreducible subrepresentations of Val.

An analogous result holds for smooth valuations:

Theorem 2.18. For 𝑖 ∈ {0, . . . , 𝑛}, the only closed GL(𝑛) invariant subspaces of Val∞,±
𝑖

are {0} and Val∞,±
𝑖 .

Again, in the language of group representations, this means thatVal∞,±
𝑖 are irreducible

subrepresentations of Val∞.
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The Alesker Product The space Val∞ can be equipped with an interesting multiplica-
tive structure, which is the content of the following theorem.

Theorem 2.19. There exists a bilinear product

Val∞ ×Val∞ → Val∞ : (𝜙,𝜓) ↦→ 𝜙 · 𝜓
uniquely determined by the following two properties:

(i) The product is continuous in the Gårding topology.

(ii) If 𝐾,𝐿 ∈ 𝒦𝑛 are strictly convex and smooth, then

(𝜂𝐾 · 𝜂𝐿)(𝐶) = V2𝑛(𝜄(𝐶) +𝐾 × 𝐿),

where 𝜄 : ℝ𝑛 → ℝ2𝑛 is defined as 𝜄(𝑥) := (𝑥, 𝑥).
Endowed with this multiplicative structure, the space Val∞ becomes an associative and

commutative algebra with unit given by the Euler characteristic V0 which is graded by the

degree of homogeneity, that is Val∞𝑖 ·Val∞𝑗 ⊆ Val∞𝑖+𝑗.

The product defined by the theorem above is called the Alesker product. This product
is somewhat non-trivial in the sense that it does not extend continuously to Val.

Due to H. Hadwiger’s classical result that Val𝑛 is spanned by the usual volume V𝑛, we
may define a bilinear map ⟨·, ·⟩ by

⟨·, ·⟩ : Val∞𝑖 ×Val∞𝑛−𝑖 → ℝ : 𝜙 · 𝜓 = ⟨𝜙, 𝜓⟩V𝑛

for 𝑖 ∈ {0, . . . , 𝑛}. This map is clearly continuous. Moreover, the Alesker product has
the property that for every non-zero 𝜙𝑖 ∈ Val∞𝑖 there exists some 𝜓 ∈ Val∞𝑛−𝑖 such that
𝜙 · 𝜓 ̸= 0. Hence, the linear map

Val∞𝑖 → Val−∞
𝑖 = (Val∞𝑛−𝑖)

* : 𝜙 ↦→ ⟨𝜙, ·⟩
is injective, continuous, and has dense image due to Alesker’s irreducibility theorem. By
means of this linear map, we can consider Val∞𝑖 as a dense linear subspace of Val−∞

𝑖 , and
the inclusion map

Val∞𝑖 ⊆ Val−∞
𝑖

is continuous.

2.5 Bivaluations on convex bodies

A map 𝜑 : 𝒦𝑛 × 𝒦𝑛 → ℝ is called a (real valued) bivaluation if it is a valuation in
each argument. A bivaluation 𝜑 is called translation biinvariant if 𝜑 is invariant under
independent translations of its arguments and 𝜑 is called O(𝑛)-invariant if 𝜑(𝜗𝐾, 𝜗𝐿) =
𝜑(𝐾,𝐿) for all 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜗 ∈ O(𝑛). We say that 𝜑 has bidegree (𝑖, 𝑗) if 𝜑(𝜆𝐾, 𝜇𝐿) =
𝜆𝑖𝜇𝑗𝜑(𝐾,𝐿) for all 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆, 𝜇 ≥ 0.
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Example 2.20. An important example of a bivaluation can be constructed from mixed
volumes. For 𝑖, 𝑗 ∈ {0, . . . , 𝑛}, 𝑖+ 𝑗 ≤ 𝑛, the map

𝜑 : 𝒦𝑛 ×𝒦𝑛 → ℝ : 𝜑(𝐾,𝐿) := V(𝐾 [𝑖], 𝐿[𝑗], 𝐵[𝑛−𝑖−𝑗])

defines a O(𝑛)-invariant, translation biinvariant, and continuous bivaluation of bidegree
(𝑖, 𝑗). 2

We denote by BVal the space of all continuous, translation biinvariant bivaluations
and we denote by BVal𝑖,𝑗 the space of all bivaluations in BVal of bidegree (𝑖, 𝑗).Then the
space BVal has the McMullen decomposition

BVal =

𝑛⨁︁
𝑖,𝑗=0

BVal𝑖,𝑗 .

A very important tool that we will use at two crucial points is the following symmetry
result by A. Alesker, A. Bernig, and F. Schuster, which we call the symmetry theorem on

bivaluations:

Theorem 2.21 ([3, Theorem 6.4]). If 𝜑 ∈ BVal𝑗,𝑗, 𝑗 ∈ {0, . . . , 𝑛}, is O(𝑛)-invariant, then

𝜑(𝐾,𝐿) = 𝜑(𝐿,𝐾)

for all 𝐾,𝐿 ∈ 𝒦𝑛.

Unfortunately, in general the condition of O(𝑛)-invariance can not be replaced by
SO(𝑛)-invariance, as was shown in [3]. However, many important bivaluations, like in the
example above, are O(𝑛)-invariant, and for translation invariant, continuous Minkowski
valuations, SO(𝑛)-equivariance already implies O(𝑛)-equivariance:

Theorem 2.22 ([3, Theorem 7.1]). Every Minkowski valuation Φ ∈ MValSO(𝑛) is O(𝑛)-
equivariant.

In conclusion, we obtain a symmetry theorem for mixed volumes of Minkowski valua-

tions. If Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 , 𝑗 ∈ {0, . . . , 𝑛− 1}, then

W𝑛−𝑗−1(𝐾,Φ𝑗𝐿) = W𝑛−𝑗−1(𝐿,Φ𝑗𝐾) (2.4)

for all 𝐾,𝐿 ∈ 𝒦𝑛.

2We have only discussed the action of SO(𝑛) and SO(𝑛)-invariance, but the required arguments regard-

ing O(𝑛) work analogously.
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2.6 Inequalities for mixed volumes

In this section we state the classical geometric inequalities from the Brunn-Minkowski
theory. Recall that two convex bodies 𝐾 and 𝐿 are called homothetic if there is some
𝑥 ∈ ℝ𝑛 and 𝜆 > 0 such that 𝐿 = 𝜆𝐾 + 𝑥.

The Brunn-Minkowski inequality states that

V𝑛(𝐾 + 𝐿)1/𝑛 ≥ V𝑛(𝐾)1/𝑛 + V𝑛(𝐿)
1/𝑛 (2.5)

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 with equality if and only if 𝐾 and 𝐿 are homothetic. The
multiplicative Brunn-Minkowski inequality states that

V𝑛((1− 𝜆)𝐾 + 𝜆𝐿) ≥ V𝑛(𝐾)1−𝜆V𝑛(𝐿)
𝜆

for all 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆 ∈ (0, 1) with equality if and only if 𝐾 and 𝐿 are translates of each
other. An immediate consequence of the Brunn-Minkowski inequality is the Minkowski

inequality which states that

V(𝐾 [𝑛−1], 𝐿)𝑛 ≥ V𝑛(𝐾)𝑛−1V𝑛(𝐿)

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 with equality if and only if 𝐾 and 𝐿 are homothetic. The
famous isoperimetric inequality follows immediately from the Minkowski inequality.

The inequalities listed above have significant generalizations. The general Brunn-

Minkowski inequality states that for 𝑖 ∈ {2, . . . , 𝑛}, we have
V((𝐾 + 𝐿)[𝑖], 𝒞)1/𝑖 ≥ V(𝐾 [𝑖], 𝒞)1/𝑖 + V(𝐿[𝑖], 𝒞)1/𝑖 (2.6)

for all 𝐾,𝐿 ∈ 𝒦𝑛 and 𝒞 = (𝐶𝑖+1, . . . , 𝐶𝑛), where 𝐶𝑖+1, . . . , 𝐶𝑛 ∈ 𝒦𝑛. The multiplicative
form states that

V(((1− 𝜆)𝐾 + 𝜆𝐿)[𝑖], 𝒞) ≥ V(𝐾 [𝑖], 𝒞)1−𝜆V(𝐿[𝑖], 𝒞)𝜆

for all 𝐾,𝐿, 𝒞 as before and for all 𝜆 ∈ (0, 1).
Putting 𝒞 = 𝐵[𝑛−𝑖] for 𝑖 ∈ {2, . . . , 𝑛}, we obtain the Brunn-Minkowski inequality for

quermassintegrals, which states that

W𝑛−𝑖(𝐾 + 𝐿)1/𝑖 ≥ W𝑛−𝑖(𝐾)1/𝑖 +W𝑛−𝑖(𝐿)
1/𝑖 (2.7)

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆 ∈ (0, 1) with equality if and only if 𝐾 and 𝐿 are
homothetic. The multiplicative form states that

W𝑛−𝑖((1− 𝜆)𝐾 + 𝜆𝐿) ≥ W𝑛−𝑖(𝐾)1−𝜆W𝑛−𝑖(𝐿)
𝜆

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 with equality if and only if 𝐾 and 𝐿 are translates of each
other.
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The Minkowski inequality for quermassintegrals states that for 𝑖 ∈ {2, . . . , 𝑛},

W𝑛−𝑖(𝐾,𝐿)𝑖 ≥ W𝑛−𝑖(𝐾)𝑖−1W𝑛−𝑖(𝐿) (2.8)

for all𝐾,𝐿 ∈ 𝒦𝑛 of dimension at least 𝑖 with equality if and only if𝐾 and 𝐿 are homothetic.
The Alexandrov-Fenchel inequality states that

V(𝐾,𝐾, 𝒞)2 ≥ V(𝐾,𝐿, 𝒞)V(𝐿,𝐿, 𝒞)

for all 𝐾,𝐿 ∈ 𝒦𝑛 and 𝒞 = (𝐶𝑖+1, . . . , 𝐶𝑛), where 𝐶𝑖+1, . . . , 𝐶𝑛 ∈ 𝒦𝑛.

2.7 Crofton’s Intersection Formula

As references for this section, we cite [18,21].
As a consequence of Hadwiger’s characterization of rigid motion invariant, continuous

valuations, we obtain Crofton’s intersection formula, namely∫︁
A(𝑛,𝑘)

V𝑗(𝐾 ∩ 𝐸) 𝑑𝐸 =

[︀
𝑘
𝑗

]︀[︀
𝑛

𝑘−𝑗

]︀V𝑛+𝑗−𝑘(𝐾) (2.9)

for all 𝑗, 𝑘 ∈ {0, . . . , 𝑛} and 𝐾 ∈ 𝒦𝑛. In the special case where 𝑘 = 𝑗, we obtain∫︁
A(𝑛,𝑘)

V𝑘(𝐾 ∩ 𝐸) 𝑑𝐸 = V𝑛(𝐾). (2.10)

In the special case where 𝑗 = 0, we obtain∫︁
𝐴(𝑛,𝑘)

V0(𝐾 ∩ 𝐸) 𝑑𝐸 =
1[︀
𝑛
𝑘

]︀V𝑛−𝑘(𝐾). (2.11)
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Chapter 3

Mean Section Operators

In this chapter, we will introduce the mean section operator and centered mean section
operators, and ultimately derive a practical representation formula for these operators.

First, we want to give an intuition for mean section bodies. To that end, let 𝐾 ∈ 𝒦𝑛

and consider the space A(𝑛, 𝑘;𝐾) of all 𝑘-flats 𝐸 ∈ A(𝑛, 𝑘) that intersect 𝐾. Due to
its rigid motion invariance, the measure 𝜈𝑛𝑘 restricted to A(𝑛, 𝑘;𝐾) and normalized to
a probability measure, can be thought of as a uniform distribution on A(𝑛, 𝑘;𝐾). Let
𝐸1, 𝐸2, . . . ∈ A(𝑛, 𝑘;𝐾) be a sequence of independent uniform random 𝑘-flats, and define

𝐾𝑛 :=
1

𝑛
((𝐾 ∩ 𝐸1) + · · ·+ (𝐾 ∩ 𝐸𝑛)).

Then 𝐾𝑛, 𝑛 ∈ ℕ+, is a sequence of convex bodies that can be thought of as arithmetic
means (in the sense of Minkowski addition) of random sections of 𝐾. The mean section
body of 𝐾 can be thought of as the limit of the sequence (𝐾𝑛)𝑛∈ℕ+ . The formal definition
of mean section bodies, which was first made by P. Goodey and W. Weil in 1992, is as
follows:

Definition ([11, p. 420]). For 𝑘 ∈ {0, . . . , 𝑛}, we define the 𝑘-th mean section body 𝑀̃𝑘(𝐾)
of a convex body 𝐾 ∈ 𝒦𝑛 by

ℎ(𝑀̃𝑘(𝐾), 𝑢) :=

∫︁
A(𝑛,𝑘)

ℎ(𝐾 ∩ 𝐸, 𝑢) 𝑑𝐸, 𝑢 ∈ 𝕊.

and we call the map
𝑀̃𝑘 : 𝒦𝑛 → 𝒦𝑛

the 𝑘-th mean section operator

It is not immediately obvious that the mean section body is well-defined. However,
that follows from the continuity of intersections (cf. [21, Theorem 1.8.10]) and the fact
that convex bodies can be defined by means of support functions.
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In the cases where 𝑘 = 0 and 𝑘 = 𝑛, the 𝑘-th mean section operator 𝑀̃𝑘 operates in a
very simple way. Since A(𝑛, 𝑛) = {ℝ𝑛}, we have

𝑀̃𝑛(𝐾) = 𝐾.

Since A(𝑛, 0) = {{𝑥} | 𝑥 ∈ ℝ𝑛}, we have

𝑀̃0(𝐾) =

{︂∫︁
𝐾
𝑥 𝑑𝑥

}︂
if dim𝐾 = 𝑛 and 𝑀̃𝑜(𝐾) = {𝑜} if dim𝐾 < 𝑛.

For our purposes it will be more convenient to work with the centered versions of these
objects.

Definition. For 𝑘 ∈ {0, . . . , 𝑛}, we define the 𝑘-th centered mean section body 𝑀𝑘(𝐾) of
a convex body 𝐾 ∈ 𝒦𝑛 by

ℎ(𝑀𝑘(𝐾), 𝑢) := ℎ𝑜(𝑀̃𝑘(𝐾), 𝑢) =

∫︁
A(𝑛,𝑘)

ℎ𝑜(𝐾 ∩ 𝐸, 𝑢) 𝑑𝐸, 𝑢 ∈ 𝕊,

and we call the map
𝑀𝑘 : 𝒦𝑛 → 𝒦𝑛

the 𝑘-th centered mean section operator.

The mean section bodies and centered mean section bodies are obviously translates of
each other, namely

𝑀̃𝑘(𝐾) = 𝑀𝑘(𝐾) +
Γ(𝑘+1

2 )Γ(𝑛−𝑘+1
2 )√

𝜋Γ(𝑛+1
2 )

V𝑛−𝑘(𝐾)𝑠(𝐾)

for 𝑘 ∈ {0, . . . , 𝑛} and 𝐾 ∈ 𝒦𝑛, as was shown in [9, p. 165].

Lemma 3.1. For 𝑘 ∈ {1, . . . , 𝑛}, the 𝑘-th centered mean section operator 𝑀𝑘 is a continu-

ous, translation invariant, SO(𝑛)-equivariant Minkowski valuation homogeneous of degree

𝑛− 𝑘 + 1, that is

𝑀𝑘 ∈ MVal
SO(𝑛)
𝑛−𝑘+1.

Proof. The valuation property can be shown by an elementary computation, the translation
invariance is obvious, the SO(𝑛)-equivariance follows from the rigid motion invariance of
the measure 𝜈𝑛𝑘 on A(𝑛, 𝑘), the homogeneity follows from the homogeneity of 𝜈𝑛𝑘 , and the
continuity follows from the continuity of intersections (cf. [21, Theorem 1.8.10]).
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Example 3.2. Due to their SO(𝑛)-equivariance, we must have 𝑀𝑘(𝐵) = 𝑟(𝑀𝑘)𝐵 for some
radius 𝑟(𝑀𝑘) ≥ 0. It was shown in [13, Lemma 2.1] that

𝑀𝑘(𝐵) =
𝜅𝑛−𝑘+1

2

[︀
𝑘
1

]︀[︀
𝑛
1

]︀𝐵. (3.1)

As mentioned in the beginning of this chapter, we seek a practical representation for-
mula for the centered mean section operators. As was shown by P. Goodey and W. Weil
in 2014, the support function of the 𝑘-th centered mean section body can be expressed as

ℎ(𝑀𝑘, ·) = 𝑚𝑛,𝑘𝑆𝑛−𝑘+1(−𝐾, ·) * 𝑔𝑘, (3.2)

where 𝑔𝑘 denotes Berg’s functions related to the Christoffel problem and 𝑚𝑛,𝑘 is a constant
that will be computed explicitly. We will follow their proof for this formula which was given
in [13].

In Section 3.1, we will first prove a representation formula for polytopes by combining
two translational integral geometric formulas. Then, in Section 3.2, other than one might
expect, we will not directly apply an argument of density for all 𝑘 ∈ {1, . . . , 𝑛}, but only
for 𝑘 = 2 to obtain a general representation formula for the operator 𝑀2.

From there the idea is to express general mean sections in terms of mean sections with
planes. To that end, we will introduce so-called spherical lifting and projection operators
in Section 3.3 that will allow us to relate convex geometry in subspaces to convex geometry
in the ambient space. In Section 3.4, we will investigate how these operators interact with
Berg’s functions. Ultimately, we will derive the desired formula (3.2) by using spherical
liftings and projections as a bridge to connect mean section operators to Berg’s functions.

3.1 Mean Section Bodies of Polytopes

The objective of this section is to derive a formula for mean section bodies of polytopes
from two intersectional integral geometric formulas. First, we prove a general integral
geometric formula.

Proposition 3.3 ([10, Theorem 1]). For 𝑗 ∈ {0, . . . , 𝑛} and two convex bodies 𝐾,𝐿 ∈ 𝒦𝑛,∫︁
ℝ𝑛

V𝑗(𝐾∩(𝐿+𝑥)) 𝑑𝑥 =

[︂
𝑛

𝑗

]︂ 𝑛∑︁
𝑖=𝑗

(︂
𝑛

𝑖− 𝑗

)︂∫︁
A(𝑛,𝑛−𝑗)

V((𝐾∩𝐸)[𝑖−𝑗], (−𝐿)[𝑛+𝑗−𝑖]) 𝑑𝐸, (3.3)

with the convention that V(∅[0], 𝐶 [𝑛]) = V(𝐶 [𝑛], ∅[0]) = 0.
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Proof. Due to Crofton’s intersection formula (2.11) and Fubini’s theorem, we have∫︁
ℝ𝑛

V𝑗(𝐾 ∩ (𝐿+ 𝑥)) 𝑑𝑥 =

∫︁
ℝ𝑛

[︂
𝑛

𝑗

]︂ ∫︁
A(𝑛,𝑛−𝑗)

V0(𝐾 ∩ (𝐿+ 𝑥) ∩ 𝐸) 𝑑𝐸 𝑑𝑥

=

[︂
𝑛

𝑗

]︂ ∫︁
A(𝑛,𝑛−𝑗)

∫︁
ℝ𝑛

V0((𝐾 ∩ 𝐸) ∩ (𝐿+ 𝑥)) 𝑑𝑥 𝑑𝐸.

Observe that
{𝑥 ∈ ℝ𝑛 | (𝐾 ∩ 𝐸) ∩ (𝐿+ 𝑥) ̸= ∅} = (𝐾 ∩ 𝐸) + (−𝐿).

Since V0 is just the Euler characteristic, we obtain∫︁
ℝ𝑛

V𝑗(𝐾 ∩ (𝐿+ 𝑥)) 𝑑𝑥 =

[︂
𝑛

𝑗

]︂ ∫︁
A(𝑛,𝑛−𝑗)

V𝑛((𝐾 ∩ 𝐸) + (−𝐿)) 𝑑𝐸.

By the definition of mixed volumes,

V𝑛((𝐾 ∩ 𝐸) + (−𝐿)) =

𝑛+𝑗∑︁
𝑖=𝑗

(︂
𝑛

𝑖− 𝑗

)︂
V((𝐾 ∩ 𝐸)[𝑖−𝑗], (−𝐿)[𝑛+𝑗−𝑖]).

Since dim(𝐾 ∩ 𝐸) ≤ 𝑛− 𝑗 for 𝐸 ∈ A(𝑛, 𝑛− 𝑗), all terms for 𝑖 > 𝑛 vanish.

Corollary 3.4. For two convex bodies 𝐾,𝐿 ∈ 𝒦𝑛,∫︁
ℝ𝑛

V𝑛(𝐾 ∩ (𝐿+ 𝑥)) 𝑑𝑥 = V𝑛(𝐾)V𝑛(𝐿).

Proof. From (the proof of) Proposition 3.3 and the fact that 𝐴(𝑛, 0) is naturally isomorphic
to ℝ𝑛, it follows that∫︁

ℝ𝑛

V𝑛(𝐾 ∩ (𝐿+ 𝑥)) 𝑑𝑥 =

∫︁
ℝ𝑛

V𝑛((𝐾 ∩ {𝑥}) + (−𝐿)) 𝑑𝑥 =

∫︁
ℝ𝑛

1𝐾(𝑥)V𝑛(𝐿) 𝑑𝑥.

In order to prove a second translational integral geometric formula specifically for poly-
topes, we need to make some preparations. First, we want to give a description of the facial
structure of intersections of polytopes. To that end, we will make use of the following in-
tersectional description of faces of polytopes.

Lemma 3.5. If a polytope 𝑃 ∈ 𝒫𝑛 is given as a finite intersection of closed half-spaces

𝑃 =
⋂︁
𝑖∈𝐼

𝐻−
𝑖 ,

then its faces are precisely the empty face and the sets

𝑃 ∩
⋂︁
𝑖∈𝐽

𝐻𝑖, 𝐽 ⊆ 𝐼.

35



Proof. We may assume that 𝐼 ̸= ∅, 𝑃 is full-dimensional, and 𝑜 ∈ int𝑃 . Then, we may
also assume that 𝐻−

𝑖 = 𝐻−
𝑢𝑖,1

, where 𝑢𝑖 ∈ ℝ𝑛∖{𝑜} for 𝑖 ∈ 𝐼.
For a subset 𝐽 ⊆ 𝐼, we define

𝐹𝐽 := 𝑃 ∩
⋂︁
𝑖∈𝐽

𝐻−
𝑢𝑖,1

.

First, we show that 𝐹𝐽 is a face of 𝑃 . If 𝐹𝐽 ̸= ∅, we define 𝑢 := 1
|𝐽 |

∑︀
𝑖∈𝐽 𝑢𝑖. Clearly,

𝑃 ⊆ 𝐻−
𝑢,1. It is also easy to see that a vector 𝑥 ∈ 𝑃 satisfies 𝑥 ·𝑢 = 1 if and only if 𝑥 ·𝑢𝑖 = 1

for all 𝑖 ∈ 𝐽 . Hence, 𝐹𝐽 = 𝑃 ∩𝐻𝑢,1 is a face of 𝑃 .
For the other direction, let 𝐹 be a non-empty face of 𝑃 . Then there is some 𝑢 ∈ ℝ𝑛 and

𝛼 ∈ ℝ such that 𝑃 ⊆ 𝐻−
𝑢,𝛼 and 𝐹 = 𝑃 ∩𝐻𝑢,𝛼. Since 𝑃 is full-dimensional and 𝑜 ∈ int𝑃 ,

𝑢 ̸= 𝑜 and we may further assume that 𝛼 = 1. It follows that 𝑢 ∈ 𝑃 ∘ = co{𝑢𝑖 | 𝑖 ∈ 𝐼}, so
there is a non-empty subset 𝐽 ⊆ 𝐼 such that

𝑢 =
∑︁
𝑖∈𝐽

𝜆𝑖𝑢𝑖,
∑︁
𝑖∈𝐽

𝜆𝑖 = 1, and 𝜆𝑖 ∈ (0, 1], 𝑖 ∈ 𝐽.

It is now easy to see that a vector 𝑥 ∈ 𝑃 satisfies 𝑥 · 𝑢 = 1 if and only if 𝑥 · 𝑢𝑖 = 1 for all
𝑖 ∈ 𝐽 . Hence 𝐹 = 𝐹𝐽 .

Now we can describe the facial structure of the intersection of two polytopes. Intuitively,
one might expect that the 𝑗-faces of the intersection of two polytopes 𝑃 and 𝑃 ′ are precisely
the intersections of the 𝑖-faces of 𝑃 with the (𝑛+ 𝑗 − 𝑖)-faces of 𝑃 ′. The following lemma
states that for almost all translates of 𝑃 ′ that intersect 𝑃 , this is the case.

Lemma 3.6. Let 𝑃, 𝑃 ′ ∈ 𝒫𝑛 be two polytopes and let 𝑗 ∈ {0, . . . , 𝑛}. Then for almost all

𝑥 ∈ ℝ𝑛 for which 𝑃 ∩ (𝑃 ′ + 𝑥) ̸= ∅, the mapping

Υ𝑥 :

{︂ ⋃︀𝑛
𝑖=𝑗{(𝐹, 𝐹 ′) ∈ ℱ𝑖(𝑃 )×ℱ𝑛+𝑗−𝑖(𝑃

′) | 𝐹 ∩ (𝐹 ′ + 𝑥) ̸= ∅} → ℱ𝑗(𝑃 ∩ (𝑃 ′ + 𝑥))

(𝐹, 𝐹 ′) ↦→ 𝐹 ∩ (𝐹 ′ + 𝑥)

is a well-defined bijection.

Proof. For convenience, we use the notation 𝑃 ′
𝑥 := 𝑃 ′ + 𝑥, 𝐹 ′

𝑥 := 𝐹 ′ + 𝑥. Note that, as a
consequence of Lemma 3.5, the faces of 𝑃 ∩𝑃 ′

𝑥 (if non-empty) are precisely the intersections
of faces of 𝑃 with faces of 𝑃 ′

𝑥. Our strategy is now to define a set 𝑍 ⊆ ℝ𝑛 with 𝜆𝑛(𝑍) = 0
and then show that Υ𝑥 is a well-defined bijection for all 𝑥 ∈ ℝ𝑛∖𝑍 with 𝑃 ∩ 𝑃 ′

𝑥 ̸= ∅.
⊳ Define 𝐴 as the set of all 𝑥 ∈ ℝ𝑛 such that

• 𝑃 ∩ 𝑃 ′
𝑥 ̸= ∅, and

• for all faces 𝐹 ∈ ℱ(𝑃 ), 𝐹 ′ ∈ ℱ(𝑃 ′) for which 𝐹 ∩𝐹 ′
𝑥 ̸= ∅, it holds that int𝐹 ∩int𝐹 ′

𝑥 ̸=
∅, and that dim(𝐹 + 𝐹 ′

𝑥) = 𝑛.
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We claim that the set 𝑍 := {𝑥 ∈ ℝ𝑛 | 𝑃 ∩ 𝑃 ′
𝑥 ̸= ∅}∖𝐴 has Lebesgue measure zero. In

order to see this, take 𝐹 ∈ ℱ(𝑃 ), 𝐹 ′ ∈ ℱ(𝑃 ′) and observe that

{𝑥 ∈ ℝ𝑛 | 𝐹 ∩ 𝐹 ′
𝑥 ̸= ∅} = 𝐹 − 𝐹 ′.

Hence, the set

{𝑥 ∈ ℝ𝑛 | 𝐹 ∩ 𝐹 ′
𝑥 ̸= ∅, dim(𝐹 + 𝐹 ′

𝑥) < 𝑛} ⊆ aff 𝐹 + aff 𝐹 ′

is contained in a hyperplane and the set

{𝑥 ∈ ℝ𝑛 | 𝐹 ∩ 𝐹 ′
𝑥 ̸= ∅, int𝐹 ∩ int𝐹 ′ = ∅} = (𝐹 − 𝐹 ′)∖(int𝐹 − int𝐹 ′) = bd(𝐹 − 𝐹 ′)

is the relative boundary of a polytope. Since 𝑍 is the finite union of such sets, it has
Lebesgue measure zero.

⊳ Next, we show that for 𝑥 ∈ 𝐴, the mapping Υ𝑥 is a well-defined bijection. In order
to see the well-definedness, take 𝑖 ∈ {𝑗, . . . , 𝑛}, 𝐹 ∈ ℱ𝑖(𝑃 ) and 𝐹 ′ ∈ ℱ𝑛+𝑗−𝑖(𝑃

′) such that
𝐹 ∩ 𝐹 ′

𝑥 ̸= ∅. Then int𝐹 ∩ int𝐹 ′ ̸= ∅ and dim(𝐹 + 𝐹 ′
𝑥) = 𝑛. This implies that

dim(𝐹 ∩ 𝐹 ′
𝑥) = dim𝐹 + dim𝐹 ′ − dim(𝐹 + 𝐹 ′

𝑥) = 𝑖+ (𝑛+ 𝑗 − 𝑖)− 𝑛 = 𝑗,

and hence 𝐹 ∩ 𝐹 ′ ∈ ℱ𝑗(𝑃 ∩ 𝑃 ′
𝑥).

For showing surjectivity, take ̂︀𝐹 ∈ ℱ𝑗(𝑃 ∩ 𝑃 ′
𝑥). Then there are faces 𝐹 ∈ ℱ(𝑃 ),

𝐹 ′ ∈ ℱ(𝑃 ′) such that ̂︀𝐹 = 𝐹 ∩𝐹 ′
𝑥. Since 𝐹 ∩𝐹 ′

𝑥 ̸= ∅ it follows again that int𝐹 ∩ int𝐹 ′ ̸= ∅
and dim(𝐹 + 𝐹 ′) = 𝑛, implying that

dim𝐹 + dim𝐹 ′ = dim(𝐹 + 𝐹 ′
𝑥) + dim(𝐹 ∩ 𝐹 ′

𝑥) = 𝑛+ 𝑗.

Hence, 𝐹 ∈ ℱ𝑖(𝑃 ) and 𝐹 ′ ∈ ℱ𝑛+𝑗−𝑖(𝑃
′) for some 𝑖 ∈ {𝑗, . . . , 𝑛}.

For showing injectivity, take 𝐹, 𝐹 ∈ ℱ(𝑃 ) and 𝐹 ′, 𝐹 ′ ∈ ℱ(𝑃 ′) such that

𝐹 ∩ 𝐹 ′ = 𝐹 ∩ 𝐹 ′ = ̂︀𝐹 ∈ ℱ𝑗(𝑃 ∩ 𝑃 ′
𝑥).

Note that whenever 𝐾,𝐿 ∈ 𝒦𝑛 and int𝐾 ∩ int𝐿 ̸= ∅ then int𝐾 ∩ int𝐿 = int(𝐾 ∩ 𝐿).
Hence,

int𝐹 ∩ int𝐹 ′ = int𝐹 ′ ∩ int𝐹 ′ = int ̂︀𝐹 ̸= ∅.
In particular int𝐹 ∩ int𝐹 ′ ̸= ∅ and int𝐹 ∩ int𝐹 ′ ̸= ∅. However, this is only possible if
𝐹 = 𝐹 and 𝐹 ′ = 𝐹 ′.

We have already laid the basis for proving the desired integral representation formula
for mean sections of polytopes, but we need to introduce some notion of angle between
linear subspaces of ℝ𝑛.

37



Definition. Let 𝐸,𝐸′ be subspaces of ℝ𝑛 such that 𝐸 + 𝐸′ = ℝ𝑛. A tilting map for

(𝐸,𝐸′) is a linear map 𝑓 ∈ GL(𝑛) that
(i) acts as the identity on 𝐸, and

(ii) maps 𝐸⊥ isometrically onto 𝐸 ∩ (𝐸 ∩ 𝐸′)⊥.

Lemma 3.7. Let 𝐸,𝐸′ be subspaces of ℝ𝑛 such that 𝐸 + 𝐸′ = ℝ𝑛. Then there exists a

tilting map for (𝐸,𝐸′).
If 𝑓 is a tilting map for (𝐸,𝐸′) and 𝑓 is a tilting map for (𝐸,𝐸′) or (𝐸′, 𝐸), then

𝑓−1 ∘ 𝑓 is an isometry on ℝ𝑛.

Proof. Note that ℝ𝑛 admits the two decompositions

ℝ𝑛 = 𝐸 ⊕ 𝐸⊥ = 𝐸 ⊕ [𝐸′ ∩ (𝐸 ∩ 𝐸′)⊥],

where the first one is even an orthogonal decomposition. Since the subspaces 𝐸⊥ and
𝐸′∩ (𝐸∩𝐸′)⊥ have the same dimension, there exists a linear isometric bijection 𝑔 between
them. Then 𝑓 := id𝐸 ⊕ 𝑔 is clearly a tilting map for (𝐸,𝐸′).

If 𝑓, 𝑓 are both tilting maps for (𝐸,𝐸′), then 𝑓−1 ∘𝑓 maps each of the subspaces 𝐸 and
𝐸⊥ isometrically onto itself. Since these subspaces make up an orthogonal decomposition
of ℝ𝑛, the linear map 𝑓−1 ∘ 𝑓 is an isometry on ℝ𝑛.

Now we consider the case where 𝑓 is a tilting map for (𝐸,𝐸′) and 𝑓 is a tilting map
for (𝐸′, 𝐸). Note that we can decompose ℝ𝑛 further into

ℝ𝑛 = [𝐸 ∩ 𝐸′]⊕ [𝐸′ ∩ (𝐸 ∩ 𝐸′)⊥]⊕ 𝐸′⊥ = [𝐸 ∩ 𝐸′]⊕ [𝐸 ∩ (𝐸 ∩ 𝐸′)⊥]⊕ 𝐸⊥,

and these are both orthogonal decompositions. Obviously, 𝑓−1 ∘ 𝑓 maps 𝐸 ∩ 𝐸′ isometri-
cally onto itself. Moreover, 𝑓−1 ∘ 𝑓 maps 𝐸′ ∩ (𝐸 ∩ 𝐸′)⊥ isometrically onto 𝐸⊥ and 𝐸′⊥

isometrically onto 𝐸 ∩ (𝐸 ∩ 𝐸′)⊥. Hence, the map 𝑓−1 ∘ 𝑓 is an isometry on ℝ𝑛.

Definition. For two subspaces 𝐸,𝐸′ of ℝ𝑛 such that 𝐸 + 𝐸′ = ℝ𝑛, we define [𝐸,𝐸′] :=
|det 𝑓 |, where 𝑓 is a tilting map for (𝐸,𝐸′).

Due to the previous lemma, this is a consistent definition and [𝐸,𝐸′] = [𝐸′, 𝐸]. We can
now extend this notation to faces of polytopes. Also we introduce the notion of a common
exterior angle for pairs of faces and pairs of polytopes.

Definition. For 𝑃, 𝑃 ′ ∈ 𝒫𝑛, 𝐹 ∈ ℱ𝑖(𝑃 ), and 𝐹 ′ ∈ ℱ𝑗(𝑃
′), such that dim(𝐹 +𝐹 ′) = 𝑛, we

define [𝐹, 𝐹 ′] := [𝐸,𝐸′], where 𝐸 ∈ G(𝑛, 𝑖) is parallel to aff 𝐹 and 𝐸′ ∈ G(𝑛, 𝑗) is parallel
to aff 𝐹 ′.

For 𝑃, 𝑃 ′ ∈ 𝒫𝑛, 𝐹 ∈ ℱ(𝑃 ), and 𝐹 ′ ∈ ℱ(𝑃 ′), we define the common exterior angle as

𝛾(𝐹, 𝐹 ′, 𝑃, 𝑃 ′) := 𝛾(𝐹 ∩ (𝐹 ′ + 𝑥), 𝑃 ∩ (𝑃 ′ + 𝑥)),

where 𝑥 ∈ ℝ𝑛 is chosen in such a way that int𝐹 ∩ int𝐹 ′
𝑥 ̸= ∅.
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Moreover, for 𝑃 ∈ 𝒫𝑛, 𝐹 ∈ ℱ(𝑃 ) and 𝑢 ∈ 𝕊, we define

𝛾(𝐹, 𝑃, 𝑢) := 𝛾(𝐹, 𝐹 ′, 𝑃, 𝑃 ′),

where an 𝑛-dimensional polytope 𝑃 ′ ∈ 𝒫𝑛 and a facet 𝐹 ′ ∈ ℱ𝑛−1(𝑃
′) are chosen in such a

way that 𝑢 is an outer normal vector of 𝑃 ′ at every 𝑥 ∈ int𝐹 ′.

With these definitions and notations in place, we can formulate a translative integral
geometric formula for polytopes.

Proposition 3.8 ([21, Theorem 4.4.3] ). For two polytopes 𝑃, 𝑃 ′ ∈ 𝒫𝑛 and 𝑗 = 0, . . . , 𝑛,
we have∫︁

ℝ𝑛

V𝑗(𝑃 ∩ (𝑃 ′ + 𝑥)) 𝑑𝑥 =

𝑛∑︁
𝑖=𝑗

∑︁
𝐹∈ℱ𝑖(𝑃 )

𝐹 ′∈ℱ𝑛+𝑗−𝑖(𝑃
′)

𝛾(𝐹, 𝐹 ′, 𝑃, 𝑃 ′)[𝐹,𝐹 ′]V𝑖(𝐹 )V𝑛+𝑗−𝑖(𝐹
′). (3.4)

Proof. For convenience, we use the notation 𝑃 ′
𝑥 := 𝑃 ′ + 𝑥, 𝐹 ′

𝑥 := 𝐹 ′ + 𝑥. Applying the
representation of the intrinsic volumes of polytopes, the previous lemma, and the definition
of the common external angle, we obtain∫︁

ℝ𝑛

V𝑗(𝑃 ∩ 𝑃 ′
𝑥) 𝑑𝑥 =

∑︁
̂︀𝐹∈ℱ𝑗(𝑃∩𝑃 ′

𝑥)

∫︁
ℝ𝑛

𝛾( ̂︀𝐹 ,𝑃 ∩ 𝑃 ′
𝑥)V𝑗( ̂︀𝐹 ) 𝑑𝑥

=

𝑛∑︁
𝑖=𝑗

∑︁
𝐹∈ℱ𝑖(𝑃 )

𝐹 ′∈ℱ𝑛+𝑗−𝑖(𝑃
′)

∫︁
ℝ𝑛

𝛾(𝐹 ∩ 𝐹 ′
𝑥, 𝑃 ∩ 𝑃 ′

𝑥)V𝑗(𝐹 ∩ 𝐹 ′
𝑥) 𝑑𝑥

=

𝑛∑︁
𝑖=𝑗

∑︁
𝐹∈ℱ𝑖(𝑃 )

𝐹 ′∈ℱ𝑛+𝑗−𝑖(𝑃
′)

𝛾(𝐹, 𝐹 ′, 𝑃, 𝑃 ′)𝐼𝑗(𝐹,𝐹 ′),

where

𝐼𝑗(𝐹, 𝐹
′) :=

∫︁
ℝ𝑛

V𝑗(𝐹 ∩ 𝐹 ′
𝑥) 𝑑𝑥.

It remains to show that 𝐼𝑗(𝐹, 𝐹
′) = [𝐹,𝐹 ′]V𝑖(𝐹 )V𝑛+𝑗−𝑖(𝐹

′). To that end, let us fix
some 𝑖 ∈ {𝑗, . . . , 𝑛}, 𝐹 ∈ ℱ𝑖(𝑃 ), and 𝐹 ′ ∈ ℱ𝑛+𝑗−𝑖(𝑃

′). Since 𝐼𝑗(𝐹, 𝐹
′) is invariant under

translations of 𝐹 and 𝐹 ′, we may assume that 𝑜 ∈ int𝐹 ∩ int𝐹 ′.
In the case where dim(𝐹 + 𝐹 ′) < 𝑛, the set {𝑥 ∈ ℝ𝑛 | 𝐹 ∩ 𝐹 ′

𝑥 ̸= ∅} = 𝐹 − 𝐹 ′ ⊆ 𝐸 +𝐸′

has Lebesgue measure zero and so 𝐼𝑗(𝐹, 𝐹
′) = 0 = [𝐹,𝐹 ′]V𝑖(𝐹 )V𝑛+𝑗−𝑖(𝐹

′).
If dim(𝐹 + 𝐹 ′) = 𝑛, then 𝐸 + 𝐸′ = ℝ𝑛, where 𝐸 := lin𝐹 and 𝐸′ := lin𝐸′. Let us

further define three spaces 𝐸0 := 𝐸 ∩ 𝐸′, 𝐸1 := 𝐸 ∩ 𝐸⊥
0 , and 𝐸2 := 𝐸′ ∩ 𝐸⊥

0 . These
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make up an orthogonal decomposition of ℝ𝑛. Then, by applying a change of variables on
𝐼𝑗(𝐹, 𝐹

′) with respect to a tilting map for (𝐸,𝐸′), and Fubini’s theorem, we obtain

𝐼𝑗(𝐹, 𝐹
′) = [𝐹,𝐹 ′]

∫︁
𝐸2

∫︁
𝐸1

∫︁
𝐸0

V𝑗(𝐹 ∩ (𝐹 ′ + 𝑦0 + 𝑦1 + 𝑦2)) 𝑑𝑦0 𝑑𝑦1 𝑑𝑦2.

The inner integral can be rewritten in such a form that we can apply the translative formula
from Corollary 3.4 on (𝐹 − 𝑦1)∩𝐸0 and (𝐹 ′+ 𝑦1)∩𝐸0, considered as convex bodies in the
𝑗-dimensional Euclidean space 𝐸0:∫︁

𝐸0

V𝑗(𝐹 ∩ (𝐹 ′ + 𝑦0 + 𝑦1 + 𝑦2)) 𝑑𝑦0

=

∫︁
𝐸0

V𝑗((𝐹 − 𝑦1)⏟  ⏞  
∈𝐸0+𝐸1

∩ (𝐹 ′ + 𝑦0 + 𝑦2)⏟  ⏞  
∈𝐸0+𝐸2

) 𝑑𝑦0

=

∫︁
𝐸0

V𝑗(((𝐹 − 𝑦1) ∩ 𝐸0) ∩ ((𝐹 ′ + 𝑦0 + 𝑦2) ∩ 𝐸0)) 𝑑𝑦0

= V𝑗((𝐹 − 𝑦1) ∩ 𝐸0)V𝑗((𝐹
′ + 𝑦2) ∩ 𝐸0).

If we plug this into the iterated integral above, and apply Fubini’s theorem twice, we end
up with

𝐼𝑗(𝐹, 𝐹
′) = [𝐹,𝐹 ′]

∫︁
𝐸1

V𝑗((𝐹 − 𝑦1) ∩ 𝐸0) 𝑑𝑦1

∫︁
𝐸2

V𝑗((𝐹
′ + 𝑦2) ∩ 𝐸0) 𝑑𝑦2

= [𝐹,𝐹 ′]V𝑖(𝐹 )V𝑛+𝑗−𝑖(𝐹
′)

which completes the proof.

By combining the two translative integral geometric formulas (3.3) and (3.4), we can
now derive a representation formula for mean section bodies of polytopes.

Theorem 3.9 ([11, Theorem 2]). For 𝑘 ∈ {1, . . . , 𝑛} and a polytope 𝑃 ∈ 𝒫𝑛, there is a

vector 𝑤𝑘(𝑃 ) ∈ ℝ𝑛 such that

ℎ(𝑀𝑘(𝑃 ), 𝑢) =
1[︀
𝑛
𝑘

]︀ ∑︁
𝐹∈ℱ𝑛−𝑘+1(𝑃 )

𝛾(𝐹,𝑃,−𝑢)[𝐹, 𝑢⊥]V𝑛−𝑘+1(𝐹 ) + 𝑤𝑘(𝑃 ) · 𝑢, 𝑢 ∈ 𝕊.

Proof. Let 𝑃 ′ ∈ 𝒫𝑛 be another polytope. Then applying both translative formulas from
Proposition 3.3 and Corollary 3.4 to 𝑃 and −𝑃 ′ gives

𝑛∑︁
𝑖=𝑗

[︂
𝑛

𝑗

]︂(︂
𝑛

𝑖− 𝑗

)︂∫︁
A(𝑛,𝑛−𝑗)

V((𝑃 ∩ 𝐸)[𝑖−𝑗], (𝑃 ′)[𝑛+𝑗−𝑖]) 𝑑𝐸

=

𝑛∑︁
𝑖=𝑗

∑︁
𝐹∈ℱ𝑖(𝑃 )

𝐹 ′∈ℱ𝑛+𝑗−𝑖(𝑃
′)

𝛾(𝐹,−𝐹 ′, 𝑃,−𝑃 ′)[𝐹,−𝐹 ′]V𝑖(𝐹 )V𝑛+𝑗−𝑖(𝐹
′).
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Observe that the the 𝑖-th summands of these sums have homogeneity (𝑖, 𝑛 + 𝑗 − 𝑖) each,
and thus must coincide. Choosing 𝑗 := 𝑛− 𝑘 and 𝑖 := 𝑛− 𝑘 + 1, we obtain

𝑛

∫︁
A(𝑛,𝑘)

V(𝑃 ∩ 𝐸,−𝑃 ′, . . . ,−𝑃 ′) 𝑑𝐸

=
1[︀
𝑛
𝑘

]︀ ∑︁
𝐹∈ℱ𝑛−𝑘+1(𝑃 )
𝐹 ′∈ℱ𝑛−1(𝑃 ′)

𝛾(𝐹,−𝐹 ′, 𝑃,−𝑃 ′)[𝐹,−𝐹 ′]V𝑛−𝑘+1(𝐹 )V𝑛−1(𝐹
′)

=

∫︁
𝕊

1[︀
𝑛
𝑘

]︀ ∑︁
𝐹∈ℱ𝑛−𝑘+1(𝑃 )

𝛾(𝐹, 𝑃,−𝑢)[𝐹, 𝑢⊥]V𝑛−𝑘+1(𝐹 ) 𝑑𝑆𝑛−1(𝑃
′, 𝑢).

Integrating the support function of 𝑀𝑘(𝑃 ) with respect to the surface area measure of 𝑃 ′,
applying Fubini’s theorem, and applying the formula from above then yields∫︁

𝕊
ℎ(𝑀𝑘(𝑃 ), 𝑢) 𝑑𝑆𝑛−1(𝑃

′, 𝑢)

=

∫︁
𝕊

∫︁
A(𝑛,𝑘)

ℎ(𝑃 ∩ 𝐸, 𝑢) 𝑑𝐸 𝑑𝑆𝑛−1(𝑃
′, 𝑢)

=

∫︁
A(𝑛,𝑘)

∫︁
𝕊
ℎ(𝑃 ∩ 𝐸, 𝑢) 𝑑𝑆𝑛−1(𝑃

′, 𝑢) 𝑑𝐸

= 𝑛

∫︁
A(𝑛,𝑘)

V(𝑃 ∩ 𝐸,𝑃 ′, . . . , 𝑃 ′) 𝑑𝐸

=

∫︁
𝕊

1[︀
𝑛
𝑘

]︀ ∑︁
𝐹∈ℱ𝑛−𝑘+1(𝑃 )

𝛾(𝐹, 𝑃,−𝑢)[𝐹, 𝑢⊥]V𝑛−𝑘+1(𝐹 ) 𝑑𝑆𝑛−1(𝑃
′, 𝑢).

Because the choice of 𝑃 ′ ∈ 𝒫𝑛 was arbitrary and the space of surface area measures of
polytopes is dense in M𝑜(𝕊), the claim follows.

It can be shown that in fact, 𝑤𝑘(𝑃 ) = 𝑜. However, this is not necessary for our further
reasoning.

3.2 Sections with Planes

From the description of mean section bodies of polytopes we can directly derive a de-
scription of 2-nd mean section bodies of general convex bodies. This is the content of the
following theorem.

Theorem 3.10 ([11, Corollary 2]). For every 𝐾 ∈ 𝒦𝑛,

ℎ(𝑀2(𝐾), 𝑢) =
1

2𝜋(𝑛− 1)

∫︁
𝕊
(𝜋 − arccos(𝑢 · 𝑣))

√︀
1− (𝑢 · 𝑣)2 𝑑𝑆𝑛−1(−𝐾, 𝑣) (3.5)
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for all 𝑢 ∈ 𝕊.

Proof. This follows immediately from Theorem 3.9 and the description of the surface area
measure of polytopes given in (2.2) by an argument of density and continuity. Note that
we do not need the information that 𝑤𝑘(𝑃 ) = 𝑜 since both sides of the stated formula have
no linear component.

3.3 Spherical Liftings and Projections

We aim to derive a formula for 𝑀𝑘(𝐾) from the formula (3.5) for 𝑀2(𝐾), that is, to
express general mean sections in terms of mean sections with planes. In order to do so,
we need to relate convex geometry of subspaces to convex geometry of the ambient space.
The technical tools to manage this are provided by so-called weighted spherical projections
and liftings, which are the objects of investigation in this section.

Definition. For 𝑘 ∈ {1, . . . , 𝑛}, 𝐸 ∈ G(𝑛, 𝑘), and 𝑢 ∈ 𝕊, we denote the (𝑛−𝑘)-dimensional
half-sphere induced by 𝐸 and 𝑢 as

ℍ(𝐸, 𝑢) := {𝑣 ∈ 𝕊∖𝐸⊥ | pr𝐸𝑣 = 𝑢}.
Definition ( [16, Section 3.3]). For 𝑘 ∈ {1, . . . , 𝑛}, 𝐸 ∈ G(𝑛, 𝑘), and 𝑚 ≥ 1 − 𝑘, the
𝑚-weighted spherical projection operator 𝜋𝐸,𝑚 acts on a continuous function 𝑓 ∈ C(𝕊) by

(𝜋𝐸,𝑚𝑓)(𝑢) :=

∫︁
ℍ(𝐸,𝑢)

𝑓(𝑣)(𝑢 · 𝑣)𝑘+𝑚−1 𝑑𝑣, 𝑢 ∈ 𝕊(𝐸).

Lemma 3.11. For 𝑘 ∈ {1, . . . , 𝑛}, 𝐸 ∈ G(𝑛, 𝑘), and 𝑚 ≥ 1− 𝑘,

𝜋𝐸,𝑚 : C(𝕊) → C(𝕊(𝐸))

is a bounded linear operator.

Proof. Let 𝑓 ∈ C(𝕊) and 𝜗 ∈ SO(𝑘,𝐸⊥) ∼= SO(𝐸). Then, using that pr𝐸(𝜗𝑣) = 𝜗pr𝐸𝑣 for
all 𝑣 ∈ 𝕊∖𝐸⊥, we obtain

(𝜋𝐸,𝑚𝑓)(𝜗𝑢) =

∫︁
ℍ(𝐸,𝜗𝑢)

𝑓(𝑣)(𝜗𝑢 · 𝑣)𝑘+𝑚−1 𝑑𝑣 =

∫︁
𝜗ℍ(𝐸,𝑢)

𝑓(𝑣)(𝜗𝑢 · 𝑣)𝑘+𝑚−1 𝑑𝑣

=

∫︁
ℍ(𝐸,𝑢)

𝑓(𝜗𝑣)(𝜗𝑢 · 𝜗𝑣)𝑘+𝑚−1 𝑑𝑣 =

∫︁
ℍ(𝐸,𝑢)

𝑓(𝜗𝑣)(𝑢 · 𝑣)𝑘+𝑚−1 𝑑𝑣

for 𝑢 ∈ 𝕊(𝐸). It follows that

|(𝜋𝐸𝑚𝑓)(𝜗𝑢)− (𝜋𝐸,𝑚𝑓)(𝑢)| ≤
∫︁
ℍ(𝐸,𝑢)

|𝑓(𝜗𝑣)− 𝑓(𝑣)| 𝑑𝑣 ≤ 𝜔𝑛−𝑘−1

2
sup
𝑣∈𝕊

|𝑓(𝜗𝑣)− 𝑓(𝑣)| .
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Since 𝑓 is uniformly continuous on 𝕊, the right hand side tends to zero for 𝜗 → idSO(𝐸).
This shows that 𝜋𝐸,𝑚𝑓 ∈ C(𝕊(𝐸)).

The linearity of 𝜋𝐸,𝑚 is obvious. Since

‖𝜋𝐸,𝑚𝑓‖C(𝕊(𝐸)) ≤ sup
𝑢∈𝕊(𝐸)

∫︁
ℍ(𝐸,𝑢)

|𝑓(𝑣)| 𝑑𝑣 ≤ 𝜔𝑛−𝑘−1

2
‖𝑓‖C(𝕊),

it follows that 𝜋𝐸,𝑚 is a bounded linear operator.

Definition ([16, Section 3.3]). For 𝑘 ∈ {0, . . . , 𝑛}, 𝐸 ∈ G(𝑛, 𝑘), and 𝑚 ≥ 1−𝑘, the adjoint
operator

𝜋*
𝐸,𝑚 : M(𝕊(𝐸)) → M(𝕊)

of 𝜋𝐸,𝑚 is called the 𝑚-weighted spherical lifting operator.

Due to the previous lemma, the 𝑚-weighted spherical lifting operator is a continuous
linear operator with respect to the involved weak* topologies. In order to describe its
action on continuous functions, we need the following integration formula for the unit
sphere, which can easily be proven using spherical coordinates.

Lemma 3.12 ( [27, Lemma 2.1]). For 𝑘 ∈ {1, . . . , 𝑛}, 𝐸 ∈ G(𝑛, 𝑘) and an integrable

function 𝑓 : 𝕊 → ℝ, we have∫︁
𝕊
𝑓(𝑢) 𝑑𝑢 =

∫︁
𝕊(𝐸)

∫︁
ℍ(𝐸,𝑢)

𝑓(𝑣)(𝑢 · 𝑣)𝑘−1 𝑑𝑣 𝑑𝑢. (3.6)

Lemma 3.13. Let 𝑘 ∈ {1, . . . , 𝑛}, 𝐸 ∈ G(𝑛, 𝑘), and 𝑚 ≥ 1− 𝑘.
(i) For 𝑓 ∈ C(𝕊(𝐸)), we have

(𝜋*
𝐸,𝑚𝑓)(𝑢) = ‖𝑢|𝐸‖𝑚𝑓(pr𝐸𝑢), 𝑢 ∈ 𝕊∖𝐸⊥. (3.7)

(ii) If 𝑚 > 0, then
𝜋*
𝐸,𝑚 : C(𝕊(𝐸)) → C(𝕊)

is a bounded linear operator.

Proof. For all 𝑓 ∈ C(𝕊(𝐸)) and 𝑔 ∈ C(𝕊), we have

⟨𝜋*
𝐸,𝑚𝑓, 𝑔⟩ = ⟨𝑓, 𝜋𝐸,𝑚𝑔⟩ =

∫︁
𝕊

∫︁
ℍ(𝐸,𝑢)

𝑓(𝑢)𝑔(𝑣)(𝑢 · 𝑣)𝑘+𝑚−1 𝑑𝑣 𝑑𝑢

=

∫︁
𝕊

∫︁
ℍ(𝐸,𝑢)

‖𝑣|𝐸‖𝑚𝑓(pr𝐸𝑣)𝑔(𝑣)(𝑢 · 𝑣)𝑘−1 𝑑𝑣 𝑑𝑢 =

∫︁
𝕊
‖𝑢|𝐸‖𝑚𝑓(pr𝐸𝑢)𝑔(𝑢) 𝑑𝑢

due to (3.6). This shows that (3.7) holds almost everywhere. Since ‖·|𝐸‖𝑚𝑓(pr𝐸 ·) is
well-defined and continuous on 𝕊∖𝐸⊥, we obtain (3.7).

If 𝑚 > 0, then ‖·|𝐸‖𝑚𝑓(pr𝐸 ·) extends to a continuous function on 𝕊 and (3.7) yields
‖𝜋*

𝐸,𝑚𝑓‖C(𝕊) ≤ ‖𝑓‖C(𝕊(𝐸)).
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A direct consequence of (3.7) is that for a convex body 𝐾 ∈ 𝒦𝑘(𝐸) ⊆ 𝒦𝑛, we have

ℎ(𝐾, ·) = 𝜋*
𝐸,1ℎ

𝐸(𝐾, ·),

where ℎ𝐸(𝐾, ·) denotes the support function of 𝐾 relative to 𝐸.
We will now use the previous lemma on spherical liftings to obtain via duality infor-

mation on spherical projections. To that end, define the following family of subspaces of
M(𝕊).

Definition. For 1− 𝑘 ≤ 𝑚 ≤ 0, we define

M𝐸,𝑚(𝕊) :=

{︃
𝜇 ∈ M(𝕊)

⃒⃒⃒⃒
⃒ |𝜇| (𝕊(𝐸⊥)) = 0,

∫︁
𝕊∖𝐸⊥

‖𝑢|𝐸‖𝑚 𝑑 |𝜇| (𝑢) < +∞.

}︃

For 𝑚 > 0, we define M𝐸,𝑚(𝕊) := M(𝕊).

If 1− 𝑘 ≤ 𝑚 ≤ 0, 𝜇 ∈ M𝐸,𝑚(𝕊), and 𝑓 ∈ C(𝕊(𝐸)), then due to (3.7), we have

⃒⃒⟨𝜋*
𝐸,𝑚𝑓, 𝜇⟩⃒⃒ = ⃒⃒⃒⃒

⃒
∫︁
𝕊∖𝐸⊥

‖𝑢|𝐸‖𝑚𝑓(pr𝐸𝑢) 𝑑𝜇(𝑢)

⃒⃒⃒⃒
⃒ ≤ ‖𝑓‖C(𝕊(𝐸))

∫︁
𝕊∖𝐸⊥

‖𝑢|𝐸‖𝑚 𝑑 |𝜇| (𝑢).

Hence, for 𝑚 ≥ 1− 𝑘, due to the previous lemma, the 𝑚-weighted spherical projection
operator extends to a linear operator

𝜋𝐸,𝑚 : M𝐸,𝑚(𝕊) → M(𝕊(𝐸)),

⟨𝑓, 𝜋𝐸,𝑚𝜇⟩𝕊(𝐸) := ⟨𝜋*
𝐸,𝑚𝑓, 𝜇⟩𝕊, 𝑓 ∈ C(𝕊(𝐸)).

For 𝑚 > 0, we even obtain a bounded linear operator

𝜋𝐸,𝑚 : M(𝕊) → M(𝕊(𝐸))

with respect to the involved total variation norms.
From operators that are called liftings and projections, one might intuitively expect

some associativity property in the sense that projecting onto a subspace and then projecting
from this subspace onto a smaller subspace is the same as projecting onto this smaller
subspace directly. The following lemma states that this intuitive expectation is indeed met
by spherical lifting and projection operators.

Lemma 3.14 ([16, Lemma 3.12]). Let 0 < 𝑘 ≤ 𝑘′ ≤ 𝑛, 𝐸′ ∈ G(𝑛, 𝑘′), 𝐸 ∈ G(𝐸′, 𝑘), and
𝑚 ≥ 1− 𝑘.
(i) If 𝜇 ∈ M𝐸,𝑚(𝕊), then also 𝜇 ∈ M𝐸′,𝑚(𝕊).
(ii) If 𝜇 ∈ M𝐸′,𝑚(𝕊) and 𝜋𝐸′,𝑚𝜇 ∈ M𝐸,𝑚(𝕊(𝐸′)), then also 𝜇 ∈ M𝐸,𝑚(𝕊) and

𝜋𝐸′
𝐸,𝑚𝜋𝐸′,𝑚𝜇 = 𝜋𝐸,𝑚𝜇. (3.8)
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(iii) If 𝜇 ∈ M(𝕊(𝐸)), then
𝜋*
𝐸′,𝑚(𝜋𝐸′

𝐸,𝑚)*𝜇 = 𝜋*
𝐸,𝑚𝜇. (3.9)

Here and in the following, 𝜋𝐸′
𝐸,𝑚 : M𝐸,𝑚(𝕊(𝐸′)) → M(𝕊(𝐸)) denotes the 𝑚-weighted spher-

ical projection operator relative to 𝐸′.

Proof. We start with proving (iii). For all 𝑓 ∈ C(𝕊(𝐸)) and 𝑢 ∈ 𝕊∖𝐸′⊥, we have

(𝜋*
𝐸′,𝑚(𝜋𝐸′

𝐸,𝑚)*𝑓)(𝑢) = ‖𝑢|𝐸‖𝑚((𝜋𝐸′
𝐸,𝑚)*𝑓)(pr𝐸′𝑢)

= ‖𝑢|𝐸‖𝑚‖(pr𝐸′𝑢)|𝐸‖𝑚𝑓(pr𝐸(pr𝐸′𝑢)) = ‖𝑢|𝐸‖𝑚𝑓(pr𝐸𝑢) = (𝜋*
𝐸,𝑚𝑓)(𝑢),

so (3.9) holds on C(𝕊(𝐸)). All of the spherical liftings involved are continuous with respect
to the 𝑤*-topologies involved and C(𝕊(𝐸)) is dense in M(𝕊(𝐸)) with respect to the 𝑤*-
topology, hence (3.9) follows.

Next, we show (ii). To that end, let 𝜇 ∈ M𝐸′𝑚(𝕊) such that 𝜋𝐸′,𝑚𝜇 ∈ M𝐸,𝑚(𝕊(𝐸′)).
For an arbitrary 𝑓 ∈ C(𝕊(𝐸)), we can apply (3.9) to obtain

⟨𝑓, 𝜋𝐸′
𝐸,𝑚𝜋𝐸′,𝑚𝜇⟩𝕊(𝐸) = ⟨(𝜋𝐸′

𝐸,𝑚)*𝑓, 𝜋𝐸′,𝑚𝜇⟩𝕊(𝐸′)

= ⟨𝜋*
𝐸′,𝑚(𝜋𝐸′

𝐸,𝑚)*𝑓, 𝜇⟩𝕊
= ⟨𝜋*

𝐸,𝑚𝑓, 𝜇⟩𝕊
=

∫︁
𝕊
‖𝑢|𝐸‖𝑚𝑓(pr𝐸𝑢) 𝑑𝜇(𝑢).

In particular, the integral in the last line exists for all 𝑓 ∈ C(𝕊(𝐸)). If 𝑚 ≤ 0, this shows
that 𝜇 ∈ M𝐸,𝑚(𝕊). If 𝑚 > 0, this is clear anyway. In both cases, we obtain

⟨𝑓, 𝜋𝐸′
𝐸,𝑚𝜋𝐸′,𝑚𝜇⟩𝕊(𝐸) = ⟨𝜋*

𝐸,𝑚𝑓, 𝜇⟩𝕊 = ⟨𝑓, 𝜋𝐸,𝑚𝜇⟩𝕊(𝐸)

for all 𝑓 ∈ C(𝕊(𝐸)), proving (3.8).
Lastly, we show (i). The claim is trivial for 𝑚 > 0. Thus, we consider some 𝜇 ∈

M𝐸,𝑚(𝕊) for 𝑚 ≤ 0. Then |𝜇| (𝕊(𝐸′⊥)) ≤ |𝜇| (𝕊(𝐸⊥)) = 0 due to the monotonicity of |𝜇|,
and∫︁

𝕊∖𝐸′⊥
‖𝑢|𝐸′‖𝑚 𝑑 |𝜇| (𝑢) =

∫︁
𝕊∖𝐸⊥

‖𝑢|𝐸′‖𝑚 𝑑 |𝜇| (𝑢) ≤
∫︁
𝕊∖𝐸⊥

‖𝑢|𝐸‖𝑚 𝑑 |𝜇| (𝑢) < +∞.

Hence, 𝜇 ∈ M𝐸′,𝑚(𝕊).

Area measures of convex bodies are non-intrinsic in the sense that for a convex body
𝐾 lying in a proper subspace 𝐸 ⊆ ℝ𝑛, its 𝑗-tharea measures 𝑆𝐸

𝑗 (𝐾, ·) relative to 𝐸 in
general does not coincide with its 𝑗-th area measures 𝑆𝑗(𝐾, ·) relative to the ambient space.
The following lemma shows how the area measures 𝑆𝐸

𝑗 (𝐾, ·) and 𝑆𝑗(𝐾, ·) are related via
weighted spherical liftings.
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Lemma 3.15 ([16, Lemma 3.15]). Let 𝑘 ∈ {1, . . . , 𝑛}, 𝐸 ∈ G(𝑛, 𝑘), 𝐾 ∈ 𝒦𝑘(𝐸), and
𝑗 ∈ {0, . . . , 𝑘 − 1}. Then

𝑆𝑗(𝐾, ·) =
(︀
𝑘−1
𝑗

)︀(︀
𝑛−1
𝑗

)︀𝜋*
𝐸,−𝑗𝑆

𝐸
𝑗 (𝐾, ·). (3.10)

Proof. Since 𝑆𝑗(𝐾, ·) and 𝑆𝐸
𝑗 (𝐾, ·) depend both continuously on 𝐾 ∈ 𝒦(𝐸) with respect

to the weak* topology and 𝜋*
𝐸,−𝑗 : M(𝕊(𝐸)) → M(𝕊) is continuous with respect to the

weak* topologies involved, it suffices to prove the claim for polytopes.
In order to do so, let 𝑃 ∈ 𝒫(𝐸) and note that

𝑆𝐸
𝑗 (𝑃, ·) =

𝑘𝜅𝑘−𝑗(︀
𝑘
𝑗

)︀ ∑︁
𝐹∈ℱ𝑗(𝑃 )

ℋ𝑘−𝑗−1|𝑁(𝐸;𝐹,𝑃 )

𝜔𝑘−𝑗
V𝑗(𝐹 )

and

𝑆𝑗(𝑃, ·) = 𝑛𝜅𝑛−𝑗(︀
𝑛
𝑗

)︀ ∑︁
𝐹∈ℱ𝑗(𝑃 )

ℋ𝑛−𝑗−1|𝑁(𝐹,𝑃 )

𝜔𝑛−𝑗
V𝑗(𝐹 ),

where 𝑁(𝐸;𝐹, 𝑃 ) denotes the normal cone of the face 𝐹 ∈ ℱ𝑗(𝑃 ) relative to 𝐸. Note that
𝑁(𝐹,𝑃 ) = 𝑁(𝐸;𝐹,𝑃 ) + 𝐸⊥.

We define 𝐸′ := lin𝑁(𝐸;𝐹, 𝑃 ) ⊆ 𝐸. Then for any 𝐹 ∈ ℱ𝑗(𝑃 ) and 𝑓 ∈ C(𝕊), we have

⟨𝑓, 𝜋*
𝐸,−𝑗(ℋ𝑘−𝑗−1|𝑁(𝐸;𝐹,𝑃 ))⟩𝕊 =

∫︁
𝑁(𝐸;𝐹,𝑃 )

(𝜋𝐸,−𝑗𝑓)(𝑣) 𝑑ℋ𝑘−𝑗−1(𝑣)

=

∫︁
𝕊(𝐸′)

(𝜋𝐸,−𝑗𝑓)(𝑣)1𝑁(𝐸;𝐹,𝑃 )(𝑣) 𝑑𝑣

=

∫︁
𝕊(𝐸′)

∫︁
ℍ(𝐸,𝑣)

𝑓(𝑦)1𝑁(𝐸;𝐹,𝑃 )(𝑣)(𝑣 · 𝑦)𝑘−𝑗−1 𝑑𝑦 𝑑𝑣

=

∫︁
𝕊(𝐸′)

∫︁
ℍ(𝐸,𝑣)

𝑓(𝑦)1𝑁(𝐹,𝑃 )(𝑦)(𝑣 · 𝑦)𝑘−𝑗−1 𝑑𝑦 𝑑𝑣.

On the other hand,

⟨𝑓,ℋ𝑛−𝑗−1|𝑁(𝐹,𝑃 )⟩𝕊 =

∫︁
𝑁(𝐹,𝑃 )

𝑓(𝑢) 𝑑ℋ𝑛−𝑗−1(𝑢)

=

∫︁
𝕊(𝐸′⊕𝐸⊥)

𝑓(𝑣)1𝑁(𝐹,𝑃 )(𝑣) 𝑑𝑣

=

∫︁
𝕊(𝐸′)

∫︁
ℍ(𝐸′⊕𝐸⊥;𝐸′,𝑣)

𝑓(𝑦)1𝑁(𝐹,𝑃 )(𝑦)(𝑣 · 𝑦)𝑘−𝑗−1 𝑑𝑦 𝑑𝑣,

where ℍ(𝐸′ ⊕ 𝐸⊥;𝐸′, 𝑣) := {𝑦 ∈ 𝕊(𝐸′ ⊕ 𝐸⊥)∖𝐸⊥ | pr𝐸𝑦 = 𝑣}. It is easy to see that
ℍ(𝐸′ ⊕ 𝐸⊥;𝐸′, 𝑣) = ℍ(𝐸, 𝑣) for every 𝑣 ∈ 𝕊(𝐸′). Then the statement follows from the
linearity of 𝜋*

𝐸,−𝑗 .
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The following lemma achieves for mean section bodies what the previous one did for
area measures of convex bodies. The case where 𝑗 = 𝑛−𝑘+2 will be of particular interest
for us, since it directly relates the 𝑘-th mean section body to the 2-nd mean section body
relative to a subspace.

Lemma 3.16 ( [13, Lemma 3.3]). If 𝑗 ∈ {0, . . . , 𝑛}, 𝐸 ∈ A(𝑛, 𝑗), 𝐶 ∈ 𝒦𝑗(𝐸), 𝑘 ∈
{𝑛− 𝑗, . . . , 𝑛}, then

ℎ(𝑀𝑘(𝐶), 𝑢) =

[︀
𝑘

𝑘+𝑗−𝑛

]︀[︀
𝑛
𝑗

]︀ [𝜋*
𝐸,1ℎ(𝑀

𝐸
𝑘+𝑗−𝑛(𝐶), ·)](𝑢), (3.11)

where 𝑀𝐸
𝑘+𝑗−𝑛(𝐶) denotes the (𝑘 + 𝑗 − 𝑛)-th centered mean section body of 𝐶 relative to

𝐸.

Proof. Due to (1.3), we have

ℎ(𝑀𝑘(𝐶), 𝑢) =

∫︁
A(𝑛,𝑘)

ℎ𝑜(𝐶 ∩ 𝐹, 𝑢) 𝑑𝐹

=

∫︁
A(𝑛,𝑘)

ℎ𝑜(𝐶 ∩ (𝐸 ∩ 𝐹 ), 𝑢) 𝑑𝐹

=

[︀
𝑘

𝑘+𝑗−𝑛

]︀[︀
𝑛
𝑗

]︀ ∫︁
A(𝐸,𝑘+𝑗−𝑛)

ℎ𝑜(𝐶 ∩ 𝐹 ) 𝑑𝐹

=

[︀
𝑘

𝑘+𝑗−𝑛

]︀[︀
𝑛
𝑗

]︀ [𝜋*
𝐸,1ℎ(𝑀

𝐸
𝑘+𝑗−𝑛(𝐶), ·)](𝑢).

The following lemma entails that weighted spherical projections of linear functions are
again linear functions.

Lemma 3.17 ([13, Lemma 2.3]). Let 𝑘 ∈ {1, . . . , 𝑛}, 𝐸 ∈ G(𝑛, 𝑘), and 𝑚 ≥ 1− 𝑘. Then
for every 𝑢 ∈ 𝕊 and 𝑣 ∈ 𝕊(𝐸), we have

[𝜋𝐸,𝑚(𝑢 · .)](𝑣) = 𝜔𝑛+𝑚+1

𝜔𝑘+𝑚+1
𝑢 · 𝑣 =

𝜔𝑛+𝑚+1

𝜔𝑘+𝑚+1
‖𝑢|𝐸‖pr𝐸𝑢 · 𝑣.

Proof. We fix 𝑚 ≥ 1 − 𝑘 and prove the statement by a downward induction on 𝑘 ∈
{1−𝑚, . . . , 𝑛}.

The base case, where 𝑘 = 𝑛, is trivial.
For the induction step, let 𝑘 > 1 −𝑚 and 𝐸 ∈ G(𝑛, 𝑛 − 𝑘 − 1). Then we can choose

𝐸′ ∈ G(𝑛, 𝑘) and 𝑢0 ∈ 𝕊(𝐸′) such that 𝐸 = 𝐸′ ∩ 𝑢⊥0 . By our induction hypothesis,
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[𝜋𝐸′,𝑚(𝑢 · .)](𝑣) = 𝑐𝑛,𝑘𝑢 · 𝑣, where 𝑐𝑛,𝑘 := 𝜔𝑛+𝑚+1

𝜔𝑘+𝑚+1
. Then Lemma 3.14 (ii) yields

[𝜋𝐸,𝑚(𝑢 · .)](𝑣) = [𝜋𝐸′
𝐸,𝑚𝜋𝐸′,𝑚(𝑢 · .)](𝑣)

= 𝑐𝑛,𝑘[𝜋
𝐸′
𝐸,𝑚(𝑢 · .)](𝑣)

= 𝑐𝑛,𝑘

∫︁
ℍ(𝐸′;𝐸,𝑣)

(𝑢 · 𝑦)(𝑣 · 𝑦)𝑘+𝑚−2 𝑑𝑦

= 𝑐𝑛,𝑘

∫︁ 1

−1
(𝑡𝑢 · 𝑢0 +

√︀
1− 𝑡2𝑢 · 𝑣)(1− 𝑡2)(𝑘+𝑚−3)/2 𝑑𝑡

= 𝑐𝑛,𝑘

∫︁ 1

−1
(1− 𝑡2)(𝑘+𝑚−4)/2 𝑑𝑡 𝑢 · 𝑣.

The fact that
∫︀ 1
−1(1− 𝑡2)(𝑘+𝑚−4)/2 𝑑𝑡 =

𝜔𝑘+𝑚+1

𝜔𝑘+𝑚
concludes the argument.

We now combine the concepts of weighted spherical lifting and projection operators to
obtain a new kind of operator. Imagine taking a function 𝑓 ∈ C(𝕊), for every 𝑘-dimensional
subspace 𝐸 projecting it onto C(𝕊(𝐸)), lifting it back up to C(𝕊), and then averaging all
of these lifted projections over 𝐸 ∈ G(𝑛, 𝑘). This is essentially the idea of the following
definition:

Definition ([16]). For 𝑘 ∈ {1, . . . , 𝑛}, 𝐸 ∈ G(𝑛, 𝑘), 𝑚 > 0, and 𝑗 ≥ 1− 𝑘, the mean lifted

projection operator 𝜋
[𝑘]
𝑚,𝑗 acts on a continuous function 𝑓 ∈ C(𝕊) by

(𝜋
[𝑘]
𝑚,𝑗𝑓)(𝑢) :=

∫︁
G(𝑛,𝑘)

(𝜋*
𝐸,𝑚𝜋𝐸,𝑗𝑓)(𝑢) 𝑑𝐸, 𝑢 ∈ 𝕊.

In order to see that this a sensible definition, note that

(𝜋*
𝜗𝐸,𝑚𝜋𝜗𝐸,𝑗𝜗𝑓)(𝜗𝑢) = (𝜋*

𝐸,𝑚𝜋𝐸,𝑗𝑓)(𝑢)

for 𝜗 ∈ SO(𝑛). From this fact, one can easily deduce that the integrand depends contin-

uously on 𝐸 ∈ G(𝑛, 𝑘) and the resulting function 𝜋
[𝑘]
𝑚,𝑗𝑓 depends continuously on 𝑢 ∈ 𝕊,

so 𝜋
[𝑘]
𝑚,𝑗 is a well-defined linear operator on C(𝕊). Moreover, it is easy to see that 𝜋

[𝑘]
𝑚,𝑗 is

SO(𝑛)-equivariant and also bounded, since 𝜋𝐸,𝑗 and 𝜋*
𝐸,𝑚 are bounded. In conclusion, the

mean lifted projection operator

𝜋
[𝑘]
𝑚,𝑗 : C(𝕊) → C(𝕊)

is an SO(𝑛)-equivariant bounded linear operator. Later on, we will be particularly inter-
ested in some of its injectivity properties.

Theorem 3.18 ([23, Theorem 5.1]). If 𝑇 : C(𝕊) → C(𝕊) is an SO(𝑛)-equivariant bounded
linear operator, then 𝑇 = . * 𝜇 for some 𝜇 ∈ M(𝕊, 𝑒) and 𝑇 is a multiplier transform.
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Proof. Define 𝜇 := 𝑇 *𝛿𝑒 ∈ M(𝕊). Observe that the adjoint operator 𝑇 * is also rotation
intertwining, so if 𝜗 ∈ SO(𝑛− 1, 𝑒), then

𝜗𝜇 = 𝜗𝑇 *𝛿𝑒 = 𝑇 *𝜗𝛿𝑒 = 𝑇 *𝛿𝑒 = 𝜇,

since 𝛿𝑒 is obviously zonal. Hence, 𝜇 is zonal as well.
For every 𝑓 ∈ C(𝕊) and 𝜗 ∈ SO(𝑛), we have

(𝑇𝑓)(𝜗𝑒) = ⟨𝑇𝑓, 𝜗𝛿𝑒⟩ = ⟨𝑓, 𝑇 *𝜗𝛿𝑒⟩ = ⟨𝑓, 𝜗𝑇 *𝛿𝑒⟩ = ⟨𝑓, 𝜗𝜇⟩ = (𝑓 * 𝜇)(𝜗𝑒),

proving 𝑇 = . * 𝜇.
Since all convolution operators commute, 𝑇𝜋𝑘 = 𝜋𝑘𝑇 , so 𝑇 maps the space ℋ𝑛

𝑘 of
spherical harmonics of degree 𝑘 into itself. Because of its SO(𝑛)-equivariance, the operator
𝑇 maps zonal functions to zonal functions. Due to Theorem 1.6, the subspace of ℋ𝑛

𝑘

consisting of zonal spherical harmonics of degree 𝑘 is one-dimensional, hence 𝑇 has an
eigenfunction 𝑓𝑘 ∈ ℋ𝑛

𝑘 . Denote by 𝜆𝑘 the associated eigenvalue. Then the space

𝑉𝑘 := ℋ𝑛
𝑘 ∩ ker(𝑇 − 𝜆𝑘) = {𝑓 ∈ ℋ𝑛

𝑘 | 𝑇𝑓 = 𝜆𝑘𝑓}

is a non-trivial SO(𝑛)-invariant subspace of ℋ𝑛
𝑘 . Due to Theorem 1.4, it follows that

𝑉𝑘 = ℋ𝑛
𝑘 , which means precisely that 𝑇𝑓 = 𝜆𝑘𝑓 for all 𝑓 ∈ ℋ𝑛

𝑘 .

Due to this theorem and our previous considerations, the mean lifted projection oper-

ator 𝜋
[𝑘]
𝑚,𝑗 can be expressed as a convolution operator 𝑓 ↦→ 𝑓 * 𝜈[𝑘]𝑚,𝑗 , and it is a multiplier

transform. Consequently, it is self adjoint in the sense that ⟨𝜋[𝑘]
𝑚,𝑗𝑓, 𝑔⟩ = ⟨𝑓, 𝜋[𝑘]

𝑚,𝑗𝑔⟩ for all
𝑓, 𝑔 ∈ C(𝕊). At the same time, a simple computation shows that ⟨𝜋[𝑘]

𝑚,𝑗𝑓, 𝑔⟩ = ⟨𝑓, 𝜋[𝑘]
𝑗,𝑚𝑔⟩

for all 𝑓, 𝑔 ∈ C(𝕊). Hence,
𝜋
[𝑘]
𝑚,𝑗 = 𝜋

[𝑘]
𝑗,𝑚.

Moreover, the mean lifted projection operator extends to an SO(𝑛)-equivariant continuous
linear operator

𝜋
[𝑘]
𝑚,𝑗 : M(𝕊) → M(𝕊) : 𝜇 ↦→ 𝜇 * 𝜈[𝑘]𝑚,𝑗 .

We now aim to compute this signed measure 𝜈
[𝑘]
𝑚,𝑗 at play (which will turn out to be a

continuous function). To that end, we need two auxiliary lemmas and fix the notations
𝐸 ∨ 𝑣 := lin(𝐸 ∪ {𝑣}) and 𝑢 ∨ 𝑣 := lin{𝑢, 𝑣} for a subspace 𝐸 ⊆ ℝ𝑛 and vectors 𝑢, 𝑣 ∈ ℝ𝑛.

Lemma 3.19 ([7, Equation 28]). Let 𝑘 ∈ {1, . . . , 𝑛}, 𝑢 ∈ 𝕊, and ℎ ∈ C(G(𝑛, 𝑘)). Then∫︁
G(𝑛,𝑘)

ℎ(𝐸) 𝑑𝐸 =
𝜔𝑘

2𝜔𝑛

∫︁
G(𝑢⊥,𝑘−1)

∫︁
𝕊(𝐸⊥)

ℎ(𝐸 ∨ 𝑣) |𝑢 · 𝑣|𝑘−1 𝑑𝑣 𝑑𝐸. (3.12)
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Lemma 3.20 ([16, Lemma 3.17]). Let 𝑘 ∈ {1, . . . , 𝑛}, 𝑢 ∈ 𝕊, and 𝑔 ∈ C(𝕊). Then∫︁
𝕊
𝑔(𝑣) 𝑑𝑣 =

𝜔𝑛−1

𝜔𝑛−𝑘−1

∫︁
G(𝑢⊥,𝑘−1)

∫︁
𝕊(𝐸⊥)

𝑔(𝑣)(1− (𝑢 · 𝑣)2)(𝑘−1)/2
𝑑𝑣 𝑑𝐸. (3.13)

Proof. For fixed 𝑡 ∈ (−1, 1), we have∫︁
G(𝑢⊥,𝑘−1)

∫︁
𝕊(𝐸⊥∩𝑢⊥)

𝑔(𝑡𝑢+
√︀
1− 𝑡2𝑦) 𝑑𝑦 𝑑𝐸 =

𝜔𝑛−𝑘−1

𝜔𝑛−1

∫︁
𝕊(𝑢⊥)

𝑔(𝑡𝑢+
√︀

1− 𝑡2𝑣) 𝑑𝑣

due to the uniqueness of the SO(𝑛)-invariant Borel measure on 𝕊(𝑢⊥) up to a multiplicative
constant. Hence, using Fubini’s theorem and spherical cylinder coordinates, we obtain∫︁

G(𝑢⊥,𝑘−1)

∫︁
𝕊(𝐸⊥)

𝑔(𝑦)(1− (𝑢 · 𝑣)2)(𝑘−1)/2
𝑑𝑣 𝑑𝐸

=

∫︁ 1

−1

∫︁
G(𝑢⊥,𝑘−1)

∫︁
𝕊(𝐸⊥∩𝑢⊥)

𝑔(𝑡𝑢+
√︀
1− 𝑡2𝑤) 𝑑𝑦 𝑑𝐸 (1− 𝑡2)(𝑛−4)/2𝑑𝑡

=
𝜔𝑛−𝑘−1

𝜔𝑛−1

∫︁ 1

−1

∫︁
𝕊(𝑢⊥)

𝑔(𝑡𝑢+
√︀

1− 𝑡2𝑣) 𝑑𝑣 (1− 𝑡2)(𝑛−4)/2𝑑𝑡

=
𝜔𝑛−𝑘−1

𝜔𝑛−1

∫︁
𝕊
𝑔(𝑣) 𝑑𝑣

which completes the proof.

We are now able to describe 𝜋
[𝑘]
𝑚,𝑗 as a convolution operator.

Lemma 3.21 ([16, Satz 3.18]). Let 𝑘 ∈ {1, . . . , 𝑛}, 𝐸 ∈ G(𝑛, 𝑘), 𝑚 > 0, 𝑗 ≥ 1 − 𝑘, and
𝑓 ∈ C(𝕊). Then

𝜋
[𝑘]
𝑚,𝑗𝜇 = 𝛼𝑛,𝑘,𝑚,𝑗 𝜇 *𝐴[𝑘]

𝑚,𝑗 , (3.14)

where

𝐴
[𝑘]
𝑚,𝑗(𝑡) := (1− 𝑡2)(1−𝑘)/2

∫︁ 𝜋−arccos 𝑡

0
sin(𝜃)𝑘+𝑚−1 sin(𝜃 + arccos 𝑡)𝑘+𝑗−1 𝑑𝜃

and

𝛼𝑛,𝑘,𝑚,𝑗 :=
𝜔𝑛+𝑘+𝑚+𝑗−1𝜔𝑛−𝑘−1𝜔𝑘

𝜔2𝑘+𝑚+𝑗𝜔𝑛𝜔𝑛−1
.

Proof. Due to (3.13), we obtain

(𝜋
[𝑘]
𝑚,𝑗𝑓)(𝑢) =

∫︁
G(𝑛,𝑘)

(𝜋*
𝐸,𝑚𝜋𝐸,𝑗𝑓)(𝑢) 𝑑𝐸

=
𝜔𝑘

2𝜔𝑛

∫︁
G(𝑢⊥,𝑘−1)

∫︁
𝕊(𝐸⊥)

(𝜋*
𝐸∨𝑣,𝑚𝜋𝐸∨𝑣,𝑗𝑓)(𝑢) |𝑢 · 𝑣|𝑘−1 𝑑𝑣 𝑑𝐸

=
𝜔𝑘

𝜔𝑛

∫︁
G(𝑢⊥,𝑘−1)

∫︁
𝕊(𝐸⊥)

1𝑢+(𝑣)(𝜋*
𝐸∨𝑣,𝑚𝜋𝐸∨𝑣,𝑗𝑓)(𝑢)(𝑢 · 𝑣)𝑘−1 𝑑𝑣 𝑑𝐸.
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For the integrand, we have

(𝜋*
𝐸∨𝑣,𝑚𝜋𝐸∨𝑣,𝑗𝑓)(𝑢) = ‖𝑢|(𝐸 ∨ 𝑣)‖𝑚

∫︁
ℍ(𝐸∨𝑣,pr𝐸∨𝑣𝑢)

𝑓(𝑦)(pr𝐸∨𝑣𝑢 · 𝑦)𝑘+𝑗−1 𝑑𝑦

= (𝑢 · 𝑣)𝑚
∫︁
𝕊(𝐸⊥)

1𝑣+(𝑦)𝑓(𝑦)(𝑣 · 𝑦)𝑘+𝑗−1 𝑑𝑦,

where 𝑣+ := {𝑦 ∈ ℝ𝑛 | 𝑣 · 𝑦 ≥ 0}. Hence Fubini’s theorem yields

(𝜋
[𝑘]
𝑚,𝑗𝑓)(𝑢) =

𝜔𝑘

𝜔𝑛

∫︁
G(𝑢⊥,𝑘−1)

∫︁
𝕊(𝐸⊥)

𝑓(𝑦)𝐼(𝐸, 𝑢, 𝑦) 𝑑𝑦 𝑑𝐸,

where

𝐼(𝐸, 𝑢, 𝑦) :=

∫︁
𝕊(𝐸⊥)

1𝑢+∩𝑦+(𝑣)(𝑢 · 𝑣)𝑘+𝑚−1(𝑦 · 𝑣)𝑘+𝑗−1 𝑑𝑣

for 𝐸 ∈ G(𝑢⊥, 𝑘 − 1) and 𝑦 ∈ 𝕊(𝐸⊥). Due to (3.6), we obtain

𝐼(𝐸, 𝑢, 𝑦) =

∫︁
𝕊(𝑢∨𝑦)

∫︁
ℍ(𝐸⊥;𝑢∨𝑦,𝑤)

1𝑢+∩𝑦+(𝑧)(𝑢 · 𝑧)𝑘+𝑚−1(𝑦 · 𝑧)𝑘+𝑗−1(𝑤 · 𝑧) 𝑑𝑧 𝑑𝑤.

Take 𝑤 ∈ 𝕊(𝑢 ∨ 𝑦) and 𝑤 ∈ ℍ(𝐸⊥;𝑢 ∨ 𝑦, 𝑤). Then clearly 𝑧|(𝑢 ∨ 𝑣) = (𝑧 · 𝑤)𝑤, and so
𝑧|(𝑢 ∨ 𝑣)⊥ = 𝑧 − (𝑧 · 𝑤)𝑤. In particular, 𝑧 − (𝑧 · 𝑤)𝑤 is perpendicular to 𝑢 and 𝑦, which
yields

𝑢 · 𝑧 = (𝑤 · 𝑧)(𝑢 · 𝑤) and 𝑦 · 𝑧 = (𝑧 · 𝑤)(𝑦 · 𝑤).
Moreover, since 𝑧 ·𝑤 > 0, it follows that 𝑧 ∈ 𝑢+∩𝑦+ if and only if 𝑤 ∈ 𝑢+∩𝑦+. We obtain

𝐼(𝐸, 𝑢, 𝑦) =

∫︁
𝕊(𝑢∨𝑦)∩𝑢+∩𝑦+

(𝑢 · 𝑤)𝑘+𝑚−1(𝑦 · 𝑤)𝑘+𝑗−1

∫︁
ℍ(𝐸⊥;𝑢∨𝑦,𝑤)

(𝑤 · 𝑧)2𝑘+𝑚+𝑗−1 𝑑𝑧 𝑑𝑤.

The value of the inner integral is independent of 𝑤 and can be computed to be∫︁
ℍ(𝐸⊥;𝑢∨𝑦,𝑤)

(𝑤 · 𝑧)2𝑘+𝑚+𝑗−1 𝑑𝑧 =
𝜔𝑛+𝑘+𝑚+𝑗−1

𝜔2𝑘+𝑚+𝑗

with the help of (3.6). Thus, we end up with an integral over 𝕊(𝑢∨ 𝑦)∩ 𝑢+ ∩ 𝑦+, which is
just a circular arc. A parametrization of 𝕊(𝑢 ∨ 𝑦) ∩ 𝑢+ ∩ 𝑦+ is given by

(0, 𝜋 − ∠(𝑢, 𝑦)) ∋ 𝜃 ↦→ (cos 𝜃)(𝑦 − (𝑦 · 𝑢)𝑢) + (sin 𝜃)𝑢,

where ∠(𝑢, 𝑦) := arccos(𝑢 ·𝑦) denotes the angle between 𝑢 and 𝑦. By a change of variables,
we obtain∫︁
𝕊(𝑢∨𝑦)∩𝑢+∩𝑦+

(𝑢·𝑤)𝑘+𝑚−1(𝑦·𝑤)𝑘+𝑗−1 𝑑𝑤 =

∫︁ 𝜋−∠(𝑢,𝑦)

0
(sin 𝜃)𝑘+𝑚−1 sin(𝜃+∠(𝑢, 𝑦))𝑘+𝑗−1 𝑑𝜃.
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In conclusion,

(𝜋
[𝑘]
𝑚,𝑗𝑓)(𝑢) =

𝜔𝑘𝜔𝑛+𝑘+𝑚+𝑗−1

𝜔𝑛𝜔2𝑘+𝑚+𝑗

∫︁
G(𝑢⊥,𝑘−1)

∫︁
𝕊(𝐸⊥)

𝑓(𝑦)𝐵
[𝑘]
𝑚,𝑗(𝑢 · 𝑦)(1− (𝑢 · 𝑦)2)(𝑘−1)/2

𝑑𝑦 𝑑𝐸

= 𝛼𝑛,𝑘,𝑚,𝑗

∫︁
𝕊
𝑓(𝑣)𝐵

[𝑘]
𝑚,𝑗(𝑢 · 𝑣) 𝑑𝑣

which completes the proof.

Now that we have expressed the mean lifted projection operator explicitly as a convo-
lution operator with a continuous function, we are able to employ the Funk-Hecke theorem
for the following injectivity result:

Proposition 3.22 ([16, Satz 3.20]). Let 𝑘 ∈ {2, . . . , 𝑛 − 1}. Then 𝜋
[𝑘]
1,1−𝑘 is injective on

C(𝕊).

Proof. Due to Theorem 3.18, the operator 𝜋
[𝑘]
1,1−𝑘 is a multiplier transform, so in order

to show that it is injective, it suffices to show that all multipliers are non-zero. The
Funk-Hecke theorem provides an explicit description of the multipliers by means of the

representation of 𝜋
[𝑘]
1,1−𝑘 given in (3.14). Consequently, we will show injectivity by con-

structing a sequence equivalent to the multipliers, deducing a recursion formula for this
sequence, and then dealing with the initial values of this sequence.

⊳ Note that in the special case of the previous lemma, where 𝑚 = 1 and 𝑗 = 1− 𝑘,

𝐴
[𝑘]
𝑘,1−𝑘(𝑡) = (1− 𝑡2)(1−𝑘)/2

∫︁ 𝜋−arccos 𝑡

0
(sin 𝜃)𝑘 𝑑𝜃 = (1− 𝑡2)(1−𝑘)/2𝐹𝑘(𝑡),

where

𝐹𝑘(𝑡) :=

∫︁ 𝜋−arccos 𝑡

0
(sin 𝜃)𝑘 𝑑𝜃 =

∫︁ 𝑡

−1
(1− 𝑠2)(𝑘−1)/2 𝑑𝑠.

For our purposes, it is practical to rescale the Legendre polynomials to

𝐶
(𝑛−2)/2
𝑗 :=

(︂
𝑛+ 𝑗 − 2

𝑗

)︂
𝑃𝑛
𝑗 .

In fact, these polynomials are also known as the Gegenbauer polynomials and can be
defined more broadly. For simplicity we fix the notation 𝜈 := 𝑛−2

2 . The Gegenbauer
polynomials satisfy the following recursions (cf. [8, §10.9]):

(𝑗 + 1)𝐶𝜈
𝑗+1(𝑡) = (𝑛+ 2𝑗 − 2)𝑡𝐶𝜈

𝑗 (𝑡)− (𝑛+ 𝑗 − 3)𝐶𝜈
𝑗−1(𝑡), (3.15)

(1− 𝑡2)
𝑑

𝑑𝑡
𝐶𝜈
𝑗 (𝑡) = (𝑛+ 𝑗 − 2)𝑡𝐶𝜈

𝑗 (𝑡)− (𝑗 + 1)𝐶𝜈
𝑗+1(𝑡). (3.16)
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Due to the Funk-Hecke theorem, as we have argued above, it suffices to show that the
numbers

𝑎𝑗 := [𝐴
[𝑘]
𝑘,1−𝑘, 𝐶

𝜈
𝑗 ]𝑛 =

∫︁ 1

−1
𝐹𝑘(𝑡)𝐶

𝜈
𝑗 (𝑡)(1− 𝑡2)(𝑛−𝑘−2)/2 𝑑𝑡

are non-zero for 𝑗 ∈ ℕ0.
⊳ From (3.15) we obtain

(𝑗 + 1)𝑎𝑗+1 = (𝑛+ 2𝑗 − 2)

∫︁ 1

−1
𝐹𝑘(𝑡)𝐶

𝜈
𝑗 (𝑡)𝑡(1− 𝑡2)(𝑛−𝑘−2)/2 𝑑𝑡− (𝑛+ 𝑗 − 3)𝑎𝑗−1. (3.17)

The involved integral can be rewritten as

𝐼𝑗 :=

∫︁ 1

−1
𝐹𝑘(𝑡)𝐶

𝜈
𝑗 (𝑡)𝑡(1− 𝑡2)(𝑛−𝑘−2)/2 𝑑𝑡

=
1

𝑛− 𝑘

∫︁ 1

−1

𝑑

𝑑𝑡

[︀
𝐹𝑘(𝑡)𝐶

𝜈
𝑗 (𝑡)

]︀
(1− 𝑡2)(𝑛−𝑘)/2 𝑑𝑡

=
1

𝑛− 𝑘

(︂∫︁ 1

−1
𝐶𝜈
𝑗 (𝑡)(1− 𝑡2)(𝑛−2)/2 𝑑𝑡+

∫︁ 1

−1
𝐹𝑘(𝑡)

𝑑

𝑑𝑡
𝐶𝜈
𝑗 (𝑡)(1− 𝑡2)(𝑛−𝑘)/2 𝑑𝑡

)︂
by partial integration. The first term in the line above is simply∫︁ 1

−1
𝐶𝜈
𝑗 (𝑡)(1− 𝑡2)(𝑛−2)/2 𝑑𝑡 = [(1− 𝑡2), 𝐶𝜈

𝑗 (𝑡)]𝑛,

and hence vanishes whenever 𝑗 /∈ {0, 2}. Therefore, if 𝑗 ∈ ℕ0∖{0, 2}, then

(𝑛− 𝑘)𝐼𝑗 =

∫︁ 1

−1
𝐹𝑘(𝑡)

𝑑

𝑑𝑡
𝐶𝜈
𝑗 (𝑡)(1− 𝑡2)(𝑛−𝑘)/2 𝑑𝑡

=

∫︁ 1

−1
𝐹𝑘(𝑡)(1− 𝑡2)

𝑑

𝑑𝑡
𝐶𝜈
𝑗 (𝑡)(1− 𝑡2)(𝑛−𝑘−2)/2 𝑑𝑡

= (𝑛+ 𝑗 − 2)

∫︁ 1

−1
𝐹𝑘(𝑡)𝐶

𝜈
𝑗 (𝑡)𝑡(1− 𝑡2)(𝑛−𝑘−2)/2 𝑑𝑡− (𝑗 + 1)𝑎𝑗+1

= (𝑛+ 𝑗 − 2)𝐼𝑗 − (𝑗 + 1)𝑎𝑗+1,

where we applied partial integration. A quick rearrangement of this equation gives

𝐼𝑗 =
𝑗 + 1

𝑘 + 𝑗 − 2
𝑎𝑗+1.

Plugging this expression for 𝐼𝑗 into (3.17) and rearranging the resulting equation yields
the recursion formula

𝑎𝑗+1 =
(𝑘 + 𝑗 − 2)(𝑛+ 𝑗 − 3)

(𝑛+ 𝑗 − 𝑘)(𝑗 + 1)
𝑎𝑗−1, 𝑗 ∈ ℕ0∖{0, 2}.
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⊳ Due to this recursion formula, it only remains to show that 𝑎0, 𝑎1, and 𝑎3 are
non-zero. From the definition of 𝐹𝑘, it is easy to see that

𝑎0 =

∫︁ 1

−1
𝐹𝑘(𝑡)(1− 𝑡2)(𝑛−𝑘−2)/2 𝑑𝑡 > 0.

Moreover, using partial integration, we obtain

𝑎1 = (𝑛− 2)

∫︁ 1

−1
𝑡(1− 𝑡2)(𝑛−𝑘−2)/2𝐹𝑘(𝑡) 𝑑𝑡 =

𝑛− 2

𝑛− 𝑘

∫︁ 1

−1
(1− 𝑡2)(𝑛−1)/2 𝑑𝑡 > 0.

The Gegenbauer polynomial 𝐶𝜈
3 has the explicit representation

𝐶𝜈
3 (𝑡) =

𝑛(𝑛− 2)

6
𝑡((𝑛− 1)− (𝑛+ 2)(1− 𝑡2)).

With some partial integration, one arrives at

𝑎3 =
𝑛(𝑛− 2)

6

(︂
𝑛− 1

𝑛− 𝑘

∫︁ 1

−1
(1− 𝑡2)(𝑛−1)/2 𝑑𝑡− 𝑛+ 2

𝑛− 𝑘 + 2

∫︁ 1

−1
(1− 𝑡2)(𝑛+1)/2 𝑑𝑡

)︂
=

𝑛(𝑛− 1)𝜔𝑛+2

3(𝑛− 𝑘)(𝑛− 𝑘 + 2)𝜔𝑛+1
> 0.

This shows that 𝑎𝑗 ̸= 0 for all 𝑗 ∈ ℕ0, proving that 𝜋
[𝑘]
1,1−𝑘 is injective on C(𝕊).

We end this section with another injectivity result.

Lemma 3.23 ([13, Lemma 2.4]). Let 𝑘 ∈ {1, . . . , 𝑛}, 𝑗 ≥ 1− 𝑘, and 𝑓 ∈ C(𝕊). If 𝜋𝐸,𝑗𝑓 is

a linear harmonic on 𝕊(𝐸) for every 𝐸 ∈ G(𝑛, 𝑘), then 𝜋
[𝑘]
1,𝑗𝑓 is a linear harmonic on 𝕊.

Proof. For every 𝐸 ∈ G(𝑛, 𝑘) and 𝑤 ∈ 𝕊(𝐸), the Funk-Hecke theorem yields∫︁
𝕊(𝐸)

(𝜋𝐸,𝑗𝑓)(𝑣)𝑤 · 𝑣 𝑑𝑣 =
𝜔𝑘

𝑘
(𝜋𝐸,𝑗𝑓)(𝑤).

Applying this and Lemma 3.17, we obtain∫︁
𝕊
(𝜋

[𝑘]
1,𝑗𝑓)(𝑣)𝑢 · 𝑣 𝑑𝑣 =

∫︁
G(𝑛,𝑘)

∫︁
𝕊
(𝜋*

𝐸,1𝜋𝐸,𝑗𝑓)(𝑣)𝑢 · 𝑣 𝑑𝑣 𝑑𝐸

=

∫︁
G(𝑛,𝑘)

∫︁
𝕊(𝐸)

(𝜋𝐸,𝑗𝑓)(𝑣)[𝜋𝐸,1(𝑢 · .)](𝑣) 𝑑𝑣 𝑑𝐸

=
𝜔𝑛+2

𝜔𝑘+2

∫︁
G(𝑛,𝑘)

‖𝑢|𝐸‖
∫︁
𝕊(𝐸)

(𝜋𝐸,𝑗𝑓)(𝑣)pr𝐸𝑢 · 𝑣 𝑑𝑣 𝑑𝐸

=
𝜔𝑛+2

𝜔𝑘+2

𝜔𝑘

𝑘

∫︁
G(𝑛,𝑘)

‖𝑢|𝐸‖(𝜋𝐸,𝑗𝑓)(pr𝐸𝑢) 𝑑𝐸

=
𝜔𝑛+2

𝜔𝑘+2

𝜔𝑘

𝑘
(𝜋

[𝑘]
1,𝑗𝑓)(𝑢)

for all 𝑢 ∈ 𝕊. Hence, 𝜋[𝑘]
1,𝑗𝑓 is a linear harmonic on 𝕊.
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Note that the last two results combined show that if 𝑓 ∈ C(𝕊) such that 𝜋𝐸,1−𝑘𝑓 is

a linear harmonic for all 𝐸 ∈ G(𝑛, 𝑘) then 𝜋
[𝑘]
1,1−𝑘𝑓 is a linear harmonic, and hence 𝑓 is a

linear harmonic.

3.4 Berg’s Functions

Now we come to the last ingredient for our proof of a representation formula for the
mean section operators. In Section 2.3, we have already given a brief introduction into
Christoffel’s problem, which is the question how the first area measures of convex bodies
can be characterized. An important part in the solution to Christoffel’s problem are Berg’s
functions, which are defined inductively as follows:

Definition ([5, Théorème 3.3]). Berg’s functions are the functions 𝑔𝑛 ∈ C∞(−1, 1), 𝑛 ≥ 2,
defined by the following recursion:

𝑔2(𝑡) :=
1

𝜋
(𝜋 − arccos 𝑡)

√︀
1− 𝑡2 − 1

2𝜋
𝑡,

𝑔3(𝑡) := 1 + 𝑡 log(1− 𝑡) +

(︂
4

3
− log 2

)︂
𝑡,

𝑔𝑛+2(𝑡) :=
𝑛+ 1

(𝑛− 1)2
𝑡𝑔′𝑛(𝑡) +

𝑛+ 1

𝑛− 1
𝑔𝑛(𝑡) +

(𝑛+ 1)𝜔𝑛+1

(𝑛+ 2)𝜔𝑛+2
𝑡.

We summarize the most important properties of Berg’s functions in the following the-
orem, which was proved inductively by C. Berg:

Theorem 3.24 ([5, Théorème 3.3]).
(i) If 𝑛 ≥ 2, then 𝑔𝑛 ∈ C∞(−1, 1) and 𝑔𝑛 ∈ L1[−1, 1]𝑛. In particular, 𝑔𝑛 ∈ M(𝕊, 𝑒).
(ii) If 𝑛 ≥ 3, then 𝑔𝑛(𝑡)

√
1− 𝑡2 ∈ L1[−1, 1]𝑛.

(iii) If 𝑛 ≥ 2 then

1

𝜔𝑛−1
𝑔𝑛 ∼ 𝑃𝑛

0 +

∞∑︁
𝑘=2

𝑁(𝑛, 𝑘)

𝜔𝑛

𝑛− 1

(𝑘 − 1)(𝑛+ 𝑘 − 1)
𝑃𝑛
𝑘 .

As a consequence of Theorem 3.24 (iii), if 𝐾 ∈ 𝒦𝑛, then

ℎ𝑜(𝐾, ·) = 1

𝜔𝑛−1
𝑆1(𝐾, ·) * 𝑔𝑛 (3.18)

in the sense of measures and distributions, respectively. Since the measure 𝑔𝑛 has a density,
the right hand side has the density given by 𝜔−1

𝑛−1

∫︀
𝕊 𝑔𝑛(𝑢 · 𝑣) 𝑑𝑆1(𝐾, 𝑣) as a function in

𝑢 ∈ 𝕊. This means that for almost all 𝑢 ∈ 𝕊, this integral exists and takes the value
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ℎ𝑜(𝐾,𝑢). By developing and applying a certain procedure, known as Berg’s averaging

procedure, C. Berg was able to show that in fact the integral exists for all 𝑢 ∈ 𝕊 and
depends continuously on 𝑢 ∈ 𝕊, which leads to the following result:

Theorem 3.25 ([5, Théorème 5.1]). For all 𝐾 ∈ 𝒦𝑛,

ℎ𝑜(𝐾,𝑢) =
1

𝜔𝑛−1

∫︁
𝕊
𝑔𝑛(𝑢 · 𝑣) 𝑑𝑆1(𝐾,𝑢), 𝑢 ∈ 𝕊.

As a corollary, C. Berg was able to give the following answer to Christoffel’s problem:

Corollary 3.26 ( [21, Theorem 8.3.8]). A positive measure 𝜇 ∈ M(𝕊) is the first area

measure of a convex body if and only if 𝜇 * 𝑔𝑛 is the support function of a convex body.

Now that we have discussed the definition, some properties, and the historical relevance
of Berg’s functions, it is time to relate them to the main objective of this chapter. We
have already seen in (3.5) that

ℎ(𝑀2(𝐾), ·) = 1

2(𝑛− 1)
𝑆𝑛−1(𝐾, ·) * 𝑔2. (3.19)

In the previous section, we have seen how spherical liftings and projections relate convex
geometry in subspaces to convex geometry in the ambient space and also relate the 𝑘-th
mean section operators 𝑀𝑘 to 𝑀2. Interestingly, the characteristic property of Berg’s
functions, stated in (3.18), causes them to interact with spherical liftings and projections
exactly in such a way that everything fits together, casually speaking.

In order to be able to work with Berg’s functions, we need the following integrability
result:

Lemma 3.27 ([13]). Let 𝑘 ∈ {3, . . . , 𝑛} and 𝐸 ∈ G(𝑛, 𝑛 − 1). Then for all 𝑢 ∈ 𝕊, we
have that 𝑔𝑘(𝑢 · .) ∈ M𝐸,−𝑛+𝑘−1(𝕊) and the measure 𝜋𝐸,−𝑛+𝑘−1𝑔𝑘(𝑢 · .) ∈ M(𝕊(𝐸)) has a
density that is continuous on 𝕊(𝐸)∖{pr𝐸𝑢}.
Proof. First, note that 𝑑𝜇(𝑣) := ‖𝑣|𝐸‖−1𝑑𝑣 is a finite measure on 𝕊. Due to Theo-
rem 3.24 (i), the function 𝑔𝑛 is the density of a zonal finite signed measure on 𝕊. Thus,
𝜇 * 𝑔𝑛 is again a finite signed measure on 𝕊 that has the density∫︁

𝕊
𝑔𝑛(. · 𝑣)‖𝑣|𝐸‖−1 𝑑𝑣.

We choose 𝑢0 ∈ 𝕊 in such a way that 𝐸 = 𝑢⊥0 . Then for almost all 𝑢 ∈ 𝕊, we can make the
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computation∫︁
𝕊
‖𝑣|𝐸‖−1 |𝑔𝑛(𝑢 · 𝑣)| 𝑑𝑣

=

∫︁
𝕊(𝐸)

∫︁
ℍ(𝐸,𝑣)

|𝑔𝑛(𝑢 · 𝑦)| (𝑦 · 𝑣)𝑛−3 𝑑𝑦 𝑑𝑣

=

∫︁
𝕊(𝐸)

∫︁ 1

−1

⃒⃒⃒
𝑔𝑛(𝑡𝑢 · 𝑢0 +

√︀
1− 𝑡2

√︀
1− (𝑢 · 𝑢0)2pr𝐸𝑢 · 𝑣)

⃒⃒⃒
(1− 𝑡2)(𝑛−4)/2 𝑑𝑡 𝑑𝑣

=

∫︁
𝕊(𝐸)×[−1,1]

⃒⃒⃒
𝑔𝑛(𝑡𝑢 · 𝑢0 +

√︀
1− 𝑡2

√︀
1− (𝑢 · 𝑢0)2pr𝐸𝑢 · 𝑣)

⃒⃒⃒
(1− 𝑡2)(𝑛−4)/2 𝑑(𝑣, 𝑡)

(with the convention that pr𝐸𝑢0 = pr𝐸(−𝑢0) = 𝑜). Clearly all of the integrals are finite
if 𝑢 = ±𝑢0. Due to our previous considerations, this must also be the case for some
𝑢 ̸= ±𝑢0. In that case, observe that the integrand in the last line has its sole singularity
at (𝑣, 𝑡) = (pr𝐸𝑢, 𝑢 · 𝑢0) and is continuous everywhere else. It can easily be deduced that
for all (𝑤, 𝜆) ∈ 𝕊(𝐸)× (−1, 1), the double integral∫︁

𝕊(𝐸)

∫︁ 1

−1

⃒⃒⃒
𝑔𝑛(𝑡𝜆+

√︀
1− 𝑡2

√︀
1− 𝜆2𝑤 · 𝑣)

⃒⃒⃒
(1− 𝑡2)(𝑛−4)/2 𝑑𝑡 𝑑𝑣

must be finite. Since every 𝑢 ̸= ±𝑢0 can be written as 𝜆𝑢0 +
√
1− 𝜆2𝑤 for some (𝑤, 𝜆) ∈

𝕊(𝐸)× (−1, 1), it follows that 𝑔𝑛(𝑢 · .) ∈ M𝐸,−1(𝕊) for all 𝑢 ∈ 𝕊. Moreover,

𝑑[𝜋𝐸,−1𝑔𝑛(𝑢 · .)](𝑣) =
∫︁
ℍ(𝐸,𝑣)

𝑔𝑛(𝑢 · 𝑣)(𝑣 · 𝑦)𝑛−3 𝑑𝑦 𝑑𝑣,

so 𝜋𝐸,−1𝑔𝑛(𝑢 · .) has a density that is continuous on 𝕊(𝐸)∖{pr𝐸𝑢}.
Lemma 3.28 ( [13, Lemma 4.2]). Let 𝐸 ∈ G(𝑛, 𝑛 − 1). Then for all 𝑢 ∈ 𝕊 and 𝑣 ∈
𝕊(𝐸)∖{pr𝐸𝑢}, we have

[𝜋𝐸,−1𝑔𝑛(𝑢 · .)](𝑣) = (𝑛− 1)𝜔𝑛−1

(𝑛− 2)𝜔𝑛−2
[𝜋*

𝐸,1𝑔𝑛−1(. · 𝑣)](𝑢) + 𝑤𝐸,𝑢 · 𝑣, (3.20)

where 𝑤𝐸,· : 𝕊 → ℝ𝑛 is a continuous function depending only on 𝐸.

Proof. For a smooth convex body 𝐾 ∈ 𝒦𝑛−1(𝐸), the characteristic property of Berg’s
function 𝑔𝑛 yields

ℎ𝑜(𝐾,𝑢) =
1

𝜔𝑛−1

∫︁
𝕊
𝑔𝑛(𝑢 · 𝑣) 𝑑𝑆1(𝐾, 𝑣)

=
𝑛− 2

(𝑛− 1)𝜔𝑛−1

∫︁
𝕊
𝑔𝑛(𝑢 · 𝑣) 𝑑[𝜋*

𝐸,−1𝑆
𝐸
1 (𝐾, ·)](𝑣)

=
𝑛− 2

(𝑛− 1)𝜔𝑛−1

∫︁
𝕊(𝐸)

[𝜋𝐸,−1𝑔𝑛(𝑢 · .)](𝑣) 𝑑𝑆𝐸
1 (𝐾, 𝑣).
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On the other hand, applying the characteristic property of 𝑔𝑛−1 to 𝐾 as a convex body
in the space 𝐸 yields

ℎ𝑜(𝐾,𝑢) = [𝜋*
𝐸,1ℎ

𝐸
𝑜 (𝐾, ·)](𝑢)

= ‖𝑢|𝐸‖ℎ𝐸𝑜 (𝐾, pr𝐸𝑢)

=
1

𝜔𝑛−2

∫︁
𝕊(𝐸)

‖𝑢|𝐸‖𝑔𝑛−1(pr𝐸𝑢 · 𝑣) 𝑑𝑆𝐸
1 (𝐾, 𝑣)

=
1

𝜔𝑛−2

∫︁
𝕊(𝐸)

[𝜋*
𝐸,1𝑔𝑛−1(. · 𝑣)](𝑢) 𝑑𝑆𝐸

1 (𝐾, 𝑣).

Consequently, for every 𝑢 ∈ 𝕊, there is a vector 𝑤𝐸,𝑢 ∈ ℝ𝑛 such that (3.20) holds for
almost all 𝑣 ∈ 𝕊. For this fixed 𝑢 ∈ 𝕊, the expressions [𝜋𝐸,−1𝑔𝑛(𝑢 · .)](𝑣) and [𝜋*

𝐸,1𝑔𝑛−1(. ·
𝑣)](𝑢) are both continuous at every 𝑣 ∈ 𝕊∖{pr𝐸𝑢}, which shows that (3.20) holds for all
𝑣 ∈ 𝕊∖{pr𝐸𝑢}.

For fixed 𝑣 ∈ 𝕊(𝐸), both [𝜋𝐸,−1𝑔𝑛(𝑢 · .)](𝑣) and [𝜋*
𝐸,1𝑔𝑛−1(. · 𝑣)](𝑢) are continuous at

every 𝑢 ∈ 𝕊∖ℍ(𝐸, 𝑣), so 𝑤𝐸,𝑢 must also depend continuously on 𝑢.

With a clever trick, the result can be generalized to other Berg functions 𝑔𝑘.

Lemma 3.29 ([13, Lemma 4.2]). Let 𝑘 ∈ {3, . . . , 𝑛} and 𝐸 ∈ G(𝑛, 𝑛 − 1). Then for all

𝑢 ∈ 𝕊 and 𝑣 ∈ 𝕊(𝐸)∖{pr𝐸𝑢}, we have

[𝜋𝐸,−𝑛+𝑘−1𝑔𝑘(𝑢 · .)](𝑣) = (𝑘 − 1)𝜔𝑘−2

(𝑘 − 2)𝜔𝑘−2
[𝜋*

𝐸,1𝑔𝑘−1(. · 𝑣)](𝑢) + 𝑤𝐸,𝑢 · 𝑣,

where 𝑤𝐸,· : 𝕊 → ℝ𝑛 : 𝑢 ↦→ 𝑤𝐸,𝑢 is a continuous function.

Proof. By expanding the expressions in the statement of the previous lemma, we obtain
that, for all 𝑢 ∈ 𝕊 and 𝑣 ∈ 𝕊∖{pr𝐸𝑢},∫︁ 1

−1
𝑔𝑛(𝑡𝑢 · 𝑢0 +

√︀
1− 𝑡2

√︀
1− (𝑢 · 𝑢0)2pr𝐸𝑢 · 𝑣)(1− 𝑡2)(𝑛−4)/2 𝑑𝑡

=

∫︁
ℍ(𝐸,𝑣)

𝑔𝑛(𝑢 · 𝑦)(𝑦 · 𝑣)𝑛−3 𝑑𝑦

= [𝜋𝐸,−1𝑔𝑛(𝑢 · .)](𝑣)
= 𝑐𝑛[𝜋

*
𝐸,1𝑔𝑛−1(. · 𝑣)](𝑢) + 𝑤𝐸,𝑢 · 𝑣

= 𝑐𝑛‖𝑢|𝐸‖𝑔𝑛−1(pr𝐸𝑢 · 𝑣) + 𝑤𝐸,𝑢 · 𝑣,

where 𝑤𝐸,𝑢 ∈ ℝ𝑛 depends continuously on 𝑢 and where 𝑐𝑛 := (𝑛−1)𝜔𝑛−1

(𝑛−2)𝜔𝑛−2
. For a fixed

𝑢 ∈ 𝕊, observe that all expressions involved are constant along the sets pr𝐸 · 𝑣 = 𝑐, hence
𝑤𝐸,𝑢 = 𝑓𝐸(𝑢)pr𝐸𝑢 for some continuous function 𝑓𝐸 : 𝕊 → ℝ.
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Now observe that for any 𝛼 ∈ [−1, 1] and 𝛽 ∈ [−1, 1), we can find 𝑢 ∈ 𝕊 and 𝑣 ∈
𝕊∖{pr𝐸𝑢} such that 𝛼 = 𝑢 · 𝑢0 and 𝛽 = pr𝐸𝑢 · 𝑣. Thus we obtain that for all 𝛼 ∈ [−1, 1]
and 𝛽 ∈ [−1, 1),∫︁ 1

−1
𝑔𝑛(𝛼𝑡+ 𝛽

√︀
1− 𝛼2

√︀
1− 𝑡2)(1− 𝑡2)(𝑛−4)/2 𝑑𝑡 = 𝑐𝑛

√︀
1− 𝛼2𝑔𝑛−1(𝛽) + 𝑓𝑛(𝛼)𝛽, (3.21)

where 𝑓𝑛 : [−1, 1] → ℝ is a continuous function depending only on 𝑛.
It follows that for all 𝑢 ∈ 𝕊 and 𝑣 ∈ 𝕊(𝐸)∖{pr𝐸𝑢},

[𝜋𝐸,−𝑛+𝑘−1𝑔𝑘(𝑢 · .)](𝑣)
=

∫︁
ℍ(𝐸,𝑣)

𝑔𝑘(𝑢 · 𝑦)(𝑣 · 𝑦)𝑘−3 𝑑𝑣

=

∫︁ 1

−1
𝑔𝑘(𝑡𝑢 · 𝑢0 +

√︀
1− 𝑡2

√︀
1− (𝑢 · 𝑢0)2pr𝐸𝑢 · 𝑣)(1− 𝑡2)(𝑘−4)/2 𝑑𝑡

= 𝑐𝑘
√︀

1− (𝑢 · 𝑢0)2𝑔𝑘−1(pr𝐸𝑢 · 𝑣) + 𝑓𝑘(𝑢 · 𝑢0)pr𝐸𝑢 · 𝑣
= 𝑐𝑘[𝜋

*
𝐸,1𝑔𝑘−1(. · 𝑣)](𝑢) + 𝑤𝐸,𝑢 · 𝑣,

where 𝑤𝐸,𝑢 := 𝑓𝑘(𝑢 · 𝑢0)pr𝐸𝑢.
Proposition 3.30. Let 𝑘 ∈ {3, . . . , 𝑛}, 𝑗 ∈ {0, . . . , 𝑘− 2}, and 𝐸 ∈ G(𝑛, 𝑛− 𝑗). Then for

every 𝑓 ∈ C(𝕊), we have

𝜋𝐸,−𝑛+𝑘−1(𝑓 * 𝑔𝑘) = (𝑘 − 1)𝜔𝑘−1

(𝑘 − 𝑗 − 1)𝜔𝑘−𝑗−1
(𝜋𝐸,1𝑓) * 𝑔𝑘−𝑗 + 𝑤𝑓,𝐸 · . (3.22)

for some 𝑤𝑓,𝐸 ∈ ℝ𝑛.

Proof. We fix 𝑘 ∈ {3, . . . , 𝑛} and prove the statement by induction on 𝑗 ∈ {0, . . . , 𝑘 − 2}.
⊳ 𝑗 = 0: The base case is trivial, since 𝜋𝐸,𝑚 is just the identity map for 𝐸 = ℝ𝑛.
⊳ 𝑗 ↦→ 𝑗+1: For carrying out the induction step, suppose that the statement holds for

some 𝑗 ∈ {0, . . . , 𝑘−3} and all 𝐸′ ∈ G(𝑛, 𝑛−𝑗). Then, take an arbitrary 𝐸 ∈ G(𝑛, 𝑛−𝑗−1)
and 𝑓 ∈ C(𝕊). We may choose some 𝐸′ ∈ G(𝑛, 𝑛 − 𝑗) such that 𝐸 ⊆ 𝐸′. By applying
Lemma 3.14 (ii) and the induction hypothesis, we obtain

𝜋𝐸,−𝑛+𝑘−1(𝑓 * 𝑔𝑘) = 𝜋𝐸′
𝐸,−𝑛+𝑘−1𝜋𝐸′,−𝑛+𝑘−1(𝑓 * 𝑔𝑘)

= 𝑐𝑘,𝑗𝜋
𝐸′
𝐸,−𝑛+𝑘−1((𝜋𝐸′,1𝑓) * 𝑔𝑘−𝑗) + 𝜋𝐸′

𝐸,−𝑛+𝑘−1(𝑤𝑓,𝐸′ · .),

where 𝑐𝑘,𝑗 :=
(𝑘−1)𝜔𝑘−1

(𝑘−𝑗−1)𝜔𝑘−𝑗−1
.
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By applying Lemma 3.29 to the first summand and using the integrability properties
established in Lemma 3.27, we obtain

[𝜋𝐸′
𝐸,−𝑛+𝑘−1((𝜋𝐸′,1𝑓) * 𝑔𝑘−𝑗)](𝑣)

=

∫︁
ℍ(𝐸′;𝐸,𝑣)

∫︁
𝕊(𝐸′)

(𝜋𝐸′,1𝑓)(𝑢)𝑔𝑘−𝑗(𝑢 · 𝑦) 𝑑𝑢 (𝑣 · 𝑦)𝑘−𝑗−3 𝑑𝑦

=

∫︁
𝕊(𝐸′)

(𝜋𝐸′,1𝑓)(𝑢)

∫︁
ℍ(𝐸′;𝐸,𝑣)

𝑔𝑘−𝑗(𝑢 · 𝑦)(𝑣 · 𝑦)𝑘−𝑗−3 𝑑𝑦 𝑑𝑢

=

∫︁
𝕊(𝐸′)

(𝜋𝐸′,1𝑓)(𝑢)[𝜋
𝐸′
𝐸,−𝑛+𝑘−1𝑔𝑘−𝑗(𝑢 · .)](𝑣) 𝑑𝑢

= 𝑐𝑘−𝑗

∫︁
𝕊(𝐸′)

(𝜋𝐸′,1𝑓)(𝑢)[(𝜋
𝐸′
𝐸,1)

*𝑔𝑘−𝑗−1(. · 𝑣)](𝑢) 𝑑𝑢+ 𝑤′
𝑓,𝐸′ · 𝑣

= 𝑐𝑘−𝑗 [(𝜋𝐸,1𝑓) * 𝑔𝑘−𝑗−1](𝑣) + 𝑤′
𝑓,𝐸′ · 𝑣,

where 𝑐𝑘−𝑗 :=
(𝑘−𝑗−1)𝜔𝑘−𝑗−1

(𝑘−𝑗−2)𝜔𝑘−𝑗−2
and 𝑤′

𝑓,𝐸′ :=
∫︀
𝕊(𝐸′)(𝜋𝐸′,1𝑓)(𝑢)𝑤𝐸′,𝑢 𝑑𝑢.

Due to Lemma 3.17, there is a vector 𝑤′′
𝑓,𝐸′ ∈ ℝ𝑛 such that 𝜋𝐸′

𝐸,−𝑛+𝑘−1(𝑤𝑓,𝐸′ · .) =
(𝑤′′

𝑓,𝐸′ · .). Then, defining 𝑤𝑓,𝐸′ := 𝑤′
𝑓,𝐸′ + 𝑤′′

𝑓,𝐸′ and observing that 𝑐𝑘,𝑗𝑐𝑘−𝑗 = 𝑐𝑘,𝑗+1

completes the proof.

Now we have all tools available for proving the desired formula for mean section oper-
ators. Note that a crucial ingredient will be the symmetry result on bivaluations.

Theorem 3.31 ([13, Theorem 3.4 and 4.3]). If 𝑘 ∈ {2, . . . , 𝑛} and 𝐾 ∈ 𝒦𝑛, then

ℎ(𝑀𝑘(𝐾), 𝑢) = 𝑚𝑛,𝑘

∫︁
𝕊
𝑔𝑘(𝑢 · 𝑣) 𝑑𝑆𝑛−𝑘+1(−𝐾, 𝑣)

for almost all 𝑢 ∈ 𝕊, where

𝑚𝑛,𝑘 :=
1

2(𝑛− 𝑘 + 1)𝜋(𝑘−1)/2

Γ(𝑛2 )Γ(
𝑘−1
2 )

Γ(𝑘2 )Γ(
𝑛−𝑘+2

2 )
.

Proof. We already know from Theorem 3.10 and Theorem 3.25 that this is true in the
cases where 𝑘 = 2 and 𝑘 = 𝑛, so only the cases where 𝑘 ∈ {3, . . . , 𝑛− 1} remain.

Note that the statement means exactly that

ℎ(𝑀𝑘(𝐾), ·) = 𝑚𝑛,𝑘𝑆𝑛−𝑘+1(−𝐾, ·) * 𝑔𝑘
in the sense of measures and distributions, respectively. Since both sides depend contin-
uously on 𝐾, it suffices to prove this for smooth convex bodies 𝐾 ∈ 𝒦𝑛. Recall that all
area measures of a smooth convex body have smooth densities.
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Next, let 𝐸 ∈ G(𝑛, 𝑛− 𝑘 + 2) and 𝐶 ∈ 𝒦𝑛−𝑘+2(𝐸) be arbitrary. Then

⟨ℎ(𝑀𝑘(𝐾), ·), 𝑆𝑛−𝑘+1(𝐶, ·)⟩𝕊
= 𝑐𝑛,𝑘⟨ℎ(𝑀𝑘(𝐾), ·), 𝜋*

𝐸,−𝑛+𝑘−1𝑆
𝐸
𝑛−𝑘+1(𝐶, ·)⟩𝕊 due to (3.10)

= 𝑐𝑛,𝑘⟨𝜋𝐸,−𝑛+𝑘−1ℎ(𝑀𝑘(𝐾), ·), 𝑆𝐸
𝑛−𝑘+1(𝐶, ·)⟩𝕊(𝐸)

for some constant 𝑐𝑛,𝑘.
On the other hand,

⟨ℎ(𝑀𝑘(𝐾), ·), 𝑆𝑛−𝑘+1(𝐶, ·)⟩𝕊
= ⟨ℎ(𝑀𝑘(𝐶), ·), 𝑆𝑛−𝑘+1(𝐾, ·)⟩𝕊 due to (2.4)

= 𝑐𝑛,𝑘⟨𝜋*
𝐸,1ℎ(𝑀

𝐸
2 (𝐶), ·), 𝑆𝑛−𝑘+1(𝐾, ·)⟩𝕊 due to (3.11)

= 𝑐𝑛,𝑘⟨ℎ(𝑀𝐸
2 (𝐶), ·), 𝜋𝐸,1𝑆𝑛−𝑘+1(𝐾, ·)⟩𝕊(𝐸)

= 𝑐𝑛,𝑘⟨𝑆𝐸
𝑛−𝑘+1(−𝐶, ·) * 𝑔2, 𝜋𝐸,1𝑆𝑛−𝑘+1(𝐾, ·)⟩𝕊(𝐸) due to (3.19)

= 𝑐𝑛,𝑘⟨𝑆𝐸
𝑛−𝑘+1(𝐶, ·) * 𝑔2, 𝜋𝐸,1𝑆𝑛−𝑘+1(−𝐾, ·)⟩𝕊(𝐸)

= 𝑐𝑛,𝑘⟨(𝜋𝐸,1𝑆𝑛−𝑘+1(−𝐾, ·)) * 𝑔2, 𝑆𝐸
𝑛−𝑘+1(𝐶, ·)⟩𝕊(𝐸) due to (1.7)

= 𝑐𝑛,𝑘⟨𝜋𝐸,−𝑛+𝑘−1(𝑆𝑛−𝑘+1(−𝐾, ·) * 𝑔𝑘), 𝑆𝐸
𝑛−𝑘+1(𝐶, ·)⟩𝕊(𝐸) due to (3.22)

for some constant 𝑐𝑛,𝑘.
Since 𝐶 and 𝐸 were chosen arbitrarily, it follows that for all 𝐸 ∈ G(𝑛, 𝑛− 𝑘 + 2), the

function 𝜋𝐸,−𝑛+𝑘−1𝑓 is a linear harmonic on 𝐸, where

𝑓 := ℎ(𝑀𝑘(𝐾), ·)− 𝑐𝑛,𝑘𝑆𝑛−𝑘+1(−𝐾, ·) * 𝑔𝑘 ∈ C(𝕊) (3.23)

and 𝑐𝑛,𝑘 is some constant. Now our injectivity results on mean lifted projections come into

play. Due to Lemma 3.23, the function 𝜋
[𝑛−𝑘+2]
1,−𝑛+𝑘−1𝑓 is a linear harmonic on 𝕊. The mean

lifted projection operator 𝜋
[𝑛−𝑘+2]
1,−𝑛+𝑘−1 is an injective multiplier transform due to Proposi-

tion 3.22, hence 𝑓 is also a linear harmonic on 𝕊. Since 𝑓 is also centred, 𝑓 = 0.
The constant 𝑐𝑛,𝑘 in (3.23) can be effectively computed from (3.10), (3.11), and (3.22).

Alternatively, it can also be computed from (3.1).

Finally, we want to mention that with Berg’s averaging procedure, one can prove that
the formula obtained above is true for all 𝑢 ∈ 𝕊, whenever dim𝐾 ≥ 𝑛− 𝑘 + 1.

Theorem 3.32 ([13, Theorem 4.4]). If 𝑘 ∈ {2, . . . , 𝑛} and 𝐾 ∈ 𝒦𝑛 with dim𝐾 ≥ 𝑛−𝑘+1,
then

ℎ𝑜(𝑀𝑘(𝐾), 𝑢) = 𝑚𝑛,𝑘

∫︁
𝕊
𝑔𝑘(𝑢 · 𝑣) 𝑑𝑆𝑛−𝑘+1(−𝐾, 𝑣), 𝑢 ∈ 𝕊,

where 𝑚𝑛,𝑘 is as in the previous theorem.
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Chapter 4

Log-Concavity of Minkowski

Valuations

The Brunn-Minkowski inequality for intrinsic volumes states that for 𝑖 ∈ {2, . . . , 𝑛},

V𝑖(𝐾 + 𝐿)1/𝑖 ≥ V𝑖(𝐾)1/𝑖 + V𝑖(𝐿)
1/𝑖

for all 𝑛-dimensional convex bodies 𝐾,𝐿 ∈ 𝒦𝑛 with equality if and only if 𝐾 and 𝐿 are
homothetic. It is natural to ask to what extent this is true for the composition of intrinsic
volumes with homogeneous Minkowski valuations.

Question 1. For which 𝑖, 𝑗 ∈ {1, . . . , 𝑛} and Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 does the generalized Brunn-

Minkowski inequality for Minkowski valuations

V𝑖(Φ𝑗(𝐾 + 𝐿))1/𝑖𝑗 ≥ V𝑖(Φ𝑗(𝐾))1/𝑖𝑗 + V𝑖(Φ𝑗(𝐿))
1/𝑖𝑗 (4.1)

hold and what are the respective equality conditions?

The aim of this chapter is to present the research done on this question. In Section 4.1
we start off with a result from Schuster in 2006 that covers the case where 𝑗 = 𝑛− 1, then
in Section 4.2 and Section 4.3, we discuss a result from L. Parapatits and F. Schuster from
2011 that covers the cases where 𝑖 ≤ 𝑗 + 1, and in Section 4.4 we state the most recent
result from 2014 which is due to A. Berg, L. Parapatits, F. Schuster, and M. Weberndorfer.
Note that in order to shorten some arguments, the exhibition of the research will not be
entirely chronological.

First of all, we want to discuss some trivial cases. If Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 is the trivial

Minkowski valuation, that is, if Φ𝑗𝐾 = {𝑜} for all 𝐾 ∈ 𝒦𝑛, then equality holds in (4.1).
For the marginal cases where 𝑖 = 1 or 𝑗 ∈ {1, 𝑛}, the following is known:
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Lemma 4.1. Let 𝑖, 𝑗 ∈ {1, . . . , 𝑛} and let Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 be non-trivial. If 𝑖 = 1 or

𝑗 ∈ {1, 𝑛}, then
V𝑖(Φ𝑗(𝐾 + 𝐿))1/𝑖𝑗 ≥ V𝑖(Φ𝑗𝐾)1/𝑖𝑗 + V𝑖(Φ𝑗𝐿)

1/𝑖𝑗 (4.2)

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛.

(i) If 𝑖 = 𝑗 = 1, then equality always holds in (4.2).

(ii) If 𝑖 = 1 and 𝑗 > 1, then equality holds in (4.2) if and only if 𝐾 and 𝐿 are homothetic.

(iii) If 𝑖 > 1 and 𝑗 = 𝑛, then equality holds in (4.2) if and only if 𝐾 and 𝐿 are homothetic.

We will give a short proof of this theorem at the very end of the chapter. Until then,
we will focus on the non-trivial cases where 𝑖 ∈ {2, . . . , 𝑛} and 𝑗 ∈ {2, . . . , 𝑛− 1}.

Before we exhibit the research done on Question 1, we want to remark that geometric
inequalities of this kind are often stated in different forms. Therefore we provide a lemma
that states in a very general way that these kind of formulations are always equivalent.

Lemma 4.2. Let 𝜁 : 𝒦𝑛 → [0,∞) be a continuous translation invariant function homoge-

neous of degree 1 such that 𝜁(𝐾) > 0 for every 𝑛-dimensional 𝐾 ∈ 𝒦𝑛. Then the following

statements are equivalent:

(a) For all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛,

𝜁(𝐾 + 𝐿) ≥ 𝜁(𝐾) + 𝜁(𝐿) (4.3)

with equality if and only if 𝐾 and 𝐿 are homothetic.

(b) For all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆 ∈ (0, 1),

𝜁((1− 𝜆)𝐾 + 𝜆𝐿) ≥ (1− 𝜆)𝜁(𝐾) + 𝜆𝜁(𝐿) (4.4)

with equality if and only if 𝐾 and 𝐿 are homothetic.

(c) For all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆 ∈ (0, 1),

𝜁((1− 𝜆)𝐾 + 𝜆𝐿) ≥ 𝜁(𝐾)1−𝜆𝜁(𝐿)𝜆 (4.5)

with equality if and only if 𝐾 and 𝐿 are translates of each other.

Proof. First we show that the three inequalities (4.3), (4.4), and (4.5) are equivalent, then
we show that the respective equality conditions are equivalent.

⊳ Clearly, the implication (4.3)⇒ (4.4) follows from the homogeneity of 𝜁.
In order to see that (4.4)⇒(4.5), define 𝑓(𝜆) := 𝜁((1 − 𝜆)𝐾 + 𝜆𝐿) and then observe

that (4.4) states that 𝑓 is concave and (4.5) states that 𝑓 is log-concave.
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In order to show (4.5)⇒(4.3), assume that (4.5) holds for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛

and 𝜆 ∈ (0, 1). Then

𝜁(𝐾 + 𝐿)

𝜁(𝐾) + 𝜁(𝐿)
= 𝜁

(︂
𝐾 + 𝐿

𝜁(𝐾) + 𝜁(𝐿)

)︂
= 𝜁

(︂
𝜁(𝐾)

𝜁(𝐾) + 𝜁(𝐿)

𝐾

𝜁(𝐾)
+

𝜁(𝐿)

𝜁(𝐾) + 𝜁(𝐿)

𝐿

𝜁(𝐿)

)︂

≥ 𝜁

(︂
𝐾

𝜁(𝐾)

)︂ 𝜁(𝐾)
𝜁(𝐾)+𝜁(𝐿)

𝜁

(︂
𝐿

𝜁(𝐿)

)︂ 𝜁(𝐿)
𝜁(𝐾)+𝜁(𝐿)

= 1

(4.6)

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛.
⊳ Now we show that the stated equality conditions are equivalent.
Clearly, if 𝐾 and 𝐿 are homothetic, then equality holds in (4.3) and (4.4). Moreover,

equality holds in (4.3) for 𝐾 and 𝐿 if and only if equality holds in (4.4) for (1− 𝜆)𝐾 and
𝜆𝐿. Hence, one equality implies the homothety of 𝐾 and 𝐿 if and only if the other does.
This shows that the equality conditions in (a) and (b) are equivalent.

Next, we show that the equality condition in (c) implies the equality condition in (a).
To that end, suppose that the equality condition in (c) is true and that equality holds
in (4.3) for 𝐾 and 𝐿. Then our computation in (4.6) entails that equality holds in (4.5)
for 𝜁(𝐾)−1𝐾 and 𝜁(𝐿)−1𝐿. Then these are translates of each other, so 𝐾 and 𝐿 are
homothetic.

Lastly, we show that the equality condition in (b) implies the equality condition in
(c). Obviously, if 𝐾 and 𝐿 are translates of each other, then equality holds in (4.5). Now
suppose that the equality condition in (a) is true and that for all 𝜆 ∈ (0, 1), equality holds
in (4.5) for 𝐾 and 𝐿. Then the concave function 𝑓(𝜆) := 𝜁((1− 𝜆)𝐾 + 𝜆𝐿) is of the form
𝑓(𝜆) = 𝜁(𝐾)(𝜁(𝐿)/𝜁(𝐾))𝜆. This is only possible if 𝑓 is constant, which implies that 𝐾
and 𝐿 are homothetic, that is 𝐿 = 𝛼𝐾 + 𝑥 for some 𝛼 > 0 and 𝑥 ∈ ℝ𝑛. Plugging this into
(4.5) yields 1−𝜆+𝜆𝛼 = 𝛼𝜆 for all 𝜆 ∈ (0, 1), which is only possible if 𝛼 = 1. Thus 𝐾 and
𝐿 are translates of each other.

The following lemma provides general information about homogeneous Minkowski val-
uations in MValSO(𝑛) that will be used throughout this chapter.

Lemma 4.3. Let 𝑗 ∈ {0, . . . , 𝑛} and Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 .

(i) The convex body Φ𝑗𝐾 is centered for all 𝐾 ∈ 𝒦𝑛.

(ii) There exists 𝑟(Φ𝑗) ≥ 0 such that Φ𝑗𝐵 = 𝑟(Φ𝑗)𝐵. If Φ𝑗 is non-trivial, then 𝑟(Φ𝑗) > 0.

(iii) We have

W𝑛−1(Φ𝑗𝐾) = 𝑟(Φ𝑗)W𝑛−𝑗(𝐾) (4.7)

for all 𝐾 ∈ 𝒦𝑛.

Proof. For (i), define

𝑠 : 𝒦𝑛 → ℝ𝑛 : 𝑠(𝐾) := 𝑠(𝐾)− 𝑠(Φ𝑗𝐾),
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where 𝑠 : 𝒦𝑛 → ℝ𝑛 denotes the Steiner point map. Observe that 𝑠 is a rigid motion
invariant and continuous vector valued valuation. Thus 𝑠 is the Steiner point map, which
implies that 𝑠(Φ𝑗𝐾) = 0 for all 𝐾 ∈ 𝒦𝑛.

For (iii), observe that 𝐾 ↦→ W𝑛−1(Φ𝑗𝐾) is a continuous and rigid motion invariant
valuation on 𝒦𝑛, homogeneous of degree 𝑗. Hence, Hadwiger’s characterization of the
intrinsic volumes entails that there is some constant 𝑐 ∈ ℝ such that W𝑛−1(Φ𝑗𝐾) =
𝑐W𝑛−𝑗(𝐾) for all 𝐾 ∈ 𝒦𝑛. Putting 𝐾 = 𝐵 shows that 𝑐 = 𝑟(Φ𝑗).

For (ii), note that if 𝑟(Φ𝑗) = 0, then (4.7) implies that W𝑛−1(Φ𝑗𝐾) = 0 for all 𝐾 ∈ 𝒦𝑛.
Thus dim(Φ𝑗𝐾) = 0 for all 𝐾 ∈ 𝒦𝑛, which implies that Φ𝑗 is trivial.

4.1 Homogeneous Minkowski Valuations of Degree 𝑛− 1

A first answer to Question 1 posed at the beginning of the chapter was given by F. Schuster
in [23], which is the content of this section. The first step is to derive a representation

theorem for MVal
SO(𝑛)
𝑛−1 from McMullen’s representation theorem for Val𝑛−1.

Theorem 4.4 ([23, Theorem 1.2]). For every Φ𝑛−1 ∈ MVal
SO(𝑛)
𝑛−1 there exists a unique

𝑓 ∈ C𝑜(𝕊, 𝑒) such that

ℎ(Φ𝑛−1𝐾, ·) = 𝑆𝑛−1(𝐾, ·) * 𝑓, 𝐾 ∈ 𝒦𝑛. (4.8)

Proof. For showing existence, let Φ𝑛−1 ∈ MVal
SO(𝑛)
𝑛−1 and let 𝜙𝑛−1 ∈ Val𝑒𝑛−1 denote its

associated zonal real valued valuation, that is

𝜙𝑛−1(𝐾) := ℎ(Φ𝑛−1𝐾, 𝑒), 𝐾 ∈ 𝒦𝑛.

Due to Theorem 2.12, there exists a function 𝑓 ∈ C𝑜(𝕊) such that

𝜙𝑛−1(𝐾) = ⟨𝑓, 𝑆𝑛−1(𝐾, ·)⟩, 𝐾 ∈ 𝒦𝑛.

Since 𝜙𝑛−1 is zonal, we have that for all 𝜗 ∈ SO(𝑛− 1, 𝑒) and 𝐾 ∈ 𝒦𝑛,

⟨𝜗𝑓, 𝑆𝑛−1(𝐾, ·)⟩ = ⟨𝑓, 𝑆𝑛−1(𝜗
−1𝐾, ·)⟩ = 𝜙𝑛−1(𝜗

−1𝐾) = 𝜙𝑛−1(𝐾) = ⟨𝑓, 𝑆𝑛−1(𝐾, ·)⟩.

It follows that 𝑓 ∈ C0(𝕊, 𝑒). Moreover, using the SO(𝑛)-equivariance of Φ𝑛−1, we obtain
that for all 𝜗 ∈ SO(𝑛),

ℎ(Φ𝑛−1𝐾,𝜗𝑒) = ℎ(Φ𝑛−1𝜗
−1𝐾, 𝑒) = 𝜙𝑛−1(𝜗

−1𝐾)

= ⟨𝜗𝑓, 𝑆𝑛−1(𝐾, ·)⟩ = (𝑆𝑛−1(𝐾, ·) * 𝑓)(𝜗𝑒),

showing (4.8).
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For showing uniqueness, suppose that we have two functions 𝑓, 𝑔 ∈ C𝑜(𝕊, 𝑒) that satisfy
Theorem 4.4. Then

⟨𝑓, 𝑆𝑛−1(𝐾, ·)⟩ = 𝜙𝑛−1(𝐾) = ⟨𝑔, 𝑆𝑛−1(𝐾, ·)⟩
for all 𝐾 ∈ 𝒦𝑛, which implies that 𝑓 = 𝑔.

This representation theorem motivates the following definition:

Definition. If 𝑗 ∈ {1, . . . , 𝑛− 1}, Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 , and 𝑓 ∈ C𝑜(𝕊, 𝑒) such that

ℎ(Φ𝑗(𝐾), ·) = 𝑆𝑗(𝐾, ·) * 𝑓, 𝐾 ∈ 𝒦𝑛,

then we call 𝑓 the generating function for Φ𝑗 .

Generating functions are always unique if they exist. Hence this notion makes sense.

The representation theorem above states that every Φ𝑛−1 ∈ MVal
SO(𝑛)
𝑛−1 has a unique

generating function.

Fix a Minkowski valuation Φ𝑛−1 ∈ MVal
SO(𝑛)
𝑛−1 with generating function 𝑓 ∈ C𝑜(𝕊, 𝑒).

Note that for convex bodies𝐾1, . . . ,𝐾𝑛−1 ∈ 𝒦𝑛, the mixed area measure 𝑆(𝐾1, . . . ,𝐾𝑛−1; ·)
satisfies the conditions of Minkowski’s existence theorem, so there exists a mixed convex

body [𝐾1, . . . ,𝐾𝑛−1] ∈ 𝒦𝑛 such that

𝑆(𝐾1, . . . ,𝐾𝑛−1; ·) = 𝑆𝑛−1([𝐾1, . . . ,𝐾𝑛−1], ·).
Hence we we may define

Φ : (𝒦𝑛)𝑛−1 → 𝒦𝑛 : Φ(𝐾1, . . . ,𝐾𝑛−1) := Φ𝑛−1([𝐾1, . . . ,𝐾𝑛−1])

and this map satisfies

ℎ(Φ(𝐾1, . . . ,𝐾𝑛−1), ·) = 𝑆(𝐾1, . . . ,𝐾𝑛−1; ·) * 𝑓.
In particular, for 𝑗 ∈ {0, . . . , 𝑛− 1} we may define

Φ𝑗 : 𝒦𝑛 → 𝒦𝑛 : ℎ(Φ𝑗𝐾, ·) := 𝑆𝑗(𝐾, ·) * 𝑓.

Clearly, Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 and it admits the generating function 𝑓 . Let us fix these

Minkowski valuations Φ𝑗 , 𝑗 ∈ {0, . . . , 𝑛− 1}, for the remaining section.
An important feature of these Minkowski valuations is the symmetry and monotonicity

properties discussed in the following two propositions.

Proposition 4.5 ([23, Lemma 6.2]). Let 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {0, . . . , 𝑛− 1}. Then
W𝑛−𝑖(𝐿,Φ𝑗𝐾) = W𝑛−𝑗−1(𝐾,Φ𝑖−1𝐿) (4.9)

for all 𝐾,𝐿 ∈ 𝒦𝑛.
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Proof. Denote by 𝑓 ∈ C𝑜(𝕊, 𝑒) the generating function of Φ𝑗 and Φ𝑖−1. Due to (1.7), we
obtain

W𝑛−𝑖(𝐿,Φ𝑗𝐾) = 1
𝑛⟨ℎ(Φ𝑗𝐿), 𝑆𝑖−1(𝐾, ·)⟩

= 1
𝑛⟨𝑆𝑗(𝐿, ·) * 𝑓, 𝑆𝑖−1(𝐾, ·)⟩

= 1
𝑛⟨𝑆𝑖−1(𝐿, ·) * 𝑓, 𝑆𝑗(𝐾, ·)⟩

= 1
𝑛⟨ℎ(Φ𝑖−1𝐿, ·), 𝑆𝑗(𝐾, ·)⟩

= W𝑛−𝑗−1(𝐾,Φ𝑖−1𝐿)

for all 𝐾,𝐿 ∈ 𝒦𝑛.

Proposition 4.6. Let 𝑖 ∈ {2, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛−1} and suppose that Φ𝑗 is non-trivial.

Then

𝐾 ⊆ 𝐿 =⇒ W𝑛−𝑖(Φ𝑗𝐾) ≤ W𝑛−𝑖(Φ𝑗𝐿) (4.10)

for all 𝐾,𝐿 ∈ 𝒦𝑛.

In particular, if 𝐾 ∈ 𝒦𝑛 is 𝑛-dimensional, then Φ𝑗𝐾 is at least 𝑖-dimensional.

Proof. Let 𝐾,𝐿 ∈ 𝒦𝑛 with 𝐾 ⊆ 𝐿 and define 𝐿𝜀 := 𝐿+ 𝜀𝐵 for 𝜀 > 0. Then

ℎ(Φ𝑗𝐿𝜀, ·) = 𝑆𝑗(𝐿+ 𝜀𝐵, ·) * 𝑓 =

𝑗∑︁
ℓ=0

(︂
𝑗

ℓ

)︂
𝜀𝑗−ℓ𝑆ℓ(𝐿, ·) * 𝑓 =

𝑗∑︁
ℓ=0

(︂
𝑗

ℓ

)︂
𝜀𝑗−ℓℎ(Φℓ𝐿, ·).

Since Φ0𝐿 = Φ0𝐵 = Φ𝑗𝐵 = 𝑟(Φ𝑗)𝐵, it follows from Lemma 4.3 (ii) that Φ𝑗𝐿𝜀 is full-
dimensional. Due to (4.9) and the monotonicity of mixed volumes, we have for every
𝐶 ∈ 𝒦𝑛,

W𝑛−𝑖(𝐶,Φ𝑗𝐿𝜀) = W𝑛−𝑗−1(𝐿𝜀,Φ𝑖−1𝐶) ≥ W𝑛−𝑗−1(𝐾,Φ𝑖−1𝐶) = W𝑛−𝑖(𝐶,Φ𝑗𝐾).

Thus, taking 𝐶 = Φ𝑗𝐿𝜀 and using the general Minkowski inequality (2.8) yield

W𝑛−𝑖(Φ𝑗𝐿𝜀)
𝑖 ≥ W𝑛−𝑖(Φ𝑗𝐿𝜀,Φ𝑗𝐾)𝑖 ≥ W𝑛−𝑖(Φ𝑗𝐿𝜀)

𝑖−1W𝑛−𝑖(Φ𝑗𝐾).

Since W𝑛−𝑖(𝐿𝜀) > 0, we obtain W𝑛−𝑖(Φ𝑗𝐾) ≤ W𝑛−𝑖(Φ𝑗𝐿𝜀). Due to Φ𝑗 and W𝑛−𝑖 being
continuous, (4.10) follows by taking the limit 𝜀 → 0.

If 𝐾 ∈ 𝒦𝑛 is full-dimensional, then 𝑟𝐵 + 𝑥 ⊆ 𝐾 for some 𝑟 > 0 and 𝑥 ∈ ℝ𝑛. Thus
(4.10) implies that W𝑛−𝑖(Φ𝑗𝐾) ≥ W𝑛−𝑖(Φ𝑗(𝑟𝐵 + 𝑥)) > 0, so dim𝐾 ≥ 𝑖.

Note that this proposition entails that the Minkowski valuations Φ𝑗 , 𝑗 ∈ {2, . . . , 𝑛−1},
map 𝑛-dimensional convex bodies to 𝑛-dimensional convex bodies. It does, however, not

directly follow that this is true for all non-trivial Minkowski valuations in MVal
SO(𝑛)
𝑗 ,

since the Φ𝑗 were not chosen arbitrarily. In fact, the question whether this is the case is
currently an open problem.

The symmetry property (4.9) is the crucial ingredient in the proof of the following
inequality. Proposition 4.6 will be important for establishing the equality conditions.
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Theorem 4.7 ([23, Theorem 6.8]). Let 𝑖 ∈ {2, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛 − 1}, and suppose

that Φ𝑗 is non-trivial. Then

V𝑖(Φ𝑗(𝐾 + 𝐿))1/𝑖𝑗 ≥ V𝑖(Φ𝑗𝐾)1/𝑖𝑗 + V𝑖(Φ𝑗𝐿)
1/𝑖𝑗 (4.11)

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 with equality if and only if 𝐾 and 𝐿 are homothetic.

Proof. First we prove the inequality, then we treat the equality cases.

⊳ Define 𝐶 := Φ𝑗(𝐾 +𝐿) and denote by Φ𝑖−1 the Minkowski valuation in MVal
SO(𝑛)
𝑖−1

with the same generating function as Φ𝑗 . The general Brunn-Minkowski inequality (2.6)
in combination with (4.9) yields

W𝑛−𝑖(𝐶)1/𝑗 = W𝑛−𝑖(𝐶,Φ𝑗(𝐾 + 𝐿))1/𝑗

= W𝑛−𝑗−1(𝐾 + 𝐿,Φ𝑖−1𝐶)1/𝑗

≥ W𝑛−𝑗−1(𝐾,Φ𝑖−1𝐶)1/𝑗 +W𝑛−𝑗−1(𝐿,Φ𝑖−1𝐶)1/𝑗

= W𝑛−𝑖(𝐶,Φ𝑗𝐾)1/𝑗 +W𝑛−𝑖(𝐶,Φ𝑗)
1/𝑗 .

Due to the general Minkowski inequality (2.8), we have

W𝑛−𝑖(𝐶,Φ𝑗𝐾)𝑖 ≥ W𝑛−𝑖(𝐶)𝑖−1W𝑛−𝑖(Φ𝑗𝐾), (4.12)

W𝑛−𝑖(𝐶,Φ𝑗𝐿)
𝑖 ≥ W𝑛−𝑖(𝐶)𝑖−1W𝑛−𝑖(Φ𝑗𝐿). (4.13)

By combining these two inequalities with the inequality above, we obtain

W𝑛−𝑖(𝐶)1/𝑗 ≥ W𝑛−𝑖(𝐶)1−1/𝑖𝑗W𝑛−𝑖(Φ𝑗𝐾)1/𝑖𝑗 +W𝑛−𝑖(𝐶)1−1/𝑖𝑗W𝑛−𝑖(Φ𝑗𝐿)
1/𝑖𝑗 .

Due to the previous proposition, W𝑛−𝑖(𝐶) > 0, hence

W𝑛−𝑖(𝐶)1/𝑖𝑗 ≥ W𝑛−𝑖(Φ𝑗𝐾)1/𝑖𝑗 +W𝑛−𝑖(Φ𝑗𝐿)
1/𝑖𝑗 .

Putting 𝐶 = Φ𝑗(𝐾 + 𝐿) and W𝑛−𝑖 = 𝜅𝑛−𝑖

(︀
𝑛
𝑖

)︀−1
V𝑖 yields the desired inequality.

⊳ Suppose now that equality holds in (4.11). Then equality must also hold in (4.12)
and (4.13). Due to the previous proposition, Φ𝑗(𝐾+𝐿), Φ𝑗𝐾, and Φ𝑗𝐿 all have dimension
at least 𝑖. Thus the equality condition of (2.8) in combination with Lemma 4.3 (ii) entails
that there exist 𝜆, 𝜇 > 0 such that

Φ𝑗𝐾 = 𝜆Φ𝑗(𝐾 + 𝐿) and Φ𝑗𝐿 = 𝜇Φ𝑗(𝐾 + 𝐿). (4.14)

Plugging (4.14) into (4.11) gives
𝜆1/𝑗 + 𝜇1/𝑗 = 1

and plugging (4.14) into (4.7) gives

W𝑛−𝑗(𝐾) = 𝜆W𝑛−𝑗(𝐾 + 𝐿) and W𝑛−𝑗(𝐿) = 𝜇W𝑛−𝑗(𝐾 + 𝐿).
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Combining the two equations above yields

W𝑛−𝑗(𝐾 + 𝐿)1/𝑗 = (𝜆1/𝑗 + 𝜇1/𝑗)W𝑛−𝑗(𝐾 + 𝐿)1/𝑗

= W𝑛−𝑗(𝐾)1/𝑗 +W𝑛−𝑗(𝐿)
1/𝑗 ,

so the equality condition for (2.7) implies that 𝐾 and 𝐿 are homothetic.

In the special case, where 𝑗 = 𝑛− 1, we obtain:

Corollary 4.8 ( [23, Theorem 6.8]). Let 𝑖 ∈ {2, . . . , 𝑛} and let Φ𝑛−1 ∈ MVal
SO(𝑛)
𝑛−1 be

non-trivial. Then

V𝑖(Φ𝑛−1(𝐾 + 𝐿))1/𝑖(𝑛−1) ≥ V𝑖(Φ𝑛−1𝐾)1/𝑖(𝑛−1) + V𝑖(Φ𝑛−1𝐿)
1/𝑖(𝑛−1)

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 with equality if and only if 𝐾 and 𝐿 are homothetic.

Note that for 𝑗 ∈ {2, . . . , 𝑛 − 2} we can not derive such a corollary from Theorem 4.7
since the representation theorem at the beginning of this section only treats the case where

𝑗 = 𝑛 − 1, and the Minkowski valuations Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 , 𝑗 ∈ {2, . . . , 𝑛 − 2}, were not

chosen arbitrarily.

4.2 The Steiner Formula for Minkowski Valuations

We have seen in the previous section that for every Φ𝑛−1 ∈ MVal
SO(𝑛)
𝑛−1 , we can derive

Minkowski valuations Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 , 𝑗 ∈ {0, . . . , 𝑛− 1}, such that

Φ𝑛−1(𝐾 + 𝜀𝐵) =
𝑛−1∑︁
𝑗=0

𝜀𝑛−1−𝑗

(︂
𝑛− 1

𝑗

)︂
Φ𝑗𝐾

for all 𝐾 ∈ 𝒦𝑛 and 𝜀 ≥ 0. Thus, Minkowski valuations in MVal
SO(𝑛)
𝑛−1 satisfy some kind

of Steiner formula. In some sense, the fact that the Minkowski valuations Φ𝑗 were derived
from Φ𝑛−1 in this way brought about the symmetry property (4.9), which in turn was the
key to Theorem 4.7. This observation motivates the general Steiner formula for Minkowski
valuations, which was proved by L. Parapatits and F. Schuster in 2011 and will be discussed
in this section.

In fact, we have even obtained a polynomiality result similar to Theorem 2.8 for valua-

tions Φ𝑛−1 ∈ MVal
SO(𝑛)
𝑛−1 , which is much stronger than Steiner’s formula. Hence, one could

ask whether such a polynomiality theorem can be proven for every Φ ∈ MVal, or equiv-
alently, whether a McMullen decomposition theorem can be proven for every Φ ∈ MVal.
In general, this is not the case, as was shown by T. Wannerer and L. Parapatits.

However, from the McMullen decomposition of CVal and the characterizations of V0

and V𝑛, we obtain the following decomposition theorem for Minkowski valuations:
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Lemma 4.9. For every Φ ∈ MVal, there exist convex bodies 𝐿0, 𝐿𝑛 ∈ 𝒦𝑛, and for every

𝑗 ∈ {1, . . . , 𝑛− 1}, a valuation in CVal𝑗, denoted by 𝐾 ↦→ 𝑔𝑗(𝐾, ·), such that

ℎ(Φ𝐾, ·) = ℎ(𝐿0, ·) +
𝑛−1∑︁
𝑗=1

𝑔𝑗(𝐾, ·) + V𝑛(𝐾)ℎ(𝐿𝑛, ·), 𝐾 ∈ 𝒦𝑛. (4.15)

Proof. The proof will be carried out in three steps: finding 𝑔𝑗(𝐾, ·), 𝑗 ∈ {0, . . . , 𝑛}, showing
that 𝑔0(𝐾, ·) and 𝑔𝑛(𝐾, ·) are support functions, and finding 𝐿0 and 𝐿𝑛.

⊳ For the first step, consider Φ : 𝐾 ↦→ ℎ(Φ𝐾, ·), the valuation in CVal associated with
Φ. Via the McMullen decomposition of Φ, we obtain for every 𝑗 ∈ {0, . . . , 𝑛} a valuation
in CVal𝑗 , denoted by 𝐾 ↦→ 𝑔𝑗(𝐾, ·), such that

ℎ(Φ𝐾, ·) = 𝑔0(𝐾, ·) +
𝑛−1∑︁
𝑗=1

𝑔𝑗(𝐾, ·) + 𝑔𝑛(𝐾, ·), 𝐾 ∈ 𝒦𝑛.

⊳ It only remains to take care of 𝑔0(𝐾, ·) and 𝑔𝑛(𝐾, ·). To that end, extend all 𝑔𝑗(𝐾, ·)
to 1-homogeneous functions on ℝ𝑛. Next, fix some 𝑥, 𝑦 ∈ ℝ𝑛 and define a valuation
𝜙 ∈ Val by

𝜙(𝐾) := ℎ(Φ𝐾,𝑥+ 𝑦)− ℎ(Φ𝐾,𝑥)− ℎ(Φ𝐾, 𝑦), 𝐾 ∈ 𝒦𝑛.

Then 𝜙 is always non-negative and the 𝑗-homogeneous component in its McMullen decom-
position is given by

𝜙𝑗(𝐾) = 𝑔𝑗(𝐾,𝑥+ 𝑦)− 𝑔𝑗(𝐾,𝑥)− 𝑔𝑗(𝐾, 𝑦), 𝐾 ∈ 𝒦𝑛. (4.16)

For 𝐾 ∈ 𝒦𝑛 and 𝜆 > 0, we have

0 ≤ 𝜙(𝜆𝐾) = 𝜙0(𝐾) +
𝑛−1∑︁
𝑗=1

𝜆𝑗𝜙𝑗(𝐾) + 𝜆𝑛𝜙𝑛(𝐾).

Taking the limit 𝜆 → 0 shows that 𝜙0(𝐾) ≥ 0; dividing by 𝜆𝑛 and taking the limit 𝜆 → +∞
shows that 𝜙𝑛(𝐾) ≥ 0. Due to (4.16), it follows that 𝑔0(𝐾, ·) and 𝑔𝑛(𝐾, ·) are support
functions.

⊳ Lastly, we need to find 𝐿0 and 𝐿𝑛. To that end, fix 𝑢 ∈ 𝕊 and define

𝜓0(𝐾) := 𝑔0(𝐾,𝑢), 𝜓𝑛(𝐾) := 𝑔𝑛(𝐾,𝑢), 𝐾 ∈ 𝒦𝑛.

Then 𝜓0 ∈ Val0 and 𝜓𝑛 ∈ Val𝑛. Since Val0 and Val𝑛 are spanned by V0 and V𝑛,
respectively, there are functions ℎ0, ℎ𝑛 : 𝕊 → ℝ such that

𝑔0(𝐾,𝑢) = ℎ0(𝑢) and 𝑔𝑛(𝐾,𝑢) = V𝑛(𝐾)ℎ𝑛(𝑢).

From the fact that 𝑔0(𝐾, ·), 𝑔𝑛(𝐾, ·) are support functions follows that ℎ0, ℎ𝑛 are the
support functions of some convex bodies 𝐿0, 𝐿𝑛 ∈ 𝒦𝑛. This completes the proof.
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Hadwiger’s volume characterization theorem entails that for every valuation 𝜙𝑗 ∈ Val𝑗 ,
𝑗 ∈ {0, . . . , 𝑛}, and every subspace 𝐸 ∈ G(𝑛, 𝑗), the restricted valuation 𝜙𝑗 |𝐸 : 𝒦𝑗(𝐸) → ℝ
is a multiple of the intrinsic volume V𝑗 . This observation gives rise to the following map:

Definition ([17]). Let 𝑗 ∈ {1, . . . , 𝑛− 1}. The Klain map

Kl𝑗 : Val+𝑗 → C(G(𝑛, 𝑗))

is defined by
𝜙|𝐸 = (Kl𝑗𝜙)(𝐸)V𝑗 , 𝜙 ∈ Val+𝑗 , 𝐸 ∈ G(𝑛, 𝑗).

We call Kl𝑗𝜙 : G(𝑛, 𝑗) → ℝ the Klain function of 𝜙.

Theorem 4.10 ( [21, Theorem 6.4.11]). For 𝑗 ∈ {1, . . . , 𝑛 − 1}, the Klain map Kl𝑗 is

injective.

This means that every valuation 𝜙 ∈ Val+𝑗 , 𝑗 ∈ {1, . . . , 𝑛−1}, is determined by its Klain

function Kl𝑗𝜙. Thus, it is natural to ask how a valuation 𝜙 ∈ Val+𝑗 can be reconstructed
by its Klain function. The following theorem gives such a description for zonoids:

Theorem 4.11 ([21, Theorem 6.4.12]). Let 𝜙𝑗 ∈ Val𝑗, 𝑗 ∈ {1, . . . , 𝑛− 1}. If 𝑍 ∈ 𝒦𝑛 is a

zonoid with generating measure 𝜇 ∈ M(𝕊), then

𝜙𝑗(𝑍) =
2𝑗

𝑗!

∫︁
𝕊
· · ·

∫︁
𝕊
(Kl𝑗𝜙)(lin{𝑢1, . . . , 𝑢𝑗})[𝑢1, . . . , 𝑢𝑗 ] 𝑑𝜇(𝑢1) · · · 𝑑𝜇(𝑢𝑗),

where [𝑢1, . . . , 𝑢𝑗 ] denotes the 𝑗-dimensional volume of the parallelepiped spanned by the

vectors 𝑢1, . . . , 𝑢𝑗.

As a consequence, we are able to prove a McMullen decomposition like theorem for
Minkowski valuations for zonoids.

Theorem 4.12 ([20, Theorem 4.2]). For every Φ ∈ MVal and zonoid 𝑍 ∈ 𝒦𝑛, there exist

convex bodies Φ0(𝑍), . . . ,Φ𝑛(𝑍) ∈ 𝒦𝑛 such that

Φ(𝜆𝑍) =

𝑛∑︁
𝑗=0

𝜆𝑗Φ𝑗(𝑍), 𝜆 > 0.

Proof. The strategy will be to define a suitable valuation, show that its homogeneous
components are non-negative for zonoids, and then deduce the statement from that.

⊳ Let Φ ∈ MVal and 𝐾 ∈ 𝒦𝑛. Then, by Lemma 4.9, there exist convex bodies
𝐿0, 𝐿𝑛 ∈ 𝒦𝑛 and continuous functions 𝑔𝑗(𝐾, ·) ∈ C(𝕊), 𝑗 ∈ {1, . . . , 𝑛− 1}, such that

ℎ(Φ𝐾, ·) = ℎ(𝐿0, ·) +
𝑛−1∑︁
𝑗=1

𝜆𝑗𝑔𝑗(𝐾, ·) + 𝜆𝑛V𝑛(𝐾)ℎ(𝐿𝑛, ·), 𝜆 > 0.
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Extend the 𝑔𝑗(𝐾, ·) to 1-homogeneous functions on ℝ𝑛, and for fixed 𝑥, 𝑦 ∈ ℝ𝑛, define a
valuation 𝜙 ∈ Val by

𝜙(𝐾) := ℎ(Φ𝐾,𝑥+ 𝑦)− ℎ(Φ𝐾,𝑥)− ℎ(Φ𝐾, 𝑦), 𝐾 ∈ 𝒦𝑛.

Then 𝜙 is always non-negative and for 𝑗 ∈ {0, . . . , 𝑛}, the 𝑗-homogeneous component in
its McMullen decomposition is given by

𝜙𝑗(𝐾) = 𝑔𝑗(𝐾,𝑥+ 𝑦)− 𝑔𝑗(𝐾,𝑥)− 𝑔𝑗(𝐾, 𝑦), 𝐾 ∈ 𝒦𝑛, (4.17)

where 𝑔0(𝐾, ·) := ℎ(𝐿0, ·) and 𝑔𝑛(𝐾, ·) := V𝑛(𝐾)ℎ(𝐿𝑛, ·). In particular, 𝜙0 and 𝜙𝑛 are
non-negative.

⊳ In order to show that the components 𝜙𝑗 , 𝑗 ∈ {1, . . . , 𝑛− 1}, are also non-negative,
we will make use of the Klain map. To that end, take 𝑗 ∈ {1, . . . , 𝑛− 1} and 𝐸 ∈ G(𝑛, 𝑗).
Then, 𝜆𝐵 ∩ 𝐸 ∈ 𝒦𝑗(𝐸) for 𝜆 > 0. For every 𝑖 > 𝑗, choose some 𝐸′ ∈ G(𝑛, 𝑖) such that
𝐸 ⊆ 𝐸′ and note that due to Hadwiger’s volume characterization theorem, 𝜙𝑖|𝐸′ is a scalar
multiple of V𝑖. Consequently, 𝜙𝑖(𝜆𝐵 ∩ 𝐸) = 0 for all 𝑖 > 𝑗, so we obtain

0 ≤ 𝜙(𝜆𝐵 ∩ 𝐸) =

𝑗−1∑︁
𝑖=0

𝜆𝑖𝜙𝑖(𝐵 ∩ 𝐸) + 𝜆𝑗𝜙𝑗(𝐵 ∩ 𝐸), 𝜆 > 0.

Dividing by 𝜆𝑗 and taking the limit 𝜆 → +∞ shows that 𝜙𝑗(𝐵∩𝐸) ≥ 0. Denote by 𝜙±
𝑗 the

even and odd part of 𝜙𝑗 , respectively. Since 𝐵 ∩𝐸 is centrally symmetric, 𝜙−(𝐵 ∩𝐸) = 0
and thus

(Kl𝑗𝜙
+
𝑗 )(𝐸)𝜅𝑗 = (Kl𝑗𝜙

+
𝑗 )(𝐸)V𝑗(𝐵 ∩ 𝐸) = 𝜙+

𝑗 (𝐵 ∩ 𝐸) = 𝜙𝑗(𝐵 ∩ 𝐸) ≥ 0.

This argument shows that Kl𝑗𝜙
+
𝑗 is a non-negative function. Hence, Theorem 4.11 entails

that 𝜙+
𝑗 (𝑍) ≥ 0 for all zonoids 𝑍 ∈ 𝒦𝑛. Since all zonoids are point symmetric, it follows

that 𝜙−
𝑗 (𝑍) = 0 and thus 𝜙𝑗(𝑍) ≥ 0.

⊳ Due to (4.17), it follows that whenever 𝑍 ∈ 𝒦𝑛 is a zonoid, 𝑔𝑗(𝑍, ·) is a support
function for 𝑗 ∈ {0, . . . , 𝑛}. Hence, there exist convex bodies Φ𝑗(𝑍), 𝑗 ∈ {0, . . . , 𝑛}, such
that 𝑔𝑗(𝑍, ·) = ℎ(Φ𝑗(𝑍), ·) which completes the proof.

As a consequence, we obtain the Steiner formula for Minkowski valuations:

Theorem 4.13 ([20, Theorem 2]). For every Φ ∈ MVal, there are unique Φ(𝑗) ∈ MVal,
𝑗 ∈ {0, . . . , 𝑛}, such that

Φ(𝐾 + 𝜀𝐵) =

𝑛∑︁
𝑗=0

𝜀𝑛−𝑗Φ(𝑗)(𝐾), 𝐾 ∈ 𝒦𝑛, 𝜀 ≥ 0. (4.18)
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Proof. Let 𝐾 ∈ 𝒦𝑛 be fixed and define

Φ𝐾 : 𝒦𝑛 → 𝒦𝑛 : Φ𝐾(𝐿) := Φ(𝐾 + 𝐿), 𝐿 ∈ 𝒦𝑛.

Observe that Φ𝐾 ∈ MVal. By Theorem 4.12, there exist convex bodies Φ𝐾
𝑗 (𝐵), 𝑗 ∈

{0, . . . , 𝑛}, such that

Φ(𝐾 + 𝜀𝐵) = Φ𝐾(𝜀𝐵) =
𝑛∑︁

𝑗=0

𝜀𝑗Φ𝐾
𝑗 (𝐵), 𝜀 > 0.

Define Φ(𝑗) by
Φ(𝑗) : 𝒦𝑛 → 𝒦𝑛 : Φ(𝑗)(𝐾) := Φ𝐾

𝑛−𝑗(𝐵).

Then clearly (4.18) is satisfied and it remains only to show that Φ(𝑗) ∈ MVal. To that
end, consider the valuation in CVal associated with Φ, denoted by Φ : 𝐾 ↦→ ℎ(Φ𝐾, ·).
From applying the Steiner formula to Φ and the uniqueness of its derived valuations Φ

(𝑗)

follows that Φ(𝑗) = Φ
(𝑗) ∈ CVal, and thus Φ(𝑗) ∈ MVal.

4.3 A Derivation Operator on Minkowski Valuations

The Steiner formula for valuations in Val gives rise to a derivation operator:

Definition. We define the derivation operator

Λ : Val → Val,

(Λ𝜙)(𝐾) :=
𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

𝜙(𝐾 + 𝑡𝐵).

Note that Λ is linear and Λ(Val𝑗) ⊆ Val𝑗−1 for 𝑗 ∈ {1, . . . , 𝑛}.
Now that we also have a Steiner formula for Minkowski valuations in MVal available,

we can analogously define such a derivation operator on MVal:

Definition. We define the derivation operator

Λ : MVal → MVal,

ℎ((ΛΦ)(𝐾), 𝑢) :=
𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

ℎ(Φ(𝐾 + 𝑡𝐵), 𝑢), 𝑢 ∈ 𝕊.

Note that Λ(MVal𝑗) ⊆ MVal𝑗−1 for 𝑗 ∈ {1, . . . , 𝑛}.
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Observe that the derivation operator on MVal corresponds to the derivation operator
on Val by means of the associated real valued valuation of Minkowski valuation. That is
to say, the diagram

MVal𝑗 MVal𝑗−1

Val𝑗 Val𝑗−1

Λ

Λ

commutes, where the downward arrows represent the map assigning to a Minkowski valu-
ation its associated real valued valuation.

This derivation operator on MVal will allow us to generalize the symmetry property
(4.9). Recall that (4.9) was a consequence of the self-adjointness of convolution operators.
Now that we do not have this tool available, we need to base our argument on a stronger
tool, which will be provided by the symmetry theorem for bivaluations. In order to use
this tool, we need to define some operators on the space BVal.

Definition. We define derivation operators Λ1,Λ2 : BVal → BVal by

(Λ1𝜑)(𝐾,𝐿) :=
𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

𝜑(𝐾 + 𝑡𝐵, 𝐿), (Λ2𝜑)(𝐾,𝐿) :=
𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

𝜑(𝐾,𝐿+ 𝑡𝐵).

We define an operator 𝑇 : BVal → BVal by

(𝑇𝜑)(𝐾,𝐿) := 𝜑(𝐿,𝐾).

Note that for 𝑖, 𝑗 ∈ {0, . . . , 𝑛}, we have Λ1(BVal𝑖,𝑗) ⊆ BVal𝑖−1,𝑗 if 𝑖 > 0 and
Λ2(BVal𝑖,𝑗) ⊆ BVal𝑖,𝑗−1 if 𝑗 > 0. Moreover, 𝑇 is an isometric automorphism on the
Banach space BVal, acting as an isomorphism between BVal𝑖,𝑗 and BVal𝑗,𝑖 for 𝑖, 𝑗 ∈
{0, . . . , 𝑛}. These operators interact expectantly, which is expressed in the following lemma:

Lemma 4.14 ([20, Corollary 6.3]). For all 𝑘 ∈ ℕ0, we have 𝑇Λ𝑘
1 = Λ𝑘

2𝑇 .

Proof. By the definition of Λ1, 𝑇 , and Λ2,

(Λ1𝜑)(𝐾,𝐿) =
𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

𝜑(𝐾 + 𝑡𝐵, 𝐿) =
𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

(𝑇𝜑)(𝐿,𝐾 + 𝑡𝐵) = (Λ2𝑇𝜑)(𝐿,𝐾),

showing that Λ1 = 𝑇Λ2𝑇 . From this equality and the fact that 𝑇 is an involution, we
deduce that

𝑇Λ𝑘
1 = 𝑇 (𝑇Λ2𝑇 )

𝑘 = 𝑇𝑇Λ𝑘
2𝑇 = Λ𝑘

2𝑇

for all 𝑘 ∈ ℕ0.

Using the symmetry theorem for bivaluations, we are now able to prove a symmetry
property of Minkowski valuations that generalizes (4.9).
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Proposition 4.15 ( [20, Corollary 6.4]). Let 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛 − 1}, and

Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 . If 𝑖 ≤ 𝑗 + 1, then

W𝑛−𝑖(𝐾,Φ𝑗𝐿) =
(𝑖− 1)!

𝑗!
W𝑛−𝑗−1(𝐿, (Λ

𝑗−𝑖+1Φ𝑗)(𝐾)) (4.19)

for all 𝐾,𝐿 ∈ 𝒦𝑛.

Proof. Define 𝜑 ∈ BVal𝑗,𝑗 by

𝜑(𝐾,𝐿) := W𝑛−𝑗−1(𝐾,Φ𝑗𝐿), 𝐾, 𝐿 ∈ 𝒦𝑛.

Due to (2.4) , 𝑇𝜑 = 𝜑, so the previous lemma yields

(Λ𝑘
1𝜑)(𝐾,𝐿) = (Λ𝑘

2𝜑)(𝐿,𝐾)

for all 𝑘 ∈ ℕ0. Let us now compute both sides of this equation. By induction on 𝑘 ∈
{0, . . . , 𝑗}, we obtain

(Λ𝑘
1𝜑)(𝐾,𝐿) =

𝑗!

(𝑗 − 𝑘)!
W𝑛−𝑗+𝑘−1(𝐾,Φ𝑗𝐿)

and
(Λ𝑘

2𝜑)(𝐿,𝐾) = W𝑛−𝑗−1(𝐿, (Λ
𝑘Φ𝑗)(𝐾)).

Hence,

W𝑛−𝑗+𝑘−1(𝐾,Φ𝑗𝐿) =
(𝑗 − 𝑘)!

𝑗!
W𝑛−𝑗−1(𝐿, (Λ

𝑘Φ𝑗)(𝐾)).

Putting 𝑘 = 𝑗 − 𝑖+ 1 yields (4.19).

Proposition 4.16. Let 𝑖 ∈ {2, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛 − 1} and let Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 be

non-trivial. If 𝑖 ≤ 𝑗 + 1, then

𝐾 ⊆ 𝐿 =⇒ W𝑛−𝑖(Φ𝑗𝐾) ≤ W𝑛−𝑖(Φ𝑗𝐿) (4.20)

for all 𝐾,𝐿 ∈ 𝒦𝑛.

In particular, if 𝐾 ∈ 𝒦𝑛 is 𝑛-dimensional, then Φ𝑗𝐾 is at least 𝑖-dimensional.

This proposition can be proven similarly as Proposition 4.6, by using the Steiner formula
for Minkowski valuations and (4.19) in place of (4.9).

The symmetry and monotonicity properties above again provide a Brunn-Minkowski
inequality for Minkowski valuations.
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Theorem 4.17 ( [20, Theorem 7.1]). Let 𝑖 ∈ {2, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛 − 1}, and let

Φ𝑗 ∈ MVal
SO(𝑛)
𝑗 be non-trivial. If 𝑖 ≤ 𝑗 + 1, then

V𝑖(Φ𝑗(𝐾 + 𝐿))1/𝑖𝑗 ≥ V𝑖(Φ𝑗𝐾)1/𝑖𝑗 + V𝑖(Φ𝑗𝐿)
1/𝑖𝑗 (4.21)

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 with equality if and only if 𝐾 and 𝐿 are homothetic.

This theorem can be proven analogously as Corollary 4.8, with (4.19) in place of (4.9)
and Proposition 4.16 in place of Proposition 4.6.

4.4 Smooth Minkowski Valuations

Observe that the two results regarding Question 1, that we have discussed so far, Theo-
rem 4.7 and Theorem 4.17, were obtained in a similar way: Derive Minkowski valuations
of lesser degrees from other Minkowski valuations, proof a symmetry and monotonicity
theorem, and then obtain a generalized Brunn-Minkowski inequality. Hence, in order to
achieve further generalizations of the past results, it seems natural to ask for a process
that reverses the action of the derivation operator in some way. It turns out that we can
achieve that by imposing a condition of smoothness on the Minkowski valuations involved.

Recall that for a Minkowski valuation Φ ∈ MVal, its associated real valued valuation
𝜙 ∈ Val is defined as

𝜙 : 𝒦𝑛 → ℝ : 𝜙(𝐾) := ℎ(Φ𝐾, 𝑒)

and note that if Φ ∈ MValSO(𝑛), then it is uniquely determined by its associated real
valued valuation.

Definition. A Minkowski valuation Φ ∈ MVal is smooth if its associated real valued
valuation is smooth.

We denote byMVal∞ the space of smooth Minkowski valuations inMVal is and define
MVal∞𝑗 := MVal𝑗 ∩MVal∞.

Moreover, we denote byMValSO(𝑛),∞ andMVal
SO(𝑛),∞
𝑗 the spaces of SO(𝑛)-equivariant

Minkowski valuations in MVal∞ and MVal∞𝑗 , respectively.

A recent result by F. Schuster and T. Wannerer characterizes zonal, translation invari-
ant, smooth valuations.

Theorem 4.18 ([22, Proposition 3.6, Theorem 5.1]). For every 𝜙 ∈ Val∞,𝑒
𝑗 , 𝑗 ∈ {1, . . . , 𝑛−

1}, there is a unique 𝑓 ∈ C∞
𝑜 (𝕊, 𝑒) such that

𝜙(𝐾) = ⟨𝑓, 𝑆𝑗(𝐾, ·)⟩, 𝐾 ∈ 𝒦𝑛.

An immediate consequence is a representation theorem for smooth Minkowski valua-
tions, which can be derived from the theorem above in the same way that Theorem 4.4
was derived from Theorem 2.12.
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Theorem 4.19 ([22, Theorem 4.2]). For every Φ𝑗 ∈ MVal
SO(𝑛),∞
𝑗 , 𝑗 ∈ {1, . . . , 𝑛 − 1},

there exists a unique 𝑓 ∈ C∞
𝑜 (𝕊, 𝑒), such that

ℎ(Φ𝑗𝐾, ·) = 𝑆𝑗(𝐾, ·) * 𝑓, 𝐾 ∈ 𝒦𝑛.

Now that we have this representation theorem at hand, it is natural to ask how the
derivation operator Λ acts on generating functions. It turns out that its action on gener-
ating functions has a very nice description which also entails injectivity.

Lemma 4.20. Let 𝑗 ∈ {2, . . . , 𝑛 − 1}. If Φ𝑗 ∈ MVal
SO(𝑛),∞
𝑗 has the generating function

𝑓 ∈ C𝑜(𝕊, 𝑒), then ΛΦ𝑗 ∈ MVal
SO(𝑛),∞
𝑗−1 and its generating function is given by 𝑗𝑓 .

In particular, Λ : MVal
SO(𝑛),∞
𝑗 → MVal

SO(𝑛),∞
𝑗−1 is injective.

Proof. For every 𝑢 ∈ 𝕊, we have

ℎ((ΛΦ𝑗)(𝐾), 𝑢) =
𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

[𝑆𝑗(𝐾 + 𝑡𝐵, ·) * 𝑓 ](𝑢) = [𝑆𝑗−1(𝐾, ·) * 𝑗𝑓 ](𝑢),

as can easily be seen by expanding the term 𝑆𝑗(𝐾 + 𝑡𝐵, ·).
Consequently, the diagram

MVal
SO(𝑛),∞
𝑗 MVal

SO(𝑛),∞
𝑗−1

C∞
𝑜 (𝕊) C∞

𝑜 (𝕊)

Λ

𝑗𝐼

commutes, where the downward arrows represent the map assigning to a smooth homoge-
neous Minkowski valuation its generating function.

We define some further subspaces of MValSO(𝑛).

Definition. For 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {0, . . . , 𝑛}, we define

MVal
SO(𝑛)
𝑗,𝑖−1 :=

{︃
MVal

SO(𝑛)
𝑗 , 𝑖 ≤ 𝑗 + 1,

Λ𝑖−𝑗−1(MVal
SO(𝑛)
𝑖−1 ), 𝑖 > 𝑗 + 1,

and

MVal
SO(𝑛),∞
𝑗,𝑖−1 :=

{︃
MVal

SO(𝑛),∞
𝑗 , 𝑖 ≤ 𝑗 + 1,

Λ𝑖−𝑗−1(MVal
SO(𝑛),∞
𝑖−1 ), 𝑖 > 𝑗 + 1.

Note that MVal
SO(𝑛)
𝑗,𝑖−1 ⊆ MVal

SO(𝑛)
𝑗 and MVal

SO(𝑛),∞
𝑗,𝑖−1 ⊆ MVal

SO(𝑛),∞
𝑗 . Moreover,

the operator

Λ𝑗−𝑖+1 : MVal
SO(𝑛),∞
𝑗,𝑖−1 → MVal

SO(𝑛),∞
𝑖−1
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is well-defined.
For the purpose of the injectivity result on Λ, we restricted ourselves to smooth

Minkowski valuations. In order to generalize the results to non-smooth Minkowksi val-
uations, it is natural to make an argument of density and continuity. The density result
required for that is provided by the following theorem:

Theorem 4.21 ( [22, Corollary 5.4]). Let 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {0, . . . , 𝑛}. Then

MVal
SO(𝑛),∞
𝑗 is dense in MVal

SO(𝑛)
𝑗 and MVal

SO(𝑛),∞
𝑗,𝑖−1 is dense in MVal

SO(𝑛)
𝑗,𝑖−1 .

Using the way Λ acts on generating functions and the self-adjointness of convolution

operators, we can give a short proof of a symmetry property for MVal
SO(𝑛),∞
𝑗,𝑖−1 .

Proposition 4.22 ( [20, Corollary 6.4]). Let 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . , 𝑛 − 1}, and

Φ𝑗 ∈ MVal
SO(𝑛),∞
𝑗,𝑖−1 . Then

W𝑛−𝑖(𝐾,Φ𝑗𝐿) =
(𝑖− 1)!

𝑗!
W𝑛−𝑗−1(𝐿, (Λ

𝑗−𝑖+1Φ𝑗)(𝐾)) (4.22)

for all 𝐾,𝐿 ∈ 𝒦𝑛.

Proof. Due to (1.7) and Lemma 4.20, we have

W𝑛−𝑖(𝐿,Φ𝑗𝐾) = 1
𝑛⟨ℎ(Φ𝑗𝐿), 𝑆𝑖−1(𝐾, ·)⟩

= 1
𝑛⟨𝑆𝑗(𝐿, ·) * 𝑓, 𝑆𝑖−1(𝐾, ·)⟩

= 1
𝑛⟨𝑆𝑖−1(𝐿, ·) * 𝑓, 𝑆𝑗(𝐾, ·)⟩

= (𝑖−1)!
𝑗!

1
𝑛⟨ℎ((Λ𝑗−𝑖+1Φ𝑗)(𝐾), ·), 𝑆𝑗(𝐾, ·)⟩

= (𝑖−1)!
𝑗! W𝑛−𝑗−1(𝐾, (Λ𝑗−𝑖+1Φ𝑗)(𝐾)).

Moreover, we obtain a monotonicity result for Minkowski valuations in MVal
SO(𝑛)
𝑗,𝑖−1 .

Proposition 4.23. Let 𝑖 ∈ {2, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛 − 1} and let Φ𝑗 ∈ MVal
SO(𝑛)
𝑗,𝑖−1 be

non-trivial. Then

𝐾 ⊆ 𝐿 =⇒ W𝑛−𝑖(Φ𝑗𝐾) ≤ W𝑛−𝑖(Φ𝑗𝐿). (4.23)

for all 𝐾,𝐿 ∈ 𝒦𝑛.

In particular, if 𝐾 ∈ 𝒦𝑛 is 𝑛-dimensional, then Φ𝑗𝐾 is at least 𝑖-dimensional.

The proof is analogous to the proof of Proposition 4.6, where the previous proposition
plays the role of Proposition 4.5. The smoothness condition on Φ𝑗 can be dropped by an
argument of density and continuity employing Theorem 4.21.

Combining the symmetry and monotonicity results stated above, we obtain the most
recent result regarding Question 1.
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Theorem 4.24 ([4, Theorem 6.5]). Let 𝑖 ∈ {2, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛 − 1}, and let Φ𝑗 ∈
MVal

SO(𝑛)
𝑗,𝑖−1 be non-trivial. Then

V𝑖(Φ𝑗(𝐾 + 𝐿))1/𝑖𝑗 ≥ V𝑖(Φ𝑗𝐾)1/𝑖𝑗 + V𝑖(Φ𝑗𝐿)
1/𝑖𝑗 . (4.24)

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 with equality if and only if 𝐾 and 𝐿 are homothetic.

The proof is analogous to the proof of (4.11), with (4.22) in place of (4.9) and Propo-
sition 4.23 in place of Proposition 4.6. Like before, the smoothness condition on Φ𝑗 can be
dropped by an argument of density and continuity employing Theorem 4.21.

By virtue of Lemma 4.2, we can formulate a concavity and a multiplicative log-concavity
version of this theorem. The multiplicative version stated below is (almost) how this result
was originally formulated in [4].

Theorem 4.25. Let 𝑖 ∈ {2, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛 − 1}, and let Φ𝑗 ∈ MVal
SO(𝑛)
𝑗,𝑖−1 be

non-trivial. Then

V𝑖(Φ𝑗((1− 𝜆)𝐾 + 𝜆𝐿))1/𝑖𝑗 ≥ (1− 𝜆)V𝑖(Φ𝑗𝐾)1/𝑖𝑗 + 𝜆V𝑖(Φ𝑗𝐿)
1/𝑖𝑗 . (4.25)

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆 ∈ (0, 1) with equality if and only if 𝐾 and 𝐿 are

homothetic.

Theorem 4.26. Let 𝑖 ∈ {2, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛 − 1}, and let Φ𝑗 ∈ MVal
SO(𝑛)
𝑗,𝑖−1 be

non-trivial. Then

V𝑖(Φ𝑗((1− 𝜆)𝐾 + 𝜆𝐿)) ≥ V𝑖(Φ𝑗𝐾)1−𝜆V𝑖(Φ𝑗𝐿)
𝜆. (4.26)

for all 𝑛-dimensional 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆 ∈ (0, 1) with equality if and only if 𝐾 and 𝐿 are

translates of each other.

We conclude this chapter by giving the proof for the trivial cases regarding Question 1.

Proof of Lemma 4.1. If 𝑗 = 1, then Theorem 4.19 in combination with Theorem 4.21 entail

that every Φ1 ∈ MVal
SO(𝑛)
1 is Minkowski linear, that is

Φ1(𝜆𝐾 + 𝜇𝐿) = 𝜆Φ1𝐾 + 𝜇Φ1𝐿

for all 𝐾,𝐿 ∈ 𝒦𝑛 and 𝜆, 𝜇 ≥ 0. Consequently, if 𝑖 = 𝑗 = 1, then equality always holds
in (4.2). If 𝑖 > 1 and 𝑗 = 1, then (4.2) reduces to the Brunn-Minkowski inequality for
intrinsic volumes.

If 𝑖 = 1 and 𝑗 > 1, then (4.2) also reduces to the Brunn-Minkowski inequality for
intrinsic volumes due to (4.7).

If 𝑗 = 𝑛, then Hadwiger’s volume characterization theorem entails that Φ𝑛 ∈ MVal
SO(𝑛)
𝑛

can be represented as Φ𝑛𝐾 = 𝑐𝑛V𝑛(𝐾)𝐵 for some constant 𝑐𝑛 > 0. Consequently, (4.2)
reduces to the classical Brunn-Minkowski inequality.
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Chapter 5

Log-Concavity of Mean Section

Operators

As was discussed in the previous chapter, a satisfactory answer to Question 1 is provided by

Theorem 4.24 in the cases where 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛− 1}, and Φ𝑗 ∈ MVal
SO(𝑛)
𝑗,𝑖−1 .

However, in general

MVal
SO(𝑛)
𝑗,𝑖−1 ⊊ MVal

SO(𝑛)
𝑗 ,

so Theorem 4.24 does not cover all non-trivial cases. For 𝑖 = 𝑛, an explicit example of a
Minkowski valuation beyond the covered cases is provided by the centered mean section
operators. That is, if 𝑗 ∈ {2, . . . , 𝑛− 2}, then

𝑀𝑛−𝑗+1 ∈ MVal
SO(𝑛)
𝑗 ∖MVal

SO(𝑛)
𝑗,𝑛−1 .

This follows from Theorem 4.4 and the fact that for 𝑘 ≥ 3, Berg’s function 𝑔𝑘 does not
extend to a C[−1, 1] function.

In this chapter we will present some of the most recent research on this topic in Sec-
tion 5.1 and then give a brief outlook on a possible strategy for tackling the open cases in
Section 5.2

5.1 An Integration Operator on Minkowski Valuations

We have already seen that the derivation operator Λ is injective on MVal
SO(𝑛),∞
𝑗 for

𝑗 ∈ {2, . . . , 𝑛− 1}. This fact helped us to obtain a general Brunn-Minkowsi inequality for

Minkowski valuations in MVal
SO(𝑛)
𝑗,𝑖−1 that can be looked at as derivatives of a sufficiently

high order, since these are (up to a topological closure) precisely the Minkowski valuations
on which we can apply the inverse of the derivative operator sufficiently often.

Therefore, it is natural to look for an integration operator on MValSO(𝑛) which, when
applied to a homogeneous Minkowski valuation, increases its degree of homogeneity, and
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which allows for a symmetry formula dual to Proposition 4.22. Like we did with the
derivation operator Λ, we first consider an operator on Val.

Definition ([1, 2]). We define the integration operator

𝔏 : Val → Val,

(𝔏𝜙)(𝐾) :=

[︂
𝑛

1

]︂ ∫︁
A(𝑛,𝑛−1)

𝜙(𝐾 ∩ 𝐸) 𝑑𝐸.

It is not hard to see that 𝔏 is well-defined. If 𝜙 ∈ Val, then obviously 𝔏𝜙 is a
valuation. The translation invariance follows from the translation invariance of the measure
𝜈𝑛𝑘 on A(𝑛, 𝑛 − 1) and the continuity follows from the continuity of intersections (cf. [21,
Theorem 1.8.10]). Moreover, due to the homogeneity of 𝜈𝑛𝑘 , we have 𝔏(Val𝑗) ⊆ Val𝑗+1 for
𝑗 ∈ {0, . . . , 𝑛− 1}.

On smooth valuations, the action of 𝔏 can be described by means of the Alesker product:

Theorem 5.1 ([6, Theorem 3]). 𝔏 acts on Val∞ by

𝔏 : Val∞ → Val∞ : 𝔏𝜙 = V1 · 𝜙. (5.1)

Historically, the original definition of 𝔏 was given by (5.1) and then it was proved by
A. Bernig that this equals the integral representation. However, we prefer defining 𝔏 via
the integral formula for the benefit of having the operator defined on the whole space Val
to begin with.

In the same way that we lifted Λ from a derivation operator on Val to a derivation
operator on MVal, we can deal with 𝔏.

Definition. We define the integration operator

𝔏 : MVal → MVal,

ℎ((𝔏Φ)(𝐾), 𝑢) :=

[︂
𝑛

1

]︂ ∫︁
A(𝑛,𝑛−1)

ℎ(Φ(𝐾 ∩ 𝐸), 𝑢) 𝑑𝐸.

Again, it is not hard to see that this operator is well defined, and that 𝔏(MVal𝑗) ⊆
MVal𝑗+1 for 𝑗 ∈ {0, . . . , 𝑛− 1}.

Moreover, by definition the diagram

MVal𝑗 MVal𝑗+1

Val𝑗 Val𝑗+1

𝔏

𝔏

commutes, where the downward arrows represent the map assigning to a Minkowski valu-
ation its associated real valued valuation.
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Like we did with the derivation operator Λ in Section 4.4, we seek to describe the action
of the integration operator 𝔏 on generating functions of smooth Minkowski valuations. It
turns out that this is much more involved than it was for Λ and interestingly, Berg’s
functions come up.

Theorem 5.2 ([4, Theorem 4.4]). Let 𝑗 ∈ {2, . . . , 𝑛− 1}. If 𝑘 ̸= 1, then

𝑎𝑛𝑘 [𝑔𝑗 ] = −𝜋(𝑛−𝑗)/2(𝑗 − 1)

4

Γ
(︁
𝑛−𝑗+1

2

)︁
Γ
(︀
𝑘−1
2

)︀
Γ
(︁
𝑘+𝑗−1

2

)︁
Γ
(︁
𝑛+𝑘−𝑗+1

2

)︁
Γ
(︀
𝑛+𝑘+1

2

)︀
and 𝑎𝑛1 [𝑔𝑗 ] = 0.

Note that in particular, 𝑎𝑛0 [𝑔𝑗 ] > 0 and 𝑎𝑛𝑘 [𝑔𝑗 ] < 0 for all 𝑘 ≥ 2. Hence the multipliers
𝑎𝑛𝑘 [𝑔𝑗 ], 𝑘 ̸= 1, are non-zero and they are slowly decreasing, so as an immediate consequence
of the Funk-Hecke theorem and Lemma 1.11, we obtain:

Theorem 5.3 ([4, Theorem 4.3]). For 𝑗 ∈ {2, . . . , 𝑛}, the convolution operator

. * 𝑔𝑗 : C∞
𝑜 (𝕊) → C∞

𝑜 (𝕊) : 𝑓 ↦→ 𝑓 * 𝑔𝑗
is an automorphism of the Fréchet space C∞

𝑜 (𝕊).

This allows us to make the following generalization of the operator □𝑛:

Definition. For 𝑗 ∈ {2, . . . , 𝑛}, we define
□𝑗 : C

∞
𝑜 (𝕊) → C∞

𝑜 (𝕊)

as the inverse operator of . * 𝑔𝑗 .
Next, we take a look at the action of 𝔏 on centered mean section operators.

Example 5.4 ([25, Chapter 6]). For Φ ∈ MVal and 𝑗 ∈ {1, . . . , 𝑛}, we have

ℎ((𝔏𝑗Φ)(𝐾), 𝑢) =

[︂
𝑛

1

]︂𝑗 ∫︁
A(𝑛,𝑛−1)

· · ·
∫︁
A(𝑛,𝑛−1)

ℎ(Φ(𝐾 ∩ 𝐸1 ∩ · · · ∩ 𝐸𝑗), 𝑢) 𝑑𝐸1 · · · 𝑑𝐸𝑗

=
𝑗!𝜅𝑗
2𝑗

[︂
𝑛

𝑗

]︂ ∫︁
A(𝑛,𝑛−𝑗)

ℎ(Φ(𝐾 ∩ 𝐸), 𝑢) 𝑑𝐸

due to (1.4). Putting Φ = 𝐽 : 𝐾 ↦→ 𝐾 − 𝑠(𝐾), we obtain

𝔏𝑗𝐽 =
𝑗!𝜅𝑗
2𝑗

[︂
𝑛

𝑗

]︂
𝑀𝑛−𝑗 .

Consequently,

𝔏𝑀𝑛−𝑗+1 =
2𝑗𝜅𝑗

[︀
𝑛
𝑗

]︀
𝜅𝑗−1

[︀
𝑛

𝑗−1

]︀𝑀𝑛−𝑗 . (5.2)

82



A crucial tool for describing the action of 𝔏 on generating functions will be the following
theorem:

Theorem 5.5 ([22, Theorem 5.1]). The map

𝐸𝑗 : C
∞
𝑜 (𝕊) → Val∞𝑗 : (𝐸𝑗𝑓)(𝐾) := ⟨𝑓, 𝑆𝑗(𝐾, ·)⟩

is an SO(𝑛)-equivariant embedding of Fréchet spaces, and extends by continuity in the

weak* topologies to an SO(𝑛)-equivariant embedding

𝐸𝑗 : C
−∞
𝑜 (𝕊) → Val−∞

𝑗 .

Theorem 5.6 ([25, Theorem 6.3]). Let 𝑗 ∈ {1, . . . , 𝑛 − 2}. If Φ𝑗 ∈ MVal
SO(𝑛),∞
𝑗 has the

generating function 𝑓 ∈ C𝑜(𝕊, 𝑒), then 𝔏Φ𝑗 ∈ MVal
SO(𝑛),∞
𝑗+1 and its generating function is

given by 𝑞𝑛,𝑗□𝑛−𝑗+1𝑓 * 𝑔𝑛−𝑗, where

𝑞𝑛,𝑗 :=
2𝑗𝜅𝑗

[︀
𝑛
𝑗

]︀
𝜅𝑗−1

[︀
𝑛

𝑗−1

]︀ 𝑚𝑛,𝑛−𝑗

𝑚𝑛,𝑛−𝑗+1

with 𝑚𝑛,𝑘 as in Theorem 3.31.

In particular, 𝔏 : MVal
SO(𝑛),∞
𝑗 → MVal

SO(𝑛),∞
𝑗+1 is injective.

Proof. Denote byVal∞,sph
𝑗 the image of 𝐸𝑗 . ThenVal∞,𝑒

𝑗 ⊆ Val∞,sph
𝑗 due to Theorem 4.19.

In [22], a description of the image of 𝐸𝑗 in the language of representation theory was given,

that implies that 𝔏maps the spaceVal∞,sph
𝑗 into the spaceVal∞,sph

𝑗+1 . Hence, we may define

𝑇𝑗 := 𝐸−1
𝑗+1 ∘ 𝔏 ∘ 𝐸𝑗 : C

∞
𝑜 (𝕊) → C∞

𝑜 (𝕊).

Then the diagram

MVal
SO(𝑛),∞
𝑗 MVal

SO(𝑛),∞
𝑗+1

Val∞,sph
𝑗 Val∞,sph

𝑗+1

C∞
𝑜 (𝕊) C∞

𝑜 (𝕊)

𝔏

𝔏

𝐸𝑗 ∼=
𝑇𝑗

𝐸𝑗+1 ∼=

commutes, where the downward arrows represent the map assigning to a smooth homoge-
neous Minkowski valuation its generating function. Hence it suffices to show that

𝑇𝑗𝑓 = 𝑞𝑛,𝑗□𝑛−𝑗+1𝑓 * 𝑔𝑛−𝑗 (5.3)
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for all 𝑓 ∈ C∞
𝑜 (𝕊).

Denote by 𝑇𝑗 the operator defined by the right hand side in (5.3). Due to the properties
of 𝔏, the operator 𝑇𝑗 is an SO(𝑛)-equivariant continuous linear operator on C∞

𝑜 (𝕊), as is
the operator 𝑇𝑗 . Consequently, both 𝑇𝑗 and 𝑇𝑗 are multiplier transforms and both 𝑇𝑗 and
𝑇𝑗 extend to SO(𝑛)-equivariant continuous linear operators on C−∞

𝑜 (𝕊).
Therefore, it suffices to prove 𝑇𝑗𝜓 = 𝑇𝑗𝜓 for a single distribution 𝜓 ∈ C−∞

𝑜 (𝕊) with
condensed harmonic expansion 𝜓 ∼ ∑︀∞

𝑘=0 ℎ𝑘, where all non-linear harmonics do not vanish.
Two such distributions are given by

𝜓 := 𝑚𝑛,𝑛−𝑗+1𝑔𝑛−𝑗+1 ∈ C−∞
𝑜 (𝕊) and 𝜂 := 𝑚𝑛,𝑛−𝑗𝑔𝑛−𝑗 ∈ C−∞

𝑜 (𝕊).

Due to Theorem 3.31, these two distributions 𝜓 and 𝜂 generate (up to a reflection at
the origin) the mean section operators 𝑀𝑛−𝑗+1 and 𝑀𝑛−𝑗 , respectively. Thus, (5.2) and
Theorem 5.5 imply that

(𝐸
−1
𝑗+1 ∘ 𝔏 ∘ 𝐸𝑗)𝜓 =

2𝑗𝜅𝑗
[︀
𝑛
𝑗

]︀
𝜅𝑗−1

[︀
𝑛

𝑗−1

]︀𝜂.
Clearly, the linear operator 𝐸

−1
𝑗+1 ∘ 𝔏 ∘ 𝐸𝑗 is continuous on its domain with respect to the

topology of C−∞
𝑜 (𝕊) and coincides with 𝑇𝑗 on C∞

𝑜 (𝕊), hence by density and continuity we
have

𝑇𝑗(𝑚𝑛,𝑛−𝑗+1𝑔𝑛−𝑗+1) =
2𝑗𝜅𝑗

[︀
𝑛
𝑗

]︀
𝜅𝑗−1

[︀
𝑛

𝑗−1

]︀𝑚𝑛,𝑛−𝑗𝑔𝑛−𝑗 .

On the other hand,

𝑇𝑗(𝑚𝑛,𝑛−𝑗+1𝑔𝑛−𝑗+1) = 𝑞𝑛,𝑗𝑚𝑛,𝑛−𝑗+1□𝑛−𝑗+1𝑔𝑛−𝑗+1 * 𝑔𝑛−𝑗

= 𝑞𝑛,𝑗𝑚𝑛,𝑛−𝑗+1𝛿𝑒 * 𝑔𝑛−𝑗

= 𝑞𝑛,𝑗𝑚𝑛,𝑛−𝑗+1𝑔𝑛−𝑗 .

Like we did in Section 4.4, we will use this description of the action of 𝔏 on generating
functions in order to establish a symmetry property analogous to Proposition 4.22. To
that end, let us fix some notations.

Definition. For 𝑗 ∈ {1, . . . , 𝑛− 2}, we define
𝑇𝑗 : C

∞
𝑜 (𝕊) → C∞

𝑜 (𝕊) : 𝑇𝑗𝑓 := 𝑞𝑛,𝑗□𝑛−𝑗+1𝑓 * 𝑔𝑛−𝑗 .

For 𝑖 ∈ {2, . . . , 𝑛− 1} and 𝑗 ∈ {1, . . . , 𝑛− 2} with 𝑖 > 𝑗 + 1, we define

𝑇𝑖,𝑗 : C
∞
𝑜 (𝕊) → C∞

𝑜 (𝕊) : 𝑇𝑖,𝑗𝑓 := 𝑇𝑖−2𝑇𝑖−1 · · ·𝑇𝑗𝑓 = 𝑞𝑛,𝑖,𝑗□𝑛−𝑗+1𝑓 * 𝑔𝑛−𝑖+2,

where 𝑞𝑛,𝑖,𝑗 := 𝑞𝑛,𝑖−2𝑞𝑛,𝑖−1 · · · 𝑞𝑛,𝑗 .
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Note that 𝑇𝑗 and 𝑇𝑖,𝑗 are SO(𝑛)-equivariant automorphisms of the space C∞
𝑜 (𝕊) that

extend to SO(𝑛)-equivariant automorphisms of the space C−∞
𝑜 (𝕊). Moreover, they are

multiplier transforms.
With these notations in place, the diagram

MVal
SO(𝑛),∞
𝑗 MVal

SO(𝑛),∞
𝑗+1

C∞
𝑜 (𝕊) C∞

𝑜 (𝕊)

𝔏

𝑇𝑗

commutes, where the downward arrows represent the map assigning to a smooth homoge-
neous Minkowski valuation its generating function.

Since the operator 𝔏 is much more complicated than Λ (regarding its action on gen-
erating functions), the W𝑛−𝑗−1-term in Proposition 4.22 must now be replaced by a more
complicated object that somehow cancels out the operator 𝔏. This consideration motivates
the following definition:

Definition. For 𝑖 ∈ {2, . . . , 𝑛 − 1} and 𝑗 ∈ {1, . . . , 𝑛 − 2} with 𝑖 > 𝑗 + 1, we define the
Val−∞

1 -valued valuation

𝛾𝑖,𝑗 : 𝒦𝑛 → Val−∞
1 : 𝐿 ↦→ 𝛾𝑖,𝑗(𝐿, ·),

𝛾𝑖,𝑗(𝐿, ·) := 𝐸1

(︁
1

𝜔𝑛−1
(𝑇−1

𝑖,𝑗 𝑆𝑗(𝐿, ·)) * 𝑔𝑛
)︁
.

Observe that 𝛾𝑖,𝑗 is a continuous, translation invariantVal−∞
1 -valued valuation of order

𝑗 and that 𝛾𝑖,𝑗(𝐿, ·) is a generalized valuation of order 1 for every 𝐿 ∈ 𝒦𝑛. Due to
Theorem 5.5, we can evaluate 𝛾𝑖,𝑗(𝐿, ·) on a smooth convex body 𝐶 ∈ 𝒦𝑛 in the following
way:

𝛾𝑖,𝑗(𝐿,𝐶) = ⟨𝑆1(𝐶, ·), 1
𝜔𝑛−1

(𝑇−1
𝑖,𝑗 𝑆𝑗(𝐿, ·)) * 𝑔𝑛⟩

= ⟨ 1
𝜔𝑛−1

𝑆1(𝐶, ·) * 𝑔𝑛, 𝑇−1
𝑖,𝑗 𝑆𝑗(𝐿, ·)⟩

= ⟨ℎ(𝐶, ·), 𝑇−1
𝑖,𝑗 𝑆𝑗(𝐿, ·)⟩

= ⟨𝑇−1
𝑖,𝑗 ℎ(𝐶, ·), 𝑆𝑗(𝐿, ·)⟩.

(5.4)

With these definitions and notations in place, the desired symmetry result can be
obtained within a few lines:

Proposition 5.7 ( [4, Theorem 3]). Let 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛 − 2}, and Φ𝑗 ∈
MVal

SO(𝑛),∞
𝑗 . If 𝑖 > 𝑗 + 1, then

W𝑛−𝑖(𝐾,Φ𝑗𝐿) = 𝛾𝑖,𝑗(𝐿, (𝔏
𝑖−𝑗−1Φ𝑗)(𝐾))

for all 𝐾,𝐿 ∈ 𝒦𝑛.
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Proof. Since 𝔏𝑖−𝑗−1Φ𝑗 is a smooth Minkowski valuation, (𝔏𝑖−𝑗−1Φ𝑗)(𝐾) is a smooth convex
body. Hence, due to (5.4), the self-adjointness of 𝑇𝑖,𝑗 , and (1.7), we obtain

𝛾𝑖,𝑗(𝐿, (𝔏
𝑖−𝑗−1Φ𝑗)(𝐾)) = ⟨𝑇−1

𝑖,𝑗 ℎ((𝔏
𝑖−𝑗−1Φ𝑗)(𝐾), ·), 𝑆𝑗(𝐿, ·)⟩

= ⟨𝑇−1
𝑖,𝑗 (𝑆𝑖−1(𝐾, ·) * 𝑇𝑖,𝑗𝑓), 𝑆𝑗(𝐿, ·)⟩

= ⟨𝑆𝑖−1(𝐾, ·) * 𝑓, 𝑆𝑗(𝐿, ·)⟩
= ⟨𝑆𝑗(𝐿, ·) * 𝑓, 𝑆𝑖−1(𝐾·)⟩
= ⟨ℎ(Φ𝑗𝐿, ·), 𝑆𝑖−1(𝐾, ·)⟩
= W𝑛−𝑖(𝐾,Φ𝑗𝐿),

where in the third equality we used the fact that 𝑇𝑖,𝑗 , 𝑇
−1
𝑖,𝑗 , and convolution operators are

multiplier transforms in order to get 𝑇𝑖,𝑗 and 𝑇−1
𝑖,𝑗 to cancel each other out.

As a corollary of Proposition 4.22 and Proposition 5.7, we obtain:

Corollary 5.8. Let 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {2, . . . , 𝑛−1}, and Φ𝑗 ∈ MVal
SO(𝑛),∞
𝑗,𝑖−1 . If 𝑖 > 𝑗+1,

then

𝛾𝑖,𝑗(𝐿, (𝔏
𝑖−𝑗−1Φ𝑗)(𝐾)) =

(𝑖− 1)!

𝑗!
W𝑛−𝑗−1(𝐿, (Λ

𝑗−𝑖+1Φ𝑗)(𝐾))

for all 𝐾,𝐿 ∈ 𝒦𝑛.

5.2 A Brief Outlook on Future Research

Now we come back to Question 1. Note that if we were able to adapt the proof of The-
orem 4.7 to our situation based on the proposition above, then the result would cover all
of the missing cases. In order to do so, we would need a Brunn-Minkowski type inequality
on 𝛾𝑖,𝑗 . This prompts the following question:

Question 2. For which 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {2, . . . , 𝑛− 2} with 𝑖 > 𝑗 +1 is it true that

𝛾𝑖,𝑗(𝐾 + 𝐿,𝐶)1/𝑗 ≥ 𝛾𝑖,𝑗(𝐾,𝐶)1/𝑗 + 𝛾𝑖,𝑗(𝐿,𝐶)1/𝑗 (5.5)

for all smooth convex bodies 𝐾,𝐿,𝐶 ∈ 𝒦𝑛 ?

Note that for fixed 𝑖 and 𝑗, an positive answer to Question 2 implies an positive answer
to Question 1. In order to outline how (5.5) could be shown, we introduce a mixed valuation
associated with 𝛾𝑖,𝑗 .

Definition. For 𝑖 ∈ {2, . . . , 𝑛− 1} and 𝑗 ∈ {1, . . . , 𝑛− 2} with 𝑖 > 𝑗 + 1, we define

𝛾𝑖,𝑗 : (𝒦𝑛)𝑛−1 → Val−∞
1 ,

𝛾𝑖,𝑗(𝐾1, . . . ,𝐾𝑛−1; ·) := 𝐸1

(︁
1

𝜔𝑛−1
(𝑇−1

𝑖,𝑗 𝑆(𝐾1, . . . ,𝐾𝑛−1; ·)) * 𝑔𝑛
)︁
.
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Clearly, 𝛾𝑖,𝑗 is a continuous, Val−∞
1 -valued valuation of order 1 in each of its arguments,

invariant under independent translations of its arguments, and

𝛾𝑖,𝑗(𝐾
[𝑗], 𝐵[𝑛−𝑗−1]; ·) = 𝛾𝑖,𝑗(𝐾, ·)

for all 𝐾 ∈ 𝒦𝑛.
Now suppose that the Alexandrov-Fenchel type inequality

𝛾𝑖,𝑗(𝐾,𝐿,𝐶3, . . . , 𝐶𝑛−1;𝐶)2

≥ 𝛾𝑖,𝑗(𝐾,𝐾,𝐶3, . . . , 𝐶𝑛−1;𝐶)𝛾𝑖,𝑗(𝐿,𝐿,𝐶3, . . . , 𝐶𝑛−1;𝐶)
(5.6)

holds for all smooth convex bodies 𝐾,𝐿,𝐶3, . . . , 𝐶𝑛−1, 𝐶 ∈ 𝒦𝑛. Then (5.5) could be easily
deduced from (5.6) in a similar way the general Brunn-Minkowski inequality can be derived
from the Alexandrov-Fenchel inequality (cf. [21, Theorem 7.4.5]). Thus, let us take a closer
look at (5.6). Observe that for smooth convex bodies 𝐾,𝐿,𝐶3, . . . , 𝐶𝑛−1, 𝐶 ∈ 𝒦𝑛, we have

𝛾𝑖,𝑗(𝐾,𝐿,𝐶3, . . . , 𝐶𝑛−1;𝐶)

= ⟨𝑇−1
𝑖,𝑗 ℎ𝐶 , 𝑆(𝐾,𝐿,𝐶3, . . . , 𝐶𝑛−1; ·)⟩

= 𝑞−1
𝑛,𝑖,𝑗

∫︁
𝕊
□𝑛−𝑖+2ℎ𝐶 * 𝑔𝑛−𝑗+1D(𝐷

2ℎ𝐾 , 𝐷2ℎ𝐿, 𝐷
2ℎ𝐶3 . . . , 𝐷

2ℎ𝐶𝑛−1) 𝑑𝜆𝕊.

Now fix 𝐶3, . . . , 𝐶𝑛−1, 𝐶 ∈ 𝒦𝑛 and define

𝛽(𝑓, 𝑔) :=

∫︁
𝕊
□𝑛−𝑖+2ℎ𝐶 * 𝑔𝑛−𝑗+1D(𝐷

2𝑓,𝐷2𝑔,𝐷2ℎ𝐶3 . . . , 𝐷
2ℎ𝐶𝑛−1) 𝑑𝜆𝕊

for 𝑓, 𝑔 ∈ C2(𝕊). Then 𝛽(·, ·) is a symmetric bilinear form on C2(𝕊), and clearly (5.6) is
equivalent to the reverse Cauchy-Schwarz inequality

𝛽(𝑓, 𝑔)2 ≥ 𝛽(𝑓, 𝑓)𝛽(𝑔, 𝑔)

for 𝑓, 𝑔 ∈ C2(𝕊). The reverse Cauchy-Schwarz inequality inequality in turn can be re-
formulated as a spectral property. In this way, the original problem of proving a general
Brunn-Minkowski inequality for Minkowski valuations can be reduced to proving a general
Brunn-Minkowski inequality for 𝛾𝑖,𝑗 which can then be reduced to a question of spectral
theory.

The procedure we have described here is known as the Bochner method. Most recently,
the Bochner method got refined by Y. Shenfeld and R. van Handel in [26], in order to give
an elegant and concise proof of the classical Alexandrov-Fenchel inequality. The bilinear
form for which they proved a reverse Cauchy-Schwarz inequality is given by

𝛼(𝑓, 𝑔) :=

∫︁
𝕊
ℎ𝐶D(𝐷

2𝑓,𝐷2𝑔,𝐷2ℎ𝐶3 . . . , 𝐷
2ℎ𝐶𝑛−1) 𝑑𝜆𝕊

Due to the operators □𝑛−𝑖+2 and .*𝑔𝑛−𝑗+1 involved in the definition of 𝛽, it seems like the
situation described here is significantly more complex than that for 𝛼 and that adapting
Y. Shenfeld and R. van Handel’s argument to 𝛽 is highly non-trivial.
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