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Zusammenfassung

Dieser Abschlussbericht dokumentiert die Arbeiten, die innerhalb des Projekts En-
gineering Marangoni Flows im Zeitraum vom 1. Juli 2009 bis zum 31. Dezem-
ber 2010 durchgeführt wurden. Das Projekt befasst sich mit der Entwicklung nu-
merischer Methoden und der Berechnung von Daten zur Strömung in einer nicht-
isothermen Flüssigkeitsbrücke. Hierzu wird die Reynoldszahl für den Einsatzpunkt
(kritischer Punkt) von dreidimensionalen Hydrothermalwellen berechnet, superkri-
tische Simulationen durchgeführt und die Dynamik suspendierter Partikel unter-
sucht. Insbesondere wird der Einfluss einer koaxialen Gasströmung auf den kritis-
chen Punkt berechnet. Die Arbeiten dienen dem JEREMI-Experiment, welches ab
2015 auf der Internationalen Raumstation durchgeführt werden soll.
Um die verschiedenen Einflussfaktoren auf die Stabilität der Grundsrömung zu

bestimmen, wurden umfangreiche Stabilitätsgrenzen berechnet. Es zeigt sich, dass
die kritischen Reynoldszahlen sehr stark von den Material- und Geometrieparame-
tern abhängen. Insbesondere wird eine Restabilisierung gefunden. Damit ist es im
Prinzip möglich, dass die Hydrothermalwellen bei hoher Reynoldszahl wieder zu-
gunsten einer axisymmetrischen Grundströmung unterdrückt werden. Auch kann
eine komplexe nichtlineare Dynamik die Folge sein.
Die Strömung in Flüssigkeitsbrücken wurden mit drei verschiedene Softwarepaketen

erfolgreich simuliert. Dazu wurden Fluent c©, OpenFOAM c© and Nek5000 ver-
wendet. Simulationen mit deformierter freier Oberfläche wurden mit dem Soft-
warepaket OpenFOAM c© durchgeführt, welches die freie Oberfläche sharf abbildet
(sharp-interface method).
Darüber hinaus wurde ein Code zur Berechnung der Trajektorien von kleinen

Partikeln geschrieben, die sich in der thermokapillaren Strömung bewegen. Zweck-
mäßigerweise geschieht dies in einem rotierenden Koordinatenssytem, welches sich
mit der Hydrothermalwelle mitbewegt. Es konnte gezeigt werden, dass die Wechsel-
wirkung zwischen einzelnen bewegten Teilchen und der freien Grenzfläche ein sehr
effizienter Mechanismus ist, der zu einer Entmischung und zu Partikelakkumula-
tionsstrukturen führen kann. Die gefundenen Muster sind in qualitativer Überein-
stimmung mit entsprechenden experimenten Befunden. Von besonderer Bedeutung
für das JEREMI-Projekt ist die korrekte Abbildung der Zeitskalen (wie im Exper-
iment unter 1g), die für die Entmischung der Partikel erforderlich ist.
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Abstract

This final report covers the work which has been carried out within the project
Engineering Marangoni Flows in the period from July 1, 2009 to December 31,
2010. The project is concerned with the development of numerical methods for
and the computation of flows in a non-isothermal liquid bridge. To that end the
Reynolds number for the onset (critical point) of three-dimensional hydrothermal
waves is computed, three-dimensional numerical simulations carried out, and the
dynamics of liquid-suspended particles are studied. In particular, the influence of
a coaxial gas flow on the critical point is investigated. These investigations are in
support of the JEREMI experiment which is planned to be carried out onboard the
International Space Station beginning in 2015.
In order to investigate the various factors influencing the stability of the ba-

sic flow, comprehensive stability boundaries have been calculated. The critical
Reynolds numbers were found to strongly depend on the material and geometry
parameters. In particular, a re-stabilization of the basic flow has been discovered.
Therefore, it is possible that hydrothermal waves are suppressed in favor of the
steady axisymmetric state even if the Reynolds number is increased. Moreover, a
complex nonlinear dynamics may result.
Simulations of the flow and heat transfer in the liquid bridge have been success-

fully carried out using three independent software packages; Fluent c©, OpenFOAM c©

and Nek5000. These simulations have included modeling of the deformation of
the free surface with the software package OpenFOAM c© using a sharp interface
method.
A numerical code was developed which calculates the trajectories of particles

moving in the thermocapillary flow. It is of advantage to do this in the rotating
frame of reference that moves with the hydrothermal wave. It was shown that
the interaction between individual moving particles and the liquid–gas interface
represents a very efficient mechanism to de-mix and form particle accumulation
structures. The patterns found numerically are in qualitative agreement with cor-
responding experimental results and more importantly for the experiments sup-
ported by this work, the particle model is able to reproduce particle accumulation
structures on the time scale found in other (ground based) experiments.
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1 Preface

The report is structured according to the work packages which have been defined
in the original proposal. In order to indicate the perspective of the project in case
of a successor project some work packages have been described which should not,
or only partially, be covered during the 18 month period of the project duration.
For these reasons work packages A3.1–A4.3, B4.3–B4.4, and C4.3 are not a subject
of this report. Since the successor project (EMA2) was rejected, it did not make
sense to begin these work packages.

In the course of the negotiation for the contract the budget has been reduced
significantly. As a result, only two scientists, instead of the three which were origi-
nally foreseen and which were required for the project, were funded. This shortfall
has been moderated by additional resources of TUWien and by a mutual agreement
concerning the cancelation of work packages C2.1 and C2.2 which, likewise are not
reported here.
The remaining work packages scheduled for the period of 18 months are nearly

fully completed. In the following the individual work packages are addressed de-
scribing their status, results of the work done and changes, if applicable.

1.1 Resource shifting: WP A

Since the work packages A4.1–A.4.3 and C4.3 were planned to be treated only after
this project they are not subject of this report. Two months of work have been
foreseen for the work package A3.1. As it this work package could not have been
finished within the period of this project and because it has been found that this line
of work represented a less efficient and accurate means of determining the stability
boundaries as compared to that offered by the development of MaranStable in WP
B1.1–B2.3 the remaining time (2 months) has been used in WP C3.1–C4.4.

1.2 Resource shifting: WP B

In the course of WP B1.1–B2.3, it was discovered that a re-stabilization of the
basic flow occurs. This unexpected result has never been reported in the litera-
ture on liquid bridges. Such a re-stabilization can have a profound impact on the
experimental realization and is particularly important for the space experiment.
Therefore, more time was required to develop the tool MaranStable and to fully
capture the re-stabilization zones which turned out to be quite convoluted. The
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required time was taken from WP B3.1–B4.2 as well as from the fraction of B4.3
which falls into this project period.
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2 A: Simulation

WP A1.1: Literature review for 3D unsteady

simulations

A large number of papers and books have been read.

WP A1.2: Setting up hardware

An eight-core workstation has been setup for model development. A 32-core cluster
with 96GB of memory has been installed for the production runs of the simulation
tools.

WP A1.3: Introduction of OpenFOAM c©

OpenFOAM c© has been installed and been tested using elementary model problems.
This has included running simulations on parallel machines.

Changes

Owing to the specific experience of Dr. Muldoon the software Fluent c© was used
for the first simulations. The software Nek5000 was also used, but was abandoned
due to its unsuitability for such problems. OpenFOAM c© is now being employed
exclusively for realizing the 3D unsteady model of the flow. An important advan-
tage to OpenFOAM c© is the open access nature of the software, which eliminates
any licensing and hence financial concerns, which are particularly important when
doing parallel computing. A particular modeling advantage is the ability of the
SharpInterTrack solver within OpenFOAM c© to address moving interface prob-
lems using a sharp interface method. This approach is currently being used to
model the combined gas–liquid problem with dynamic surface deformation. Due
to the working assumption of our group that a key element of PAS formation is
the result of collisions of the particles with the gas–liquid interface, the ability to
accurately model the flow close to the interface is crucial. An alternative to a sharp
interface method is a single-fluid method, such as Volume Of Fluid (VOF), where
the interface is defined by a scalar function which has one value in the gas phase
and a different value in the liquid phase. The interface is then defined by the region
of the fluid where the value of the scalar function changes from the value of the gas
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(a) (b)

(c)

Figure 2.1: (a) Isosurface of the temperature field colored by velocity magnitude for the
C-model at one instance in time. (b) Isosurface of the velocity field colored by temper-
ature. (c) Instantaneous velocity and temperature field in a vertical cross section. The
fields are shown for aspect ratio Γ = 0.66, Re = 1800, Pr = 4 and zero gravity. Results
are from Fluent.

to the liquid value. A problem with this approach is that the scalar function does
not have the correct discontinuous behavior at the interface, but is instead typi-
cally smeared over a distance equal to that of a few computational cells near the
interface. Within the context of the JEREMI project, other groups have used the
VOF approach for modeling the liquid bridge, but have had bad experiences, pri-
marily relating to the excessive computational time required to accurately capture
the interface, which requires an extremely fine mesh.

WP A2.1: Simulation of C-model

The C-Model is the three-dimensional temporally varying numerical representation
of the governing equations for the liquid bridge without gas flow. The simulation has
been carried out using Fluent, NEK5000 and OpenFOAM c©. The results have been
validated against results from the code Poseidon, written by Leypoldt et al. (2000).
Validation of results from OpenFOAM c© is in progress. It is worth noting that the
OpenFOAM c© solver used here is not SharpInterTrack, but is instead based on a
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particle dia=3E-3
Re=1800
Γ=.66

Figure 2.2: PAS using OpenFOAM c©. The red iso-surface represents the mean temper-
ature of the heaters, i.e. T = (Thot + Tcold)/2. The other parameters are Γ = 0.66,
Re = 1800, Pr = 4 and zero gravity.

solver using a fixed grid, i.e., one that does not model surface deformations. Two
views of a snapshot in time of a liquid bridge simulation are presented in fig. 2.1.

The three pronged traveling (rotating) wave can be clearly seen. The grid used
was a fully hexahedral one with anisotropic grid clustering near the free surface to
resolve the velocity gradients caused by the Marangoni stress. The simulation used
a third order spatially and second order temporally accurate scheme. The coupled
pressure-velocity solver of Fluent was used. The work in this work package has been
extended by the need for highly resolved (and therefore computationally intensive)
simulations to test a theory of PAS formation (see WP C4.2). These simulations
are currently underway.

Work has also been done including modeling particle transport (i.e., PAS) using
OpenFOAM c©. This work is important as the code Poseidon is restricted to cylin-
drical geometries (i.e., the C-model). As the JEREMI experiment will be somewhat
different as free-surface deformations will exist (and all terrestial experiments will
have surface deformation due to gravity), the ability to model PAS in different
geometries is very important. Figure 2.2 shows results of PAS from OpenFOAM c©.
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Deformation

Figure 2.3: Addressing the issue of parasitic flow. Results obtained by using
OpenFOAM c© and SharpInterTrack.

WP A2.2: Simulation of CG-model

Changes

This model has been combined with the SG-model of WP A2.4, since the solver used
(SharpInterTrack) has the ability to model dynamic deformation of the interface.

WP A2.3: Simulation of S-model

Deformation of the liquid bridge due to the influence of gravity has been done
using the sharp interface solver SharpInterTrack of Dr. Tukovic from University
of Zagreb. A particular issue with modeling flows with surface tension is that of
parasitic flows which arise due to an imbalance between volume forces in the fluid
and the surface force due to surface tension. This is a well known issue, and is
particularly severe in VOF models. Such parasitic flows were also found using
SharpInterTrack at the location where the interface contacted the walls. As the
solver was primarily used for modeling freely rising bubbles which did not contact
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Figure 2.4: Deformation under the influence of gravity. Results obtained by using
OpenFOAM c© and SharpInterTrack.

walls, successfully addressing this problem required some changes to the solver,
which was carried by Dr. Tukovic in close collaboration with our group. The result
of this work, which was focused on a more accurate representation of the curvature
at the wall, was the ability to reduce the parasitic flows to a very small level, the
magnitude of which decreases with greater than second order accuracy as the grid is
refined. This last feature is of prime importance, as it means that the parasitic flows
can be reduced to any desired level by refining the grid. Figure 2.3 contains results
from SharpInterTrack showing excellent agreement between it and the solution of
the Young-Laplace equation. Figure 2.3 shows deformation under the influence of
gravity using SharpInterTrack.

Current work is focused on addressing issues involved with applying the Marangoni
stress within the SharpInterTrack.

WP A2.4: Simulation of SG-model

A grid has been built, using Gambit, which includes the gas and the liquid. This
grid is of very high quality, being constructed entirely of hexahedral elements and
including anisotropic grid refinement at the gas-liquid interface. Work is under way
using SharpInterTrack. An issue currently holding up progress is that the appli-
cation of the Marangoni force causes it to be very difficult to satisfy conservation
of mass when using SharpInterTrack. When this issue is resolved, the result will
be a solver capable of accurately modeling time-dependent deformation of the free
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surface, which represents a much more accurate model of the liquid bridge than
initially envisioned in the proposed work.

Changes

Approximately 25% of the time allotted to this WP has been shifted to WP A2.3
to address some issues with the dynamically deforming mesh method of SharpIn-
terTrack.

WP A4.4: Dissemination of results

Results regarding the use of SharpInterTrack in liquid bridges including the sur-
rounding gas phase were presented at the JEREMI and the spring meeting on March
7th in Brussels, see the section on presentations on page 43.
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3 B: Stability

WP B1.1: Literature review for 3D stability

A large number of papers and books have been read to provide a theoretical back-
ground on flow stability and on numerical methods.

WP B1.2: Handling of the 3D stability code

Test calculations have been conducted with the steady 2D solver for the backward-
facing-step problem. The aim was to become familiar with MATLAB, the structure
of the code, the discretization and with the solution of steady 2D flow problems.

The work in this package is finished. The required knowledge for the next package
has been acquired.

Changes

Due to the unforeseen change of the personnel (postdoc) the expertise of Dr. Schoiss-
wohl who has written a dedicated 3D stability code for cylindrical geometries is no
longer available. Therefore, we decided to modify another existing linear stability
code. This code has been developed by Daniel Lanzerstorfer, another member of
the group. The code is written in MATLAB instead of C. It is originally designed
for structured Cartesian meshes and has been fully validated. The advantage of
the new code is the employment of fast modern solution techniques for large linear
system and large eigenvalue problems. MATLAB also has implemented a large
number of built-in tools (solvers) which can be applied for the three-dimensional
stability analysis.

WP B2.1: Program development for 3D stability and

the CG-model

The above MATLAB code has been adapted to the cylindrical geometry. The
calculation of the 2D basic state including the flow in the gas phase has been
implemented.

In a first step isothermal steady 2D axisymmetric single-phase flow has been
considered. To that end the steady 2D code for the backward-facing-step problem
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Figure 3.1: Computational domain and boundary conditions for the 2D axisymmetric
one phase flow.

has been re-written to replace the 2D conservation equations in Cartesian form by
the corresponding 2D axisymmetric ones
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1

r

∂ru

∂r
+

∂w

∂z
= 0, (3.1c)

which are in strong conservative and dimensionless form. In addition the compu-
tational domain was changed from a rectangular shape to the cylindrical geometry
depicted in fig. 3.1 which is required for the EMA project.
The conservation equations were made dimensionless using the scales r∗o − r∗i ,

w∗
in, and ρfluid · w

∗2
in for lengths, velocity, and pressure, respectively. The Reynolds

number is defined as

Re =
w∗

in (r
∗
o − r∗i )

νfluid
. (3.2)

To solve the flow problem a finite volume method on a staggered grid (uniform or
nonuniform) is used. The convective terms were discretized using a central scheme
and the variables were linearly interpolated. Along the cell edges the variables and
derivatives were treated as constants. The solution vector of the nonlinear problem
is calculated by Picard iteration (outer iterations) and using the MATLAB-operator
mldivide (inner iterations) for solving the linearized discretized conservation equa-
tions.
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Figure 3.2: Computational domain and boundary conditions for the 2D axisymmetric
two phase flow.

In a second step a second fluid phase was introduced. This enabled the defini-
tion of a liquid bridge surrounded by the second (gas) phase. The new boundary
conditions and the domain of the liquid bridge are depicted in fig. 3.2 (in red:
modification of the previous step).
In that model there is no coupling of normal stresses and pressure between the

liquid bridge and the gas phase due to the assumption of infinitely large surface
tension of the liquid. Hence, the pressure has to be fixed at some point in the
domain of the liquid bridge.
The conservation equations for the liquid bridge are as follows

1
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, (3.3b)

1

r

∂ru

∂r
+

∂w

∂z
= 0. (3.3c)

This set of discretized equations is solved by the same method as for the single-phase
problem before.
In a third step the thermocapillary flow is treated. To that end, the conservation

equation for the thermal energy, cf. (3.6b) and (3.7b), as well as new boundary
conditions, cf. fig. 3.3 (in red: changes to the previous step), are introduced.
The equations were non-dimensionalized by using the scales l∗lb, γl∆T/ρlνl,

γl∆T/l∗lb, and ∆T = Thot − Tcold for length, velocity, pressure, and temperature,
respectively.
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Figure 3.3: Computational domain and boundary conditions for the 2D axisymmetric
thermocapillary flow.

A normalized temperature

θ =
T − (Thot + Tcold) /2

∆T
(3.4)

is introduced and the Reynolds number is defined as

Re =
γl∆T l∗lb
ρlν

2
l

. (3.5)

The Prandtl number is Pr = νl/κl. The conservation equations to be solved for the
liquid phase are

Re∇ · (u0u0) = −∇p0 +∆u0, (3.6a)

Re∇ · (u0θ0) =
1

Pr
∆θ0, (3.6b)

∇ · u0 = 0. (3.6c)

For the gas phase we solve

Re∇ · (u0u0) = −
ρl
ρg

∇p0 +
νg
νl
∆u0, (3.7a)

Re∇ · (u0θ0) =
κg

κl

1

Pr
∆θ0, (3.7b)

∇ · u0 = 0. (3.7c)

Since the Picard iteration converges only slowly, we have now implemented New-
ton’s method for the outer iterations.
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In the fourth step the code for the linear stability of the obtained solution (basic
state) was developed. For the linear stability analysis of the basic state the 3D
unsteady conservation equations are considered. The conservation equations for
the liquid phase

∂tU + Re∇ · (UU) = −∇P +∆U , (3.8a)

∂tΘ+ Re∇ · (UΘ) =
1

Pr
∆Θ, (3.8b)

∇ ·U = 0, (3.8c)

and for the gas phase

∂tU + Re∇ · (UU) = −
ρl
ρg

∇P +
νg
νl
∆U , (3.9a)

∂tΘ+ Re∇ · (UΘ) =
κg

κl

1

Pr
∆Θ, (3.9b)

∇ ·U = 0, (3.9c)

are written in strong conservative form. The time was non-dimensionalized by the
scale l∗lb

2/νl. The variables of the total flow in (3.8a) to (3.9c) are decomposed and
replaced by variables of the basic state and perturbations:

U = u0 + u, (3.10a)

P = p0 + p, (3.10b)

Θ = θ0 + θ. (3.10c)

(3.10d)

A linearization with respect to infinitely small perturbations u, v, w, p, θ results in
the following equations for the gas phase,

∂u

∂t
+ Re

[(

1

r
+

∂

∂r

)

(2u0u) +
1

r

∂u0v

∂ϕ
+

∂ (u0w + uw0)

∂z

]

=

= −
ρl
ρg

∂p

∂r
+

νg
νl

[

1

r

∂

∂r

(

r
∂u

∂r

)

−
u

r2
+

1

r2
∂2u

∂ϕ2
−

2

r2
∂v

∂ϕ
+

∂2u

∂z2

]

, (3.11a)

∂v

∂t
+ Re

[(

2

r
+

∂

∂r

)

vu0 +
∂vw0

∂z

]

=

= −
ρl
ρg

1

r

∂p

∂ϕ
+

νg
νl

[

1

r

∂

∂r

(

r
∂v

∂r

)

−
v

r2
+

2

r2
∂u

∂ϕ
+

1

r2
∂2v

∂ϕ2
+

∂2v

∂z2

]

, (3.11b)

∂w

∂t
+ Re

[(

1

r
+

∂

∂r

)

(w0u+ wu0) +
1

r

∂w0v

∂ϕ
+

∂ (2w0w)

∂z

]

=

= −
ρl
ρg

∂p

∂z
+

νg
νl

[

1

r

∂

∂r

(

r
∂w

∂r

)

+
1

r2
∂2w

∂ϕ2
+

∂2w

∂z2

]

, (3.11c)
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∂θ

∂t
+ Re

[(

1

r
+

∂

∂r

)

(θ0u+ θu0) +
1

r

∂θ0v

∂ϕ
+

∂ (θ0w + θw0)

∂z

]

=

=
κg

κl

1

Pr

[

1

r

∂

∂r

(

r
∂θ

∂r

)

+
1

r2
∂2θ

∂ϕ2
+

∂2θ

∂z2

]

, (3.11d)

1

r

∂ru

∂r
+

1

r

∂v

∂ϕ
+

∂w

∂z
= 0. (3.11e)

These linear equations can be solved by the normal-mode ansatz

[u, v, w, p, θ] =
[

û, v̂, ŵ, p̂, θ̂
]

(r, z) eγt+imϕ + c.c., (3.12)

where γ denotes the complex growth rate andm the azimuthal wave number. Insert-
ing this ansatz into the linear perturbation equations one obtains linear differential
equations for the amplitudes û, v̂, ŵ, p̂, θ̂ which merely depend on r and z,

γû+ Re

[(

1

r
+

∂

∂r

)

(2u0û) +
u0iv̂m

r
+

∂ (u0ŵ + ûw0)

∂z

]

=

= −
ρl
ρg

∂p̂

∂r
+

νg
νl

[

1

r

∂

∂r

(

r
∂û

∂r

)

−
(

m2 + 1
) û

r2
−

2

r2
iv̂m+

∂2û

∂z2

]

(3.13a)

γiv̂ + Re

[(

2

r
+

∂

∂r

)

iv̂u0 +
∂iv̂w0

∂z

]

=

= +
ρl
ρg

1

r
p̂m+

νg
νl

[

−
2

r2
ûm+

1

r

∂

∂r

(

r
∂iv̂

∂r

)

−
(

m2 + 1
) iv̂

r2
+

∂2iv̂

∂z2

]

(3.13b)

γŵ + Re

(

1

r

∂r (w0û+ ŵu0)

∂r
+

w0iv̂m

r
+

∂ (2w0ŵ)

∂z

)

=

= −
ρl
ρg

∂p̂

∂z
+

νg
νl

[

1

r

∂

∂r

(

r
∂ŵ

∂r

)

−m2 ŵ

r2
+

∂2ŵ

∂z2

]

(3.13c)

γθ̂ + Re





1

r

∂r
(

θ0û+ θ̂u0

)

∂r
+

θ0iv̂m

r
+

∂
(

θ0ŵ + θ̂w0

)

∂z



 =

=
κg

κl

1

Pr

[

1

r

∂

∂r

(

r
∂θ̂

∂r

)

−m2 θ̂

r2
+

∂2θ̂

∂z2

]

(3.13d)

1

r

∂rû

∂r
+

1

r
iv̂m+

∂ŵ

∂z
= 0. (3.13e)
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Figure 3.4: Computational domain and boundary conditions for the linear stability
analysis.

Table 3.1: Boundary conditions on the axis of symmetry.

m = 0 û = 0 v̂ = 0 ∂rŵ = 0 ∂r θ̂ = 0

m = 1 ∂rû = 0 ∂rv̂ = 0 ŵ = 0 θ̂ = 0

m > 1 û = 0 v̂ = 0 ŵ = 0 θ̂ = 0

For the liquid phase the ratios ρl/ρg, νg/νl and κg/κl in (3.11a) through (3.11e) and
(3.13a) through (3.13e) are replaced by 1. Defining the boundary conditions and
discretizing the equations this results in a generalized eigenvalue problem

A · x = −γB · x. (3.14)

Here the same discretization scheme as for the basic state was applied. The com-
plex growth rate represents the eigenvalue γ and the perturbation amplitudes the
eigenvector x. Matrices A and B represent coefficients of the set of algebraic equa-
tions. Because of the assumed incompressibility of the fluids matrix B is singular.
To save main memory for the later explained solution method the transformation
iv̂ = v∗ to obtain pure real matrices A and B is done . The boundary conditions are
shown in fig. 3.4. Boundary conditions for the axis of symmetry are dependent on
the azimuthal wave number m and are shown in table 3.1. Those conditions can be
derived from the uniqueness conditions ∂u/∂ϕ = 0 and ∂θ/∂ϕ = 0 on r = 0. For
the discretized algebraic set of equations as many solutions as dependent variables
N exist. So the degrees of freedom were reduced from infinity for the continuous
system to N for the discrete system. But just one solution has to be found. It is the
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mode n with the largest real part of the growth rate (maxnℜ (γn)) and called most
dangerous mode. It can be found with the strategy of (Meerbergen et al., 1994). In
a first step 12 eigenvalues with the smallest magnitude are calculated. An Implic-
itly Restarted Arnoldi Method which is implemented in ARPACK (Lehoucq et al.,
1998) and used by MATLAB with the eigs command is therefore applied. The
necessary shift invert transformation

B · x =
1

−γ
A · x (3.15)

is done by eigs. The second step is a validation step where 5 eigenvalues with the
largest magnitude of the Cayley transformation

(A− α2B) · x =
−γ − α2

−γ − α1

(A− α1B) · x (3.16)

are calculated. The most dangerous mode can be found among those 17 solutions of
the eigenvalue problem. For the calculation of α1 and α2 the parameters r = 5 and
ρuser = 1.1 are chosen (see Meerbergen et al., 1994). The Cayley transformation has
to be programmed whereas the shift invert transformation is again done by eigs.
A mode is linearly stable if ℜ (γn) < 0, linearly unstable if ℜ (γn) > 0 and

neutrally stable if ℜ (γn) = 0. It is steady if ℑ (γn) = 0 and oscillating if ℑ (γn) 6= 0.
If the most dangerous mode is neutrally stable it is called neutral mode. To find
such a neutral mode control parameters like Re are increased or decreased e.g. 5%
until the sign of maxnℜ (γn) changes which means that at least one root exists
within the interval of the control parameter. Such a root and, hence, the neutral
mode can be efficiently found with the strategy of (Gottlieb, 2010). It is a kind of
combination of regula falsi and bisection.
Neutral modes of a basic state can be found for different azimuthal wave numbers

m. Because of the rotational symmetry of the liquid bridge m can only be a natural
number (m ∈ N) and determines the azimuthal periodicity of the mode. At the
smallest control parameter where a neutral mode exists the basic flow becomes
linearly unstable which means the steady 2D axisymmetric flow changes to unsteady
or 3D (or both). The mode and the control parameter are then called critical. Note
that with further increasing of the control parameter again a critical mode can be
found. That means that the flow becomes linearly stable again. So different neutral
modes have to be calculated to find the critical one and therefore the stability
boundary.
To evaluate the energy conservation of the solutions obtained and to identify the

instability mechanisms of the critical modes an a posteriori energy analysis was
applied. This method is widely known and the equations are derived for example
in Wanschura et al. (1995) for a liquid bridge where the ambient gas is neglected.
The scalar product of the linearized momentum equations (3.11a)–(3.11c) with the
perturbation velocity vector u and integration over the gas volume gives the rate of
change of the the kinetic energy dEkin/dt in the gas. The procedure for the liquid
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is similar. By splitting the resulting equations in volume and surface integrals the
following balance can be made for the gas and the liquid phase:

dEkin,g

dt
=

1

2

∫

Vg

∂u2

∂t
∂Vg = −Dg +Mϕ,g +Mz,g +

5
∑

i=1

Ivi,g +Kg (3.17a)

dEkin,l

dt
=

1

2

∫

Vl

∂u2

∂t
∂Vl = −Dl +Mϕ,l +Mz,l +

5
∑

i=1

Ivi,l. (3.17b)

The viscous dissipation in the gas is obtained with the relation

Dg =
νg
νl

∫

Vg

[

(

∂u

∂r

)2

+

(

1

r

∂u

∂ϕ
−

v

r

)2

+

(

∂u

∂z

)2

+

+

(

∂v

∂r

)2

+

(

1

r

∂v

∂ϕ
+

u

r

)2

+

(

∂v

∂z

)2

+

+

(

∂w

∂r

)2

+

(

1

r

∂w

∂ϕ

)2

+

(

∂w

∂z

)2
]

∂Vg+

+
νg
νl

∫

Ss

v2

r
∂Ss, (3.18)

where Vg denotes the gas volume and Ss the free surface of the liquid bridge. For
the liquid bridge the factor νg/νl of the volume integral is replaced by 1 and by −1
for the surface integral. The integration domain is then of course the volume of the
liquid bridge Vl. The work done per time by thermocapillary shear forces for the
gas are

Mϕ,g = −
νg
νl

∫

Ss

(

v
∂v

∂r
−

v2

r

)

∂Ss, (3.19)

in azimuthal direction and

Mz,g = −
νg
νl

∫

Ss

w
∂w

∂r
∂Ss (3.20)

in axial direction. For the liquid −νg/νl is replaced by 1. The transfer rate of
kinetic energy from the basic state to the perturbed mode in the gas consists of five
terms:

Iv,g =
5
∑

i=1

Ivi,g = −Re

∫

Vg

(

v2
u0

r
+ u2∂u0

∂r
+ wu

∂u0

∂z
+ wu

∂w0

∂r
+ w2∂w0

∂z

)

∂Vg

(3.21)
For the liquid bridge those terms remain the same but the integration domain
changes to Vl. The transport of kinetic energy out of the gas domain

Kg = −
1

2
Re

∫

Sout

w0w
2∂Sout (3.22)
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is also needed. The normalized residuals of the kinetic energy are determined as
follows:

δekin,g =
|−∂tEkin,g −Dg +Mϕ,g +Mz,g + Iv,g +Kg|

max {|∂tEkin,g| , |Dg| , |Mϕ,g| , |Mz,g| , |Iv1,g| , . . . , |Iv5,g| , |Kg|}
, (3.23a)

δekin,l =
|−∂tEkin,l −Dl +Mϕ,l +Mz,l + Iv,l|

max {|∂tEkin,l| , |Dl| , |Mϕ,l| , |Mz,l| , |Iv1,l| , . . . , |Iv5,l|}
. (3.23b)

To identify thermal energy transfer between basic state and the perturbation
mode in the ambient gas the equation for the thermal energy (3.11d) is multiplied
with the perturbation temperature θ and integrated over the gas volume. In the
following it will be called thermal energy balance although ET,g is no energy as
defined in thermodynamics. The procedure for the liquid is similar. By splitting
the resulting equations in volume and surface integrals the following balance can
be made for the gas and the liquid phase

∂tET,g =
1

2

∫

Vg

∂θ2

∂t
∂Vg = −DT,g −Hg +

2
∑

i=1

ITi,g, (3.24a)

∂tET,l =
1

2

∫

Vl

∂θ2

∂t
∂Vl = −DT,l −Hl +

2
∑

i=1

ITi,l. (3.24b)

The terms for the ambient gas are calculated with the following relations

DT,g =
κg

κl

1

Pr

∫

Vg

[

(

∂θ

∂r

)2

+

(

1

r

∂θ

∂ϕ

)2

+

(

∂θ

∂z

)2
]

∂Vg, (3.25a)

Hg =
κg

κl

1

Pr

∫

Ss

θ
∂θ

∂r
∂Ss, (3.25b)

IT,g =

2
∑

i=1

ITi,g = −Re

∫

Vg

θ

(

u
∂θ0
∂r

+ w
∂θ0
∂z

)

∂Vg. (3.25c)

For the liquid bridge κg/κl is replaced by 1 in (3.25a) and by −1 in (3.25b). The
integration domain in (3.25a) and (3.25c) changes of course to Vl. The normalized
residuals of the thermal energy are determined as follows

δeT,g =
|−∂tET,g −DT,g −Hg + IT,g|

max {|∂tET,g| , |DT,g| , |Hg| , |IT1,g| , |IT2,g|}
, (3.26a)

δeT,l =
|−∂tET,l −DT,l −Hl + IT,l|

max {|∂tET,l| , |DT,l| , |Hl| , |IT1,l| , |IT2,l|}
. (3.26b)

The program to solve for the basic state, carry out the linear stability analysis and
perform the a posteriori energy analysis was developed in MATLAB and is called
MaranStable.
The work in this package is completed.
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Figure 3.5: Development of the flow for a constant (blue) and a regularized (red) inlet
velocity profile for Re = 300.

WP B2.2: Validation of the CG-code

For first checks the velocity profile which develops in the gas downstream from the
inlet profile (calculated numerically) was compared with the fully developed flow
for which a closed-form analytical solution is available. For this simulations the
dimensions of geometry, the inlet velocity (profile), the Reynolds number, and the
grid structure (uniform/nonuniform) were varied.
We find that the flow develops to the analytical solution sufficiently far down-

stream. However, the flow immediately behind the inlet exhibits some peculiarities
which have not been recognized by a number of previous numerical investigators
using coarse grids. The velocity profiles are depicted in fig. 3.5. Thin black lines
indicate the location at which the velocity profiles (in color) are evaluated. A con-
stant inlet velocity represents a singular boundary condition, because the velocity
on the rigid walls must be zero. Slightly downstream from the inlet the initial
velocity jump causes a peak in the near-wall region. This can be seen in the zoom
provided in the inset figure. The velocity profiles exhibits a weak minimum at ap-
proximately (ro + ri) /2. This location is independent of the specific inlet velocity
profile (singular or regularized). The reason for the observed velocity overshoot
is the deceleration of the fluid in the immediate vicinity of the wall (Darbandi &
Schneider, 1998). Quite a fine grid is needed to resolve this behavior.
We employed different methods to verify the code. One possibility is to set the

axial velocity w = 1 and the radial velocity u = 0 on all boundaries, as in (Muldoon,
2004). The computations should then yield the same velocity w = 1 in the whole
computational domain. Another test makes use of dedicated artificial solutions
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(Muldoon, 2004). If one assumes a solution in simple polynomial form

u = r, (3.27a)

w = z, (3.27b)

p = rz, (3.27c)

and inserts this ansatz into the governing equations (3.1a)–(3.1c), then one can
analytically calculate the required source terms U, W, C such that the equations
are satisfied. One thus arrives at

1

r

∂rr2

∂r
+

∂rz

∂z
= −

∂rz

∂r
+

1

Re

[

1

r

∂

∂r

(

r
∂r

∂r

)

+
∂2r

∂z2
−

r

r2

]

+ U, (3.28a)

U = 3r + r + z −
1

Re

[

1

r
+ 0−

1

r

]

= 4r + z, (3.28b)

1

r

∂rrz

∂r
+

∂z2

∂z
= −

∂rz

∂z
+

1

Re

[

1

r

∂

∂r

(

r
∂z

∂r

)

+
∂2z

∂z2

]

+W, (3.28c)

W = 2z + 2z + r −
1

Re
[0 + 0] = 4z + r, (3.28d)

1

r

∂rr

∂r
+

∂z

∂z
= 0 + C, (3.28e)

C = 2 + 1 = 3. (3.28f)

After introducing these source terms into the discretized set of equations and using
the proper (polynomial) boundary conditions the result of the simulation should
reproduce the polynomial flow field within machine precision.
>From the above test we could conclude that the discretization scheme is of

second order for w (axial direction) and ru (radial direction). In addition, we
found that the use of ∂ru

2 + u2/r instead of r−1∂rru
2 (which is not of second order

for ru) in the radial momentum equation is more accurate.
In addition to these general tests, the code for the 2D steady thermocapillary

flow was verified by comparing the computed flow and temperature fields with
published numerical results (Kuhlmann, 1999). Since the models available in the
literature do not include the effect of the surrounding gas phase, the ratios of
the dynamic viscosities µl/µg and heat conductivities λl/λg were set to 1010 to
practically eliminate the influence of the gas phase on the thermocapillary flow in
the liquid. An example for such a benchmark calculation with a high grid resolution
is provided in fig. 3.6.
As for the basic state a verification of the linear stability part of the CG-code is

not possible at the time being because of the unavailability of suitable published
work. To verify at least the C-code of MaranStable computed stability boundaries
dependent on Pr were compared with results of (Levenstam et al., 2001). Since they
neglected the gas phase in their model and assumed an adiabatic surface we also
had to reduce our model for that test to a single-phase flow (C-model). The relative
error of the critical Reynolds number Rec was related to the results of (Levenstam
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Figure 3.6: Axial surface velocity w0 in units of νl/l
∗
lb along the surface z (in green: own

results, in black: (Kuhlmann et al., 2000)) for Re = 412 and Pr = 35.
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Figure 3.7: Verification of the C-code of MaranStable: critical Reynolds number Rec
and critical frequency ωc = ℑ (γn) dependent on Prandtl number Pr.

et al., 2001) and lies within ±1.5%. The corresponding stability diagram is shown
in fig. 3.7.
Another way to test the CG-code of MaranStable is a validation test. But

idealizing assumptions in computational modeling and measurement uncertainties
in experiments prevent perfect predictions. A comparison with an experiment of
(Simic-Stefani et al., 2006) lead to satisfactory results. The experiment was done
with the fluids acetone/air and the effect of evaporation of acetone on the stability
boundaries was investigated. It was discovered that stronger evaporation leads to
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Figure 3.8: Validation of the CG-code of MaranStable: critical Marangoni number Mac
dependent on the aspect ratio Γ = llb/ri; Upper disk temperature Thot ≈ 23 − 25 ◦C
is kept constant, lower disk temperature varies. (squares: ramping up Tcold, triangles:
ramping down Tcold).

Table 3.2: Geometrical parameters for the linear stability analysis.

ri in m ro in m lin in m lout in m

0.0035 0.0065 0.005 0.005

larger critical Marangoni numbers Ma. A stability diagram is shown in fig. 3.8.
Calculations are compared with the closed system because the evaporation of ace-
tone is then strongly reduced. Specified parameters for the linear stability analysis
are shown in table 3.2 and 3.3. At higher and lower aspect ratios predictions of
the linear stability analysis deviates from the experimental data, because of ide-
alizations in the CG-model and relatively large experimental uncertainties. The

Table 3.3: Fluid properties for acetone and air at 23 ◦C and 101325Pa.

ν in ̺ in λ in κ in β in γ in
m2/s kg/m3 W/mK m2/s K−1 N/mK

acetone 4.1× 10−7 787 0.16 9.5× 10−8 1.43× 10−3 12.62× 10−5

air 1.54× 10−5 1.19 0.026 2.15× 10−5 3.38× 10−3 –
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Figure 3.9: Numerical grid with parameters ∆min and ∆max for the grid-convergence
check. The aspect ratio of the liquid bridge is Γ = 1.

CG-model only considers a fixed cylindrical shape of the liquid bridge, constant
fluid properties and no evaporation of liquid. Whereas in the experiment the sur-
face deformation caused by gravity becomes stronger with increasing aspect ratios.
With decreasing aspect ratios the critical temperature difference increases. As a
result, the evaporation of acetone and also the effect of temperature dependence of
the fluid properties become significant.

To investigate the influence of the numerical grid on stability boundaries a grid-
convergence study was carried out. Investigations to follow focus on the behavior
of high-Prandtl-number liquids. For those liquids thin thermal boundary layers are
expected and have to be resolved by the grid. Stretching factors f (aspect ratio
of neighbor cells), minimal and maximal cell sizes (∆min and ∆max) (see also fig.
3.9) of the grid are varied. To be able to carry out computations on very fine
grids only single-phase calculations with an adiabatic surface have been conducted.
Stability boundaries depending on Pr were calculated on different grids which is
shown in 3.10. Grids which are marked with triangles and squares in fig. 3.10 are
quite inaccurate when Pr > 10. All other grids would be accurate enough. To
ensure that thermal boundary layers will be resolved for the calculations presented
below a minimum cell size of ∆min = 5.00× 10−5 was chosen on all boundaries and
the free surface. Because our computational resources are limited in memory to
24GB maximal 300000 grid cells can be handled for the linear stability analysis.
Hence, a relatively large stretching factor f = 1.1 and a maximum cell size ∆max =
500∆min = 0.025 is used as a compromise to enable a variation of the geometry
parameters in a wide range.
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Figure 3.10: Critical Reynolds numbers and frequencies dependent on the Prandtl num-
ber for different numerical grids.

It should be noted that energy-conservation checks were also carried out. We
found that the normalized residuals were smaller than 10−4. The work in this
package is thus completed.

WP B2.3: Compute data by CG-code

To obtain an overview on the characteristics of the gas–liquid coupling a number of
simulations were carried out. The first computation was done for the 2D isothermal
two-phase flow with viscosity and density ratios representing the system air/water
(at 20 ◦C and 1 bar). From fig. 3.11 it can be seen that the coupling between gas
and liquid flow fields through shear stresses is only weak.
Another calculation was made for a 2D axisymmetric thermocapillary flow with

the geometry and the fluids as defined in JEREMI project. The boundary condi-
tions are in the range of the experimental parameters for a subcritical flow with
∆T = 26 ◦C. For these parameters a 2D axisymmetric flow is expected. The in-
fluence of the thermocapillary flow on the gas phase can be seen in fig. 3.12. The
stream functions are scaled differently in the liquid and in the gas phase for bet-
ter visibility. The temperature field is shown in fig. 3.13. The thermocapillary
flow causes high velocity gradients in the gas phase, in particular, in the vicinity
of the cold corner (stretched zoom in fig. 3.12). This example illustrates that a
high grid resolution is required in the vicinity of the cold corner, which causes high
computational costs (memory, time).
The inlet boundary conditions of the previous simulation were varied to explore
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Figure 3.11: Axial velocity profiles for the isothermal two phase flow (blue: air, red:
water) for Re = 300, νg/νl = 15 and ρg/ρl = 0.001.
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Figure 3.12: Axial velocity profiles for the thermocapillary flow (properties of argon
(blue) and silicon fluid “KF-96L-5cs” (red) at (Thot + Tcold) /2 = 25 ◦C, see table 3.4)
for Re = 362, Pr = 67.

their influence on the axial surface velocity, which is an important indicator of
the thermocapillary flow. Within the range of experimental parameters the inlet
temperature has a much larger effect on the surface-velocity field than the inlet
velocity (fig. 3.14).

Finally MaranStable was used to calculate stability boundaries for about 6000
sets of parameters. It was started with a reference case for which stability bound-
aries were calculated varying the gas-inlet velocities. The geometry of the refer-
ence case has the following relative dimensions, llb/ri = llb/lin = llb/lout = 1 and
ro/ri = 2. Fluid properties of the silicon fluid “KF-96L-5cs” and argon were used
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Figure 3.13: Stream functions and temperature field for the thermocapillary flow (prop-
erties of argon and silicon fluid “KF-96L-5cs” at (Thot + Tcold) /2 = 25 ◦C, see table 3.4)
for Re = 362, Pr = 67.

(see table 3.4) for the calculations. Boundary conditions as depicted in fig. 3.3 for
the basic state and 3.4 for the linear stability analysis were applied. The ambient
gas has an enormous effect on the stability boundaries. A stability diagram demon-
strating that influence is shown in fig. 3.15 for the reference case. The stability
diagram also holds qualitatively for similar geometries, but is depends strongly on
the properties of the particular fluids employed. Negative values on the abscissa
denote a co-flow. This means that the mean gas flow has the same direction as the
surface flow of the liquid. It flows from the hot to the cold site. Positive values
denote a a counter-flow situation. The Reynolds number Re (ordinate) is plotted
as a function of the product w∗

0,inl
∗
lb (abscissa). On the abscissa one could also plot

the dimensionless gas velocity w0,in or an adequate Reynolds number, but there are
some disadvantages:

• The dimensionless gas velocity w0,in = w∗
0,inl

∗
lb/Reνl depends on the ther-

mocapillary Reynolds number. It would be quite difficult to interpret the
resulting curve (compare critical curve of fig. 3.15 with the critical curve of
fig. 3.16). Different modes are not distinguishable.

• The diagram is just valid for fluids which have the same ratios of density,
viscosity, heat conductivity, heat diffusivity, etc., practically just for the used
fluid properties. A Reynolds number for the gas flow, e.g., Re = w∗

0,inl
∗
lb/νg

could falsely suggest that the calculations would also be valid for different
fluids.
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Figure 3.14: Axial surface velocities for thermocapillary flow (properties of argon and
silicon fluid“KF-96L-5cs”at (Thot + Tcold) /2 = 25 ◦C, see table 3.4) for Re = 362, Pr = 67
and varied inlet boundary conditions.

In fig. 3.15 the different modes are separated with cross markers. Moreover the
modes are labeled with the wavenumber mc and the time-dependence is indicated.
If forced gas convection is absent (w∗

0,in = 0m/s) the critical Reynolds number is
Rec = 558. Compared to that the critical Reynolds number would be Rec = 974 if
the gas phase would be neglected and an adiabatic surface is assumed (horizontal
black dash dotted line in fig. 3.15). Thus the forced gas flow has a significant
stabilizing effect if a weak gas stream is co-flowing with the thermocapillary flow.
In that case the heat loss through the free surface will be decreased or the liquid
bridge even heated. In a counterflow the heat loss through the free surface is
increased which causes weak destabilization. In the investigated range the gas flow
can modify the critical Reynolds number from about 13 to 7000. Remarkable are
some regions where an unstable flow can be stabilized with further increasing of
the Reynolds number.

Other cases in which a single parameter only is varied with respect to the reference
parameters were also considered. One investigation is concerned with the influence
of different inert gases on the stability boundaries. The critical curves are shown
in fig. 3.17. A significant shift of the stability boundaries is observed. The critical
Reynolds number decreases with increasing heat conductivity of the gases if forced
gas convection is absent (w∗

0,in = 0m/s). In that case the heat loss through the free
surface increases with the heat conductivity of the gases.
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Table 3.4: Fluid properties for the silicon fluid “KF-96L-5cs” and different inert gases at
25 ◦C and 101325Pa.

ν in ̺ in λ in κ in γ in
m2/s kg/m3 W/mK m2/s N/mK

KF-96L-5cs 5× 10−6 915 0.12 7.5× 10−8 6.37× 10−5

argon 1.38× 10−5 1.63 0.0176 2.07× 10−5 -

helium 1.2073× 10−4 0.16394 0.14941 1.7596× 10−4 -

neon 3.8189× 10−5 0.8248 0.049 5.7675× 10−5 -

nitrogen 1.5523× 10−5 1.1455 0.025828 2.1664× 10−5 -

carbon dioxide 8.3386× 10−6 1.7989 0.0165 1.058× 10−5 -

sulfur hexafluoride 2.5127× 10−6 5.9696 0.0135 3.4316× 10−6 -

krypton 7.4155× 10−6 3.4252 0.0095 1.1184× 10−5 -

xenon 4.3232× 10−6 5.3663 0.0056 6.6047× 10−6 -
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The result of varying the aspect ratio of the outer tube radius to the liquid bridge
radius ro/ri is depicted in fig. 3.18. For small aspect ratios, e.g. ro/ri = 1.2, both co-
and counterflow of the gas destabilize the flow. Re-stabilization zones are shifted
to larger mean gas velocity magnitudes with increasing the radius ratio. Without
forced gas convection the critical Reynolds number increases with decreasing aspect
ratios.
The influence of the aspect ratios of the liquid bridge length to the inlet/outlet

length llb/lin = llb/lout on the stability boundaries is rather small (see fig. 3.19).
Especially for small aspect ratios, where a (nearly) developed gas flow arrives the
liquid bridge, which is not very surprising.

The aspect ratio of the liquid bridge length to the radius Γ = llb/ri has a large
influence on the stability of the thermocapillary flow (see fig. 3.20) as well as for
the azimuthal wave number m of the critical mode. However a clear correlation
between aspect ratio and stability boundary could not be found. It is remarkable,
however, that the flow can re-stabilize if Γ ≈ 3, even in the absence of forced gas
convection.
To clarify the instability mechanism of the critical modes in fig. 3.15 energy

budgets were analyzed. The kinetic energy balance for the ambient gas and the
liquid is depicted in fig. 3.21, the thermal energy balance in fig. 3.22. The dominance
of Mϕ,g +Mz,g and the rather small contributions of Iv,g indicate that the transfer
of thermal (not kinetic) energy of the basic state to the critical mode is responsible
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for the instability. It can be concluded that the critical flow is a hydrothermal
instability. Moreover, the unsteady critical modes are hydrothermal waves. Such an
instabilities were first discovered by Smith & Davis (1983) for plane thermocapillary
liquid layers and identified by Wanschura et al. (1995) for liquid bridges. For high-
Prandtl-number liquid bridges, as in the present case (Pr = 67), such a mechanism
is typical.

WP B3.1: Program development for 3D stability and

the S-model

Changes

25% of the time planned for this work package was shifted to WP B1.1–B2.3 in
order to address an unforseen issue (see section 1.2). This WP is 75% completed.
An example of the basic state flow and temperature field is depicted in fig. 3.23. Vr

denotes the ratio of the liquid volume to the cylinder volume πr2lbllb.

WP B3.2: Validation of the S-code

Changes

25% of the time planned for this work package was shifted to WP B1.1–B2.3 in
order to address an unforseen issue (see section 1.2). This WP is 75% completed.

WP B3.3: Compute data by S-code

Changes

100% of the time planned for this work package was shifted to WP B1.1–B2.3 in
order to address an unforseen issue (see section 1.2). This WP is 0% completed.

WP B4.1: Program development for 3D stability and

the SG-model

Changes

25% of the time planned for this work package was shifted to WP B1.1–B2.3 in
order to address an unforseen issue (see section 1.2). This WP is 75% completed.
A mesh including the gas and liquid phases created by MaranStable and showing
the deformation of the liquid bridge is given in fig. 3.24. An example of the basic
state flow and temperature field is depicted in fig. 3.25.
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Figure 3.21: Kinetic energy balance.
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Figure 3.22: Thermal energy balance.

34



5 6 7 8 9 10

x10
−3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x10

−3

axial coordinate z

ra
d
ia
l
co
o
rd
in
a
te

r

n
o
rm

a
li
ze
d
te
m
p
er
a
tu
re

θ

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 3.23: Stream functions and temperature field for the thermocapillary flow (prop-
erties of the silicon fluid “KF-96L-5cs” at (Thot + Tcold) /2 = 30 ◦C) in a slender liquid
bridge for Vr = 0.75, Re = 339, Pr = 63.
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Figure 3.24: Deformed mesh including the gas and liquid phases

WP B4.2: Validation of the SG-code

Changes

25% of the time planned for this work package was shifted to WP B1.1–B2.3 in
order to address an unforseen issue (see section 1.2). This WP is 75% completed.
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Figure 3.25: Stream functions and temperature field for the thermocapillary flow (prop-
erties of argon and silicon fluid “KF-96L-5cs” at (Thot + Tcold) /2 = 30 ◦C) in a fat liquid
bridge for Vr = 1.1, Re = 339, Pr = 63.

WP B4.4: Dissemination of results

The results regarding the 2D axisymmetric flow in liquid bridges including the
surrounding gas phase were presented at the JEREMI spring meeting on March
5th of 2010 in Brussels (see the section on presentations on page 43). Results
regarding the linear stability analysis of the liquid bridge including the surrounding
gas phase were presented at the JEREMI fall meeting on October 19th 2010 in
Tsukuba (Japan) and at the DFD10 Meeting of The American Physical Society at
November 21th in Long Beach (USA, California).
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4 C: Particle Accumulation
Structures (PAS)

WP C1.1: Literature review for PAS

The literature on PAS and on Lagrangian coherent structures in general is studied
permanently.

WP C1.2: Re-writing of PAS code

The computational code for PAS has been completely re-written. It is now available
in MATLAB. The particle trajectories are computed using a simplified version of
the Maxey–Riley equation Maxey & Riley (1983). To handle the situation in which
particles come close or collide with the computational domain a partially elastic
reflection model has been implemented for such collisions. To integrate the system
of equations the MATLAB solver ode15s for stiff systems is being employed using
the built-in function event for handling particle–boundary collisions. Different
interpolation schemes have been tested to compute the flow field at an arbitrary
point, including interpolations in physical and in Fourier space.

By transforming the governing equations into a frame of reference rotating with
the hydrothermal wave a single snapshot of the flow field of the hydrothermal
wave in the liquid bridge is sufficient to compute the particle motion. Using this
transformation, we are liberated from simulating the complete flow field parallel to
the particle motion. This saves much computing resources.

In the rotating frame of reference the simplified Maxey–Riley equation for zero
gravity takes the form

ÿ′ =
1

̺+ 1
2

[

−
1

St
(ẏ′ − u′) +

3

2
u′ · ∇′u′

]

−

− 2Ω×

(

ẏ′ −
3

2̺+ 1
u′

)

−Ω× (Ω× y′)

(

1−
3

2̺+ 1

)

.

(4.1)

Here y′ is the location of the center of mass of the particle in the rotating frame,
u′ the stationary flow field of the hydrothermal wave in the rotating frame, ̺ =
ρp/ρf the ratio of the particle to the fluid density, Ω the angular velocity of the
hydrothermal wave. Using the viscous velocity scale of the thermocapillary flow
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U0 = ν/d the Stokes number is St = 2a2U0/(9νd) = 2a2/(9d2), where ν is the
kinematic viscosity, a the radius of the particle, and d the height of the liquid zone.
If one considers density matching between fluid and particle the equations sim-

plify to

ÿ′ = −
2

3St
(ẏ′ − u′) + u′ · ∇′u′ − 2Ω× (ẏ′ − u′) . (4.2)

In case of velocity matching between particle and fluid at the beginning t = 0 the
equations for the particle simplifies to the one for a passive tracer

ẏ′ = u′. (4.3)

WP C3.1: PAS patterns

For the development of the MATLAB code for PAS we used flow states computed
using the existing code Poseidon written by Jens Leypoldt (see Leypoldt et al.,
2000). As a standard test case we considered aspect ratio Γ = d/R = 0.66, Prandtl
number Pr = 4, a supercritical Reynolds number Re = 1800 ≈ 1.67 × Rec, zero
gravity and adiabatic conditions at the free surface Gr = Bi = 0 (see also fig. 2.1).
Under these conditions the flow arises in form of a pure traveling hydrothermal
wave with azimuthal wave number m = 3.
We found that nearly all particles which have undergone at least a single free-

surface collision are transferred to a PAS. An example is shown in fig. 4.1 in com-
parison with an experimental result of Schwabe et al. (2007). Hence, we have shown
that PAS can be reproduced numerically. However, the physical mechanism cannot
be derived from a pure computational result or from pure observations. Therefore,
a more detailed analysis has been performed on the mechanism (see WP C4.2).
Progress for this work package is slightly delayed, because due to the results

obtained, much attention has been devoted to the mechanism of PAS formation (see
WP C4.2). The insight gained so far indicates that PAS depends on the existence
of very fine invariant stream tubes in the rotating frame of reference. In order
to reliably compute PAS with numerical flow simulations, the flow near the free
surface on the length scale of the particles radius must be reliably resolved. This
requires extremely high-resolved three-dimensional time-dependent flow states. As
a first step it is tried to meet this requirements for our reference case of Pr = 4
with cylindrical and adiabatic free surface. These computations are currently being
carried out.

Changes

There is some delay due to the extremely high accuracy requirements for the nu-
merical solution.
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(a) (b)

Figure 4.1: (a) Axial view of PAS with period m = 3 in an experiment of Schwabe et al.
(2007) and (b) numerical result for LPAS (full blue line) for nearly passive tracers with
very small Stokes number St = 5× 10−5 and for Re = 1800.

WP C4.1: Coding for physical mechanism of PAS

Various MATLAB codes have been developed to study various problems associated
with the mechanism of PAS. Among these are codes which release particles from
dedicated spatial positions, the search for closed streamlines in a numerically given
discrete three-dimensional flow field, Poincaré maps for particle returns to certain
planes, and various iterated maps designed to study the effect of particle–free-
surface collisions.

WP C4.2: Physical mechanism of PAS

Due to the reduced funding (from 24 to 18 months), the time devoted to this WP
has been reduced from 5 to 2 months (see chart on page 41 of the proposal).
Based on the experimental finding of Schwabe et al. (2007) and our computation

of PAS (see WPs C3.1 and C4.1) we have developed the hypothesis that PAS is
essentially due to the collision of the particle with the free surface. To that end we
considered density-matched particles, because these particles need the least time to
form PAS (Schwabe et al., 2007). The passive advection in an incompressible flow
cannot, however, lead to particle accumulation. Thus another process is mandatory
for it, either inertia or another effect.
To test this hypothesis that surface collisions are key to PAS we assume that

the particle is density-matched to the liquid and transported like a passive tracer.
However, without any further effect, passive tracers cannot segregate in an in-
compressible flow. This is obvious and it is well known that Lagrangian coherent
structures are due to the inertia of the particles. Thus a mechanism is required
that transfers the particle from one stream line to another. Such a process is the

39



Figure 4.2: Closed streamlines in the rotating frame of reference as viewed in axial
projection.

free-surface collision.
Using the above standard reference case we computed the hydrothermal wave

until the flow became steady in the frame of reference rotating with the wave. This
flow becomes steady in a rotating frame of reference in which the particle motion
is then considered by integrating pure advection (no inertia effects) but assuming
a finite size of the particles with radius a. We have found PAS in the numerically
computed Navier–Stokes flow. The pattern and the time scale of formation does
agree with the experimental observations of Schwabe et al. (2007). However, due
to the extremely tight resolution requirements long-term computation of particle
trajectories are difficult and the numerical results could certainly be improved.
The basic result of this work package is that PAS depends strongly on the topo-

logical properties of the flow. We found that the steady flow (of the hydrothermal
wave) in the rotating frame of reference exhibits regular and chaotic streamlines.
In other words, the steady flow exhibits Hamiltonian chaos. We have identified sev-
eral closed streamlines (for examples, see fig. 4.2) which are surrounded by regular
streamlines forming invariant stream tubes. These invariant structures are embed-
ded in a chaotic sea of streamlines. It was found that PAS is possible if one of the
invariant regular stream tubes approaches the free surface locally up to a distance
which should be of the order of the particles radius. A low-resolution example is
shown in fig. 4.3.
Under this condition particles which are passively advected along streamlines

can collide with the free surface. This collision is due to the fact that free-surface
deformations are practically impossible on the small length scale of the particle size
due to the high restoring Laplace pressure. If the streamline on which the particle
travels approaches the free surface with a distance less than the particle radius, the
particle can no longer follow the flow and will be displaced from one streamline to
another. This displacement process has been explained in detail by Kuhlmann &
Hofmann (2011) and Hofmann & Kuhlmann (2011). An iterative map has been
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Figure 4.3: Example for a streamtube around a closed streamline in the flow of a hy-
drothermal wave in the rotating frame of reference. Shown is a close-up of the closed
streamline (black) and streamlines (blue) which emerge from a small circle (green) about
the closed streamline. The stream tube is shown for one period of the flow which as an
azimuthal wave number m = 3. One can recognize the radial squeezing of the tube near
the free surface (light blue).

developed which qualitatively describes the accumulation process by a simple two-
dimensional map of the release point (xn, yn) of the particles from the free surface
after a collision has taken place. The map consists of a rotation (winding about
the closed streamline) and a projection (collision process) (Hofmann & Kuhlmann,
2011). This work has clarified one plausible mechanism of PAS. The basic form of
the map reads (assuming a circular cross section of the stream tube near the free
surface)

xn+1 = xn cos θ − yn sin θ, (4.4a)

yn+1 = min [A, xn sin θ + yn cos θ] . (4.4b)

Here θ represents the winding angle (assumed constant in the model) about a
closed invariant stream tube between two successive returns of the particle to the
free surface and A is a measure of the distance between R∗ = R − a, where R is
the radius of the liquid bridge and a the particle radius, and the most radial locus
of the closed streamline. For A > 0 this map has the stable fixed point

(x∗, y∗) =

[

−
A

tan (θ/2)
, A

]

. (4.5)

The full, closed streamline in fig. 4.2 represents PAS if this closed streamline is
tangent to the cylindrical surface r = R∗. If the closed streamline intersects with
r = R∗ PAS is slightly different from the closed streamline. Finally, if the closed
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streamline does not intersect with r = R∗ but the largest invariant stream tube
intersects with r = R∗, PAS arises in a tubular form.
Further analyses taking into account particle inertia have shown that coherent

Lagrangian structures can exist in the hydrothermal-wave flow. However, the time
scale for inertial migration of the particles is orders of magnitude larger than the
time scale on which PAS forms by repeated surface collisions. It is thus concluded
that PAS indeed results from repeated free surface collisions. For further details we
refer to Kuhlmann & Hofmann (2011) and Hofmann & Kuhlmann (2011).

WP C4.4: Dissemination of results

We have published a paper on the PAS mechanism (Kuhlmann & Hofmann, 2011)
and another paper has been accepted by the Physics of Fluids (Hofmann & Kuhlmann,
2011). Another paper intended for Physical Review Letters is nearly finished. All
works are provided as attachments to this report. Further presentations are planned
for the ELGRA Meeting 2011 in Antwerp.
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