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Kurzfassung

Das Internet of Things (IoT) fithrt zu einer stiandig wachsenden Anzahl an vernetz-
ten loT-Geréten. Diese Geréte fungieren nicht nur als Sensoren oder Aktuatoren,
sondern verfiigen iiber Rechen-, Speicher- und Netzwerkressourcen, die oft nicht
weiter in Betracht gezogen werden. Da sich diese Gerdte am Rande des Netzwerks
befinden, kdnnen sie genutzt werden, um loT-Applikationen verteilt auszufiihren.
Die Kombination von IoT-Gerdten am Rande des Netzwerks und von Ressourcen
in der Cloud ermoéglichen neuartige IoT-Szenarien und Anwendungsfille wie
beispielsweise Smart Cities. Dieses neue Paradigma, das die nahtlose Verwendung
von Infrastruktur und Rechenkapazitdten am Rande des Netzwerks bis hin zur
Cloud erméglicht, wird als Fog Computing bezeichnet. Wahrend die theoretischen
Grundlagen des Fog Computings bereits gelegt wurden, fehlt es an konkreten
Ansétzen fir die effiziente Nutzung von Fog-basierten Rechenressourcen. Eine
besondere Herausforderung bei der Nutzung dieser Ressourcen in der Fog ist
die geographische Verteilung der Datenquellen und die Zuverlassigkeit sowie die
Fehlertoleranz von IoT-Gerdten. Weitere Problemstellungen ergeben sich durch
die Verzogerungsempfindlichkeit von IoT-Applikationen.

Um eine effiziente Nutzung Fog-basierter Rechenressourcen zu ermoglichen, fithrt
diese Arbeit das Prinzip sogenannter Fog-Kolonien ein. Diese Mini-Rechenzentren
bestehen aus Gerdten am Rande des Netzwerks und Ressourcen in der Cloud.
Eine Vielzahl von Fog-Kolonien bilden eine Fog-Landschaft, in der die Ausfiihrung
von loT-Applikationen ermdéglicht wird. Dafiir stellen wir eine konzeptionelle
Architektur und neuartige Ansétze fiir die Ressourcenbereitstellung und Dienst-
platzierung in der Fog vor. Wir modellieren Ressourcen und Applikationen in
der Fog und formulieren und lésen das Fog Service Placement Problem, um
IoT-Applikationen effizient in der Fog ausfiihren zu kénnen.

Diese Dissertation befasst sich mit den grundlegenden Problemen, die mit der
Einfithrung von Fog Computing einhergehen. Die entwickelte konzeptionelle
Architektur fiir Fog Computing bildet die Grundlage fir das Fog Computing
Framework FogFrame — ein System, das in der Lage ist, loT- und Cloud-Ressourcen
in einer Fog-Landschaft zu verwalten und zu iiberwachen und IoT-Applikationen
auszufiihren. FogFrame ermoglicht die Kommunikation und Interaktion von
Gerdten innerhalb der Fog sowie die dezentrale Platzierung und Ausfiihrung
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von Applikationen. Wir analysieren die Leistung verschiedener Ansétze zur
Ressourcenbereitstellung in FogFrame. Weiters demonstrieren wir die Fahigkeit
von FogFrame, Anpassungen an volatile Anderungen in der Fog durchzufiihren
inklusive Mafinahmen zum Ausgleich von Lastspitzen und zur Wiederherstellung
von Applikationen nach dem Ausfall von Ressourcen.
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Abstract

The Internet of Things (IoT) leads to an ever-growing presence of ubiquitous
networked IoT devices. The computational resources of these devices, which
can be used not only for collecting data but also for data processing, are often
neglected. Being located at the network edge, these resources can be exploited to
execute IoT applications in a distributed manner. The combination of the IoT
devices at the edge and resources in the cloud opens doors to novel IoT scenarios
and use cases, for example, smart cities. This new paradigm, which seamlessly
considers technology, infrastructure, and computations from the edge to the cloud,
is known as fog computing. While the theoretical foundations of fog computing
have been already established, there is a lack of concrete approaches to enable the
efficient exploitation of fog-based computational resources. Particular challenges
of adopting these resources in the fog are the adherence to the geography of
data sources, the reliability and fault tolerance of computational resources of IoT
devices, and the delay-sensitivity of IoT applications.

In order to enable the efficient exploitation of fog-based computational resources,
this thesis introduces fog colonies, which resemble mini data centers consisting of
devices at the edge of the network and in the cloud. A multitude of fog colonies
forms a fog landscape, where we aim to enable IoT application execution. For
that, we introduce a conceptual architecture and novel approaches for resource
provisioning and service placement in the fog. We model resources and applica-
tions in the fog and formulate and solve the Fog Service Placement Problem to
efficiently distribute IoT applications over fog resources.

This thesis addresses the fundamental and critical issues that come along with
the adoption of fog computing. The conceptual architecture for fog computing
becomes the foundation for the fog computing framework FogFrame — a system
able to manage and monitor edge and cloud resources in a fog landscape, and
to execute IoT applications. We enable communication and interaction within
the fog as well as provide application management, namely decentralized ser-
vice placement, deployment, and execution. We show, through experiments in
FogFrame, the performance of different resource provisioning approaches in a
real-world fog as well as adaptations to volatile changes in the fog, balancing the
workload, and recovering from failures.

X1
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CHAPTER

Introduction

Cloud technologies have become a major trend in the world economy. Companies
and end users nowadays have the means to lease computational assets in an
on-demand, utility-like fashion [32]. Cloud computing remains means to an end
to optimize and move towards achieving business continuity: the pandemic forced
even more aggressive adoption of cloud computing yielding awareness towards
technologies and acceleration of the public cloud infrastructure market [9]. As a
second major technology trend, the arrival of the Internet of Things (IoT) leads to
the pervasion of business and private spaces with ubiquitous computing devices,
which are available in many forms, able to act autonomously, and often enriched
with Internet connectivity [12]. These devices sense their environments, perform
computations, and enact operations by working autonomously or by cooperating
with other devices. Furthermore, IoT devices can expose their computing and
storage capabilities.

The proliferation of the cloud and IoT technologies enables small- and large-
scale smart environments and systems for various domains [146], such as smart
cities [63], healthcare [37], grids [97] and manufacturing [41]. IoT data is mostly
produced in a distributed way, sent to a centralized cloud for processing, and then
delivered to distributed stakeholders or other distributed IoT devices, often located
close to the initial data sources. This centralized processing approach is a common
business model in industry, however the number of IoT devices, the great volume
and the speed of produced data together result in high communication latency and
low data transfer rates between IoT devices as well as the IoT devices and potential
users [25, 99]. Hence from a technological point of view, the decentralized nature
of the IoT does not match the rather centralized structure of the cloud. One
more issue regarding the centralized processing is that computational resources
of IoT devices, which can be used not only for collecting data but also for data
processing, are often neglected. Typical examples of such IoT devices which
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1.

INTRODUCTION

possess computational resources and are capable to host IoT applications are
gateways, routers, or sensor nodes [45, 60, 141]. Enterprises are eager to employ
IoT devices at the network edge to bridge the gap between end users and the
cloud, providing low-latency performance independently from location, scaling
on-demand, and being consumed ‘as-a-service’ [95, 122].

In order to implement delay-sensitive smart environments, the support of de-
centralized processing of data on IoT devices in combination with the benefits
of cloud technologies and virtualization has been identified as a promising ap-
proach [25, 111]. For this, it is necessary to move computational and storage
resources needed to process IoT data closer to the data sources and service con-
sumers, i.e., end users or data sinks [45]. The underlying conceptual approach, i.e.,
the virtualization of IoT devices at the edge of the network and the subsequent
usage of those virtualized resources in combination with cloud resources in order
to execute IoT applications, is known as fog computing [25]. In other words, fog
computing contributes a missing link in the cloud-to-thing continuum [42], where
the 10T, edge and cloud, which consist of a multitude of heterogeneous networked
devices, cooperate with each other in the form of a fog landscape [12, 45].

To implement fog computing, it is necessary to introduce a framework to manage
and monitor the fog, consisting of different computational resources offered in the
cloud and IoT devices at the edge of the network [42], with the purpose to execute
distributed IoT applications efficiently. This fog computing framework has to
provide also means for efficient exploitation of such a heterogeneous and volatile
resource pool while satisfying defined Quality of Service (QoS) parameters and
Service Level Agreements (SLAs). This cooperative resource pool becomes a fog
landscape, and in order to organize it and enable cooperation within different
levels of resources in the fog, we introduce the notion of a fog colony within a fog
landscape. Fog colonies cover certain geographical locations, can be dedicated to
certain domains, act as so-called mini data centers for cooperative execution of
IoT applications, and are able to communicate with other fog colonies present in
a fog landscape.

The fog computing framework has to achieve an efficient exploitation of a fog
landscape. For that, mechanisms for resource provisioning need to be enabled.
The state-of-the-art research on resource provisioning in fog computing orig-
inates from methods and algorithms in cloud computing. However, resource
provisioning in the fog and in the cloud differ in terms of execution environment,
optimization goals, infrastructure and application constraints [19, 76, 93, 123].
In the cloud, optimization is done on the cloud infrastructure level including
physical computational machines, Virtual Machines (VMs) on physical machines,
or containers on those VMs. In the cloud-to-thing continuum, in which the fog
operates, the optimization of resources can be done on multiple levels involving
different resources of the fog, i.e., at the edge of the network and in the cloud,
and therefore there is a need of a more lightweight technology other than a VM,
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in order to be able to accommodate capacities and capabilities of devices.

1.1 Problem Statement

Fog computing has been named as an enabler to provide IoT applications in

Smart

many different scenarios, especially with regard to smart systems, for example, Enuvironments

smart cities, smart buildings, or smart factories [70, 80, 135]. By deploying
IoT applications in the fog, it is possible to filter data for stream processing
or to conduct IoT data processing on-site instead of relying on cloud-based
computational resources [25, 72]. This leads to lower latency in IoT scenarios [116].

Fog computing has been a vivid field of research in recent years, and the theoretical
principles of fog computing, as well as conceptual fog architectures, are already
well-established [19, 76, 116, 123]. However, there is a lack of frameworks that
implement fog computing in practice and answer the questions of how to setup
a real-world fog landscape, how to manage and monitor the fog infrastructure,
how to provision resources and accordingly deploy and execute IoT applications,
and how to dynamically react to changes in computational demand and in a
fog landscape itself. Therefore, in this dissertation, the research is focused on
conceptualizing, abstracting resources and functionalities of the fog as well as
on the practical realization of the fog that is able to execute real-world IoT
applications.

In the following, we frame these discussed challenges around specific research
questions.

In order to realize fog computing, we need to establish a coordinated control over
the physical and virtual IoT infrastructure both at the edge of the network and
with additional resources from the cloud. To achieve this, available resources of
IoT devices and the cloud have to be integrated into a fog landscape:

— Resources of [oT devices at the edge of the network need to be virtualized,
abstracted, and represented in the fog.
— Cloud resources need to complement the resources at the edge.

These mechanisms become essential requirements to implement fog computing.

Notably, as has already been mentioned, fog computing is based on common
principles from the field of cloud computing. One of the main principles to consider
is virtualization [39, 161]: In the cloud, a physical machine is provided in terms
of a VM and containers. Fog computing employs the idea that computational
resources from IoT devices can be offered in a similar manner. Since cloud VMs
are resource-intensive, they are not the best virtualization approach for rather
resource-constrained IoT devices [142]. ToT devices at the edge of the network
are less powerful than cloud resources. Therefore, a lightweight virtualization
technology is needed to abstract their functionalities and represent them as small

Research Focus

Virtualization
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instances which contain instructions and execute IoT applications. At the edge,
abstractions should provide different levels of functionalitites based on capabilities
and capacities of IoT devices, i.e., they need to execute loT applications as well
as to provide functionalities to manage and support the underlying networked
infrastructure, thus enabling fog computing. A promising solution for this issue
is the utilization of containers as a virtualization mechanism for resources at the
edge [25, 103, 144].

These challenges constitute our first hypothesis and Reserach Question I:

Hypothesis A fog landscape includes heterogeneous devices at the edge of
the network and in the cloud. These resources are virtualized, abstracted and
represented in the fog.

Research Question 1

How can heterogeneous IoT devices at the edge and resources in the cloud
be utilized together to enable fog computing?

After virtualizing IoT devices, the next step is to enable a coordinated control
over the physical and virtual infrastructure in the fog. Devices at the edge of
the network are dynamic, i.e., they can enter and leave a fog landscape, they
can experience outages in communication, as well as failures and overloads.
The challenge here is to create and maintain a volatile fog landscape enabling
devices and data sources potentially entering or leaving the fog at any time, and
considering that the data volume to be processed within the fog can frequently
change [124, 143]. Taking into account the potentially volatile and fluctuating
nature of the fog, not only it is needed to create and maintain a fog landscape
consisting of heterogeneous resources at the edge of the network and in the cloud,
establishing communication and interaction within the fog, but also to efficiently
provision their resources for IoT application execution: distribute, deploy, and
execute IoT applications onto those resources.

Resource provisioning in fog computing needs to be able to allocate resources in a
fog landscape taking into account the volatile fog, to provide application runtime
management, and to guarantee efficient and fault-tolerant performance. The
provisioning goals in fog computing include: optimization of resource utilization
in the fog, optimization by latency or by location, maximization of the usage
of certain resources, and minimization of the usage of other resources, e.g., of
the cloud, and minimization of the operational overhead, and saving energy [4].
Resource provisioning in fog computing has to take into account a multitude of
constraints, which are regarded in cloud computing, such as adhering to time-
sensitivity, QoS and SLAs, as well as constraints which are not regarded in cloud
computing. Constraints can be derived from capabilities and specification of IoT
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devices used at the edge of the network. Constraints can be based on types of
devices, device availability, power consumption, data transfer times, adherence to
certain covered locations, bandwidth capabilities, connection and networking [51].
A fog landscape has to adapt to volatile events in the network and to optimize
resource provisioning, migrate and deploy applications depending on the changes
in the infrastructure. All these requirements need to be implemented within
resource provisioning methods to enable distributed execution of loT applications.

These challenges become the basis for our second hypothesis and Reserach
Question II:

Hypothesis Different algorithms, either exact mathematical optimization, or
heuristics and meta-heuristics, which account for both a heterogeneous landscape
and workload of applications, can be formalized and implemented in the context
and constraints of fog computing.

Research Question II

How can the execution of IoT applications in a fog landscape be optimized
for resource efficiency and adherence to QoS and SLAs?

In order to bring together under one umbrella of fog computing our heterogeneous
and volatile resources in a fog landscape together with the efficient execution
of IoT applications, we need to introduce a fog computing framework. The
architecture of this framework has to provide technological means and advances
in the fields of IoT resource virtualization, management of heterogeneous resources,
and resource provisioning and service placement in the fog.

Within this framework, it is necessary to introduce mechanisms that provide
virtualization and abstraction of fog resources, establish communication between
them, introduce practical means to store and transfer data within the fog, and,
last but not least, enable resource provisioning and service placement for efficient
execution of IoT applications. A fog computing framework has to adapt to volatile
changes in the fog and optimize accordingly its resource provisioning: distribute
and deploy IoT applications on different resources, migrate and redeploy them
depending on the changes in the fog.

From these challenges originate our third hypothesis and Research Question III:

Hypothesis A fog landscape can effectively operate at runtime considering
the volatile and fluctuating nature of its resources and efficiently execute IoT
applications.

Fog Computing
Framework
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Research Question III

How to achieve a highly available, consistent, and fault-tolerant real-world
fog landscape?

1.2 Scientific Contributions

Based on the research questions discussed in Section 1.1, the following scientific
contributions are achieved in this thesis:

Contribution I

Fog landscape: a conceptual architecture, artifacts and functionalities that
enable resource-efficient fog computing.

In this dissertation, the decentralized processing in different environments is
investigated, i.e., how to create a fog landscape that comprises of IoT resources
at the edge of the network and of cloud resources. As a result, a conceptual
architecture for fog computing is created. The main goal of this architecture is to
abstract and enable resources of fog computing as well as to provide functionalities
to efficiently exploit ubiquitous networked computing IoT devices that are close
to the edge of the network and complement them with the resources in the cloud
with the purpose to execute arbitrary IoT applications.

In order to efficiently exploit the fog, within this contribution, we enable resource
provisioning in a fog landscape. Fog resources are heterogeneous, which means
certain resources have more capabilities and computational capacities than other
resources. Those more powerful resources need to manage and coordinate the less
powerful resources in order to establish and maintain the fog. One of their main
functionalities is the ability to perform allocation of other available resources in
the fog according to needed demands in workload.

Contribution IT

QoS-aware resource provisioning and service placement in the fog.

Resource provisioning and service placement in a fog landscape has to be efficient
and account for different optimization goals and constraints distinctive and
original to fog computing. Within this contribution, we introduce the resource
model of a fog landscape and an IoT application model. Based on these two
models we formulate the Fog Service Placement Problem (FSPP) and design and
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develop several approaches to solve it, i.e., a greedy first-fit algorithm, a Genetic
Algorithm (GA) algorithm, and exact optimization. Within the evaluation of the
FSPP we observe how the workload of submitted for execution IoT applications
is distributed between different resources in the fog.

Our work on resource provisioning approaches starts with simulations of different
arbitrary fog landscapes in order to test the performance of those approaches.
The implementation of those fog landscape simulations within different environ-
ments become an enablement layer for experiments, and thus are also part of
this contribution. Working with simulated environments allows implementing
algorithms faster and more dynamically perform experiments with the purpose
to realize those approaches later when a real-world fog landscape is implemented.

Contribution III

IoT application execution with the fog computing framework FogFrame.

Taking into account the potentially volatile nature of a fog landscape, the fog
computing framework FogFrame:

— Creates and maintains a fog landscape made up from computational re-
sources at the network edge and in the cloud,

— Establishes communication and interaction in a fog landscape,

— Efficiently deploys and executes IoT applications by distributing the single
services of IoT applications on the available fog resources.

The framework is built to provide coordinated control over the physical and virtual
infrastructure of a fog landscape. Resource provisioning and service placement
are the main functionalities in this framework. The framework is intended to
be used by research communities to provide a testbed for experimentation with
resource provisioning. The framework enables volatile IoT devices at the network
edge to interact within the fog, taking into account devices that potentially enter
or leave a fog landscape at any time. Within this contribution, we introduce
different runtime events in the fog and the corresponding means to react to them
within FogFrame enabling reentrance of services, focusing on the volatility in a
fog landscape. We introduce different reactive and proactive methods to tackle
the events of entering devices into a fog landscape, IoT device failures and losses
of communication. When new devices appear in the fog, we implement proactive
migration of parts of applications on the new devices from overloaded devices.
Other events like failures and overloads trigger reactive response by the framework
that aims to reenable all affected applications on other available fog resources,
thus enabling reentrancy.

The implementation of FogFrame starts with the technical configuration of
physical and virtual resources and establishing communication between those
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resources. After a fog landscape is configured, IoT applications can be submitted
for execution. In order to efficiently utilize available resources of a fog landscape
and achieve optimal performance, in FogFrame several control mechanisms are
developed to:

— Analyze resource utilization within the fog,

— Perform resource provisioning according to specified goals and analyzed
constraints,

— Allocate resources for IoT applications,

— Perform infrastructural changes and monitoring in the fog landscape, thus
tackling the problem of fog volatility.

The identified abstractions of resources and functionalities in a fog landscape
provide the necessary and sufficient level of democratization for fog computing,
i.e., providing usability, modularization, and interoperability within the fog.

1.3 Methodology

This dissertation provides conceptual foundations and requirements towards
creating a fog landscape that efficiently executes IoT applications. A more
specific focus is on the formalization of resource provisioning and service placement
approaches, their implementation and evaluation within the fog.

This thesis follows the design science research framework [150] in implementing
artifacts and advancing knowledge to answer the research questions presented in
Section 1.1. The design science research framework describes the means to solve
problems in Information Systems research, and provides a holistic understanding
on why the implemented artifacts and acquired knowledge improve and contribute
to the chosen problem. Examples of such artifacts are theories or systems,
their components, approaches, algorithms or models [113]. In this dissertation,
we investigate means-ends relationships to realize resource provisioning in fog
computing. The overall research effort in this work follows general principles
of the rationalist and technocratic paradigms of Computer Science [52]. These
principles comprise from a wide spectrum of experimental and manipulative
methods to evaluate research activities: the identification of functional and
technical requirements of artifacts, conceptual architectures, the implementation,
evaluation, and analysis of software artifacts following a prototyping approach.

First, we define a problem space of efficient resource provisioning in the fog,
its needed artifacts, tasks, involved technologies and existing methods [98, 113].
After that, in order to identify the challenges, we aggregate existing knowledge in
fog computing, cloud computing, distributed architectures, resource provisioning
and service placement, and correlate this state of the art to the existing problems
in the adjacent areas of the IoT [21, 110].
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Next, we formulate the research questions together with qualitative and quantita-
tive objectives of the desired solutions and corresponding acceptance criteria [16].
At the very beginning of this work in 2016, the non-existence of standards and
practical experiences in fog computing required to shape new approaches, which
extend principles of cloud computing and the IoT. For that, it was needed to
identify trends and to synthesize dependencies between fog computing, cloud
computing and the IoT.

The next step is to specify conceptual architectures, artifacts and their intended
functionalities, workflows, formal methods, and consider best practices [165].
Software artifacts need to address shortcomings of existing approaches in cloud
frameworks, to meet IoT demands and implement fog computing.

In order to specify requirements for artifacts, we need to consider existing surveys,
creative methods, and experiments [85]. At the beginning of the work on this
thesis, fog computing has been at its origins. Only few related works have been
available to identify opportunities to advance in this domain. Regarding resource
provisioning, we model the fog, determining a class of related problems and
applicable optimization methods.

We investigate empirically with simulations and experiments the value of created
solutions and methods, where original objectives are compared to the received
results [110, 113]. Different performance indicators are defined in advance and
calculated during experiments. Improvement possibilities and limitations are
identified as an option for future research.

We evaluate prototypes and resource provisioning methods functionally and
regarding their performance. Among quantitative metrics of performance, we
consider the communication delay, makespan duration of services, execution
time of IoT applications, QoS violations of user-defined deadlines for application
execution, and utilization of fog resources. The evaluation involves performing
experiments with different configurations of the fog and by applying different
workload with IoT applications.

Successful research outcomes become contributions, which enable real-world
solutions as well as advance the already established knowledge with new original
inputs. Here, the key is to perform rapid prototyping and at the same time to
work on generalization of inputs as holistic models and principles, and to place
them in the context of the declared global research goals [16]. This dissertation
encompasses multiple artifacts, models, and algorithms that contribute to the
research goal of realizing resource provisioning in fog computing.

Research
Objectives

Artifacts

Methods

Experimentation

Qualitative
FEvaluation

Research
Contributions
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1.4 Dissertation in Brief

The synopsis of the thesis is shown in Fig. 1.1. It highlights interrelations
between different sections by categorizing them with informative icons. The
dissertation starts with introducing foundations in fog computing in Chapter 2.
This chapter ends with the specification of the requirements towards achieving
the research goal of resource provisioning in fog computing. The main part of the
dissertation consists of the three chapters corresponding to each of the declared
contributions from Section 1.2. In Chapter 3, resource provisioning in the fog is
investigated. First, the fog landscape components are abstracted and described,
their main functionalities and interactions within the fog are introduced. Resource
provisioning in fog computing is discussed, and a first resource provisioning model
in a fog landscape is created. A heuristic first-fit placement algorithm to place
workload on the available resources at the network edge according to this model is
implemented and evaluated. Next, in Chapter 4, the FSPP is formalized. To solve
this problem, a GA, a first-fit algorithm, and an exact mathematical resolution
of the model are implemented and evaluated. The described architecture of
the fog and requirements to realize resource provisioning in fog computing are
implemented within the fog computing framework FogFrame in Chapter 5. The
framework and the performance of the resource provisioning approaches are
evaluated by the means of a real-world testbed for fog computing. In Chapter 6,
the state-of-the-art research is discussed and compared to the contributions
of this dissertation. The overview of the related work is devoted to the two
main research directions: resource provisioning in the fog and fog computing
frameworks. Finally, in Chapter 7, the contributions of this dissertation are
summarized as well as future research advances are proposed.
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CHAPTER

Background: Computation at
the Edge

Fog computing mirrors the structure of the IoT, where a multitude of heteroge-
neous connected devices cooperate. The centralized processing of high-volume,
high-velocity and high-variety of IoT data in the cloud incurs high delays and
accordingly low speed of data processing, which are unfavorable for IoT ap-
plications and services [95]. Fog computing promises to solve this problem by
utilizing available computational, storage, and networking resources for the en-
actment of IoT services close to the edge of the network in combination with
cloud resources [122]. Therefore, while mirroring the IoT, fog computing also
aims to provide the benefits of cloud computing, i.e., virtualization, orchestration,
manageability, and efficiency.

Fog computing employs the idea that computational resources from IoT devices
can be offered in a similar manner as resources in the cloud. For rather resource-
constrained IoT devices at the edge of the network, a promising solution for this
issue is to utilize containers as a virtualization mechanism [21, 103]. However,
the deployment and execution mechanisms at the edge of the network and in
the cloud are different [117]. This chapter aims to provide a foundation and
understanding of the basic concepts and features of the IoT, edge computing and
cloud computing. These foundations and elemental mechanisms become a basis
for the definition of principles of fog computing.

In the fog computing community, great attention is devoted to existing standards
and Reference Architectures (RAs) to reuse the already obtained experience.
Hence, the RAs for fog computing are also in focus of this chapter. We investigate
how the ETSI MEC framework [54, 55, 56, 57], the OpenFog RA [42, 82], and

13
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the FORA RA [115] provide communication and control mechanisms necessary
in the fog.

Service deployment and execution mechanisms at the edge of the network and in
the cloud are different, since the hardware used in these environments differs [117].
Therefore, we provide an overview of existing virtualization technologies and
discuss suitable technologies for the fog computing environment.

In order to enable efficient resource provisioning in a fog landscape, networking
issues, i.e., considering throughput, bandwidth and latency, as well as networking
topologies and different types of hardware need to be taken into account [88, 124].
In this chapter, we overview the processes and methods to enable resource
provisioning. This is achieved through environment modeling and finding feasible
solutions through either optimization approaches or heuristic algorithms and
meta-heuristics.

The final part of this chapter is devoted to summarizing requirements needed to
realize resource provisioning in fog computing based on the foundations from the
fields of the IoT, cloud and edge computing. We will use those requirements to
provide necessary context and argumentatively discuss the contributions in the
remaining chapters of this dissertation.

2.1 Internet of Things

The IoT is a disruptive paradigm that has been developed for more than 20
years [146]. It leads to an ever-growing presence of ubiquitous networked com-
puting devices in public, business, and private spaces, which are able to act
autonomously and provide network connectivity [28]. Significant research in the
IoT has been devoted to the system aspects of the 10T, i.e., networking, middle-
ware, programming models, and cloud aspects [64]. IoT devices do not simply act
as sensors, but feature computational, storage, and networking resources, which
they can expose for free or under incentives. The main features of the IoT are
the distribution of devices over large geographical areas, heterogeneity and the
size of devices, their redundancy to accommodate uninterrupted measurements
or failures. The mentioned communication-related features together with the IoT
application-related features form a backbone of all the challenges to be solved
when applying the IoT in practice, i.e., the latency-sensitivity of IoT applica-
tions [18, 27]. The IoT aims to provide communication, interaction, data transfer,
and control between IoT devices at the edge of the network, e.g., sensors, actua-
tors, mobile devices. It has been projected that at the end of 2022 the number
of connected IoT devices reached 16.4 billion!, and more than 30 billion devices
will be installed and connected to the Internet until 2025. New technologies, e.g.,

!Online; Accessed: Apr. 2023 https://www.statista.com/statistics/1101442/
iot-number-of-connected-devices-worldwide/
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the roll-out of 5G, provide new networking environments, which accelerate even
more the proliferation of the IoT. One particular area of the IoT that aims to
enable industrial applications for collecting sensor data, actuating and monitor
devices is the Industrial Internet of Things (IToT). The difference between IoT
and IIoT is in the requirements towards real-time processing, resource capabilities,
connectivity [170]. And the aim of the IoT and IIoT is to accommodate those new
technologies, to provide networks for the multitude of devices for sharing data
with other devices or systems to provide sensing of environmental data in smart
cities [63], monitoring of health conditions of people in healthcare [37], monitoring
of production processes in industry and manufacturing [41], and various other
small- and large-scale applications.

The IoT highly depends on the underlying technologies available at the edge of
the network. The development of these technologies dictate the challenges of the
IoT data processing. Major challenges are [28, 61, 154]:

— Adhering to the size of devices and their capabilities,
Enabling a high level of security,

Achieving fault tolerance,

Need of low latency and available bandwidth,

— Interoperability.

Other challenges include the ease of loT application deployment, real-time process-
ing, and mobility. Latency-sensitivity can be named as one of biggest challenges.
The data transmission time between sensors and data sinks needs to be efficiently
minimized. This can be achieved either by minimizing the distance between
sensors and data sinks or by increasing the speed of data transmission.

IoT data is sourced in a distributed way, i.e., the sensors deployed in the IoT
generate a large volume of data with great velocity and veracity. This data is
then sent to a centralized cloud for processing, and delivered to the distributed
stakeholders or other distributed IoT devices, often located close to the initial
data sources. This centralized processing approach results in high link delays
and low data transfer rates between IoT devices as well as IoT devices and
potential stakeholders [26]. Therefore, Big Data processing becomes an important
challenge of IoT systems and requires specialized techniques in transferring data
from data sinks to the cloud, in enabling high-performance processing and in
efficient storage [125].

Pre-processing of data generated by IoT devices close to data sources becomes
a crucial issue in IoT scenarios, as well as the integration of data analytics
solutions to enable real-time analysis of received data [125]. Edge computing
provides computational capabilities locally in the network and, therefore, reduces
considerable computational stress on the centralized cloud [76]. The data transfer
between IoT devices and data sinks becomes reduced due to edge computing,
where data sinks become part of the network. The data is either processed at

Challenges

IoT and Cloud
Computing

IoT and Edge
Computing
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the edge or pre-processed at the edge and then off-loaded to the cloud or to
remote data sinks. In both cases, the latency is considerably decreased with edge
computing.

2.2 Fog Computing

While edge computing provides needed localization and narrows the scope and time
of processing enabling low latency and context awareness, the cloud provides global
centralization, where data processing widens in scope, coverage, and time [25]
(see Figure 2.1). Many applications require both localization and globalization,
particularly for Big Data analytics. In order to implement delay-sensitive smart
environments, the support of decentralized processing of data on IoT devices in
combination with the benefits of cloud technologies and virtualization has been
identified as a promising approach [21, 25, 111].

Fog computing has been in research for ten years, when Bonomi et al. [26] in
2012 published their seminal conceptual work on this topic, coined the term fog
computing, and introduced a layered model bridging the IoT and the cloud. The
authors discussed that IoT applications are naturally distributed and may be
placed in the cloud and at the edge of the network. Ubiquitous IoT devices
generate data at an exponential rate. This imposes new requirements towards
computations, performance, and network congestion at the edge of the network,
parallel computing enablement together with the problem of low capacities of
computing resources at the edge [97]. Therefore, in Big Data, wide geographical
distribution becomes one of key characteristics that promotes moving of data
processing closer to the data [89]. Figure 2.1 shows such a new hierarchical
organization of data processing based on different levels in the network and
different capabilities of computing devices.

This combination of the edge- and cloud-based computational resources that
cooperatively enable decentralization and execute IoT applications is also known
as fog computing. Together, these resources form a fog computing environment,
or a so-called fog landscape (see Figure 2.2).

Fog computing mirrors the basic structure of the IoT, where a multitude of het-
erogeneous, networked devices cooperate [12, 45]. Single IoT devices coordinating
a group of other IoT devices and providing virtualized resources, are located close
to the network edge. These devices allow executing IoT services close to the data
sources and sinks, instead of involving the cloud. This leads to decreased delays,
as well as to the better utilization of already available computational, storage,
and networking resources in the fog [143]. Potential use cases for fog computing
include typical IoT scenarios, e.g., data pre-filtering in Big Data use cases [40, 89]
or pre-processing of data streams from sensor nodes [74]. While mirroring the
IoT, fog computing also aims to provide all the benefits of cloud computing, i.e.,
containerization, virtualization, orchestration, manageability, and efficiency. The
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difference between edge and fog computing is that the fog is hierarchical, includes
the interactions with the cloud, and tackles the issues with networking, resources
and control, while the edge is limited and excludes the cloud [42].

Fog computing is based on common principles from the field of cloud computing,
most importantly virtualization [39, 161]. In the cloud, physical machines are
provided in terms of VMs. Fog computing employs the idea that computational
resources from edge devices can be offered in a similar manner. However, since
VMs are resource-intensive, they are not the best virtualization approach for
rather resource-constrained edge devices [142]. A promising solution for this issue
is the utilization of containers, for example, Docker containers, as a virtualization
mechanism for edge resources [25, 103, 158]. Accordingly, in order to provide a
practical framework for fog computing, it is necessary to introduce mechanisms
both to manage a fog landscape and to execute distributed IoT applications in the
fog using virtualized resources. This requires mechanisms for resource allocation,
decentralized service placement, deployment, and execution in a fog landscape.

In 2017, the notions of fog computing were brought together into the OpenFog RA,
which later evolved into the IEEE Standard for Adoption of OpenFog Reference
Architecture (IEEE 1934-2018) [82]. The definition of fog computing per IEEE
1934-2018 [82] is as follows:

“Fog computing is a horizontal, system-level architecture that dis-
tributes computing, storage, control and networking functions closer
to the users along a cloud-to-thing continuum.”

In this thesis, we adopt this definition.

Before diving into fog computing implementation, it is necessary to understand
fundamental requirements towards a fog landscape and its operation. In the work
of Byers [33], a description of conceptual imperatives for fog computing is provided.
Al-Qamash et al. [8] provide a comparison of non-functional requirements between
cloud computing and fog computing paradigms. These requirements also are
the basis of the fog computing pillars as described in IEEE 1934-2018 [82] and
aim to provide a road-map to design and implement a fog landscape. In the
following paragraphs, the requirements are grouped according to their purpose
and reflection in the implementation of a fog landscape.

Communication The first conceptual imperative to be considered when building
a fog landscape is communication. This principle requires to address delay-
sensitivity and bandwidth problems in a fog landscape. IoT applications are
delay-sensitive. Therefore, in order to make fog computing feasible for the IoT, it
is necessary to provide communication delays between devices in a fog landscape
measurable in tens of milliseconds. With regard to the bandwidth, data transfer
to the cloud from devices at the edge of the network becomes insufficient for IoT

Principles

OpenFog

Requirements
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Figure 2.1: Application scope in fog computing. Adapted from [25].

applications. Therefore, a fog landscape aims to reduce stress on data transfer
by providing computing power to process data explicitly near data sources and
sinks.

Geography Another imperative is geography. This principle requires a fog
landscape to control the information flow based on physical and logical boundaries,
and tells that there is no valid reason to send data beyond those boundaries.
In other words, data has more value close to its source rather than at a larger
vicinity. Boundaries to process data in the fog landscape have to be clearly
defined based on the location of devices at the network edge.

Quality The third conceptual imperative is quality and includes reliability and
stability principles. These principles require to maintain uninterrupted operation
in a fog landscape. This necessitates adaptive approaches to migrate applications
in response to runtime events in the fog landscape by applying fault tolerance
and redundancy scenarios at different levels of the fog landscape. Redundancy
in the fog ensures the integrity of deployments of large applications providing
reliability at scale.

Performance The next group of principles belongs to the performance conceptual
imperative, which includes agility and scalability in a fog landscape. Agility
requires fast reaction on runtime events and on changes in the fog landscape.
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Figure 2.2: An overview of fog computing.

Scalability is considered from multiple points of view, e.g., of physical devices
and software. The fog landscape is expected to grow continuously, and therefore
its architectural design has to be adaptive to such growth.

Virtualization One more imperative is virtualization. It requires a fog landscape
to have a pool of resources represented as virtual resources. These resources have
to be orchestrated according to workload demands and currently available devices
in a volatile and fluctuating fog landscape.

Hierarchy The hierarchy imperative considers the hierarchical topology of a fog
landscape and the modularity of its resources. Within its architecture, the fog
landscape has to consider interoperability and mobility of its resources, easily
adding new resources according to workload demands. The hierarchy in fog
computing supports autonomy of fog devices, and different fog devices at different
levels of the fog hierarchy can perform different decision making activities. This
brings the intelligence from the cloud closer to the network edge and to IoT
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devices. This intelligence can facilitate device discovery in the fog on different
fog levels, provide means for orchestration of services and resource provisioning,
and enable local decision making thus ensuring reliability and eliminating the
cloud as a single point of failure.

Openness The last group of principles to be considered is openness. Openness
is important to enable fog computing for IoT applications. Reducing risks of
vendor lock-in and standardization has to be of ultimate importance to the fog
computing community. Fog computing should support portability of applications,
modularity and dynamism of deployments. This can be achieved by development
of testbeds, creating unified standards and providing open source solutions. Open
source solutions and networks have to lay a pathway towards industry-wide
adoption of fog computing.

Security A separate imperative is security. It requires establishing access control
and ensuring integrity of every device in a fog landscape, accounting for data
privacy, enabling threat and data breaches detection. Fog computing introduces
complex networking topologies of different resources. Therefore, a chain of security
and trust needs to be enabled from one fog layer to another, and all the way to
the cloud. Since the nature of the fog is volatile, meaning devices may appear and
disappear in the fog landscape, the hardware and software of the devices must be
verified to enable full trustworthiness. If such a verification is impossible, devices
cannot become members of the fog landscape. The security group of principles is
out of the scope in this dissertation and is addressed only partly by establishing
a secure connectivity between devices in a fog landscape in FogFrame.

While the basic idea and theoretical foundations of fog computing are already well-
established, there is still a lack of concrete solutions to implement fog computing
in practice. Apart from the question of how to abstract and virtualize resources
offered by IoT devices, another major barrier for the uptake of fog computing is the
question how to distribute IoT applications onto available fog resources accounting
for the discussed imperatives and constraints. Particular challenges of adopting
fog computing are the adherence to geographical distribution of IoT data sources,
delay-sensitivity of IoT applications, and the potentially very large volumes
of data emitted by IoT devices. The fog landscape needs to be adaptive and
scalable, and to account for the geographical distribution of its computational
resources. The fog landscape has to provide an operating environment for
the execution of IoT applications. Therefore, resource provisioning approaches
need to account for those aspects to achieve an efficient fog landscape. Having
built such an architecture, the focus in the work has to be on the development
and experimentation with different resource provisioning approaches. Resource
provisioning and service placement are major research challenges in the field of
cloud computing [35, 94, 166]. While these approaches offer interesting insights,
there are certain differences between the edge and the cloud. These differences
prevent a direct adaptation of cloud resource provisioning solutions.
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First, the size and type of cloud resources is very different from their counterparts
in fog computing. While cloud resources are usually handled on the level of
physical machines, VMs, or containers, fog resources are usually not as powerful
and extensive. Second, a fog landscape may be distributed in a rather large area
and heterogeneous network topology, while cloud resources are usually placed
in centralized data centers, making it more important to take into account data
transfer times when developing solutions for resource provisioning in the fog.
This is especially important since one particular reason to use fog computing
in IoT scenarios is the higher delay-sensitivity of computations at the edge of
the network [21]. Hence, resource provisioning approaches for the fog need to
make sure that this benefit is not foiled by extensive data transfer times and cost.
Having in mind that storage, computational resources, and network demands
are volatile, resource provisioning for fog computing needs to account for peak
resource demands and utilization gaps. The basis for such a smart resource
provisioning that eliminates over-provisioning lays in the characteristic of the
elasticity of the cloud, i.e., minimizing cost, latency and delays, while maximizing
QoS. A lot of work on the elasticity in the cloud has been introduced [75], however,
elasticity in fog computing environments remains a challenging topic in research.

Resource provisioning is also an important topic in Mobile Cloud Computing
(MCC) [59], which integrates mobile devices and cloud resources, and offers
solutions for offloading tasks from mobile devices to the cloud [50]. However, MCC
is mostly based on a rather simple network topology with direct communication
between mobile devices and the cloud. Neither grouping and cooperation of
devices, nor the different layers observed in fog computing are taken into account
in MCC. Therefore, again, these resource provisioning approaches in MCC offer
interesting insights and ideas, however cannot be directly ported to the field of
fog computing.

Having discussed general fog computing principles and challenges in resource
provisioning, it is necessary to focus on service delivery models for fog computing.

VISP The first model to be discussed is stream processing. It requires the
creation of a processing topology that includes IoT data sources and operators.
In an IoT ecosystem for stream processing called VISP [74], complex network
topologies are analyzed, and services are placed on resources according to QoS
constraints. VISP is an interesting example of a real-world testbed which can be
used and adapted to the needs of fog computing.

DDF The Distributed Data Flow (DDF) programming model [64] is a basic
application model which resembles the stream processing approach, and provides
means to create and execute IoT applications. An application according to the
DDF model is a directed acyclic graph where vertices represent the single steps of
applications to be executed in the flow, i.e., corresponding to services, and edges
between vertices represent data transmissions and control flows between those
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services [91]. A more structured IoT information model [46] can be used to enrich
DDF, e.g., for service association discovery and monitoring, for reasoning upon
semantic annotations, and for decision-making processes. It is based on semantic
annotations and divided into an entity model, which aims to establish basic
physical entities and relationships in the IoT infrastructure, and a resource model,
which represents software artifacts corresponding to those physical entities.

NVF A different service delivery model is provided by the Network Function
Virtualization (VNF'), where physical network infrastructure is decoupled from
its functions, and where services are split into Virtualized Network Functions
(VNFs) [67]. This approach influences both the conceptual architecture of the
fog computing environment and the modeling of IoT applications. VNFs can be
considered as containers with software corresponding to resources on different
levels in the fog. The eventual integration of the fog with NFV is assured by the
need for flexibility and scalability providing fog-enabled NVF [119].

Edgeflow A more recent approach towards providing a methodology to develop
and deploy IoT applications is presented in the framework EdgeFlow [13]. It is
aimed to assist developers to divide IoT application functionalities into multiple
parts following Flow-based Programming (FBP), i.e., single services, and to assign
to those services needed QoS and resource-consumption parameters.

Delivery models are crucial to enable IoT application distribution in a fog land-
scape. They aim to provide the methodology and assist in splitting an IoT
application into single cooperative services, which wrap sensing and processing
functionalities, and can be independently placed and executed in the fog. Deliv-
ery models provide specifications of workloads for resource provisioning. In this
dissertation, we follow the DDF model [64].

Cloud Workflows Recent cloud workflow modeling approaches can also be
applicable to fog computing. In the survey of Menaka and Kumar [102] an
overview of different levels of workflows is considered when distributing an
application in the cloud. Similarly, such levels can be introduced when considering
the fog and IoT applications.

2.3 Reference Architectures

In this section, we provide an overview of how the ETSI Mobile Edge Computing
(MEC) framework, the OpenFog RA, and the Fog Computing for Robotics and
Industrial Automation (FORA) RA consider the communication and control
mechanisms in a fog landscape.

2.3.1 Mobile Edge Computing Framework

The MEC [56] set of standards provides necessary definitions, principles, functional
and technical requirements, a RA, and an application lifecycle in MEC. It is
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necessary to take into account these standards when talking about fog computing,
as these documents provide an established groundwork and document all necessary
interactions of MEC. In the following, we reflect on how the principles identified in
MEC can be applied to communication and control mechanisms in fog computing.

For communication mechanisms, ETSI MEC [55] provides the mobile edge host
level management, which aims to handle the management of mobile edge-specific
functionality. The reference points to describe this functionality include platform
configuration, management of virtualization infrastructure, request handling, and
relocation management of applications. These points are mentioned in the MEC
technical requirements specification standard [54]. In general, MEC deals with
the specification of requirements for the application lifecycle management, i.e.,
the lifecycle of applications running inside MEC, rather than on the details of
how to establish communication within the infrastructure of MEC.

2.3.2 OpenFog Reference Architecture

The OpenFog RA [42] for fog computing has been introduced in 2016 and is aimed
to close the gap in the cloud-to-thing continuum, which is not considered by
MEC, i.e., the gap between the cloud and IoT devices at the edge of the network.
The OpenFog RA uses the benefits of cloud computing and provides a certain
level of independence and reliability at the edge of the network. Fog computing
is considered as an umbrella paradigm, which includes cloud computing, edge
computing or MEC, and the IoT. The RA explicitly is focused on an execution
environment for fog computing. The hierarchy pillar of the OpenFog RA considers
different IoT end devices to be present in a fog landscape, and provides monitoring
and operational support in the fog. A hierarchy in computational resources and
systems is not necessary in the OpenFog RA’s vision of fog computing. However,
exactly because of the logical hierarchy that can be established by IoT devices,
cloud computing can be amplified and eventually substituted by a fog computing
architecture.

The OpenFog RA (see Figure 2.3) represents various requirements and components
that on different levels contribute to the fog. It consists of four main enablers:

— Fog landscape hardware marked in red in Figure 2.3,
Fog node management marked in blue,

Application management in gray,

— Application services in white.

Requirements towards the fog hardware infrastructure include environmental
issues, hazardous safety, and modularity to enable configurable hardware capa-
bilities, which is not in the focus of this dissertation. Fog node management
enables general functionalities, configurations, and management of a node and
its communications with other nodes. It forms the software backplane that is
required to enable virtualization and execution of any application on the node,
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and provides node-to-node communication. Application management includes
resource provisioning and management of the application lifecycle, i.e., resource
allocation, source image management, deployment, execution, and verification.
Last but not least, application services are containerized instances, i.e., single
services of IoT applications that are executed within the fog. Supporting such
services means providing ordinary duties during service execution, such as their
registration and cleanup, data transfer, and logging.

The breakthrough of this architecture was its adoption by the IEEE Standards
Association which resulted in the IEEE 1934-2018 Standard for Adoption of
OpenFog Reference Architecture for Fog Computing [82]. This document es-
tablishes the OpenFog RA as an industrial standard. This standard establishes
a necessary basis and a blueprint for fog computing, specifically for industries
enabling the implementation of fog computing applications and infrastructures.
This standard provides acceleration, innovation, and market growth in the IoT
and cloud computing under the umbrella of fog computing. It clearly defines
terminology developed in the OpenFog communities, and the relationships be-
tween the entities of fog computing with regard to the IoT applications along the
things-to-cloud continuum. This document also introduces a high-level taxonomy
of these concepts and constructs. This standard enables the fog computing
community both in industry and academia to follow the same terminology and
principles and to eliminate subjective interpretation of any of the fog computing
terms or concepts.

Compared to the MEC framework, which is focused mainly on application lifecycle
management, the IEEE 1934-2008 standard as well as the OpenFog RA consider
the management lifecycle of each device in the fog landscape. The management
lifecycle of a device according to the RA consists of four phases:

— The pre-life phase when the device is being instantiated, i.e., basic settings
are adjusted, identification is set up, security certificates are generated,
and adherence to the specified Application Programming Interface (API)
is checked;

— The early-life phase when the device is added to the fog landscape;

— The functional-life phase when the device is used to execute applications;

— The end-of-life phase when the device is decommissioned, i.e., cleaned of
all application deployments.

In this dissertation, we follow the OpenFog RA in terms of its concept of a
cloud-to-thing continuum. First, the focus is on the pre-life and early-life phases
of device management in the fog. Next, the functional-life phase is considered and
application management mechanisms are described and implemented. One more
point which goes beyond the OpenFog RA is that we discuss latency sensitivity
and location awareness. However, within the OpenFog RA this is considered on
the design level within the hierarchy pillow, and in this thesis we focus on the
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Figure 2.3: OpenFog reference architecture. Adapted from [42].

resource models and optimization, dynamically tackling latency and delays with
resource provisioning.

2.3.3 FORA Fog Computing Platform
FORA provides a RA for fog computing targeting the IToT. It has been specified

Reference

within the Horizon 2020 research and innovation programme FORA — Fog Com- Architecture

puting for Robotics and Industrial Automation [115]. The FORA fog computing
platform is built upon the principles of deterministic virtualization and execution,
deterministic networking and communication, interoperability, security and fault
tolerance. It adheres to open standards such as Time-Sensitive Networking (TSN)
and the Open Platform Communications Unified Architecture (OPC UA).

The FORA RA covers multiple perspectives: devices in the fog landscape, or
so-called fog nodes, resource management and orchestration, and services. FORA
considers different classes of fog nodes which operate on different levels and
have different functionalities and resources. Fog nodes of Class-1 are located in
close proximity to sensors, control real-time tasks, and operate with Machine-
to-Machine (M2M) protocols, e.g., MQTT, Constrained Application Protocol
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(CoAP), or Open Mobile Alliance (OMA). Class-2 fog nodes perform non-critical
real-time data collection and analysis. Class-2 nodes’ runtime is on a factory shop
floor level. They possess more computational power than the resource-constrained
Class-1 nodes. Fog nodes of Class-3 aim at the most resource-intensive tasks
such as data analytics, long-term data preservation, and communication with
cloud resources. They have considerable computational power and require high
network throughput. Each of the classes work with the hypervisor technology
and operate with VMs.

FORA provides a runtime environment to orchestrate applications, allocate
resources on-demand, taking into account network balancing and self-management.
The main goal of the FORA fog computing platform is to ensure the balanced usage
of fog resources. Therefore, applications to be executed within this platform are
analyzed based on their requirements, and distributed between the network edge
and the cloud. Monitoring of the fog nodes on all levels recognizes the volatility
of the fog computing environment, and provides fault tolerance mechanisms and
describes augmentation of fog resources with other technologies.

FORA enables platform services for resource monitoring, safety and security
monitoring, and edge analytics in the fog computing platform. Individual fog
nodes and the network need to be monitored providing insights into usage of all the
resources. New challenges come together with the fog computing paradigm, where
computational resources and networking are not isolated any longer thus making
the infrastructure vulnerable to attacks. Another type of services addressed here
are edge analytics services. As the IloT generates high volumes of data and due
to the bandwidth constraints, processing and industrial automation in the cloud
for Industry 4.0 may become difficult for the existing solutions from, e.g., Google
or Microsoft. The RA divides the data processing between fog nodes, and aims
to move from hierarchical architecture towards completely distributed processing,
for example, for predictive maintenance use cases.

2.4 Virtualization Technologies

A prerequisite of the elasticity of distributed environments, e.g., cloud computing,
is virtualization [32, 157]. Service deployment and execution mechanisms at
the edge of the network and in the cloud are different, since the hardware used
in these environments differs. Therefore, this section provides an overview of
existing virtualization technologies. Benefits and drawbacks of the technologies are
considered and compared in order to justify using lightweight container technology
in a fog computing environment. In order to implement a fog landscape and to
enable an easy deployment of services, a lightweight virtualization technology is
necessary [144]. Virtualization in the cloud can be used within a fog landscape
when resources at the edge of the network are exhausted. For a fog landscape
itself, using cloud VMs becomes unacceptable due to high start-up times of VMs
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and their resource consumption. Therefore, a lightweight virtualization concept
needs to be applied, i.e., containers or unikernels [103].

Unikernels One option for virtualization, which recently has gained more atten-
tion, are unikernels [73, 103]. Unikernels are independent specialized cores of an
operating system and they represent a solution that aims to minimize complexity
of virtual resources [73]. However, each unikernel is compiled manually for a
single process and requires very specific expertise [65]. Unless usability tools
are developed to popularize this concept and reduce engineering efforts when
using unikernels, it stays practically impossible to justify using unikernels in
large-scale scenarios such as fog computing. Kuenzer et al. [92] introduce an
operating system called Unikraft that aims to reduce engineering of unikernels.
Unikraft provides modular abstractions together with a convenient API to ease
any needed customizations of unikernels. Considering the architecture of Unikraft
as described in [92], it splits the classical operating system functionalities into
micro components that can operate only within certain API calls.

Docker A promising solution to tackle the issue of usability of unikernels is the
utilization of lightweight containers, e.g., Docker containers, as a virtualization
mechanism for resources at the network edge [25, 103]. Compared to unikernels,
containers operate by the means of a convenient API, which allows using this
technology in any domain. Multitude solutions proposed in the state of the art

are based on the Kubernetes system for containerized applications [124, 114, 152].

In such a system, a centralized Kubernetes? server performs the management,
scaling, orchestration of containers and storing of resources. However, such a
system is heavyweight and requires high maintenance efforts for the deployment
in a resource-constrained fog landscape. The particular challenge is to address
various environments of a fog landscape. It is necessary to introduce a fog
computing framework that provides a decentralized solution, unlike the centralized
Kubernetes cluster, and enables communication and interaction between different

virtualized resources, as well as ensures service execution in those environments.

Some approaches have been introduced to enable federated Kubernetes scheduling
for the IIoT, which is a multi-resource environment with multi-connections and
delay sensitivity. For example, in the work of [170], a scheme of scheduling with
Kubernetes for the IIoT is introduced. However, this scheme is executed within a
centralized master node of the Kubernetes cluster. This master node upon a user
request performs the screening of the connected environment, among the filtered
nodes does the scoring by adherence to resource constraints, and finally chooses
the node with the highest score. With regard to this thesis, this approach could
be implemented on the fog colony level, however, it would not allow hierarchy
within single fog colonies.

Interest towards container technology is also boosted by the ever-growing demand
towards technologies that appear in big flagship enterprises, e.g., Google, which

20nline; Accessed: Apr. 2023 https://kubernetes.io
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made the Docker container technology together with Kubernetes a very popular
open source project [22]. Docker containers can execute only Linux processes,
however, they can run within various operating systems. Docker containers enable
efficient software development and deployment.

Java Containers Among other technologies available with the similar concept
of containers, there are autonomous applications based on Java containers, i.e.,
Wildfly and the Spring Boot technology. These technologies allow executing
containerized Java applications without the necessity to have a dedicated Java
environment [140].

LXC Containers LXC is another container platform. LXC containers are
created by the means of the same tools as VMs, however they enable high
performance during the execution of workloads [128]. Compared to Docker
containers, the management of LXC containers does not need any additional
orchestration system. LXC is very close to the full operational environment of
hypervisors of VMs [43, 112]. It provides virtualization of network interfaces and
data storage interfaces. Inside an LXC container, it is possible to launch several
Docker containers.

OpenVz Containers OpenVz? is one of the oldest and still usable container
platforms for launching multiple full-scale operating systems on one physical server
to ensure security and isolation of different applications. The isolation means
that those containers have root access, users, IP addresses, memory, processes,
files, applications, system libraries and configuration files. However, since these
containers share the core of the host system, OpenVz containers are much faster
and more efficient than traditional hypervisors [112].

Rocket The application container engine Rocket (or rkt?) is a security-minded
container technology introduced in the CoreOS platform to facilitate integration
between different production systems and to isolate vulnerabilities [43].

App Container In 2014, CoreOS published the App Container or appc® specifi-
cation to stimulate innovation in the container space that spawned a number of
open source projects [43].

OCI Initiative The Opensource Container Initiative (OCI) standard® has been
founded in 2015 by Docker and CoreOS. It is intended to provide specifications
for container technologies for the industry [43]. This initiative is supported by
RedHat, Google, AWS, VMware and CoreOS, thus ensuring compatibility with
Rocket.

30nline; Accessed: Apr. 2023 https://openvz.org

4Online; Accessed: Apr. 2023 https://www.redhat.com/en/topics/containers/
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5Online; Accessed: Apr. 2023 https://github.com/appc/spec
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https://openvz.org
https://www.redhat.com/en/topics/containers/what-is-rkt
https://www.redhat.com/en/topics/containers/what-is-rkt
https://github.com/appc/spec
https://www.opencontainers.org

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2.5. Resource Provisioning

CRI-O Project The consequence of the implementation of the standard OCI
was the project CRI-O7, which is a lightweight container runtime for Kubernetes.
From the user point of view, both Docker and CRI-O implement Kubernetes
Container Runtime Interface (CRI) and enable functionalities of loading and
launching containers.

Windows Containers Windows Containers® work in unison with Docker to

ensure the seamless operation of the Docker container management tools in
Microsoft infrastructure [31].

Concluding this overview, using lightweight containers to enable fog computing
is a necessity. In this thesis, Docker containers are chosen as suitable wrappers
around services both on the fog entity level and IoT application level. The
democratization and usability of the Docker technologies has been one of the
decisive factors. In the future, fog computing can certainly benefit from using
the unikernels virtualization technology provided that the enterprise usage and
tools will be developed for it.

2.5 Resource Provisioning

In cloud computing, resource provisioning enables the allocation of virtualized
resources for users according to needed workloads adhering to user-defined QoS
requirements and agreed SLAs. Cloud computing offers on-demand rapid access
to CPU, RAM, and storage resources shielding all the management overhead of
acquiring and maintaining those resources for cloud users. In cloud computing,
resource provisioning addresses the topics of selection, deployment, management,
and runtime operation of a resource pool of hardware to ensure the desired
operation of needed software for cloud users. The main feature of cloud computing
is elasticity, i.e., the cloud is capable to adjust to the fluctuating workload by
up- and down-scaling the needed capacities [19, 157]. Resource provisioning
techniques may have different goals from the perspective of cloud users and cloud
providers [79]. From the point of view of cloud users, the goal is to save cost of
leasing computational resources and to provide rapid scalability. On the other
hand, cloud providers aim to balance between multiple goals:

— Maximize their profits by efficiently using their available pool of resources
taking into account needed SLAs,

— Minimize their risks by aiming at fault-tolerant resource provisioning and
reducing SLAs violations, and

— Minimize energy consumption to tackle green computing challenges [51, 130].

"Online; Accessed: Apr. 2023 https://cri-o.io

80nline; Accessed: Apr. 2023
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Resource provisioning can be on-demand when resources are provided reactively
based on current workloads, and proactive, when resources are analyzed, workload
is approximately predicted and resources are reserved in advance [93].

In cloud computing, different resource provisioning techniques have become best
practices to achieve the desired QoS values for applications, i.e., static and dynamic
provisioning [93]. Static methods tackle unchanged demand where the workload
is known based on historical data or predictable in advance before the start of
applications [118]. Static provisioning means a pre-defined number of resources
(i.e., VMs) based on agreed SLAs, and uses fixed prices. Such provisioning aims
at over-provisioning to guarantee a certain level of QoS; however, it has high
operational costs and is exposed to shortages, i.e., underprovisioning, because
of unmitigated changes in workloads. Dynamic methods resolve on-demand
workloads providing automated scaling based on current demand, the available
resource pool and needed parameters of applications [118]. The drawback of static
provisioning is the ‘bottleneck’ of underprovisioning and overprovisioning due to
specified SLAs. Dynamic provisioning addresses the issues of overprovisioning
and underprovisioning of resources, however, it introduces challenges to predict
future workloads of resources, to perform adaptations and to enable migrations
of VMs accordingly [118]. Dynamic provisioning is proven to be NP-hard due
to the combinatorial nature of choosing between available resources and needed
constraints [7]. Resource provisioning approaches for the cloud are in the focus
of many surveys, e.g., [19, 51, 76, 79, 124, 130, 157, 166].

2.5.1 Distributed Applications

Emerging use cases with IoT and Big Data require using distributed applications,
which evolved from very simple single client-server applications to more com-
plex ones with multiple clients and several servers to collaborate. The goal of
distributed computing environments is to provide a virtual computational layer
between such complex applications and physical hardware. It is a commonly
accepted concept that applications that require high performance and real-time
processing are served by sharing the virtual computational layer of resources
in a controlled manner. Applications formed from cooperating services, which
exploit such a virtual computational loosely-coupled environment, are called dis-
tributed applications. In this dissertation, a distributed application is represented
according to the DDF model [64], as discussed in Section 2.2.

One challenge of executing distributed applications is to establish an efficient
mapping between services of distributed applications and virtual computational
resources available in the resource pool (see Figure 2.4). In the figure, we observe
services, i.e., sensing, processing, and storage services, distributed in the fog
landscape and communicating with each other. The distribution of applications
can be performed because of different quantitative and qualitative reasons, e.g.,
to achieve high performance by exploiting more computational resources or to
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Figure 2.4: An example of a distributed data flow in a fog landscape.

use certain software or hardware resources that cannot be provided by local
infrastructure [96]. To enable distributed applications, efficient application man-
agement needs to be established, including communication means and providing
a holistic and unified abstraction of distributed computational resources.

2.5.2 Resource Provisioning in the Fog

The advent of IoT-related use cases and the emergence of different distributed
environments, e.g., edge computing and fog computing, makes it necessary
to investigate novel mechanisms for resource provisioning. In all distributed
environments there is a concept of a pool of computational resources. This
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pool of computational resources can be represented as nodes, where each node
may represent a collection of CPU, RAM and storage resources available for
exploitation by applications. An example of a node can be a VM, which is
constituted from certain CPU, RAM and storage resources taken from the
available resource pool. The resource pool can be static when the number of
nodes and available resources do not change, or dynamic as is often the case in fog
computing, when the resource pool is fluctuating and volatile. In fog computing,
resources can enter or leave the fog landscape or also change their capacities and
performance. However, independently of the type of a distributed environment,
the explicit assignment of services of distributed applications onto a distributed
pool of resources has to be provided. This assignment needs to select available
resources, i.e., match them according to defined constraints of resources and
services. This process is tackled with resource provisioning approaches.

Following the basic structure of fog computing as presented in [25, 45], resource
provisioning approaches are necessary to identify how services can be distributed
in the entire fog landscape. Therefore, resources in the fog landscape have to
be provided with means to select and allocate resources and schedule service
executions. Apart from resource provisioning, the fog landscape needs to address
infrastructural changes in the fog meaning monitoring overall resource utilization
and reacting on resource volatility and mobility.

Fog resource provisioning assumes the efficient usage of available virtualized
resources in a fog landscape. For this, a system model has to be formalized aiming,
e.g., to minimize delays arising from the transfer times between the network edge
and the cloud, and to maximize resource utilization of existing resources. As in
the field of cloud resource optimization, manifold goals for resource provisioning
optimization are possible, e.g., time, cost, and energy efficiency optimization [1,
111, 141]. Together, these goals may form the foundation for a multi-criteria
optimization problem. Based on the solution to this optimization problem, i.e., a
resource provisioning plan, services are instantiated and executed on particular
fog resources.

2.5.3 Problem Definition and Modeling

Resource provisioning problems belong to a certain kind of decision-making
problems from the area of operations research [19, 79, 127, 155]. Operations
research applies mathematical methods in order to justify decisions in an activity
domain. The main characteristics of such problems are:

— A problem deals with a certain arrangement that pursues a concrete goal;

— In the problem a set of conditions, or so-called constraints, are given which
characterize the context of the problem:;

— Within the framework or confinement of these conditions, it is needed to
make a decision in a way that the problem arrangement would be most
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beneficial [134].

An operation in this context is a set of mutually conformed arrangements aimed
at achieving a concrete goal. An operation is always controllable, meaning that
by performing such an operation, a set of parameters can be identified or chosen.
These parameters are called controllable variables or so-called decision-making
variables. A concrete set of these parameters becomes a solution of the problem.
The parameters that form a solution are called the solution elements. Let x denote
a collection of elements that form a solution. Operations can be characterized
as well by uncontrollable parameters. Uncontrollable variables are the factors
which cannot be controlled, e.g., weather conditions, and are often represented as
pessimistic, measured, historical values. If uncontrollable variables are undefined,
the model becomes stochastic, i.e., indeterministic, when systems evolve according
to probabilistic laws [148]. If uncontrollable variables are known, then the model
is deterministic.

An optimal solution is a solution that achieves the goal of the operation. In
any operations research problem, constraints are given upfront and may consider
financial, materialistic, technological, and human operation aspects in the domain.
Constraints form a pool of feasible solutions for the considered problem. Let X
denote such a pool of feasible solutions. The main task of solving the problem
means to find such a solution x within the pool of feasible solutions X that from
certain points of view is more efficient or more preferred than any other solution.
In order to compare different solutions in X, a quantitative criteria of efficiency
is needed to reflect the goal of the operation, i.e., the goal function. When the
efficiency of a solution is estimated based on several criteria, the problem becomes
a multi-criteria decision problem.

2.5.4 Research Stages

The work on a problem starts with its identification, when the problem and goals
are meaningfully formulated [113]. At this step, the inherent requirements of the
considered system and environment are determined.

The next step is to build a mathematical model based on the received formulation
of the problem and requirements. During this step, the following questions need
to be answered:

— For identification of which parameters is the model built?

— What is the goal of the operation?

— Which constraints have to be applied to the variables to mitigate the
conditions of the modeled domain?

To describe a resource provisioning problem as a mathematical model, a set of
formal relations, equations and domain definitions need to be specified. They link
the controlled and uncontrolled parameters and describe the domain, environment,

Stochastic and
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Formalization

Models
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applications, and their interactions as well as efficiency criteria. These equations
contain a goal function for resource provisioning and multiple constraints. A goal
function is a representation of the efficiency criteria, i.e., business or technical
objectives like cost, time, or profit. Constraints are mathematical expressions
of limitations on different aspects of the considered environment, applications,
behavior, runtime operation, filters and relevant assumptions. These constraints
cannot be changed and are imposed from previous knowledge or domain definitions.
In this dissertation, resource provisioning models are deterministic.

The third step is choosing a mathematical method to solve the defined model. In
operations research, there is no single unified method of solving all mathematical
models that appear in practice. The choice of the mathematical method is to be
determined by the type and complexity of the formalized mathematical model.
Some mathematical models can be so complex that it is impossible to find any
solution with the available optimization methods. In this case, the researchers
use imitation or heuristic methods [127].

The next step is finding solutions of the specified problem. In practice, it is
impossible to solve a mathematical model in a so-called closed form, i.e., when a
formula for calculation of optimal variables is derived. Mathematical methods
of solving models consider algorithms that are iterative. This means that the
problem is solved consequentially: with each iteration, a solution is received that
gradually improves and eventually becomes an optimal solution.

The fifth step is checking model performance, i.e., how adequate is the evaluated
model [110]. This step is finished by applying the received results in practice.

2.5.5 Integer Linear Programming

Practical decision-marking problems in resource provisioning belong to a cer-
tain class of Integer Linear Programming (ILP) problems or also boolean linear
programming problems. These problems are characterized by certain conditions
when fraction values of variables make no sense, i.e., problems with indivisibility.
The solution elements can have either 0 or 1 values, i.e., the values of decision
variables. Indivisibility problems can be knapsack problems or assignment (place-
ment) problems [139]. In the following, we describe these problems, which are
applicable in resource provisioning in fog computing and where indivisible services
need to be assigned onto fog resources.

The knapsack problem can be described as follows [134]: A traveler is packing
for a hike and wants to pack a certain number of items from 1 to n. The weight
p; and volume v; for an item j is known, j € {1..n}. The overall weight of the
knapsack must not exceed P, and the overall volume must not exceed V. Based on
subjective estimations of usefulness of items, each item has a coefficient of being
useful in the trip ¢;. The goal is to identify which items and how many should
be taken in order to maximize the usefulness of the knapsack. The formulation
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of the knapsack problem is given in equations (2.1)—(2.4).

maXchxj (2.1)
j=1
n
> pjz; <P (2.2)
j=1
> wvja; <V (2.3)
j=1
Vl’j Z 0 (2.4)

A more specific definition of the knapsack problem is when items can be taken
only as a whole, i.e., the item can be either put into the knapsack or not. In this
case one more domain definition has to be added as Vz; € {0, 1}.

In the assignment problem, there are n working places R; and m workers W,
i,j € {1..n}. For each assignment W; — R; the cost ¢;; of performing work is
known. The goal is to distribute m workers on n places in a way each worker
performs only one job, each job is performed by only one worker, and the sum
of costs are minimal. The formulation of the assignment problem is given in
equations (2.5)—(2.8).

n m
min Z Z Cijl‘ij (2'5)

i=1j=1
> wij=1,Vie{l.n} (2.6)
=1

> wij=1,Vj€{l.m} (2.7)

J=1

Vi = {0, it W; is assigned to R; .

1, if Wj is not assigned to R;

The resource provisioning problem has been shown to be NP-hard [7]. For this
problem, an analogy towards the multiple knapsack problem can be performed [10]:
different fog resources are knapsacks, single services of IoT applications are items
to be inserted into knapsacks, the weight of knapsacks corresponds to available
resources of devices in the fog, such as CPU, RAM and storage resources, and
the cost of the knapsack is given by the defined QoS parameters. For service
placement, the objective function is to maximize the utilization of devices at the
edge of the network while satisfying the QoS requirements of applications, namely,
satisfying deadlines on application deployment and execution time. With the
assignment problem, the analogy stands with the constraints that services need
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to be assigned only once to a certain resource, i.e., knapsacks. The complexity
of a multiple knapsack problem is proven to be O(n? + nm) [49], where n is the
number of services to be placed and m is the number of fog resources available.

2.5.6 Solving Resource Provisioning Problems

The mathematical methods of solving discrete programming problems can be
divided into two main categories: exact mathematical methods and approximation
methods. The exact mathematical methods include methods of the implicit
enumeration algorithm [84], the branch and bound algorithm [137], and the
dynamic programming algorithm [139].

Approximation methods can be split into several groups [131, 151]:

Greedy algorithms,
— Random search,

— Local search,

— Heuristics, and

— Meta-heuristics.

The random search algorithm selects a solution randomly from a pool of feasible
solutions. Local search uses a common search space and chooses each element
of the solution based on neighborhood relationships. The greedy algorithm
composes a solution element by element by choosing the next element being
the most obvious choice and eliminates considering already used elements or
resources. Heuristic algorithms, meta-heuristics and their combinations are also
very popular to find solutions for efficient resource usage and performance [79].
Heuristic algorithms contain a set of rules and constraints that can be based on
certain rational and reasonable assumptions in the problem domain. These rules
and constraints are rigorously constructed to receive a feasible solution within
certain time limits. Meta-heuristic algorithms are general-purpose methods that
can be applied onto any models, for example, a GA, swarm intelligence algorithm,
and ant-colony optimization are meta-heuristic algorithms. These algorithms
have a large space of solutions and require different resolution times, however
are proven to provide efficient solutions. The combination of heuristics and
meta-heuristics, i.e., hybrid algorithms, brings improvement in computational
time.

Linear programming has been popularized in many industries to find the optimal

solution for any domain problem. Apart from the Excel Basic Solver Add-In, there

are open source tools such as OpenSolver?, SolverStudio'®, PuLP!', Pyomo'?,
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Java ILP 13, or Ipsolve', and commercial tools such as Gurobi'®, MOSEK!,
AMPL'Y, FrontlineSystem’s Analytic Solver'®, or IBM Ilog CPLEX Optimization
Studio. These tools are meant to be used to produce exact mathematical
solutions. For approximation methods, it is important to understand how to
represent the considered problem. Such algorithms use existing open source
or proprietary libraries. However, it order to apply these libraries it is needed
to represent the model within the frameworks of different algorithms, which
is a challenging task. In this dissertation, in order to solve different resource
provisioning models, exact optimization methods, heuristic and meta-heuristic
methods are implemented.

A challenge in resource provisioning in fog computing is that software needs to
be executed on different devices in the fog landscape, meaning that both internal
management services and applications submitted for execution have to be adapted
or reimplemented according to the processor architecture of the hardware. For
example, popular devices used in research of fog computing are single-board
computers, like the Raspberry Pi [83]. Raspberry Pis are built on the foundation
of the ARM processor architecture. The ARM architecture is used in mobile
phones, smart phones, and smart TVs. It is implemented in nearly 60% of all
mobile devices [160]. Therefore, the is conducted under the assumption of using
Raspberry Pis as representative devices, however, in this case the volatility of a
fog landscape need to be setup within experiments. Open source and proprietary
solvers which would be useful in resource provisioning exact optimization methods,
for example, IBM CPLEX solver, Java ILP, or Gurobi, do not provide library

distributions runnable on devices with the ARM processor architecture so far.

This problem is not specific to this thesis, but is a common problem when using
fog infrastructure. Therefore, other methods apart from exact mathematical
methods of solving resource provisioning need to be investigated.

2.6 Identified Requirements

To sum up the foundations and concepts presented in this chapter, we can
derive the following requirements that need to be fulfilled in order to realize fog
computing. We divide these requirements into three main directions dealing with:

— Fog landscape,
— Resource provisioning, and

130nline; Accessed: Apr. 2023 https://sourceforge.net/projects/javailp/

14 Online; Accessed: Apr. 2023 http://lpsolve.sourceforge.net/5.5
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— Fog computing frameworks.

Fog Landscape Requirements A fog landscape is a representation of a cloud-
to-thing continuum in a certain domain enabling fog computing. In order to
realize a fog landscape, it is necessary to abstract and model its functionalities.
In the following, we specify requirements that need to be fulfilled in order to
create a fog landscape:

1.

To realize fog computing, entities of a fog landscape and their functionalities
should be defined and abstracted, and a fog computing architecture should
be created.

. A fog landscape should establish coordinated control over available cloud

and edge resources. It should exploit ubiquitous networked computing
devices that are close to the edge, as well as complement these devices
with more powerful cloud resources, thus establishing a cloud-to-thing
continuum.

To provide such a coordinated control, a fog landscape should have means to
virtualize, instantiate, and utilize those ubiquitous heterogeneous resources
at the edge of the network and in the cloud.

Those resources of a fog landscape should have different purposes according
to their capabilities. Some resources, i.e., which are close to the edge
of the network and are less powerful, should be able to execute certain
services, e.g., sensing and actuating services, depending on the underlying
IoT devices and their capabilities. Other more powerful resources should
in addition to the execution of certain services manage those less powerful
resources.

A fog landscape should provide means to orchestrate the available resource
pool in an efficient manner with the purpose to execute arbitrary IoT
applications. The cloud should complement resources at the edge of the
network in the case when the latter are not enough for execution of needed
workloads.

Resource Provisioning Requirements A fog landscape needs to have means
to select and allocate its available resources and to perform service placement
and execution. For that, resource provisioning need to be enabled. Therefore, we
derive the following resource provisioning requirements in a fog landscape:

6.

7.

A fog landscape should provide resource provisioning in order to efficiently
distribute workload among resources in the fog.

A resource model in a fog landscape should represent all available resources
at the edge of the network and in the cloud and their capabilities and
relationships.

. A distributed IoT application to be executed in the fog should also be

modeled.
The resource model and the IoT application model should be used for the
definition of resource provisioning in the fog, i.e., of a service placement
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problem.
10. The resource provisioning should adhere to the desired goals and account
for fog landscape constrains.

Framework Requirements The specification of a fog landscape and resource
provisioning provides theoretical foundations for realizing fog computing. To
apply this in the real world, it is necessary to create a fog computing framework
that abstracts functionalities of the fog and provides fog computing-specific
software. It is one of the goals of this dissertation that this framework may
be selectively changed by additional modules in the future, thus providing a
tool for researchers to continuously work on resource provisioning approaches
in an arbitrary fog landscape. In the following, we derive the requirements for
realizing a fog computing framework for efficient IoT application execution and
for implementing a real-world testbed by the means of this framework.

11. A fog computing framework should be able to create and maintain a fog
landscape made up from computational resources at the edge of the network
and in the cloud.

12. The framework should establish communication and interactions in the fog.

13. It should efficiently perform service delivery, deployment and execution of
IoT applications.

14. For a resource- and QoS-efficient execution of the applications, resource
provisioning should be implemented.

15. ToT application execution may be requested at any time. The framework
should accordingly react to the workload and trigger resource provision-
ing. The available resource pool should be shared and optimized among
submitted IoT applications.

16. The IoT application execution as well as the resource pool should be
monitored at runtime. The monitoring should provide necessary data for
the evaluation of resource provisioning constraints.

17. The framework should dynamically react to the volatility of the fog. Cor-
responding countermeasures should be performed to tackle the volatility,
i.e., when devices lose connection or get overloaded, as well as when new
resources appear in the fog.

18. The framework should provide means to overview execution results and
calculate different performance metrics both of the framework runtime
and resource provisioning, e.g., deployment and execution time, number of
successfully executed applications, failure rate, QoS of single applications,
or utilization of resources.

The identified requirements provide context for the contributions of this disser-
tation. In the following chapters, we discuss how modeling of a fog landscape,
resource provisioning, framework architecture and its implementation in Fogkrame
reflect these requirements.
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CHAPTER

Resource Provisioning for IoT
Services in the Fog

In this chapter, we introduce a fog landscape model aiming to exploit ubiquitous
networked computing devices that are close to the edge of the network with the
purpose to execute arbitrary IoT services. We consider how to abstract and use
the resources offered by IoT devices, as well as how to allocate those available
resources to execute arbitrary IoT services. These findings become the foundation
for a conceptual fog computing architecture.

Based on this conceptual architecture, we are able to orchestrate resources at the
edge and to provide a suitable resource provisioning approach, i.e., a solution on
how to distribute workload and data among resources in the fog. For this, we
formalize a system model which aims to minimize delays arising from the transfer
times between the fog and the cloud, and to maximize resource utilization of
existing fog resources. For evaluation of the proposed system model, we apply
different scenarios and resource provisioning policies within a simulated fog. The
goal of the evaluation is to identify the best provisioning policy by comparing
suitable metrics, i.e., round-trip time, delay, makespan, and cost.

It has to be noted that this part of this thesis has been developed and published
in early 2016. At that time, research on different workload allocation approaches
for the fog was rather limited and this work was one of the first ones. Later,
this work has been extended in manifold ways to address different aspects of fog
computing. In subsequent chapters of this thesis, the concept and content of this
paper is extended.
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3.1 Overview

The fog mirrors the basic structure of the [oT, where a multitude of heterogeneous,
networked devices cooperate [12, 45] as has already been discussed in Section 2.2.
Potential use cases for fog computing include typical IoT scenarios, e.g., data
prefiltering in Big Data scenarios [40] or preprocessing of data streams from
sensor nodes [74]. Single IoT devices coordinating a group of other IoT devices,
located close to the edge of the network and providing virtualized resources, are
called fog cells. These cells allow executing IoT services close to the data sources
or sinks, instead of involving the cloud. This leads to decreased delays, as well as
a better utilization of already available computational, storage, and networking
resources in the fog.

Apart from the question of how to virtualize the resources offered by IoT devices,
another major barrier for the uptake of fog computing is the question how to
distribute IoT services on available fog resources. To answer this question, we
apply the concept of a fog colony. Fog colonies are micro data centers made
up from an arbitrary number of fog cells. As in a cloud data center, within a
fog colony, task requests and data can be distributed and shared between the
single cells. The operational purpose of fog colonies is the cooperative execution
of arbitrary IoT services. Thus, fog colonies facilitate to move from centralized
cloud-based data processing to a decentralized processing network that includes
networked IoT devices, cloud offloading and multi-cloud deployment.

There has been some work on fog computing architectures, which provides foun-
dations and concepts into understanding functional and technical requirements
towards implementation of fog computing.

In their seminal conceptual work on the topic, Bonomi et al. [25] introduce a
layered model bridging the IoT and the cloud. The authors show that applications
might be placed in the cloud and in the fog, spanning potentially different cloud
providers. In addition, it is shown that a fog computing framework needs to
enable the communication between the cloud and the fog, inside the fog, and
between the fog and IoT devices. Dastjerdi et al. [45] present a RA for fog
computing which follows a very similar structure if compared to the work by
Bonomi et al. The RA implies serving IoT requests in the local fog rather than
involving the cloud. In the RA, central fog services are placed in a software-
defined resource management layer, which provides a cloud-based middleware.
Notably, this prevents that fog colonies act in an autonomous way. Instead, fog
cells are analyzed, orchestrated, and monitored by the cloud-based middleware.
Also, fog resource provisioning and the offloading of computational tasks from
the edge to the cloud are achieved through the middleware. In another discussion
of basic fog features, Vaquero et al. [141] consider different concepts to realize
fog architectures, including both centralized and decentralized, i.e., Peer-to-Peer
(P2P), approaches. Notably, the authors introduce the notion of edge clouds,
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which are private fogs made up from IoT devices, resembling our notion of fog
colonies.

The RAs need to take into account the concrete needs of fog resource provisioning.
In the discussed RAs, the focus is on the communication and task sharing between
the different layers, i.e., the cloud, the edge, and the IoT.

The number of resource provisioning mechanisms specifically aiming at fog com-
puting was quite limited at the time when we started this research. Hong et al. [77]
present a programming model including a simple resource provisioning strategy,
which relies on workload thresholds, i.e., if the utilization of a particular fog cell
exceeds a predefined value, another fog cell is leased [77]. Aazam and Huh [1, 2]
present a more sophisticated resource provisioning mechanism, which is based on
the prediction of resource demands. Dynamic allocation of resources is performed
in advance during the design time of the system. This approach is based on cost
optimization, and resource allocation depends on the probability fluctuations of
the demand of the users, types of services, and pricing models. Cost function
parameters are set up during the time the contract between the user and provider
is negotiated. The approach also takes user incentives and encouragement mecha-
nisms into account. In contrast, our work provides runtime resource provisioning,
i.e., accounts for dynamic infrastructural changes in a fog colony.

Apart from fog-specific resource provisioning solutions, resource allocation and
service scheduling are major research challenges in the general field of cloud
computing [94, 130, 166]. While these approaches offer interesting insights, there
are certain differences between fog services and cloud services. These prevent a
direct adaptation for the use in the work at hand. First, the size and type of cloud
resources is very different from its counterparts at the edge. While cloud resources
are usually handled on the level of physical machines, VMs, or containers, fog
resources are usually not as powerful and extensive [141]. Second, fog colonies
may be distributed in a rather large area and heterogeneous network topology,
while cloud resources are usually placed in centralized data centers, making it
more important to take into account data transfer times and cost in the fog [143].
This is especially important since one particular reason to use fog computing
in IoT scenarios is the higher delay-sensitivity of fog-based computation [125].
Hence, resource provisioning approaches for the fog need to make sure that this
benefit is not foiled by extensive data transfer times and cost.

Therefore, in this chapter, we introduce a conceptual fog computing framework.
We apply the mentioned above concept of fog colonies. Based on this framework,
we are able to orchestrate fog resources and to provide a suitable resource
provisioning approach, i.e., a solution on how to distribute task requests and data
in the fog.

The remainder of this chapter is organized as follows: In Section 3.2, we describe
a fog landscape, and propose a conceptual architecture to enable resource provi-
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Figure 3.1: An overview of a fog landscape.

sioning. Next, in Section 3.3, we formalize a resource provisioning model with
the goal of maximally utilizing resources at the edge in fog colonies, while also
complementing fog colonies with the cloud resources. We evaluate the model in
Section 3.4, demonstrating the efficiency of our resource provisioning approach
regarding different QoS and cost metrics comparing to time- and space-shared
provisioning policies and to the execution in the cloud.

3.2 Fog Computing Architecture

In this section, we present a conceptual fog landscape as depicted in Figure 3.1
and a fog computing architecture. The architecture enables the execution of
IoT services in an arbitrary fog landscape. This architecture allows optimizing
resource provisioning in the fog, as discussed in Section 3.3.

Before describing the typical functionalities of fog computing, it is necessary to
discuss general characteristics of a fog landscape. For this, we follow the notion
of a fog landscape as a cloud-to-thing continuum [82]. A fog landscape consists of



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.2. Fog Computing Architecture

a combined pool of computational and storage resources in the cloud and at the
edge [45, 80]. The combined pool of resources enables support of decentralized
processing of data on IoT devices in combination with the benefits of cloud
technologies and virtualization [25, 111]. The organization of the fog can be both,
flat or hierarchical [86]. In this dissertation, a hierarchical structure of the fog
landscape is considered (see Figure 3.1). Different resources of the fog landscape
are organized as layers taking into account different computational capabilities of
devices and different workloads on those devices. For example, computations to
perform resource provisioning and service placement are resource-intensive, and
need to involve different computational and memory capabilities compared to a
measurement service sending measurements from a sensor of an IoT device.

In the following, we use the notion of task requests for computational duties
which need to be accomplished using cloud or fog resources. The actual software
instances executing these task requests are called services. Possible examples of
such services include stream processing, MapReduce applications, or distributed
data storage.

3.2.1 Fog Landscape

Following the basic structure of fog computing as presented in [25, 45], we consider
resource provisioning and orchestration in both the cloud and fog. To achieve this,
a fog controller is introduced, which controls fog cells. As discussed above, [oT
applications should also be executable without any involvement of the cloud, as
the cloud complements fog colonies. Hence, another level of control is necessary,
which needs to run exclusively at the edge of the network. For this, we introduce
fog modes, which are a specific kind of fog cells. A fog node manages a number
of fog cells or other fog nodes connected to it. A fog node is itself an extended
fog cell, which has got the capabilities to not only host services, but to perform
management activities, such as service placement and deployment. As it has
been already mentioned in Section 3.1, we call such structures fog colonies. In
our architecture, we support a hierarchy of fog colonies which are managed by a
fog controller. The further layers of the hierarchy are the fog nodes, the fog cells,

and finally the IoT devices at the very bottom of the hierarchy (see Figure 3.1).

Fog cells and fog nodes are two specific types of fog devices.

Fog Colony As it can be seen in Figure 3.1, a hierarchy of fog devices forms a
fog colony:

— Sensors and actuators attached to fog cells and
— Fog cells connected to a fog node, which becomes a parent to those fog
cells.

Having a hierarchical structure allows establishing a coordinated control over
application deployments in a fog colony, for example, a fog colony may become a
domain-specific execution environment or it can cover a certain location.

Components

45



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3. RESOURCE PROVISIONING FOR IO0T SERVICES IN THE FoG

Purpose

46

Therefore, fog colonies may be considered as micro data centers made up from an
arbitrary number of fog cells as we have briefly mentioned in Section 3.1. As in a
cloud data center, within a fog colony, workloads and data can be distributed and
shared between the single fog cells. The operational purpose of fog colonies is the
cooperative execution of arbitrary IoT services. Thus, fog colonies facilitate to
move from centralized data processing in the cloud to a network of IoT devices
for decentralized processing and complemented with cloud offloading. In each
fog colony, there is exactly one head fog node that performs service placement.
Other fog nodes can be present in a fog colony. They perform computations in
the same manner as fog cells, and as well are responsible for the communication
and data flow between the connected fog cells and other fog nodes.

Fog Controller Since a fog landscape consists of computational resources both
from the cloud and at the edge of the network, it is necessary to mediate between
fog colonies and the cloud. In the fog computing architecture, a fog controller
is forseen for this. The fog controller establishes communication between fog
colonies and the cloud, and within and between fog colonies. The head fog nodes
of fog colonies communicate with the fog controller in the case when additional
cloud resources are needed for application execution. However, the latter may
also act autonomously if the fog controller is not available.

Neighbor Colonies Fog colonies do not only interact with the cloud. The
colonies also need to interact with each other in order to propagate (i.e., delegate)
the execution of applications from one fog colony to another. For instance, if
one fog colony does not have enough computational resources to execute an
application, then it may delegate the corresponding application to a neighbor
fog colony. In order to enable the delegation of the application execution, fog
colonies are connected to each other via their corresponding head fog nodes.

3.2.2 Fog Controller

The fog controller is the central unit that manages the execution of task requests
in the cloud, and supports the underlying fog landscape. The fog controller
performs cloud resource provisioning for task requests that are not delay-sensitive
or cannot be executed in the fog, e.g., very resource-intensive Big Data analysis
task requests. If necessary, the fog controller performs the global optimization
of underlying fog colonies by restructuring them. For this, the fog controller is
supplemented by both the means to control the cloud and the means to manage
the underlying fog colonies. Such control is performed continuously or on-demand,
depending on system events, e.g., if new fog devices appear, which could be used
to deploy fog cells, or to recover after faults or damage of fog cells. Importantly,
the fog controller can overrule fog nodes in fog colonies, but the latter may also
act autonomously in the case that no fog controller is available.
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3.2.3 Fog Cells

Fog cells are software components running on fog devices. Fog cells serve as
access points to control and monitor connected IoT devices, e.g., sensor nodes.
In order to do so, the fog cells are able to receive task requests, perform data
analysis, allocate their own computational resources if available, or propagate
task requests to upper layers of the fog colony hierarchy, i.e., to the fog nodes (as
discussed below). Cells may interact with an arbitrary number of IoT devices,
however, in practice, the number of devices to be controlled by a fog cell is limited
by the cell’s computational resources.

Each fog cell consists of the following components (see Figure 3.2): The listener
receives task requests from other fog cells or IoT devices. The monitor observes
service executions in the compute unit. The database stores data about received
task requests, the current system state of the fog cell, i.e., available computational
and storage resources, and monitoring data. The fog action control performs
actions according to the provisioning plan produced by the fog node, e.g., to
deploy and start a particular service (see Section 3.2.4). Fog cells access the
distributed storage to share data, e.g., service implementations, in a colony. This
component enables faster data access compared to data storage in the cloud. The
compute unit provides the actual computational resources for the deployment
and execution of services.

Fog cells expose REST APIs for data transfer and control actions: The Data API
enables basic CRUD operations over the data stored within a fog cell, and the
Deploy API allows performing control actions for the services running in the fog
cell, i.e., instantiating, deploying, starting, stopping, undeploying, and deleting
the service. To become part of a fog colony, a fog cell needs to use the Data and
Deploy APIs of the corresponding fog node, and at the same time expose its own
Data API and Deploy API.

3.2.4 Fog Nodes

A fog node’s main task is to support a fog colony by orchestrating the involved
fog cells. Each fog colony features exactly one head fog node. The fog node is
itself a (powerful) fog cell, which manages the resources offered by subordinated
fog cells and performs resource provisioning to execute task requests. Also, the
control node is able to propagate task requests to the fog controller or to other fog
colonies (via their fog nodes), if task requests cannot be handled by the current
fog colony. For this, a resource management mechanism for vertical scalability
is necessary to identify how task requests can be delegated in the entire fog
landscape. Apart from resource provisioning, fog nodes

— Perform infrastructural changes in the fog colony,
— Analyze resource utilization within the colony,
— Create a provisioning plan to allocate resources for task requests, and
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Figure 3.2: Architecture of a fog cell and a fog node

— Monitor IoT devices and fog cells.

An approach to optimize task request distribution and resource allocation is
described in Section 3.3.

As previously mentioned, fog nodes are extended fog cells. On the left-hand side
of Figure 3.2, the extensions needed for fog nodes are depicted. The reasoner
component produces a provisioning plan for the colony’s resources to execute
received task requests. The provisioning plan determines which services should
be used to fulfill task requests, and where these services should be deployed, i.e.,
what fog cell to use. The reasoner also gets the information about the system
state, i.e., available fog colony resources, and controls the connected fog cells,
i.e., plans infrastructural changes in the fog colony, if necessary. The database
additionally stores the resource provisioning plan produced by the reasoner. After
the reasoner produces a provisioning plan, the fog action control performs the
orchestration of fog cells according to the plan. If there are no sufficient resources
in the considered fog cell, or further processing is needed, such task requests are
separated and delegated to the other fog colonies by the propagation component
via the fog node. The watchdog component features means to receive up-to-
date information about the utilization of the connected fog cells. It observes
monitoring data in the database and compares it to the expected QoS level, i.e.,
measures the consumption of the cell’s computational resources as well as QoS
parameters, e.g., the execution time. This information influences the decision-
making in the reasoner component. The service registry component hosts service
implementations and enables the fog action control to search for services and to
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deploy them on the fog cell compute units. As storing service implementations
is resource-consuming, the service registry is located in the storage unit of the
control node.

It should be noted that an alternative approach would be a decentralized orches-
tration of fog cells in a fog colony, i.e., without a centralized head fog node. While
this leads to higher fault tolerance, it also involves extensive coordination and
voting between the involved fog cells. Therefore, we opt for a more centralized
approach to maintain a fog colony, but decentralized regarding the execution
of applications in this work. However, we still foresee that another fog node
becomes the head fog node in a fog colony, if necessary, e.g., in case the original
head fog node fails.

3.3 Resource Provisioning in the Fog

As discussed in Section 3.2, it is necessary to provide the fog node as well as the
fog controller with means to allocate resources for service requests. For this, the
fog node needs a complete overview of the system state of a fog colony. With
this system state as input, the reasoner is able to compute a service placement
plan and to schedule service requests onto services running in fog cells. As stated
above, we assume that a fog colony is autonomous, i.e., the fog controller is only
involved if a fog colony needs additional cloud resources.

As in the field of cloud resource optimization, manifold goals for fog resource
provisioning are possible, e.g., time, cost, or energy efficiency optimization [1, 111,
141]. In the following, the goal of the presented resource provisioning approach is
the optimization with regard to the utilization of fog cells and the minimization
of delays. First, this means that the computational resources offered by fog cells
should be utilized as much as possible, because using cloud resources leads to
higher overall cost. Second, data needed and sourced within a particular fog
colony should be handled by that particular fog colony, if possible. This is done
in order to avoid an increase of delays by propagating data to the cloud or to
other fog colonies. Together, these goals form the foundation for a multiple-
criteria optimization problem, as is presented in the upcoming sections. The
system model is formalized, and its goal is to provide delay-sensitive utilization
of available computational resources in the fog. This model is implemented and
then evaluated to show the benefits of this contribution.

3.3.1 System Model

The basic entity for optimization in our system model is a fog colony with a head
fog node F. F has n subordinate fog cells f7, i.e., fog cells are part of the same
fog colony and controlled by F: V{7 € F¢ j € {1..n}. The CPU utilization of
the fog node is indicated by U¥, for a fog cell by U7. Analogously, for RAM
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utilization, the parameters M and M7 are used. There are different types of
fog cells (T for fog nodes, T7 for fog cells), which indicate the sets of services
that can be run on this particular cell, i.e., indicate different IoT devices. The
bandwidth and link delay between the fog node and a particular fog cell j are
indicated by ¥ and d’.

The fog colony controlled by F' receives m task requests. Each request r;, Vr; € R,
i € {1.m} is characterized by two time points: ¢, and ¢y, where t, is the time
when a task request enters the system and ¢y is the time when the task request
is fulfilled. Each r; is characterized by its CPU p$TV and RAM pRAM demand,
and the type of service ] Y'E needed to fulfill the task request.

The current system state is indicated by the period 7 and its start time 7. The
head fog node produces the service placement plan S for the period 7 + 1 with
the start time "' calculated by adding a certain time e corresponding to the
desired time between two consequent runs of resource provisioning: 7Tt = ¢7 +e.

We define the cardinality function, i.e., length of a service placement plan S,
which consists of a sequence of assignments for fog cells S(F®), for the fog
node itself S(F'), and for not assigned task requests S(0), for all i € {1..m}, i.e.,

S = S(FC)YUS(F) U S(0).

We assume for a fog cell fj the assigned task requests ri, Vri ER, ke {1p]},
for the fog node r(l;, Vrf €RF, qe {luF} If for some task requests there
are no resources in the fog colony, or the task request needs further resources
which cannot be offered by the colony itself, the service placement plan S is
still produced, but unassigned task requests R \ (U7 Uj— 1(rk)) \ Ug= 1( FY are
propagated to a higher layer in the fog colony. ThlS higher layer could e1ther
be another fog node (in the case when several fog nodes are present in the fog
colony) or the fog controller.

Objective Function The objective function (3.1) aims to maximize the number
of possible assignments while decreasing the propagation of task requests to the
higher layer as much as possible.

S(FC)US(F)\ — max (3.1)

Variables The binary variable :):j decides whether a task request r; is assigned
to a fog cell f7 as defined in (3.2) For fog nodes, x!" is defined analogously.

(3.2)

7

i {1, if 7; is assigned tof7,

0, if r; is not assigned tof7,
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Based on this, the goal function can be rewritten as (3.3).

f: (En:(azf) + xf) — mazx (3.3)
=1 j=1

Constraints As a first constraint, we assume that each fog cell of a specific type
T9 can execute certain types of task requests, i.e., the type of a task request must
be checked. If the task request is assigned to a fog cell, meaning x7 = 1, then the
type of a task request must conform to the type of the fog cell, i.e., ul YF¥ € T7.
And, correspondingly, if the task request is assigned to the head fog node, i.e.,
:Uf =1, then ,u,;fYPE eTr.

Second, each task request r; can be assigned only to one specific fog cell f7 or '
as defined in (3.4):

(z)) + 2l <1 Vi e {1.m} (3.4)
1

n
]:
Next, we choose a fog cell with minimum estimated delay between a fog cell and
the fog node. For that, the set of all fog cells is sorted according to the value d;.
Therefore, the assignment of task requests is prioritized to fog cells with lesser
delay.

As defined in (3.5) and (3.6), assigned task requests must not exceed the resources
of a fog cell. The equations consider an assumed percentage v of system needs
that must be free to maintain a corresponding fog cell. In (3.5) and (3.6), we
multiply approximate CPU and RAM resources needed to execute task requests
and decision variables corresponding to assignments of a task request to a certain
resource and find their sums. The constraints limit the number of assignments,
ensuring that the calculated sum of according CPU and RAM resources does not
exceed the desired availability of CPU and RAM fog cells Vj € {1..n}.

m

;(MCPng) <UI(1—J5) Vi€ {1n) (3.5)
gwﬁ‘%ﬁ?) <a(1- ) v (L) (36)

3.4 FEvaluation

In the following evaluation, we show the efficiency of our resource provisioning
approach regarding the round-trip time per task requests, execution delays and
makespans of tasks, as well as the cost of execution, compared to a baseline
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approach and to the execution in the cloud. For this, we extend the well-known
CloudSim modeling and simulation framework [34] with the means to simulate a
fog landscape.

3.4.1 Evaluation Environment

In order to reflect the structure of a fog landscape, CloudSim needs to handle fog
colony hierarchies as introduced in Section 3.2. For this, the original Datacenter
class of CloudSim is extended by FogDatacenter that features specific methods of
a fog colony, i.e., linking different fog cells to a fog node. CloudSim’s Datacenter-
Broker class is extended by FogBroker that mirrors the behavior of fog nodes
or the fog controller depending on the simulated environment. The FogBroker
class implements the system model presented in Section 3.3.1. CloudSim’s class
responsible for task requests, Cloudlet, is extended by FogCloudlet to include
the issuer parameter. This is necessary to track the origin of task requests. To
calculate delays (see Section 3.4.3), the class DelayEntity is added. This class
transforms data from CloudSim’s class NetworkTopology, and is used for metric
calculations. The main class of the simulation creates a fog landscape and the
cloud environment, sets up needed services, generates task requests in fog cells,
and, finally, runs the simulation. The discussed extensions are presented in
Figure 3.3.

3.4.2 Experimental Setup

As fog landscape in our evaluation, we consider a fog colony of 100 fog cells (each
running on a separate IoT device) and a head fog node, which is the head of
the fog colony. The fog colony is linked to a public cloud in the case that cloud
resources are necessary for the fulfillment of task requests. Of these 100 fog cells,
10 are simultaneously issuing 1,000 task requests to the fog colony (more precisely:
to the fog node) assuming these fog cells do not have enough own resources for
processing the task request. This leaves 90 fog cells to provide computational
resources to handle the 1,000 task requests. If these fog cells are not sufficient,
cloud-based computational resources are used to fulfill the task requests. Each
fog cell executes different services according to the available computational power.
For the simulation, we do not restrict the service types to be hosted by the single
fog cells, i.e., each cell is able to respond to every task request.

CloudSim calculates the execution time of a service needed to fulfill a particular
task request by taking into account the number of instructions necessary to
execute the task request and the number of instructions a compute unit is able
to process per second. Within our evaluation, a task request needs 0.04 million
of instructions per second (mips), and has 300 MB of incoming and 300 MB
of outgoing data. Fog cells possess compute units which are able to handle
250 mips. For modeling the fog network capacities, i.e., the network topology, the
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Simulation Package

FogDatacenter FogBroker
—
- int parentld; - int parent;
- List<Integer> childrenlds; - FogNetworkTopology network;
+void setParent(int parentld); - List<Integer> cloudletslssuedBylds;
+ void setChild(int + void startEntity();
fogDatacenterld); + void shutdownEntity();
+void startEntity(); # void clearDatacenters();

# void processCloudletReturn(SimEvent ev);

# void submitCloudlets();

FogCloudlet + List<FogCloudlet> getCloudletList();

# void create VmsInDatacenter (int datacenterld);

- double roundtripTime; # void processResourceCharacteristicsRequest(SimEvent ev);

- int issuedBy; —1—@ #void processResourceCharacteristics(SimEvent ev);
+double getRoundtripTime(); # void processVmsCreate(SimEvent ev);
+ void setRoundtripTime(double +int getParentFogDatacenterld();
time); + void setParentFogDatacenterld();
+void setlssuedBy(int issuedBy); +int chooseClosestFogDatacenter(List<Integer> datacenterlds);
+int getlssuedBy(); + void setCloudletslssuedBylds;
|
0 : DelayEntity
: - int source;
FogNetworkTopology | - int destination;
p| floardelay;
- List<DellayEntity> delayEntities; +int getSource();

- List<Int¢ger> fogDatacenterlds;
+ List<Integer> sortFogDatacentersBylds(List<Integer> list);

+ float getDelay();
+int compareTo();

CloudSim

% v Y V

<<Interface>>

N rkT |
Datacenter Cloudlet etworkTopology DatacenterBroker

Figure 3.3: Extensions to CloudSim.

BRITE Internet topology generator [101] is used. The one-way delays between
fog cells and the fog node are generated by BRITE according to the physical
distance between generated nodes, and belong to the interval (0, 1] seconds. The
cloud-based computational resources are set to be twice as powerful as fog cells’
compute units, i.e., VMs are able to handle 500 mips. The cost per processing in
the cloud is set to $0.30 per Billing Time Unit (BTU"), i.e., one hour. The delay
between the fog node and the cloud is set to 2 seconds. The bandwidth between
the fog node and fog cells is set to 6 Mbit/s, and between the fog controller and
the fog node to 10 Mbit/s.

For evaluating the efficiency of the fog landscape, we apply the resource provi- Scenarios

'BTUs were used in 2016 at the time of publication of this work. Currently, BTUs are
usually not defined as full hours and vary for each service
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Figure 3.4: Provisioning policies.

sioning policies offered by CloudSim [34] (called the ‘baseline’ scenario) and our
system model combined with those policies (called the ‘optimization’ scenario)
in the fog landscape. Furthermore, we execute all task requests in the cloud via
the fog controller for the case when the fog landscape is not available (called the
‘cloud’ scenario).

Originally, CloudSim introduced time-shared and space-shared provisioning poli-
cies for both computational resources and services running on those resources.
Time-shared provisioning means that the shared resource is simultaneously di-
vided among assigned entities, i.e., the entities run in parallel. Space-shared
provisioning means that the computational power of the resource is shared, and
the resource is provisioned to an entity sequentially, i.e., the next entity starts
running only when the previous entity is finished. Applied to fog computing
as discussed in this thesis, we distinguish four basic policies, as depicted in
Figure 3.4: (1-a) time-shared provisioning of fog cells for services and time-shared
provisioning inside services for task requests; (1-b) time-shared provisioning of fog
cells for services and space-shared provisioning inside services for task requests;
(2-a) space-shared provisioning of fog cells for services and time-shared provision-
ing inside services for task requests; (2-b) space-shared provisioning of fog cells
for services and space-shared provisioning inside services for task requests.
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3.4. Evaluation

3.4.3 Metrics

To assess the efficiency of the fog landscape in the baseline, optimization, and Chosen Metrics

cloud scenarios, we calculate the average round-trip time per each task request
(3.7)—(3.8), total delays for the execution of all task requests (3.10)—(3.11), and
the total makespan, i.e., the time between the entering of the first task request
into the fog landscape and the fulfillment of all task requests. Additionally, for
the execution in the cloud we calculate the total cost (3.12).

Round-trip Time The round-trip time t; is the time a task request spends in
the fog landscape from the moment of issuing until getting back the results of the
processing. In Table 3.1, we show the average round-trip time per task request
along with the standard deviation of the results. The round-trip time of each
task request is calculated as the sum of the duration of uploading data to the fog
node’s host and to the destination fog cell’s host for execution along with delays,
execution time, and downloading data back to the issuer of the task request:

{F destr, }

t = isrcrl,F} + d{srcr F} 4l + d{F,destri}+

{destr,,F'} (37)

F.srcy.,
exec +the + d{destri,F} + t{ \sTCr; }

F,srey,

down + d{ o l}

Upload and Download Time Uploading and downloading times are calculated
according to CloudSim’s basic methods, i.e., dividing incoming and outgoing
storage capacities of task requests by a corresponding bandwidth of the used

network link:

{ tart, end} _ size,
b p = plstart, end} (38)

t{start, end} _ Sizegiown (3 9)
down pistart, end} ’

Execution Time We assume that the execution time includes the actual task
request execution time in a service, and processing times needed by the fog node
and the destination fog cell.

Total Delay Taking into account the number of assigned task requests from
(3.3), the delay dlsreri P} between the issuer of the task request and F, the delay
d’ between F and each fog cell, and the delay d° between F and the cloud, we
calculate the total delay in the fog:

delayy,, = f: {S’"%F}+2§:i ald)+

o == (3.10)
2(m =3 (Y (@d) +af))a

i=1 j=1
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Figure 3.5: Round-trip times for task requests in the optimized fog landscape.

In the case of execution of task requests in the cloud, the delay to the destination
equals to d© for all m task requests, and the total delay equals to:

delayppug = 2y dVere ™ 4+ 2md® (3.11)
=1

Total Makespan In our experimental setup, the task requests are issued simul-
taneously, but have different start times of execution according to the policy
applied. The total makespan is calculated as the maximum value of an array of
summed values of start time of the execution with the round-trip time of the
corresponding task request.

Cost We assume ownership of the fog and that these resources are available.
Therefore, the fog cost can be neglected. The cost is calculated for the cloud
execution according to (3.12), where cjouq is the cost per processing second in
the cloud and v is the amount of seconds in 1 BTU:

;11 tixecCCIOUd (312)
v

coStejoud =

3.4.4 Results and Discussion

Even though the provisioning inside a service for task requests has no influence
on the delay minimization between fog cells (see Figure 3.4), it still influences
the start and finish times of task request executions, and consequently affects the
round-trip time per task request. The purpose of Figure 3.5 is to demonstrate
visually which policy shows better round-trip times according to the optimization
scenario. According to Figure 3.5, policy 1-b shows the least round-trip times for
each task request in the simulated fog landscape, which is also supported by the
results shown in Table 3.1.



3.4. Evaluation

Table 3.1: Average round-trip time metric comparison.

Average round-trip time (s)

Policy Bas

eline Optimization  Cloud

(1-a) 1979.69 1979.48 1056.04
0=44.49 0=51.97 0=25.96

(1-b) 360.53 360.32 246,46
0=0.20 0=0.14 0=1.35
(2-a) 1979.65 1979.65 1056.04
0=51.99 0=51.92 0=25.96

(2-b) 360.50 360.49 246.46
0=0.19 0=0.20 0=1.35

Table 3.2: Delay and makespan metrics comparison.

Policy Baseline Optimization  Cloud
Total delay (s)
(1-a) 530.82 323.68 6454.50
(1-b)  530.96 323.90  6455.00
(2-a) 49278 490.63  6454.50
(2-b) 493.03 490.91 6455,00
Total makespan (s)
(l-a)  2123.07 2122.82 1129.05
(1I-b)  2122.61 2122.54 1126.22
(2-a)  2129.96 2129.54 1129.05
(2-b)  2129.71 2129.28 1126.22

The default CloudSim time-shared VMs provisioning policy assigns VMs to data Fvaluation of
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centers in the sequence these data centers are described in the network topology. Delays

When optimizing according to the system model, we compare the hosts of fog
cells according to their link delays to the fog node, and prioritize fog cells with
lesser delays. The conducted simulations confirm that the resource provisioning
inside a service has no influence on the delays. Figure 3.6 shows the change in
delays for policies 1-a and 1-b, and Figure 3.7 respectively for policies 2-a and 2-b.
In the figures, the delays drop down because already allocated fog cells become
free after fulfilling the assigned task requests, and afterwards other task requests
are assigned to those fog cells due to the lesser link delay constraint.

As seen in Table 3.2, policies 1-a and 1-b decrease the total delay in the optimized
fog landscape by 39% compared to the Baseline, and policy 1-b has also 82%
less average round-trip time compared to policy 1-a. The standard deviation
for the average round-trip time for the policies 1-b and 2-b is relatively small,
because all task requests are executed sequentially in the services, and release

Summary
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Cloud Scenario

Table 3.3: Cost of cloud simulation.

Policy Cloud Cost ($)

(1-a) 74.13
(1-b) 6.67
(2-a) 74.13
(2-b) 6.67
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Figure 3.6: Baseline and optimization scenarios for the provisioning policies 1-a
and 1-b.

resources immediately after the execution. Therefore, the round-trip time is
affected more by the corresponding delays. In contrast, policies 1-a and 2-a
execute task requests in parallel, which make the execution slower. The system
model optimization along with policies 2-a and 2-b brings improvements, however
they are marginal. The total makespan periods of all fog landscape scenarios are
relatively the same, however policy 1-b shows better results as well because of
reduced delays.

The cloud scenario shows smaller round-trip time and total makespan because
of higher bandwidth, i.e., the data is uploaded quicker, compared to the fog
landscape where the data is transferred between fog cells. However, the delay
between the fog node and fog controller was set to the relatively high value of
two seconds (see Section 3.4.2), and the execution in the cloud shows 95% higher
delay compared to the optimization scenario in the fog. In reality, the link delay
between the fog node and the cloud depends on the physical distance to the cloud.
Additionally, the cloud scenario has cost for the execution (see Table 3.3). These
results compensate the benefit from the smaller round-trip time and makespan.

Evaluation In total, the evaluation (see Table 3.2) demonstrates that the system model

Outcome

o8

applied with the time-shared provisioning of fog cells for services along with
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3.5. Summary
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Figure 3.7: Baseline and optimization scenarios for the provisioning policies 2-a
and 2-b.

space-shared provisioning inside services for task requests, i.e., the optimization
scenario for policy (1-b), reduces delays in the fog landscape by 39%. It also
shows less average round-trip time per each task request compared to the other
policies. Lesser round-trip time is crucial if there are any time constraints for task
requests executions, and especially in delay-sensitive fog scenarios, as discussed
before.

3.5 Summary

The centralized processing of multiplicative IoT data in the cloud incurs high
delays and accordingly low speed of data processing which are unfavorable for
IoT applications and services. Fog computing promises to solve this problem
by utilizing available computational, storage, and networking resources for the
enactment of IoT services close to the edge of the network.

We have defined a fog computing architecture according to the specified re-
quirements that aims to enact IoT services in an arbitrary fog landscape. A
fog landscape is combined from computational and storage resource pools of
cloud and edge resources. The main purpose of the architecture is to establish
coordinated control over those resources and enable resource provisioning. A
hierarchical structure of the architecture has been discussed together with its
main entities: fog controller and fog colonies. Afterwards, the components of fog
colonies that enable application execution, i.e., fog nodes and fog cells, have been
introduced and discussed. This conceptual fog computing architecture becomes
the foundation for the fog computing framework FogFrame, which is presented in
Chapter 5.

In this chapter, we have introduced a system model for resource provisioning in a
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fog landscape. To evaluate the efficiency of the proposed approach, we simulated
the architecture. We showed that the optimization according to the system model
combined with the time-shared provisioning of fog cells for services along with
space-shared provisioning for task requests decreased delays by 39% and yielded
shorter round-trip times and makespans.

This chapter constitutes Contribution I as defined in Section 1.2 and covers the
first five requirements from Section 2.6:

1.

To realize fog computing, entities of a fog landscape and their functionalities
should be defined and abstracted, and a fog computing architecture should
be created.

. A fog landscape should establish coordinated control over available cloud

and edge resources. It should exploit ubiquitous networked computing
devices that are close to the edge, as well as complement these devices
with more powerful cloud resources, thus establishing a cloud-to-thing
continuum.

. To provide such a coordinated control, a fog landscape should have means to

virtualize, instantiate, and utilize those ubiquitous heterogeneous resources
at the edge of the network and in the cloud.

Those resources of a fog landscape should have different purposes according
to their capabilities. Some resources, i.e., which are close to the edge
of the network and are less powerful, should be able to execute certain
services, e.g., sensing and actuating services, depending on the underlying
IoT devices and their capabilities. Other more powerful resources should
in addition to the execution of certain services manage those less powerful
resources.

. A fog landscape should provide means to orchestrate the available resource

pool in an efficient manner with the purpose to execute arbitrary IoT
applications. The cloud should complement resources at the edge of the
network in the case when the latter are not enough for execution of needed
workloads.
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CHAPTER

Towards (QoS-aware Fog
Service Placement

As discussed in Chapter 3, the head fog node of each fog colony has a reasoning
component that aims to process submitted requests for IoT application executions
and deploy single services of IoT applications onto suitable resources in the fog.
So far, we have considered a rather simple resource provisioning optimization
within the head fog node that is targeted to maximally utilize fog colonies. The
constraints that have been considered are resource capacities of fog cells and fog
nodes, assignment limits per services, and latency.

In this chapter, we advance with modeling the fog, we formalize more constraints
on resources. We also focus on modeling IoT applications within the fog and
their demands. These models provide foundation for the definition of the FSPP.
Among manifold goals for resource provisioning, we focus on the goal function
to minimize total QoS metric of application execution while maximizing the
utilization of the fog. QoS metrics considered here are deadlines on the execution
time of IoT applications.

The FSPP can be solved by a multitude of approaches that provide different
optimal or near-optimal solutions. In this chapter, we consider several different
approaches to solve the FSPP and compare their performance. Based on the
solutions to the FSPP, the head fog node either instantiates services on particular
fog cells, or delegates requests for specific service execution to the closest neighbor
colony or to the cloud.
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4.1 Overview

In order to formally define a problem for efficient resource provisioning and service
placement in the fog, it is necessary to model resources involved in a fog landscape
as well as to model an IoT application to be executed onto those resources, its
demands and characteristics. In this chapter, we define a formal resource model
for a fog landscape. This model represents the computational resources according
to the conceptual architecture of the fog landscape, it defines which computational
resources take part in a fog landscape, specifies their capabilities to execute certain
services and provides resource capacities.

Having specified a fog landscape, we focus on the IoT application model. In this
dissertation, we implement the DDF model, i.e., we model a sense-process-actuate
application [66], which consists of sensing, processing, and actuating services as
vertices in the directed acyclic graph of the DDF model, and communication
between those services become edges in the graph. Such an IoT application
consists of a set of services, which interact by means of tuples. We specify resource
demands of each service and its estimated makespan duration for execution. On
the IoT application level, we specify goal QoS metrics, e.g., a deadline on its
execution. The DDF model and its alternatives have been discussed in detail
in Section 2.2. In our modeled IoT application, sensors emit data, which is
then processed. Based on the result of the processing actuators are engaged and
perform certain actions.

This foundation enables us to define the FSPP, its domain definition, goal function,
and constraints. We present the FSPP that places IoT services on virtualized
fog resources while taking into account QoS constraints, i.e., deadlines on the
execution time of applications. Their definition is used within constraints of the
FSPP to calculate total execution times of IoT applications and within the goal
function to minimize total QoS metric while maximizing the utilization of the
fog. Based on the described formal resource model for a fog landscape and a
model for IoT applications, we are able to orchestrate fog cells and to provide
a suitable service placement approach, i.e., a solution on how to place services
on virtualized resources in a fog landscape. We implement the FSPP as an ILP
problem as has been introduced in Section 2.5.

The remainder of this chapter is organized as follows: First, we elaborate on the
problem statement and resource and application models in Section 4.2. Next, in
Section 4.3 and in Section 4.4, we discuss the FSPP and formalize the optimization
model. We evaluate the model extensively and discuss results in Section 4.5.
After that, to solve the proposed optimization problem, we apply a different
approach, namely a GA, in Section 4.6. We compare the results to the exact
optimization method and a classical approach that neglects fog resources and
runs all services in a centralized cloud in Section 4.7. The goal of the evaluation
is to identify the best approach to solve the proposed optimization problem in
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4.2. Modeling the Fog

terms of resulting QoS (i.e., application response times), QoS violations (i.e.,
application deadline violations), and cost.

4.2 Modeling the Fog

In order to determine QoS-aware fog service placement, we need a suitable
representation of the involved entities. For this, we provide a model of an IoT
application which comprises the related set of IoT services, as well as QoS
requirements of the application in Section 4.2.1. Then, in Section 4.2.2, we
describe computational resources which collectively compose a fog landscape
and communication links between them. Compared to the definitions in the
system model presented in Section 3.3, here we separate application and resource
models from the optimization problem. We introduce deadlines of applications
and makespans of services, which provide the means to calculate deployment
times. Regarding the fog, we introduce more properties to consider of fog cells
and fog nodes within fog colonies and cloud resources, as well as corresponding
relationships and delays between different reosurces.

The application model contains all the definitions related to applications and
services and their characteristics, while the resource model provides descriptions of
the fog landscape resources together with their capabilities. Finally, in Section 4.3,
we formulate the FSPP as a mapping between applications and resources that
takes into account QoS requirements. For the sake of clarity, in Table 4.1 we
summarize the notation used in this section. The goal function in the system
model in Section 3.3 aims at maximizing the utilization and assignments at the
edge of the network, while in FSPP this goal is enhanced by also prioritizing
submitted IoT applications which are closer to their defined deadline. Constraints
also differ, since the FSPP accounts for more QoS-related constraints and models
explicitly the delegation of services to a neighbor fog colony.

4.2.1 Application Model

An IoT application consists of several services, which run on virtualized IoT
devices (i.e., fog cells) and interact with each other to provide a well-defined
functionality, i.e., the sense-process-actuate application [66], which aims to utilize
computing infrastructures across the fog and resembles the stream processing
approach. Hence, an application is deployed in a fog landscape by placing the
services onto particular fog cells. Let A = U} A; be a set of applications to be
placed in a fog landscape. Each application consists of a set of services. A service
a € A; is characterized by its demands for computational resources, i.e., CPU cac,
RAM c(]l\/[ , storage caS , and by a service type T,. This specification considers only
static services with fixed amounts of CPU and RAM. It is clear that this is rather
a limitation contrasting real-world behavior of IoT applications. Nevetheless,
most cloud platforms do not consider dynamic load service descriptions and offer

Applications and
Services
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fixed capacities of their services. A solution to tackle this issue in the future
may be to regularly update the application model, e.g., daily, to adjust the load
according to operation measurements of services.

The type T, specifies the requirement of a service to be executed on a specific
kind of resource, e.g., equipped with a specific sensor. This was not considered
in Chapter 3. Without loss of generality, we consider three types of services:
sensing, processing, and actuating services. These types of services account for
most possible scenarios in the IoT [64]: sensing and actuating services require
immediate action and, therefore, need certain equipment in IoT devices, whereas
processing services may require more computational resources and can be executed
either at the edge of the network or also in the cloud. A service a has an estimated
makespan duration my.

An application A; is characterized by a user-defined deadline D4, which is the
maximum amount of time that is allowed for the application execution. The
parameter w4, keeps record of the current deployment time for an application A;.
The application response time r4,, with 4; € A, depends on the makespans of
its services a € A;, on the communication delays among the services, and on the
deployment time. The deployment time wy,, with A; € A, comprises the time
needed to compute and enact the service placement plan.

4.2.2 Resource Model

The resource model is based on the conceptual architecture of the fog landscape
presented in Section 3.2. The resource model reflects the fog resources, i.e., fog
cells, fog nodes, cloud resources, their capabilities and relationships between them
to be further used for resource provisioning and service placement.

A fog cell f is a virtualized single IoT device coordinating a group of other
IoT devices, i.e., sensors and actuators. Fog cells run on IoT devices with
computational, network, and storage capacities, e.g., gateways or a Cyber-Physical
System (CPS), while ‘pure’ sensors and actuators are IoT devices without such
resources. A fog cell is a software environment that provides access, control,
and monitoring of an underlying physical IoT device. Computational resources
of a fog cell are less powerful than those provided by the cloud. A fog cell is
characterized by its capacities CPU C'J(c], RAM C’}VI , and storage C’f . There is no
direct communication between fog cells, instead fog cells communicate via fog
nodes in the colony, as has been discussed in Section 3.2.

Fog cells are organized in a fog colony. Each colony is identified and managed
by its head fog node F. We denote Res(F') the set of fog cells which are
managed by F'. A colony acts as a micro data center with resources scattered in
a certain geographical area, i.e., each fog cell belongs to the resources of a colony
f € Res(F). The communication link between a fog cell f and the head fog node
F' is characterized by a not negligible delay. Under the assumption of symmetric
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4.2. Modeling the Fog

Table 4.1: Problem notation.

Parameter Description

= t Current time
= T Interval between two solutions of the FSPP (in sec)
A Set of applications to be executed
A; Application
Dy, Deadline for an application (in sec)
2 wa, Current deployment time of an application (in sec)
2 A, Response time of an application (in sec)
.S a Service in an application
ZQL ¢ CPU demand of a service (in mips)
< M RAM demand of a service (in MB)
o Storage demand of a service (in MB)
Mg, Makespan of a service (in sec)
T, Type of a service
R Cloud
F Head fog node
N Closest neighbor fog node
c¢ CPU capacity of F' (in mips)
cM RAM capacity of F' (in MB)
% C}? Storage capacity of F' (in MB)
% Res(F)  Fog cells in a colony
E f Fog cell
jo Cg CPU capacity of f (in mips)
° Cy RAM capacity of f (in MB)
C’f Storage capacity of f (in MB)
Res®(F)  Fog cells that can host a service a
dy Link delay between F' and f (in sec)
dr Link delay between F' and R (in sec)
dn Link delay between F' and N (in sec)

links and considering that a fog cell f can communicate only with the head fog
node F' of its own colony, we denote dy as the communication link delay between
f and F with f € Res(F'). Colonies communicate with each other via their head
fog nodes.

A fog node is a more powerful fog cell as has been already introduced in Section 3.2, Modeling of Fog
but, unlike a fog cell, it does not directly manage IoT devices. An example of Nodes

such a fog node can be a proxy server or a gateway. Usually, fog nodes are

supplemented with faster and more expensive computational resources than fog

cells, however, at the same time, slower and cheaper than cloud resources. The

head fog node F is characterized by its capacities CPU C%, RAM C¥, and
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storage C}?. Each fog node has to perform resource provisioning by exploiting
the computational resources of the colony for the placement of services. Apart
from resource provisioning, the purposes of fog nodes are to:

— Perform infrastructural changes in their fog colonies,
— Analyze resource utilization in the colonies, and
— Monitor fog cells.

A cloud R has theoretically unlimited resources. The interaction between the
fog node F' and the cloud R is performed via the fog controller. The logical link
between the fog node F' and the cloud R has a not negligible delay dr. The fog
controller is a central unit that manages the execution of services in the cloud
and supports the underlying fog landscape. Importantly, the fog controller is able
to overrule fog nodes in fog colonies, but the latter may also act autonomously in
the case that no fog controller is available.

4.3 FSPP: Fog Service Placement Problem

Based on the application and resource models, we are now able to define the
FSPP. The FSPP aims to determine an optimal mapping between IoT applications
and computational resources with the objective of optimizing the fog landscape
utilization while satisfying QoS requirements of applications. In the FSPP, we
consider a proactive scenario of service placement, where the placement of services
is calculated and applied periodically. Such a proactive scenario fits the volatility
of the IoT (with regard to data to be processed and also with regard to IoT
devices leaving and entering the system) better than static resource provisioning
approaches [62]. To account for QoS requirements of applications, i.e., deadlines,
historical data about deployment time in fog colonies has to be preserved. This
data is used to calculate an upper bound (i.e., worst-case estimation) of the
response time of applications and to prioritize applications which are closer to
the deadline.

We define the FSPP as a decentralized optimization problem, i.e., when an
IoT application request is submitted to a head fog node F', the latter solves an
instance of the FSPP and performs the service placement. For that, every fog
node considers a local view on the colony and accounts for the closest neighbor
colony and the cloud. The fog node F' places the application services on the
computational resources available in its colony (i.e., fog cells, the fog node itself).
If there are not enough resources, it sends the services either to the closest neighbor
colony, or to the cloud. In the following sections, we describe mechanisms not only
to choose the closest neighbor colony, but also to account for the most effective
colony among the neighbors. With respect to the fog node F', we denote N as
the head fog node of the closest neighbor colony and dy as the communication
link delay between F' and N.
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4.4. Formal Definition of the FSPP

Specifically, the fog node F' manages fog cells which are resources of the colony
Res(F). Recalling the application model, we observe that a service a € A; cannot
be placed on every fog cell f € Res(F') because of its type T, that may require
specific resources (e.g., sensors). Therefore, for each a € A; we consider a subset
of fog cells, where it can be deployed, i.e., Res®(F') C Res(F).

To sum up, I’ determines the following subsets of placements:

— Which services have to be executed in its colony?

— Which services have to be executed locally on F’s own resources?

— Which services have to be delegated to the closest neighbor colony N7
— Which services have to executed in the cloud R?

Afterwards, the fog node is able to perform placement of services on the identified
fog resources. The concrete model on how services are placed on fog resources is
presented in the next subsection.

4.4 Formal Definition of the FSPP

The FSPP is solved by the fog node F' periodically, every 7 time units, i.e.,
seconds. The application requests submitted between ¢t — 7 and t are scheduled
for placement in t. We provide a formulation of the FSPP considering t as the
current time. After defining the preliminaries and problem notation, we formulate
the FSPP as an ILP problem.

Variables The variables of the optimization model are binary and indicate a
placement of a specific service on specific fog resources. The binary variable z, f
indicates whether a service a is placed on a fog cell f in the current colony. y,
defines that a service a is placed on the fog node. The binary variable z, defines
whether a service a needs to be executed in the cloud, and n, indicates whether
a service a is delegated to the neighbor colony. Variables x, ; implicitly account
for the types of services and types of IoT devices through Res®(F'). Analogously,
variables y, and n, indicate that the head fog node and the neighbor fog colony
represented by its head fog node N can host a service a.

Goal Function The goal function of the optimization model is expressed by (4.1)
and maximizes the utilization of the fog landscape while satisfying application
requirements.

A;  Res®(F)

Z( Z Tag + Yo+ 1)) (4.1)

DA — wa,

A
max Z (
A;

To account for deadlines, the goal function prioritizes those applications which
have a closer deadline. For that, we use the coefficient ﬁ which depends

on the deadline and the deployment time of an applicatlion. "This coefficient
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becomes more influential when the deadline is close or the deployment time of
the application is significant.

Constraints As a first constraint, each service a has to be placed either in the
fog or in the cloud:
Res®(F)
Z Taf + Yo+ 2a+nqg=1,Vac A;,VA; € A (4.2)
f

Second, placed services must not exceed the capacities of CPU, RAM, and storage
of a corresponding fog resource. Equations (4.3)-(4.4) guarantee that the services
placed on fog cells or on the fog node do not exceed a given percentage u of
available resources.

A;
Qagr < pCl, v ={C,M,S},Vf € Res(F) (4.3)

a

A;
> clya < puCh, v ={C,M,S} (4.4)

As a third constraint, we account for the response time 74, of an application, so
that it does not violate the application deadline as in (4.5).

ra, < Da,,VA; € A (4.5)

The response time has to account for the time until the next optimization period
and for an average deployment time of services in the closest neighbor colony.
The calculation of 74, is done from the central point of view of the fog node in
the colony. The application response time 74, is defined in (4.6) and depends on
the overall makespan m 4, and the overall deployment time w4, .

ra, =ma, +wa,, VA; € A (4.6)

The overall makespan my, accounts for the time needed to transfer services to
computational resources, execute them, and retrieve the results, considering that
the communications are coordinated by the fog node. The makespan m 4, depends
on the execution time of each service according to its placement as in (4.7)—(4.11).
We define my, as:

A;  Res®(F)

ma,=> (Y dla, )zay + dla, F)ya+
f

a

d(a, R)z, + d(a, N)na)
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4.4. Formal Definition of the FSPP

where d(a, f), d(a, F'), d(a, R), and d(a, N) represent the makespan of a when
it is executed on the fog cell f, the fog node F, the cloud R, and the neighbor
colony N, respectively. These variables are defined in (4.8)-(4.11):

d(a, f) =2ds +mq, Ya € A;, Vf € Res®(f) (4.8)
d(a, F) = mg, Ya € A; (4.9)

d(a, R) = 2dg + mg, Ya € A; (4.10)
d(a,N) = 2dyn + mg, Ya € 4; (4.11)

The overall deployment time w4, depends on the already experienced deployment
time at the time ¢ — 7, and the possibly additional time if any a € A; is delegated
to the closest neighbor colony for execution. We define w,, in 4.12:

wa, = wy, +na, 7+ Tuyyna, (4.12)

where the first term w} is the already experienced deployment time of A;, the
second term n 4,7 considers that if a service is delegated to the closest neighbor
colony, the placement will be performed in the next round of the FSPP, i.e.,
the application has to wait at least 7 time units before its execution. The term
Twyna, models the additional deployment time spent in the closest neighbor
colony before the application execution. The calculation of the real value of the
average deployment time in the closest neighbor colony T, requires to look
ahead in time. To simplify the formulation, we rely on the estimation of T,
based on historical data. To this end, we define T\,, as a moving average of
parameter o of Ty, , i.e., the sampled deployment time per each service delegated
to N:

Twy =oTyy +(1—a)T,,, , acl0,1] (4.13)

where T;N is the average deployment time in the closest neighbor colony in the

previous round of the FSPP.

Finally, we introduce variables n 4, that charge a supplementary deployment time
per application A; if at least one of its services a € A; is delegated to the closest
neighbor colony N given that |A4;| is the cardinality of A;:

A;
na, <Y ng (4.14)
ZAi Ng
ny, > =0 (4.15)
|4

Example To clarify the calculation of the response time of an application, we
provide an example for an application A; that consists of four services A1 =

Deployment
Time
Calculation

Delegation to the
Neighbor Colony
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Figure 4.1: Example of service placement.

{a1,a2,a3,a4} and is distributed between two fog colonies. Let the assignments
to the fog devices be as follows: Service a; is placed on f!, as is placed on F, a3
is delegated to the closest neighbor colony N, and a4 is placed on f? (Figure 4.1).
In this example, we assume that the application had no previous deployment
time, so that wih = 0, and in the closest neighbor colony with the fog node
N the average deployment time is T, (). The response time 74, is calculated
according to (4.6)—(4.11) as shown in (4.16). To be able to calculate estimations
of the factors of data transfers between services in an application, as necessary
for (4.8)—(4.11), we use the notion of triangular inequality in the network [44],
which helps to find an approximate distance and corresponding delay between two
network locations, which is assumed to be bigger than the direct delay between
two locations (see Figure 4.1).

ra, =d" + ma, +ma, + AV + may+

dV 4+ d” £ mg, + Ty () +7 (4.16)
a4 wWN

Domain Definitions Finally, (4.17)-(4.21) specify the domain definitions for
the optimization model:

zq,r € {0,1}, Va € A;, VA; € A, Vf € Res®(F) (4.17)
Yo € {0,1}, Va € A;, VA, € A (

zq €4{0,1},Va € A;, VA; € A (4.19
ng € {0,1},Va € A;, VA, € A (
na, €{0,1}, VA, € A (
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4.5. Evaluation of the FSPP Optimization

4.5 Evaluation of the FSPP Optimization

In the following evaluation, we show the benefits of the FSPP in terms of processing
cost, response times, and deadline violations with respect to a baseline approach
and to the execution in the cloud. For this, we use and extend iFogSim, which is
a modeling and simulation toolkit for IoT and fog computing environments [66].

4.5.1 Evaluation Environment

We extend iFogSim with the means to account for the structure of the fog
landscape introduced in Section 4.2. The Application and AppModule classes are
modified to account for deadlines and deployment times of applications. The
FogDevice class is extended by FogLandscapeDevice to act as a fog cell and a
fog node. This class includes means to account for the utilization of a colony’s
resources, to store average deployment times and types of services which can
be executed by fog cells and control nodes, to calculate the closest colony from
all neighbor colonies for the purpose of service delegation, and to calculate a
moving average of deployment times of applications in a neighbor colony, which
is needed to receive an upper bound estimation of response times of applications
(as described in Section 4.4). The ModuleMapping class provides the mapping
from a fog node’s name to a list of instances to be launched on that fog node.
The ModulePlacementOptimization is a created API to ease the implementation
of various resource provisioning approaches, to unify the access to the simulation
environment, and to interpret and activate the obtained placement results. The
baseline scenario is represented by the ModulePlacementFirstFit class, which
implements this API and performs service placement by searching a first-fit fog
resource. The discussed extensions are presented in Figure 4.2.

The optimization model is implemented by means of the IBM Ilog CPLEX
Optimization Studio! and the open source Java ILP library?. The implemented
FogSolverCPLEX class performs the mapping from Java ILP to IBM CPLEX. The
ModulePlacementEzact class implements the API and solves the model. It has to
be noted that in order to use IBM CPLEX to solve the described optimization
problem, the constraints are transformed to their canonical form.

4.5.2 Experimental Setup

To evaluate the efficiency of the FSPP, we apply a first-fit placement (called the
‘baseline’ scenario) and the optimization model of the FSPP as introduced in
Section 4.4 (called the ‘optimization’ scenario) in the fog landscape. Furthermore,
we perform an execution of all applications in the cloud for the case the fog
landscape is not available (called the ‘cloud’ scenario).

LOnline; Accessed: Apr. 2023 https://www.ibm.com/products/
ilog-cplex-optimization-studio
20nline; Accessed: Apr. 2023 https://sourceforge.net/projects/javailp/

iFogSim
FExtensions

Ezxtension for

the Model

Scenarios
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- List<FoglandscapeDevice> processedDevices;
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- FoglandscapeDevice cloud;
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- Problem problem;

____________ ! ModulePlacementExact AppModule
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| - List<Application> appList; - String name;
ModulePlacementFirstFit - List<FoglandscapeDevice> fogDevices; - String appld;
- FoglandscapeDevice controlNode; - Map<Pair<String, String>,
- List<Application> applList; - FoglandscapeDevice nearestNode; selectivityMap;
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- MapsString, List<Integer>>
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+ List<ModuleMapping> optimize()

# boolean checkPlacementinFogDevice( +List<ModuleMapping> optimize()

v

<<Interface>>

P FoglandscapeDevice
ModulePlacementOptimization

long previ ingTime;

+ ListcModuleMapping> optimize(); long previousAverageWaitingTime;

+ double getUtilizationOfStorage();
+ setUtilizationOfStorage(double utilizationOfStorage);
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FogLandscapeDevice fogDevice, Application app, solve) -long w_a;
AppModule appModule) - long makespan;
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- long deploymentTime;
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- List<AppEdge> edges;
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+void setUtilizationOfCpu(double utilizationOfCpu);
+ double getUtilizationOfRam();
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+ List<FogLandscapeDevice> getNeighbors();
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+void i ist<Fogl +void setDeploymentTime(long deploymentTime);
+ double getControlNodeLinkLatency(); +long getDeadline();
+void setC KL inklatency); +void setDeadline(long deadline);
+ List<Integer> getTypeOfModules(); +boolean isToBeAssignedToNeighbor();
+void setTypeO i typeO! +void setToBeAssignedToNeighbor(boolean
+long getPreviousWaitingTime(); toBeAssignedToNeighbor);
+void Time(long Time); +int getAppModuleType(String appModule);
+long getPreviousAverageWaitingTime();
+void setPreviousAverageWaitingTime();
+long calculateAverageWaitingTime()
iFogSim
¢
ModuleMapping FogDevice Controller AppEdge AppLoop

g

Figure 4.2: Extensions to iFogSim.

Four different sense-process-actuate application requests are submitted for execu-
tion in the fog colony. Each fog cell is connected to four different sensors and
actuators corresponding to each of the applications, i.e., motion, video, sound,
and temperature sensors and actuators. Each application consists of several
services. A summary of the setup is provided in Table 4.2.

As fog landscape, we consider several fog colonies. One colony is the main colony,
where service placements are observed. From the remaining neighbor colonies,
the closest neighbor is identified according to the least communication link delay
(see Section 4.2). The fog node can host processing and actuating services. The
neighbor colony can host only processing services, and the cloud can host all
services. The communication link delay between the fog node and the cloud is set
to 2 seconds. The cost per processing in the cloud is set to $ 0.30 per BTU, i.e.,
one hour. The communication link delay between the fog node and the neighbor
fog node is set to 0.5 seconds. The average deployment time of applications in the



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.5. Evaluation of the FSPP Optimization

Table 4.2: Application details.

Services ¢ (mips) ¢ (MB) my (sec)

Application A;, D4, = 300 sec, wy, = 0 sec

SenseMotion 50 30 0.10
ProcessMotionl 100 10 0.10
ProcessMotion2 100 20 0.10
ProcessMotion3 200 30 0.08
ActuateMotion 50 20 0.80
Application Az, D4, = 240 sec, wa, = 60 sec

SenseVideo 50 30 0.90
ProcessVideol 200 100 0.10
ProcessVideo2 200 20 0.10
ProcessVideo3 100 30 0.25

ActuateVideo 50 20 0.50
Application As, Dy, = 360 sec, wa, = 60 sec

SenseSound 50 30 0.40
ProcessSound1 100 10 0.10
ProcessSound?2 200 20 0.07
ProcessSound3 200 30 0.35
ActuateSound 50 20 0.40

Application A4, D4, = 360 sec, wy, = 0 sec
SenseTemperature 50 30 0.40
ProcessTemperaturel 200 10 0.70
ProcessTemperature2 200 20 0.10
ProcessTemperature3 200 30 0.90
ActuateTemperature 50 20 0.30

neighbor colony is set to 3 minutes, the average deployment time of applications
in the neighbor colony of the previous optimization period is set to 2 minutes.
The fog node in a colony has 500 mips of CPU power, 512 MB of RAM, and
8 GB of storage. 10 fog cells are connected to the fog node. These fog cells are of
less computational and storage power than the fog node, i.e., 250 mips of CPU
power, 256 MB of RAM, and 4 GB of storage. These fog cells can host sensing
and actuating services. The communication link delay between fog cells and the
fog node is set to 0.5 seconds.

4.5.3 Results and Discussion

This experiment aims to show how the model behaves depending on various
deadlines and deployment times of the given applications. In the baseline scenario,
for applications A, Az, and A4 sensing and actuating services are placed on
different fog cells, and processing services are delegated to the closest neighbor

Baseline

73



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4. TOWARDS QOS-AWARE FOG SERVICE PLACEMENT

Optimization

74

40

Deadline Distance ( % )
0

o
& A
o
T -
o
© - L — N —
" Application A, Application A, Application A Application A4
M Baseline [ Optimization [J Cloud
Figure 4.3: Deadline distance.
o
S
~
X 3
5
o
E ©
©
[&]
<
2
©
0
g o
5 4
&«
o
Baseline Optimization Cloud
[ fog cells [ fog node & neighbor colony M cloud

Figure 4.4: Service placement.

colony. For application Ao, two processing services are placed on the fog node,
and one processing service is delegated to the neighbor colony. In the course of
the experiment, the baseline scenario results in deadline violations for A, and Ay
by 82.65 and 22.87 seconds respectively.

In the optimization scenario, if it is not advantageous for an application to wait
for the deployment in the closest neighbor colony because of the close deadline,
the optimization model places the services in the cloud. If the deadline is not
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4.5. Evaluation of the FSPP Optimization

Table 4.3: Scenario comparison: Baseline vs. Optimization vs. Cloud.

Metrics Baseline Optimization Cloud
Application A;, D4, = 300 sec, wy, = 0 sec

Response time (sec)  262.66 262.66 120.31
Deadline distance (sec)  -37.34 -37.34 -179.69
Application Ag, D4, = 240 sec, wa, = 60 sec

Response time (sec)  322.65 185.82 180.31
Deadline distance (sec)  82.65 -54.18 -59.69
Application A3, Dy, = 360 sec, wa, = 60 sec

Response time (sec)  322.90 322.66 180.31
Deadline distance (sec)  -37.10 -37.34 -179.69
Application A4, D4, = 360 sec, wa, = 0 sec
Response time (sec)  262.87 126.24 120.31
Deadline distance (sec) — 22.87 -113.76 -119.69
Service placement on resources (% of all services)
Fog cells 40 35 00
Fog node 10 15 00
Neighbor colony 50 20 00
Cloud 00 30 100
Cost of execution ($)  0.000 0.069 0.107
©
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Figure 4.5: Computational time of the FSPP.

critically close, and the estimated response time of the application conforms to
the constraints of the optimization model, the services are delegated to the closest
neighbor colony. For application Ao, the optimization model places the sensing
service on the fog cell, two processing and one actuating services onto the fog
node, and one processing service in the cloud. The placement of any service
from Ay to the closest neighbor colony would violate the deadline because of
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the additional deployment time that appears in the neighbor colony. In the case
of A4, the sensing and actuating services are placed on one fog cell and three
services are delegated to the cloud because the fog node is already busy with
Ay, For Ay and Az, sensing and actuating services are placed on separate fog
cells, and processing services are delegated to the closest neighbor colony. To
summarize, the service placement in the optimization scenario depends on the
time interval 7 between two subsequent FSPP optimizations in the system and
on the average deployment time T, in the closest neighbor colony, and the
solution of the FSPP of the optimization scenario circumvent deadline violations
of the applications. If 7 and T, are small enough, the FSPP optimization model
delegates the services to the closest neighbor colony. The deadline distances for
the three scenarios are depicted in Figure 4.3.

The utilization of the fog landscape in the three scenarios is shown in Figure 4.4.
In the baseline scenario, services are placed only on fog resources, i.e, 40% of
services are placed on fog cells, 10% of services are placed on the fog node itself,
and 50% services are delegated to the closest neighbor colony. In the optimization
scenario, these percentages are respectively 35%, 15% and 20%, and also 30% of all
services are executed in the cloud. As a result, the cloud resource is utilized only
by 30%. The use of the fog node’s own resources is performed more efficiently in
the optimization scenario. More services with lesser resource demands are placed
on the fog node rather than less services with bigger demands compared to the
baseline scenario. Such behavior is provided by the prioritization of applications
in the goal function according to the deadlines and deployment times, and strict
adherence to the deadlines in the constraints of the optimization model.

We assume ownership of the fog, hence the cost of execution in the fog landscape
can be neglected. The cost of execution in the cloud is calculated as the sum of
cost per processing second in the cloud of each service divided by the amount of
seconds in 1 BTU. In the optimization scenario, services are either delegated to the
closest neighbor colony, or executed in the cloud, yet at the same time satisfying
deadlines of applications. Therefore, execution cost accrue. Cost is around 35%
less than the cost of execution in the cloud scenario, yet the optimization scenario
still satisfies the application deadlines. A summary of all evaluation results is
shown in Table 4.3.

Additionally, we conducted another experiment to calculate the computational
time of producing a solution of the FSPP depending on the amount of services
to be placed. The amount of services affects the amount of decision variables
and constraints in the model, and therefore, influences the computational time.
In Figure 4.5, the distribution of the computational time is shown based on
minimum and maximum values, first and third quartiles, and the median of the
computational times. The individual outlying points of computational times
are displayed as unfilled circles in the first two boxes. The measurements of
computational time show that FSPP is solved in less than a second even in the
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4.6. Design and Implementation of a Genetic Algorithm

case of submitted applications with large amounts of services.

4.6 Design and Implementation of a Genetic
Algorithm

In general, the service placement problem has been shown to be NP-complete [81].
Hence, we present a heuristic to solve the FSPP. The choice to design and
implement a GA to solve the FSPP was based on the popularity of GAs in solving
service composition problems in cloud-based environments [11, 120, 155, 168], and
their lightweight nature, which helps to run GAs on resource-constrained devices
at the edge of the network. The main advantage of GAs is that they investigate
a large search space and provide a viable qualitative solution in polynomial
time [163, 164].

As the name implies, GAs intend to mimic evolutionary processes [149]. One
iteration of a GA implies the application of three genetic operators in one
generation, i.e., selection, crossover, and mutation. A generation consists of
a population of individuals, where each individual is represented by its own
chromosome. Each chromosome consists of genes. The selection operator considers
the population of individuals in the current generation and chooses the best
individuals to let them reproduce and have an offspring, i.e., new individuals,
which form the next generation. The selection operator assesses the fitness
function of the chromosome of each individual. The fitness function shows the
level of ‘health’ of a chromosome, and is calculated based on a goal function
and the constraints of an optimization problem. After a certain percentage
of individuals in a population has been chosen for reproduction, the crossover
operator starts swapping genes of chromosomes of chosen individuals to create an
offspring. The elite of each generation, i.e., the individuals with the best fitness
values, go to the next generation unaltered. The mutation operator performs a
mutation of a certain number of individuals from the new offspring to support
the diversity of generations, i.e., the mutation changes a random number of genes
in the chromosome of an individual. Consequently, an old generation is evolving
into a new generation with a population filled by both the unaltered elite and
offspring. The algorithm repeats this process until a certain stopping condition
is fulfilled. As stopping condition, various criteria may be used, e.g., the number
of generations, the moment when the fitness function has no improvement with
regard to a certain tolerance value, or a specific moment in time. In the following,
we describe the concrete implementation of the GA to solve the FSPP.

In our implementation, the chromosome encoding is a vector, which represents a
service placement plan, i.e., a solution to the FSPP. The length of the chromosome
is the total number of services from all applications, which were requested for
execution at time ¢, i.e., Zf‘k |Ag|. Therefore, each service can be easily identified
by the position of the corresponding gene in the chromosome. Each gene in a

Choice of the
Algorithm

Algorithm
Description

Chromosome
Representation
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Figure 4.7: Chromosome contents.

chromosome denotes a certain placement of a service on a specific fog resource. A
gene is an integer value corresponding to the unique identifier of the computational
resource (i.e., fog cell, fog node, the closest neighbor colony, or the cloud). The
position of a gene in a chromosome along with its integer value represents the
service placement on the resource (see Figure 4.6). Such chromosome encoding
ensures the placement of all services.

Apart from encoding the placement, the estimated system state can be derived
from the information in the chromosome. This information includes the used
CPU, RAM, and storage capacities of fog resources (both fog cells and fog nodes),
and corresponding response times of applications, which will be obtained if the
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4.6. Design and Implementation of a Genetic Algorithm

service placement according to the considered chromosome representation is
enacted. The estimated system state is calculated based on the genes of the
chromosome. This calculation is performed whenever the chromosome is created,
i.e., also after crossovers and mutations.

The fitness function for each chromosome is calculated based on the principle
of encouragement if the chromosome fulfills the constraints of the FSPP, and of
punishment in the other case [159]. We consider three types of constraints:

— A set of constraints ¥ on capacities of CPU, RAM and storage resources,

— A set I' of implicit binary constraints derived from the model’s goal function,
i.e., conformance to service types, indications whether services are placed
on the fog resources, and

— A set of constraints T causing the ‘death’ of chromosomes, specifically,
service type violations and deadline violations.

To calculate the fitness function of a chromosome ¢, we have to account for these
three types of constraints.

First, we consider whether the constraints V3, € U are satisfied (i.e., if 8,(c) < 0)
or not satisfied (i.e., if B,(c) > 0), as in (4.22):

B0t = {0’ i hp(0) <0 (122

1, i By(c)>0

Similarly, 5. () denotes whether the constraints from I' are satisfied (3,(c) = 0),
or not (3,(c) = 1). Regarding the T constraints, the penalty distance from
the satisfaction of T constraints for ¢ is defined in (4.23), where (3, denotes a
constraint, and dg, () indicates whether a constraint is violated in the current
chromosome ¢, i.e., dg, () = 1.

D(c)= > 5,0 (4.23)
Bu€eTY

Provided that wg, ) is a weight factor of constraint 5, € V, wg (. is a weight
factor of constraint 8, € I', and w, is the penalty weight factor for the T
constraints, the fitness function is calculated according to (4.24):

Flo)= > ws,(1=205,0)+ > ws,(1-23s,() — wpD(c) (4.24)
Bpe¥ BT

If constraints /3, or (3 are satisfied in the considered chromosome c, then dg ()
and dg_ () become 0, and the corresponding values within the first and the second
terms are added to the fitness function. When the constraints are not satisfied,
05,(c) and dg_ () become 1, and the corresponding values resulting from the first
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and second terms are subtracted from the fitness function. The third term ensures
penalty w,D(c) for having D(c) other than 0, where the penalty factor wj, has
to be big enough to ensure that the worst chromosomes do not participate in
breeding individuals in the next generations in the GA.

As for the parameters of the GA operators, we use the 80%-uniform crossover,
tournament selection, random gene mutation with 2% mutation rate, elitism
rate of 20%, and a population size of 1000 individuals, which were set based on
pre-experiments where these parameters were varied. The uniform crossover was
chosen because genes are integer values. 80% of selected individuals perform
crossovers. To combine genes from parent chromosomes, a fixed mixing ratio is
used, e.g., a ratio value of 0.5 means that 50% of genes come from each parent. As
for the tournament selection, each of the two chromosomes are selected based on
the tournament with a certain arity. This is done by drawing a number of random
chromosomes (here the arity is 2) without replacement from the population
and then selecting the fittest chromosome among them. The 2% random gene
mutation means random genes in chromosomes mutate with the probability of

2%.

The stopping condition of the GA is activated when the fitness function achieves
a tolerance value of ¢ = 10~4, which is the average relative change of the fitness
value over generations. During each run of the GA, the fitness function increases
because less penalties are applied to the individuals. Therefore, the stopping
condition performs only when the fitness function of the fittest individual in the
generation is a positive value, i.e., when there are no ‘death’ penalties applied to
the individual. Additionally, we include an auxiliary stopping condition with a
maximum limit of generations achieved to eliminate unproductive time-consuming
search.

In the next section, we evaluate our GA compared to the exact optimization
method and to a baseline, namely the greedy first-fit heuristics, and to the
execution in the cloud.

4.7 Experimenting with Different FSPP Solutions

Our evaluation aims to show the performance of various approaches of solving
the FSPP. To apply the different approaches in a fog environment, we use again
the fog simulation toolkit iFogSim [66] to simulate the fog landscape and cloud
resources.

4.7.1 Evaluation Environment

The simulation environment has already been presented in Section 4.5.1, and is
extended by the entities to enable the GA. To adhere to the FSPP constraints, the
functionality to calculate a moving average of deployment times of applications in
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4.7. Experimenting with Different FSPP Solutions

Table 4.4: Application resource demands.

Service U,, (mips) M,, (MB) S,, (MB) m, (sec)

i

Sense 50 30 10 0.90
Processl 200 10 30 0.10
Process2 200 20 30 0.10
Process3 100 30 30 0.25

Actuate 50 20 10 0.50

the closest neighbor colony was implemented (as described in Section 4.3). The
ModulePlacementGenetic class implements the solution. The FogGeneticAlgorithm
class sets up the algorithm and its parameters, performs its execution, i.e.,
generates initial population of chromosomes, activates the algorithm, and specifies
stopping conditions. The FogChromosome class is a solution of the algorithm. It
contains the logic to calculate the fitness function. It also keeps the information
about utilization of the fog resources in the fog colony and about the types
and demands of submitted applications. It is done within the class SystemState.
Finally, FogUniformCrossover and FogRandomGeneMutation classes perform
accordingly swapping of chromosomes and mutations to enable advancing the
population.

We solve the FSPP by a greedy first-fit heuristic (called the ‘first-fit’ scenario),
which serves as a baseline for our evaluation, the exact optimization method (see
Section 4.4) implemented by the means of the IBM CPLEX library® (called the
‘optimization’ scenario), and the GA (called the ‘genetic’ scenario) introduced in
Section 4.6. If the fog landscape is not available at all, the execution is performed
solely in the cloud (called the ‘cloud’ scenario).

In the first-fit scenario, a service placement plan is produced by searching a
first-fit fog resource [29]. Hence, a list of all available fog devices in the fog
landscape is sorted by the communication link delays between each resource and
the fog node, by available resource capacities, and by the types of services. The
placement of services on fog resources is prioritized over the placement in the
cloud. The first-fit algorithm iterates over each service of each application in a
cycle and checks if the current fog device in the sorted list of fog devices satisfies
the service and application requirements. If the fog colony cannot host a service,
the service request is delegated to the closest neighbor colony.

The solution of the FSPP in the optimization scenario is computed by the exact
optimization method implemented by the means of the IBM CPLEX solver. To
simplify the use of this solver, the open source Java ILP library? is applied.

30Online; Accessed: Apr. 2023
https://www.ibm.com/products/ilog-cplex—optimization-studio
4Online; Accessed: Apr. 2023 https://sourceforge.net/projects/javailp/
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Table 4.5: Application deadlines and deployment times.

Application Dy, (sec) wa, (sec)

Appl 120 60
App2 300 0
App3 300 60
App4 360 60
Appb 240 0

In the cloud scenario, all the services are placed on cloud resources. This scenario
aims to show the benefits of decentralization in a fog landscape.

4.7.2 Experimental Setup

As setup for the evaluation, we consider five different applications, i.e., motion,
video, sound, temperature, and humidity processing applications, and their
corresponding sensors and actuators. The IoT applications are simulated by the
means of iFogSim. The needs in resources for application services are predefined
to ensure that one computational device cannot host a whole application and to
show that the FSPP is flexible and reacts to different input parameters. Service
makespan durations are set based on received average data from pre-experiments
run in iFogSim for specified services. A summary of the experimental setup is
shown in Table 4.4 and Table 4.5.

We observe a service placement in one fog colony that consists of ten fog cells
connected to a fog node, which is the head of the fog colony. The communication
link delays between the fog node and the cloud, the closest neighbor colony, and
fog cells are correspondingly 1 second, 0.5 seconds, and 0.3 seconds. In reality, the
communication link delays depend on the physical distance between resources.

In the closest neighbor colony, the expected deployment time of applications is
T;N = 3 minutes, and the sampled deployment time in the previous round of
FSPP period is Tg;f = 2 minutes. Also, in the experiments, we additionally
vary these parameters to show their influence on the system behavior. The CPU,
RAM and storage resources in the fog node are 1000 mips, 512 MB, and 8 GB
accordingly. The respective resources of the fog cells are 250 mips, 256 MB, and
4 GB. In the experiments, CPU capacities of fog resources are also varied to
show their influence on service placement. All three service types, i.e., sensing,
processing, and actuating services, can be executed in the fog colony and the
cloud, whereas only processing services can be delegated to the closest neighbor
colony. The processing cost in the cloud is $0.30 per BTU, i.e., one hour, as in

Chapter 3.

Finally, we use for the optimization model @ = 0.5 to update the expected
deployment time in the closest neighbor fog colony, i.e., TZJN. In the GA scenario,
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4.7. Experimenting with Different FSPP Solutions

we set the weight factor w =1 for all constraints [159], and the penalty weight w,
is 1000, which were explained in Section 4.6.

4.7.3 Metrics

QoS Metrics To show how a service placement plan meets the application
deadlines, we observe the response times of applications. A difference between the
application deadline and its response time D 4, — r4, shows how far the response
time is from the respective deadline.

Delay The service execution delay indicates how much time is spent by a service in
the network. This metric is calculated by the means of the simulation environment
depending on the communication link delays between resources.

Utilization The utilization of the fog (cloud) is calculated as a ratio of the
number of services placed on fog (cloud) resources and the total number of
services. This metric demonstrates the usage of different resources.

Insights In order to show how the model behaves in different conditions, we
analyze intrinsic relationships between the service placement and different param-
eters (i.e., strict or loose deadlines, overloaded or underloaded resources, average
deployment time in the closest neighbor colony, time between two subsequent
optimization periods), which gives insights into the system behavior.

Cost Assuming ownership of the fog landscape, the cost of service execution in
the fog can be neglected. The cost of service execution is calculated for the usage
of cloud resources as a product of the cost per processing in the cloud and time
in seconds of using cloud resources divided by the number of seconds in 1 BTU.

4.7.4 Results and Discussion

The aim of this evaluation is to observe the executions of service placement
plans provided by various approaches, i.e., in the first-fit, GA, and optimization
scenarios. By applying service placement plans, we observe response times of
applications, deadline violations, the utilization of resources, and the processing
cost. Additionally, these results are compared with the results of the cloud
scenario. An overview of the results is shown in Table 4.6. A summary of the
results of the GA scenario is shown in Table 4.8. These results were separated
as the GA is a non-deterministic algorithm, which required running multiple

repetitions of the experiments to achieve an average and deviation of the results.
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Figure 4.8: Response times of applications.

The first-fit scenario results in deadline violations for applications Az and As
by 22.87 and 24.43 seconds, respectively. In the GA, optimization, and cloud
scenarios, the service placement solution does not violate deadlines, however
each approach leads to different results in terms of fog resource utilization and
application response times (see Table 4.6). In the first-fit scenario, the services
are delegated to the closest neighbor fog colony when the current colony is not
able to execute them because of resource constraints. The cloud has the lowest
priority in the desirable service placement. Therefore, in the first-fit scenario
processing services are delegated to the closest neighbor colony. Because the
resources in the fog landscape are less powerful than cloud resources, the spikes
in Figure 4.9 appear. Even though the deadlines in the GA and optimization
scenarios are not violated, the delays in single service executions on average are
smaller in the genetic scenario compared to the optimization scenario.

The response times of applications and delays for single service executions in the
four scenarios are depicted in Figure 4.8 and Figure 4.9.

In Figure 4.8, the cloud scenario does not violate deadlines, and services are
executed immediately after submission of application requests because of the
theoretically unlimited resources of the cloud. However, in reality, the utilization
of cloud resources leads to higher execution cost and higher communication delays
due to the physical distance of the cloud data center.

To show the impact of application parameters on response times, we conduct
another experiment which varies the deadline parameter of application A4 (Fig-
ure 4.10) and observes response times of all applications. A4 was chosen for this
experiment as it has the biggest response time (see Table 4.6 and Table 4.7).
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Figure 4.9: Service execution delays.

Table 4.6: Response times and deadlines of applications in different scenarios.

Applications and Metrics
Scenario Aq Ay Az Ay As
Response Time r4; (sec)
Optimization 62.43 262.6 64.66 322.9 4.89
First-Fit 61.42 262.6 322.8 322.8 264.4
Cloud 60.00 0.001 60.00 60.00 0.001
Dy, —ra, (sec)
Optimization 57.56 37.34 235.3 37.1 235.1
First-Fit 58.57 37.34 -22.87 37.11 -24.43
Cloud 59.99 299.9 239.9 299.9 239.9

Given the parameters of the applications as shown in Table 4.5, when the deadline
is below 120 sec, the processing services of A4 are assigned only to the fog node
as this is the closest deadline among all applications. Above 120 sec and below
300 sec, Ay has a closer deadline than A4, and therefore processing services of Ay
and one processing service of A4 are placed on the fog node, and the remaining
two processing services of Ay are executed in the cloud. Above 300 sec, Ay
has enough time to wait for the deployment, and therefore, some services are
delegated to the closest neighbor colony, and both 7 and T:U  affect the response
time of Ay.

In the first-fit scenario, all sensing and actuating services are placed on the
different fog cells in the fog colony, four processing services are placed at the
fog node, and the remaining 11 processing services are delegated to the closest

Utilization in
First-Fit
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Table 4.7: Scenario performance comparison with regard to placement and cost.

Metrics
Scenario Placement (%)  Cost
f F N R (9
Optimization 40 24 24 12 0.09
First-Fit 40 16 44 0 0.00
Cloud 0O 0 0 100 4.81

Table 4.8: GA performance in terms of response time.

Metrics Ay Ao Asg Ay Ag
TA; 65.65 262.47 65.83 322.64 5.19
(sec) (0 =148) (6 =027) (0 =138) (0 =025 (oc=0.29)

Dy, —ra, 54.34 37.52 234.16 37.35 234.80

(sec) (0 =148) (0 =027) (0 =138) (06=0.25) (oc=0.29)

Table 4.9: Average placement and cost of resources.

Average Placement Cost
Resource (% of all services) (%)
7 988 (0 = 3.02)
F 11.2 (0 = 1.60) 0.22
N 24.0 (0 = 2.52) (0 = 0.02)
R 36.0 (o = 4.38)

neighbor colony.

GA Scenario In the genetic scenario, the sensing services of applications A;, Az, and As
Utilization are placed on the fog cells, the actuating services are placed either on the fog
cells or in the cloud, and the processing services are placed in the cloud. This
service placement plan includes 36% of placements in the cloud, and the available
resources of the fog colony are not used optimally, i.e., the fog node has enough
free resources to host more services. Many cloud placements occur because in
the fitness function of each of the generated chromosomes there is a considerably
big penalty for deadline violations, but there are no penalties for not using the
full capacities of resources of the fog node or fog cells.

Utilization In the optimization scenario, all ten sensing and actuating services are placed
during on fog cells, however the fog node hosts more services, i.e., six services. Another
Optimization Six services are delegated to the closest neighbor colony, and three are executed
in the cloud. Such a service placement utilizes fog resources to a higher degree,
leading to a reduced cloud utilization. The utilization of the fog landscape in

different scenarios is summarized in Figure 4.11.
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Figure 4.10: Impact of application deadlines on response times.

To show how 7 and TZ,N affect the utilization of the fog landscape, we conduct
separate experiments, calculate the goal function, and observe service placement
by varying 7 and TZ,N. As can be seen in Figure 4.12, while TZ,N is small, the
closest neighbor fog colony performs the processing fast, and therefore the head fog
node assigns most of the services to the closest neighbor colony. Then, TZ,  reaches
a certain value when it starts to interfere with deadlines of applications, and,
therefore, there is a decrease in the goal function as more services are delegated
to the cloud. Also, the significant increase of T:UN leads to the placement when
all the services are executed in the cloud, i.e., the closest neighbor colony is not
sufficient any more to host any service. The same considerations are valid for the
T parameter.

Regarding variations in the fog colony’s resources, the number of services placed
in the fog grows as well as the goal function of the model when the capacity of
the fog node increases (see Figure 4.13). In the considered scenarios, increasing
the capacity of the fog cells currently does not change the goal function, because
fog cells can only host sensing and actuating services, and the number of these
services does not change.

The impact of variations of deadlines of applications on the goal function is shown
in Figure 4.14. To receive these observations, the experiment was conducted
five times. In each experiment, the deadline of one application at a time has
been changed from 30 seconds to six minutes, while all other applications remain
unaltered. The results of the experiment show that when the deadline is small,
the services of the considered application are placed by the fog node as they
cannot be delegated to the closest neighbor colony, because that would mean
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Figure 4.11: Utilization of resources.

adding a further deployment time of 7 plus T;N. When the relaxed deadline is
in place, the deadline becomes higher than the deadlines of other applications,
i.e., starting from three minutes, which prevents the services from the considered
application to be placed on the fog node, and therefore they are delegated to the
cloud. The goal function value in this case is reduced according to the coefficient

~—L_ or taking into account also makespan durations as -, and due to
DA —wa, D4 ra;’

the fact that less services are placed in the fog When the deadhne becomes more
relaxed compared to the parameters 7 and TwN, i.e., starting from five minutes,
services are delegated to the closest neighbor colony, and the goal function slightly
increases, as more services are hosted by the fog landscape. After that, the only

reduction is observed due to the change of 5———.
A;7TA;

The cost of service execution according to the GA scenario is $0.22, because
9 out of 25 services are executed in the cloud. In the optimization scenario the
execution cost constitutes 40% of the cost in the GA scenario, charging $0.09
since only three services are executed in the cloud. The execution cost received
in the optimization and GA scenarios are 2% and 4%, respectively, compared to
the execution cost in the cloud scenario. The results are shown in Table 4.6 and
Table 4.8.

To sum up the most important observations of the evaluation, the execution of
the service placement plans produced in the GA and optimization scenarios do
not violate deadlines of applications unlike the service placement plan of the
first-fit scenario. The cost of execution in the optimization scenario constitutes
only 40% of the cost from the genetic scenario. Even though the GA solution
leads to less delay if observing single service executions, the exact optimization
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Figure 4.12: Impact of previous deployment time TZ, y on service placement.
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Figure 4.13: Impact of resources of the fog node F' on service placement.

method better utilizes the fog landscape resources.

4.8 Summary

As we have defined in Section 1.1, one of research challenges is to achieve optimal

resource provisioning and service placement in the fog. Therefore, in this chapter,

we provide a model for an IoT application and a resource model for a fog landscape.
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Figure 4.14: Impact of application deadlines on the goal function.

Afterwards, the FSPP is described, and an optimization model is formalized.
We study the placement of IoT services on fog resources, taking into account
their QoS requirements. In this chapter, we have simulated a fog landscape
with multiple colonies and solved the FSPP using several approaches, i.e., a
first-fit algorithm, exact optimization, and execution in the cloud. We show
that our optimization model prevents QoS violations and leads to 35% less cost
of execution if compared to a purely cloud-based approach. The experimental
evaluation has shown that the FSPP utilizes the fog landscape for 70% of all
services. The solution of the FSPP does not violate deadlines of applications
unlike the solution of the baseline approach.

Next, we implement another resource provisioning approach using a GA. Also,
we compare all the results with the execution of the same experimental setup
with the exact optimization and with the execution in the cloud. Unlike the
service placement plans produced by the first-fit heuristics, the service placement
plans of the GA and the exact optimization method do not violate deadlines of
applications. The optimization method produces a service placement plan which
is more effective in utilizing the fog landscape resources. This leads to lower
execution cost when compared to the average service placement plan produced
by the GA. The cost in the optimization method constitutes only 40% of the
cost of service placement plans produced by the GA. The GA produces solutions
which on average experience a lower deployment delay by exploiting more cloud
resources, i.e., on average 36% of the services have been run in the cloud.

This chapter constitutes Contribution II as defined in Section 1.2 and covers
requirements 6-10 from Section 2.6:

6. A fog landscape should provide resource provisioning in order to efficiently
distribute workload among resources in the fog.

7. A resource model in a fog landscape should represent all available resources
at the edge of the network and in the cloud and their corresponding
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10.

capabilities and relationships.

. A distributed IoT application to be executed in the fog should also be

modeled.

The resource model and the IoT application model should be used for the
definition of resource provisioning in the fog, i.e., of a service placement
problem.

The resource provisioning should adhere to the desired goals and account
for fog landscape constrains.
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CHAPTER

IoT Application Execution
with FogFrame

In previous chapters, we have established theoretical principles of fog computing
and considered both RAs and conceptual architectures [25, 45, 47, 141]. In
this chapter, we focus on the concrete implementation of a system capable to
manage a fog landscape and to efficiently execute IoT applications. We describe
a system architecture for fog computing, which is built upon our presented
conceptual architecture in Chapter 3. With this architecture design, we implement
a representative fog computing framework called FogFrame that operates the fog.
The resource provisioning and service placement approaches, which have been
presented in Chapter 4, are implemented in this framework. To evaluate the
framework, we conduct a series of experiments that show how service placement,
deployment, and execution is performed by FogFrame.

The framework is built to provide coordinated control over the physical and
virtual infrastructure of a fog landscape with computational resources and data
sources potentially entering or leaving the fog at any time [124, 143]. Enabling
the coordinated cooperation among computational, storage, and networking
resources in the fog can be challenging due to such volatility of resources in a fog
landscape [6, 33]. For this reason, within the FogFrame framework, we design
necessary communication mechanisms for instantiating and maintaining service
execution in a fog landscape during runtime.

In this chapter, we explicitly show how a FogFrame-based fog landscape is created
and maintained, how it evolves at runtime reacting to different events, and how
IoT applications are submitted, processed, and executed. Specifically, we define
and implement fault-tolerant resource provisioning and service placement to
enable a fog landscape to evolve at runtime. A real-world testbed is implemented
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by the means of Fogkrame according to the specified architecture and workflows.
To evaluate the framework in the volatile fog, we conduct a series of experiments
that show how the framework adapts to changes in the available resources, how it
balances the workload, and how it recovers from resource failures and overloads.

5.1 Overview

To adopt fog computing, first of all cloud computing properties have to be
mirrored to the edge of the network, as has been discussed in Chapter 2. Such
properties include on-demand up-scaling and down-scaling, and accordingly
leasing of computational resources based on needed workload. The essential
technology enabling these properties in cloud computing is the virtualization of
cloud resources implemented by the means of VMs and containers as has been
discussed in Section 2.1. In a fog landscape, VMs are not sufficient as they are
resource-intensive and need several minutes to start and deploy services, which is
unacceptable for delay-sensitive IoT applications [45]. A promising solution for
this issue is the utilization of lightweight containers as a virtualization mechanism
for resources at the edge of the network [25, 103, 144]. Therefore, it is necessary
to introduce mechanisms and principles of how to use containers both to manage
a fog landscape and to execute distributed IoT applications in the fog.

In FogFrame, this issue is addressed by virtualizing and implementing fog devices
in a fog landscape, i.e., fog cells and fog nodes. These fog devices control the
IoT devices where they are deployed and are able to instantiate and execute IoT
applications on the IoT devices. While implementing such an architecture in
practice, we need to consider the volatile nature of a fog landscape, i.e., different
IoT devices at the edge of the network are dynamic with regard to the geography
of data sources and volume of data to be processed, as well as regarding resource
capacities, intended functionalities, and capabilities of IoT devices. Taking into
account this volatile nature of the fog landscape and the research questions stated
in Section 1.1, we define the following main goals to be achieved by FogFrame:
(i) to create and maintain a fog landscape made up from computational resources
at the edge of the network and in the cloud, (ii) to establish communication
and interaction in the fog landscape, (iii) to efficiently deploy and execute IoT
applications. For the latter, in order to efficiently execute IoT applications in a fog
landscape, we study the problem of how to distribute services of IoT applications
between resources in a fog landscape.

Our contributions can be summarized as follows:

— We design and implement the Fogkrame framework, which provides com-
munication and interaction of virtualized resources within a fog landscape.
— We implement functionalities for decentralized service placement, deploy-
ment and execution in a fog landscape. Service placement is performed by
two heuristic algorithms — a greedy algorithm and a GA. We distinguish ser-
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vice deployment at the edge of the network and in the cloud and implement
deployment mechanisms.

— We develop mechanisms to react to runtime operational events in the fog
landscape, namely, when devices appear and disappear in the fog land-
scape, and when devices experience failures and overloads. The framework
identifies those events and migrates necessary services to balance workload
between different resources.

— We evaluate the capabilities of FogFrame with regard to service placement,
adherence to QoS parameters, and utilization of fog resources.

In this chapter, the work is based on findings from the previous chapters, where
we researched fog computing environments and different service placement ap-
proaches, and evaluated them using the simulators CloudSim [34] and iFogSim [66].
However, instead of continuing to use simulators to create the fog infrastruc-
ture for testing different resource provisioning approaches, we have implemented
FogFrame. Therefore, as an additional outcome, our framework can be freely used
in the research community to develop and evaluate different resource provisioning
methods for the fog. This is enabled by providing a working software publicly
available within our Github repository! for reimplementing exchangeable loosely-
coupled components, building and connecting a fog computing environment, and
executing IoT applications.

The remainder of this chapter is organized as follows: We describe how to
configure a fog landscape and enable communication between entities in FogFrame
in Section 5.2. Next, we discuss how the fog landscape evolves at runtime.
Section 5.3 is devoted to events that can take place in a fog landscape during the
execution of IoT applications at runtime. Section 5.4 provides the design details
of FogFrame. In Section 5.5, we provide application management mechanisms.
Afterwards, Section 5.6 describes the adaptations of the system model for service
placement and corresponding placement algorithms in FogFrame. The framework
implementation and experiments with resource provisioning are discussed in
Section 5.7 and Section 5.8. In Section 5.9, we show experiments and evaluation
of how FogFrame reacts to volatile changes in the fog.

5.2 Workflows in a Fog Landscape

We have already introduced a conceptual fog landscape in Section 3.2. In this
section, we continue to expand the architecture by taking into account the
specification of how a fog landscape can be created and instantiated, and defining
necessary workflows and interactions.

Setting a fog landscape starts with instantiating the fog controller, which is an Initialization

initial communication point for fog colonies. After instantiating the fog controller,

!Online; Accessed: Apr. 2023 https://github.com/softls/FogFrame-2.0
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fog devices can enter the fog landscape and start forming fog colonies. When
creating the fog landscape, we follow the assumptions that

— All fog devices are able to provide their location data,

— All fog devices are configured with the fog controller communication data to
request joining the fog landscape (or are able to get the fog controller com-
munication data, e.g., IP address, through some bootstrapping mechanism),
and

— All fog nodes can operate within predefined coverage areas, can form fog
colonies, and operate fog devices.

IoT devices are assumed to be using a container-compatible operating system
that can be used for the execution of containerized services [103].

To enter the fog landscape, a fog device sends an asynchronous pairing request
containing the own location data to the fog controller. The fog controller has
a dedicated location service. Based on the location coordinates and coverage
areas of all fog nodes in the fog landscape, this location service returns data
about the fog node, which becomes a parent to this fog device. This is possible
because each fog device contains data about its own device name, IP address,
and location coordinates. Other data differs according to the fog device type, for
example, fog nodes additionally contain a coverage area parameter. The coverage
area defines a geographical area for which a fog node is responsible. The criteria
of finding a parent fog node could be different, for example, the calculation of
the physical distance between fog devices, but also according to the historically
recorded efficiency, or the ratio of successful service execution, or latency. For
the purposes of FogFrame, we have implemented searching for the closest parent
according to the location of the fog device, which enters the fog landscape.

If the request is satisfied, the fog device sends a pairing request to this fog node.
Upon successful pairing, the device is instantiated as a fog cell or as a fog node
in the fog colony and is added to the set of children of the head fog node. If the
request is not satisfied, we consider two possible outcomes:

— If the fog device is a fog cell, an error message is returned, and

— If the fog device is a fog node, this fog node becomes the head of a new fog
colony as it has a unique range of location coordinates, namely, its coverage
area.

This workflow is shown in Figure 5.1.

A new colony is established if a new fog node joins the fog landscape, provided
that it is capable of executing sevices by itself. Otherwise, a fog node waits for
other fog cells to connect. A pairing request including the fog node’s location
coordinates and range is sent from the new fog node to the fog controller. The
controller maintains global knowledge of addresses as well as corresponding
coordinates and ranges of all the fog nodes. If the new fog node is within the
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Figure 5.1: Instantiating fog cells and fog nodes in a fog landscape.

coverage area of an existing fog node, the new fog node joins the landscape as a
fog node at the lower tier in the hierarchy as depicted in the general overview of
the fog in Chapter 3 in Figure 3.1. Otherwise, the joining fog node becomes the
head of a new colony. When a fog cell requests to join, the controller responds
with the address of the fog node which has a range that includes the coordinates
of this cell. If the cell’s coordinates are within the coverage area of multiple fog
nodes, the controller selects the one closest to the cell based on, e.g., Euclidean
distance. Cells are only able to join a landscape if their coordinates are within
the coverage of a fog node.

To be able to delegate applications to a neighbor fog colony, each head fog node
has to be connected to the head fog node of a neighbor fog colony. This connection
is also established when a fog node is added in the fog landscape. It requests
the neighbor head fog node from the fog controller. The location service of the
fog controller finds the closest neighbor head fog node according to the provided
location coordinates. If the request is satisfied, the head fog node sends a pairing
request to the closest neighbor head fog node. If the request is not satisfied, the
head fog node either connects with a fallback neighbor fog colony, or continues
to act autonomously. The head fog node of each colony maintains the address of
the head fog node of one neighbor colony. The neighbor fog colony could also be
selected based on different criteria, e.g., QoS statistics implemented in each fog
colony and stored in the fog controller. Such statistics may include deployment
delays, service execution times, resource capacities etc. In FogFrame, we choose
the proximity criterion to choose the closest neighbor fog colony.

Upon joining a fog colony, it is the goal that a pairing request from a fog cell
to the direct parent, which is a fog node, can be satisfied. If a pairing request
cannot be satisfied, a fallback mechanism is applied. For that, we enable searching

Neighbor Fog
Colony

Fallback
Mechanism
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for a fallback parent or grandparent fog node if the closest fog node or even
the fog controller are not available. Fallback details can be either implemented
as an internal property of a device, or can be sent to the device upon pairing.
In FogFrame, fallback parent and grandparent IP addresses are provided as
properties of each fog device.

5.3 Maintaining the Fog

A fog landscape is dynamic in its nature, as devices may appear and disappear
arbitrarily [64]. Since failures and overloads are inevitable in such systems, the
fog landscape needs to refine the network based on periodic and event-based
mechanisms at runtime by redeploying running applications. As has already been
mentioned in the previous sections, running an application is only possible when
all its services are deployed. Hence, if a fog device fails, services which have been
running on that fog device need to be redeployed on other fog devices to ensure
the application execution. If a new fog cell appears, it is beneficial to use its
capacities to release other devices that are not yet overloaded but already close
to full capacity, and migrate suitable services from the cloud to reduce additional
unnecessary cost of fog landscape operation.

To address this, FogFrame can react to certain events:

— Device discovery, if a fog device appears in the fog landscape,

— Device failure, if a fog device is not able to provide services any longer, and

— Device overload, if a fog device is expected to overload, meaning when the
CPU, RAM or storage utilization is above a predefined threshold.

In the following, we describe redeployment and placement replanning mechanisms
for the runtime events as implemented in FogFrame. Proactivity is ensured by
continuously monitoring the fog landscape, while reactivity is implemented with
the resource provisioning replanning mechanisms to tackle the runtime events.

Overloaded Devices Resource utilization in all devices in a colony is polled
periodically by the head fog node. If a device is identified as overloaded, i.e., it
surpasses preconfigured utilization thresholds (related to CPU, RAM and storage
capacities), the head fog node redeploys one random service from the overloaded
device to another one inside the colony using resource provisioning bounded to the
current fog colony. This process continues until resource utilization drops below
the threshold. Essentially, this process achieves reactive horizontal autoscaling of
applications. Compared to cloud computing, horizontal autoscaling in the fog
controls the autoscaling within the head fog node’s resource provisioning.

Disconnected Devices All devices in a colony are polled periodically by the
head fog node. Devices that do not respond are considered disconnected. When
a head fog node discovers a disconnected device, it redeploys the services that
were running on the disconnected device (based on the service placement plan)
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to other devices in the fog colony using the service placement bounded to the
current fog colony (see Section 5.5). Replacing already connected head fog nodes
has not been considered. The mechanism could be implemented in the future
work to enable a fog node lower in the hierarchy to become the new head fog
node in the case when regular polling by the fog controller would show a head
fog node in a fog colony as disconnected. If there is no other fog node in the
fog colony, the colony fails. If a neighbor fog colony is unresponsive, the head
fog node requests the address of a different neighbor fog colony from the fog
controller. If the fog controller is unresponsive, fog nodes are also able to accept
join-requests (as long as the new device knows the fog node’s address) which
leads to placing the new device in the lower tier of the hierarchical structure of
the colony (see Section 3.2).

New Devices Each time a new fog node or cell joins a colony, it triggers
the replanning mechanism executed by the head fog node. More specifically,
the head fog node of the colony examines the available resources to identify
resource utilization and the number of deployed services in all the devices of the
colony. Then, the head fog node opportunistically redeploys services that could
be executed in the colony, but are currently running in the cloud, to the new fog
cell. Afterwards, services that run on devices operating at maximum capacity are
scheduled for redeployment so that some of them will be deployed on the new
device. Therefore, through the replanning mechanism, fog colonies react to the
increase in the available resources and re-balance the workload to all the devices.

5.4 FogFrame Framework Architecture

In this section, we discuss the high-level architecture of the main components of a
fog landscape (see Figure 3.1), namely the fog controller, fog nodes, and fog cells
adjusting our previous specification from Section 3.2 to be able to operate in a real-
world fog. These components consist of dedicated services and interfaces which
provide communication between the components, and within the components as
well. The design of the framework is based on lightweight technologies and loosely-
coupled components with the goal to create a stable and fault-tolerant distributed
system. The extensible modules within each component enable interoperability
and a convenient substitution by implementing the specified interface methods.

5.4.1 Fog Cells

Fog cells are software components running on physical IoT devices at the edge of
the network, as has been presented in Section 3.2. These cells allow executing
IoT services close to the data sources or sinks, instead of involving the cloud.

In the framework, a fog cell consists of a storage service which operates a local
storage, storing connection data, identification data, and application execution

Components
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data. The communication service is responsible for establishing and maintaining
communication with the fog controller and the parent fog node. The compute unit
executes services and is responsible for data transfer between services. The fog
action control follows the orders from the fog node of the fog colony, and deploys
necessary services by the means of the container service. Finally, the host monitor
monitors the utilization of the fog cell. Figure 5.2 depicts the architecture of fog
cells.

Fog cells expose APIs for data transfer and control its actions. The APIs are the
same as has been presented in Section 3.2.

5.4.2 Fog Nodes

A fog node consists of all the components of a fog cell as well as some additional
components. The shared storage service operates the shared storage which stores
a shared service registry of all service images to be used for deployment, i.e., it
hosts service implementations and enables the fog action control service to search
for services and deploy them on the fog cell’s compute unit. The local storage on
the fog node is similar to the one in the fog cell. However, it stores additional
data about fog cells in the fog colony, service placement plans, and execution
details of applications. The shared storage service in a fog node is intentionally
separated from the local storage container to ensure flexibility and replaceability.

The watchdog observes monitoring data from the host monitor, stores it with
the storage service, and compares it to the expected QoS level, i.e., measures
the consumption of the cell’s computational resources as well as QoS parameters,
e.g., the execution time. This information influences the decision-making in the
reasoning service. The reasoning service is triggered when an application request
is submitted for execution to the fog node. The reasoning service calls the resource
provisioning service, which implements a certain service placement algorithm.
The resource provisioning service component produces a service placement plan for
the colony’s resources to execute received service requests. The service placement
plan determines which services should be used to fulfill service requests, and
where these services should be deployed, i.e., what resource to use. If there are
no sufficient resources in the considered fog cell, or further processing is needed,
the whole application request is delegated to the other fog colonies via the head
fog node with the communication service.

As has already been mentioned above in Section 5.3, FogFrame reacts to runtime
events. To handle each of the event types, Fogkrame implements correspond-
ing services. To achieve this, host monitor service of each fog device records
CPU, RAM and storage utilization. Correspondingly, each fog node’s watchdog
periodically checks if the connected fog devices respond.

When the CPU power is used up to the maximum level, unexpected performance
can take place and compromise the execution of all deployed services. In this
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work, we aim for 80% CPU load to get a balance between utilization and room
for spikes, ad-hoc processes, and I/O bottlenecks. This threshold was set up
during pre-experiments to consider uninterrupted execution and availability of
the devices. This threshold is also recommended by AWS? and Oracle®. This
parameter can be easily changed in the FogFrame monitoring component. It is a
matter of future research to take into account different thresholds for different

20nline; Accessed: Apr. 2023 https://docs.aws.amazon.com/autoscaling/ec2/
userguide/as—-scaling-simple-step.html

30nline; Accessed: Apr. 2023 https://docs.oracle.com/en/cloud/get-started/
subscriptions—-cloud/mmocs/setting-alert-performance-metric.html
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devices according to their capabilities, namely, adaptive thresholds [100].

When a device is identified as overloaded by the head fog node, this event is
therefore triggered and the device overload service triggers service placement (as
presented in Section 5.5) bounded to the current fog colony, and migrates one
random container from the affected device. The device overload service migrates
services one by one until the affected device is not overloaded anymore. This
migration method is similar in cloud computing [132]. The overload policy can
be easily reimplemented and substituted with other methods. The framework
architecture is loosely coupled and new implementations of used methods can
be easily integrated in the future. For instance, a promising approach to predict
overload of fog devices presented by [106] could be implemented in future work.

If a new fog device joins a fog colony, all its resources are analyzed to identify its
current workload. First, if applicable, the discovery service migrates services that
were deployed by the fog controller to the cloud to this new device to release cloud
resources and save cost. Second, all devices that operate at the maximum capacity
and are overloaded, are considered for migration. The discovery service triggers
the placement of suitable services from overloaded devices and migrates them
to the new device either while needed, or until it is filled to a maximum defined
number of containers. The number of containers can be adjusted according to the
computational capacity of each fog device. This mechanism enables horizontal
scalability of the resources in the fog landscape.

It has to be noted that the vertical scalability of resources is bounded by the
computational capacities of devices in a fog landscape: If it is possible to extend
CPU or RAM on a device, then FogFrame will accordingly use those capacities.
This is enabled by the implemented host monitor service.

When a fog cell disappears, i.e., disconnects, from a fog colony due to a failure,
the head fog node checks the service assignments to identify whether the failed
fog device had any services running. The device failure service adds all services
that were running on that fog device to a migration list, and triggers service
placement bounded to the current fog colony. Failures of fog cells are identified
by a parent fog node when the fog cell is disconnected. Failures of fog cells trigger
the migration service. Because fog nodes take care of communication between
their connected fog cells and other fog nodes higher in the fog colony’s hierarchy,
a failure of such an intermediary fog node not only triggers the migration service
to recover all running services, but also requires fog cells to ask for a new parent
fog node from the fog controller. In the case when the head fog node of the
fog colony fails, then either there is a mechanism in place to connect all the
fog colonies resources to a fallback head fog node, or to trigger a complete
reorganization of the fog colonies. The latter is a topic for future research,
that can be formulated as a meta control mechanism for reactive and proactive
reorganization and optimization of fog colonies to ensure system durability and
fault tolerance.
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It should be noted that an alternative approach would be a decentralized orches-
tration of fog cells in a fog colony, i.e., without the head fog node. This possible
alternative is presented later in the opportunities for future work in Section 7.2.
While this leads to higher fault tolerance, it also involves extensive coordination
and voting between the involved fog cells. Therefore, we opt for having a head
fog node per fog colony and a hierarchy of fog devices. However, we still foresee
that another fog node becomes the head fog node in a fog colony, if necessary,
e.g., in case the original head fog node fails.

5.4.3 Fog Controller

In the fog controller (see Figure 5.4), the cloud service establishes the communica-
tion with the cloud and implements necessary functionalities to manage VMs and
containers. The location service provides connection data for fog devices entering
the fog landscape. The pairing service is responsible for pairing of fog devices as
described in Section 5.2. A local storage stores data about the structure of the
fog landscape and the usage of cloud resources. The local storage is operated by
the storage service.

5.5 Application Management

To achieve the cooperative execution of IoT applications, the framework enables
decentralization of application execution, making it possible that different parts
of an IoT application are deployed and executed close to the relevant data sources
and data sinks. In Section 3.1, we have provided an overview of deployment
models. Because of the benefits of containerized applications mentioned in
Section 2.4, in FogFrame the applications are built following the microservice
architectural approach and are made of stateless services deployed and executed
on fog cells. Examples of such applications include MapReduce applications and
stream processing applications [36, 71, 72]. The assumption is that an application
can only be executed if all its services are deployed. As mentioned in Section 2.5,
an application can be visualized as a DDF [64], which is a directed acyclic graph
where vertices denote tasks to be executed in the flow corresponding to services,
and edges between vertices are data shipments or control flow connections between
those services [91] (see Figure 2.4).

A service is a deployed and running computational software instance which
processes a service request in a fog landscape, as has been already mentioned in the
architecture discussion in Section 5.4. A service request is a single computational
job to be computed on fog devices. A service image is a not yet deployed service
binary. Services can be of certain service types. Service types are bound to the
capabilities of the devices in the fog landscape. For example, a service intended
to receive temperature measurements can be deployed only on a fog cell with a
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temperature sensor attached, some services can be executed either in the cloud
or in the fog, and other services can be executed only in the cloud.

The application execution starts with an application request which defines a set
of services to be placed and deployed in the fog landscape together with QoS
information for execution, for example, deadlines on application execution and
processing times. It has to be noted that an application can only be executed
if all its services are deployed. The deployment of services depends on the
service placement mechanism which is applied within each head fog node of
each fog colony in the fog landscape. It is possible to integrate arbitrary service
placement algorithms into FogFrame. Within this thesis, particular approaches
are introduced aiming at utilizing available resources of fog colonies in the most
efficient way, as presented in Section 5.6.

In the following, we describe how the application is processed on different resources
in the fog landscape: inside a fog colony, in the cloud, or after being delegated to
a neighbor fog colony (see Figure 5.5).

Application deployment and execution can be done based on different settings.
The first (and simplest) setting is when each fog colony has enough own resources
to execute an application request. In this case, all the necessary services are
deployed in the current fog colony. The latency and deployment time are minimal
and depend on the computational power of the resources of the colony. As it can
be seen in Figure 5.5 (a), a user submits an asynchronous application request to
a fog node. The service placement is performed according to the chosen service
placement algorithm by the reasoning service of the fog node. It has to be noted
that an application request can also be submitted to a fog cell (not depicted in
Figure 5.5). If this is the case, the fog cell forwards the request to its parent fog
node until the request reaches the head fog node of the corresponding fog colony,
which performs service placement.

Service placement is performed in a decentralized manner and is independent in
each fog colony. To perform computations, the reasoning service uses information
about the availability and utilization of all the fog cells in the fog colony. It
applies this information within the implemented resource provisioning and service
placements algorithms. The result of the calculations in the algorithms is a
service placement plan. After the service placement plan is calculated, the head
fog node deploys the necessary services on identified fog cells, and the fog cells
immediately start service execution.

The second setting of application execution is when apart from executing services
in a fog colony, it is necessary to support fog colonies with additional resources
from the cloud (Figure 5.5 (a)-(b)). This applies for services which can be
executed only in the cloud, for example, big data processing, and those services
which cannot be placed on fog devices because of QoS constraints or a lack of
resource capabilities, or services which can be executed either on the edge devices
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Figure 5.5: Application request processing on different fog resources.

or in the cloud as they do not require specific sensor equipment. If specific services
in the application request are assigned to the cloud, the fog node sends the request
to execute this service in the cloud. For this, the fog controller authenticates itself
with the cloud provider, either leases and instantiates a new VM in the cloud or
connects to an existing VM, and deploys the corresponding service container.

The third setting of application execution regards if an application cannot be
executed by a fog colony. However, this application requires sensor equipment,
therefore it cannot be executed in the cloud. In this case, the request is delegated
to a neighbor fog colony. This is the case when the service placement plan
determines that there are not enough resource capacities in the current fog
colony to execute the application, however there is enough time indicated by
the application deadline to postpone the execution. Therefore, the fog node
delegates the whole application request to the neighbor fog colony (Figure 5.5
(c)). In Section 4.3, we have already introduced the process of delegation of
workload to the neighbor fog colonies. However, in Section 4.5 and Section 4.7
we use simulation environments, while in the framework we aim to execute IoT
applications in the real-world fog. First, the delegation of the whole application
with all its services to the neighbor colony instead of taking single services allows
avoiding high intra-application latency, as fog colonies can be geo-distributed
and have different capabilities or domains. Second, it allows avoiding additional
coordination between fog colonies on the level of application requests. Detaching
single services and sending them for execution in other colonies introduce the new
problem of tracking of application execution spanning in multiple fog colonies in
a fog landscape.

5.6 Resource Provisioning in FogFrame

FogFrame enables decentralized service placement, which is ensured by the
reasoning and placement capabilities of each head fog node in fog colonies, as

Delegation of
Applications

Knapsack and
Assignment
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has already been applied in Chapter 3 and Chapter 4. However, compared to
the previous chapters, the resource provisioning in FogFrame accounts for the
real-world fog. Therefore the new resource provisioning model has introduced
additional constraints, as well as it enables delegation of the whole IoT application
requests in the case when a fog colony, to which the request has been initially
submitted, is busy and cannot provide necessary capacities of resources for
deployment. Fog colonies autonomously perform service placement, even in the
case when the fog controller or cloud-based computational resources are not
available. The underlying service placement model, which is discussed in detail in
this chapter, determines an optimal mapping between services of IoT applications
and computational resources in the fog, i.e., at the edge of the network and in
the cloud (if available). The resource provisioning and service placement problem
has been shown to be NP-hard [7]. For this problem, as described in Section 2.5,
an analogy towards the multiple knapsack problem and the assignment problem
can be performed [10]: different fog resources are knapsacks, single services of
IoT applications are items to be inserted into knapsacks, the weight of knapsacks
corresponds to available resources of fog devices, such as CPU, RAM and storage,
and the costs of the knapsack are the defined QoS parameters. Services need to
be assigned only once. The complexity of a multiple knapsack problem is proven
to be O(n? + nm) [49], where n is the number of services to be placed and m
is the number of fog resources available in a fog colony. For service placement,
the objective function is to maximize the utilization of devices at the edge of the
network while satisfying the QoS requirements of applications, namely, satisfying
deadlines on application deployment and execution time.

For this, every head fog node considers resources available in its fog colony, cloud
resources, and the closest neighbor fog colony. A mapping between applications
and computational resources determines the following subsets of service placement:

— Services to be executed on fog devices in the fog colony,
— Services to be executed locally on the fog node, and
— Services to be executed in the cloud.

If at least one service of the application cannot be placed in those subsets, the
whole application request is sent to the closest neighbor fog colony. Splitting single
services from applications and delegating them to the neighbor fog colony is not
considered in order to eliminate tracking of single services in the fog landscape and
high intra-application latency and because of the necessary coordination between
fog colonies. The service placement approach is reactive, namely, whenever
application requests are submitted for execution to a fog node, the service
placement algorithm is triggered. Additionally, service placement is triggered
each time operational runtime events happen in the fog landscape: appearing and
disappearing of resources at the edge, failures and overloads. In the following, we
formalize the corresponding system model. Table 5.1 gives an overview of the
notation of fog resources and applications.
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Table 5.1: Notation of fog resources and applications.

Parameter Description
g t Current placement time
= T Time difference of previous placement (in sec)
A Set of applications to be executed
Ay Application
Dy, Deadline of Ay,
wa, Deployment time of A
. w%k Already passed deployment time of Ay at ¢
3 T;N Deployment time in the neighbor colony
fg ma, Makespan duration of Ay,
3, T A, Response time of Ay,
<% | Akl Number of services in Ay,
a; Service in an application Ay
U, CPU demand of service a;
My, RAM demand of service a;
Sa; Storage demand of service a;
My, Makespan duration of service a;
Resg, (F) Fog cells able to host service a;
R Cloud
F Head fog node
N Closest neighbor to F
Res(F) Fog cells connected to F
C ={U,M,S} Resource capacities of fog devices
Ur CPU capacity of F
% Mp RAM capacity of F
_@ Sr Storage capacity of F
= Kp Container capacity of F
= fi Fog cell
éo Uy, CPU capacity of f;
My, RAM capacity of f;
St Storage capacity of f;
Ky, Container capacity of f;
dy, Latency between F' and f;
dr Latency between F' and R
dn Latency between F' and N

5.6.1 Adapted Definition of the FSPP

Domain Definition The decision variables xf:]l, xaFi, a:fi indicate the placement
of a service a; on a specific resource in a fog landscape, namely, on a fog cell f;,

fog node F', or in the cloud R. The decision variable y4, indicates that the request
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for the execution of the application Ay has to be delegated to the closest neighbor
fog colony, with the head fog node N. Together, the decision variables form a
service placement plan. In Section 4.3, we used other variables for delegation,
i.e., of single services. As discussed in Section 5.5, in this adapted definition of
the FSPP, which is aiming at IoT application execution in a real-world fog, we
delegate the whole application request indicated by the decision variable 34, in
the case when it is not enough resources to execute it in the current fog colony
with the head fog node F.

Variables Let a; denote a service of the application Ag. In order to ensure that
a service is compatible with an allocated resource, Res,,(F') is introduced to
denote all the fog cells capable to run service a;, with Res,, (F') C Res(F'). This
formalism is necessary to account for service types, with which resources can be
compatible with, for example, sensing or processing service types. The decision
variables of the service placement problem are provided in equations (5.1)—(5.4):

zll € {0,1}, Va; € Ay, Vf; € Resa,(F)
a:fi S {0, 1}, Va; € A
xﬁ, S {0, 1}, Va; € A

(5.

(5.

(5.
ya, €1{0,1} (5.
Objective Function The objective function of the service placement is to
maximize the number of service placements in the available fog colonies, while
satisfying the QoS requirements of applications, as defined in (5.5).

A
max »  P(A,)N(Ay) (5.5)
A

Unlike execution of all services within one fog colony, delegation of the application
to the closest neighbor fog colony or execution in the cloud suggests additional
delays, which can become a serious constraint when the response time of the
application is close to its declared deadline. Hence, we use the prioritization
coefficient P(Ay) for each application. The coefficient P(Ay) represents the
weight of an application A determined by the difference between the deadline
D 4, of the application and its already recorded deployment time w4, , as defined
in (5.6).

1
PlA) = ————— )
(Ag) D, —wa, (5.6)

w4, appears in the cases when the application was propagated from another
fog colony and had to wait until it is correctly placed on necessary resources.
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The priority for deployment is given to the applications with high wj,,, and
accordingly little difference D4, —wa,. N(Ag) denotes the number of services
in the application request to be placed in fog colonies, as defined in (5.7).

Ay, [ Resa;(F) s
NA) =Y > wal 4+l | +1Aklya, (5.7)

a; fj

Constraints The first set of constraints defines the usage of available CPU,
RAM, and storage of fog resources (Uy,, M,,, and S,,, respectively). The sum
load of placed services should be within the tolerance limits of resource capacities
of corresponding fog devices, as shown in (5.8)—(5.10). The tolerance limit of
a resource is v € [0, 1], for example, v = 0.8 indicates that 80% of all device
resources can be used to execute services and the rest 20% should be kept free in
order to account for operational stability of the device. As described in Section 5.3,

it would also be possible to utilize an approach based on adaptive thresholds.

C ={U, M, S} denotes the corresponding capacities of CPU, RAM, and storage
of fog cells and the fog node, and the corresponding CPU, RAM, and storage
demands of services (see Table 5.1).

A A

Z ZCala:f:Z <7Cy; , Vfj € Resa, (F) (5.8)
A @i

A Ag

Z anﬂfi <~Cp (5.9)
A a;
C={U,M,S} (5.10)

To execute applications according to the necessary QoS, the response time 74,
of each application Aj has to be less than the declared deadline Dy, of the
application, as defined in (5.11). The response time r4, is defined as the sum
of the total makespan duration my4, and its deployment time w,,, as defined
in (5.12).

ra, < Dy, VAL, € A (5.11)

TA, =M, + WA, (5.12)

The total makespan duration m 4, consists of execution times of all single services
of the application A; accounting for the communication delays between the head
fog node and chosen for placement resources, as defined in (5.13)—(5.14).

Constraint on
Resources

Response Time
Calculation

Makespan
Calculation
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Ay
ma, =Y L, (5.13)
Resq,; (F)
Lo, = Y dlas, f;)ad + d(ai, F)al + d(a;, R)zf (5.14)
fi

d(ai, fj), d(a;, F'), and d(a;, R) denote the makespan duration my, of a service a;
in the case of its placement and execution on fog cell f;, fog node F', or in cloud
R respectively (5.15)-(5.17).

d(ai, f) = dg; +ma, (5.15)
d(a;, F) = myg, (5.16)
d(ai, R) = 2dgr + Ma, (5.17)

Let the application A; = {a1, as,as, as} be distributed between a fog colony and
the cloud (see Figure 5.6). To find the response time of an application r, the
makespan of each service m,, is added to the delay in (5.18). In this example, we
assume that the application had no previous deployment time, so that w4, = 0.

Example

r1 = d(f11) + ma1 + ma2 + 2d(R) + me3 + d(f12) + Maa (5.18)

Application The application deployment time w,, from equation (5.12) accounts for the time
Deployment spent by the application before all its services are placed on the chosen resources.
Time In the case when one of the services a; € Ay cannot be placed in the current fog
colony, the whole application needs to be delegated to the neighbor fog colony.
Therefore, an additional expected deployment time T, + can appear. To define
whether this additional deployment time affects w4, or not, we introduce the
auxiliary variable y4,. Let y4, = 0 if all services can be successfully placed in
the current fog colony, and y4, = 1 if at least one service a; € Ay cannot be
placed in the current fog colony, and the whole application needs to be delegated.

Therefore, the application deployment time w4, is defined as follows:

t
wa, = wh, + Ty (5.19)

Deployment Tﬁu N affects the application deployment time only if y4, = 1. The closest neighbor
Time in the fog node applies its own service placement which can either place all services

Neighbor Colony a; € Ay in its fog colony or further postpone the execution of the application

110



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.6. Resource Provisioning in FogFrame

Src_a; dest_ay

Figure 5.6: Example of response time calculation.

A by delegating it further in the fog landscape. To avoid a ping-pong with
an application between the two closest fog colonies, additional criteria can be
considered, for example, the rate of successful service execution, free capacities,
or a percentage of load on a fog colony. In the current work, if the application
cannot be deployed in a fog colony or in a neighbor fog colony before a stated
deadline, it is either deployed in the cloud if the service types permits that, or
is not deployed at all. To calculate the expected deployment time in the closest
neighbor colony, TZ} requires to view forward in time. Therefore, we estimate
TZJN relying on historical data. T:UN is obtained as the moving average on the
latest sampled deployment time TJEVT per service delegated to the closest neighbor
fog colony as defined in (5.20), where 1 — «, a € [0, 1] denotes the discount factor
of the moving average, Tﬁ;f is the already passed deployment time of the service

N

delegated to the neighbor fog node N during the time ¢t — 7, and TZTNT stands for
the average deployment time in N as estimated in ¢t — 7.

Toy =aTh T+ (1—a)Ty, (5.20)

wWN

Next, the container capacity meaning the number of deployed containers, should

Container

not be more than Ky, containers for each of the fog cells and Ky for fog nodes Cupacity

as defined in (5.21) and (5.22), because that may cause overload.
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A Ag P

ZZva <vKy, ,Vfj € Resq,(F)
Ak a;

A Ag

> >z <vKp

Ak a;

(5.21)

(5.22)

We have to provide the condition that in the case when any of the services in an
application cannot be placed in the current fog colony, the application request
has to be sent to the neighbor colony. For that, we first calculate the number of
services placed in the current fog colony and in the cloud:

Ay, Resai(F)
”Ak:Z Z asgiquaquin , VAL, € A
a; fj

(5.23)

Next, if the total number of services placed in the current colony and in the
cloud is less than the total number of services in the application, that means if
na, < |Ag|, then the application request has to be sent to the closest neighbor
colony, namely, y4, = 1, else y4, = 0. This conditional constraint is formulated
using big-M coefficients [78], and is represented in (5.24) and (5.25), respectively:

nA, — ’Ak’ < M(l _yAk) —1,VA, € A
‘Ak‘ — Ny, < MyAk — 1, VAk cA

(5.24)
(5.25)

Finally, we define that each service a; can be placed on exactly one computational
resource f;, F', N, or in the cloud R, or the whole application request has to be
sent to the closest neighbor fog colony:

na, +ya, =1, VA, € A (5.26)
Example To provide an estimation of the number of variables and constraints in
the service placement problem, we consider the following example: An application
Ay with ten services aj...a1g is submitted for execution to a fog colony with a
head fog node F' and two fog cells fi; and f>. In this example, the assumption
is that both fog cells f; and fo and the head fog node F' are able to execute all
service types to which the services belong. For this setting, a service placement
problem consists of making a decision for in total 41 decision variables, which
are:
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— Ten decision variables x{llmalo corresponding to the placement decision
of each of the services ai...a1g on fog cell f; and accordingly another ten
decision variables 37521..@10 of each service a;...a1p on fog cell fo.

— Ten decision variables %Fl...am corresponding to the placement of each
service aq...a19 placed on head fog node F'.

— Ten decision variables 3351..@10 corresponding to a propagation decision of
each service aq...aqg to the cloud resources R.

— One decision variable y4, denoting whether the whole application needs to

be delegated to the neighbor fog colony.

With regard to the constraints, the first set of constraints deal with CPU, RAM
and storage capacities of each device according to (5.8)-(5.10), meaning three
constraints for each computation device fi, fo, and F. Second, the response time
constraint is only one according to the calculations (5.11)-(5.20) corresponding to
one application Ay. Next, there are three container capacity constraints according
to (5.21)-(5.22) per each fi1, fo, and F. Afterwards, to calculate whether the
application A; can be placed in the current fog colony or needs to be delegated
to the neighbor fog colony, two additional constraints per application, that is in
our case only one application, need to be calculated according to (5.23)-(5.25).
And the last set of constraints ensures that each service can be placed only on
one resource, that means one constraint according to (5.26). To summarize, the
number of variables and constraints depends on the number of resources in the fog
landscape, the number of applications requested for execution, and the number
of services to be deployed in each application.

5.6.2 Heuristic Algorithms Implementation
Greedy Algorithm

As mentioned above, we provide two service placement algorithms as examples
in FogFrame. The greedy algorithm implemented in the framework (see Algo-
rithm 5.1) is based on finding a first-fit device for each service request [155]. The
idea is to walk over sorted fog devices according to their service types, available
resource capacities, and incoming service requests, and check whether a fog device
is able to host and deploy a service according to the device’s utilization. If any
service in the application cannot be deployed, the whole application is delegated
to the neighbor colony. The main benefit of greedy algorithms is that they
produce fast and feasible solutions [155].

The algorithm takes the set of fog devices in the fog colony and the incoming
service requests as inputs. Line 1 of Algorithm 5.1 initializes an empty assignments
list and a new counter parameter. This counter enables several tries to place
a service in the algorithm. This counter is necessary to account for released
resources in the case when the execution of already deployed services has been
finished at the time of service placement.

Overview

Initialization
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Lines 2 and 3 sort corresponding sets by service type in order to assign sensor-
related services to fog cells with the highest priority because sensor equipment is
available only there. For example, a service sensing temperature can be placed
only on the device with a temperature sensor attached. If any service can be
executed both on a fog device and in the cloud, the service is assigned to the fog
device if available.

Lines 4 to 6 start the loops over the sorted fog devices and service requests.
These loops ensure the placement of equipment-specific services on fog cells first,
and if they can be placed, an attempt to place all other services is performed.
Otherwise, the whole application has to be delegated to the neighbor fog colony.

Line 7 checks if the service type of the service request corresponds to the service
types of the fog device. This is necessary because the constraint on matching
service types of a service and device is the main constraint in the service placement,
otherwise the assignment is not possible. In Lines 8 and 9, the utilization and
the number of already deployed containers is requested from the fog device in
order to check if there are enough resources available. This is done in order to
check the utilization constraints in Line 10, where the utilization parameters and
the number of deployed services are compared to predefined monitoring rules, for
example, CPU utilization < 80%.

If those parameters are satisfied, the fog device is able to host a service, and a
deployment request is sent to the fog device in Line 11. In the event of successful
service deployment, the fog device sends the detailed information about the
deployed container to the fog node. In Line 12, an assignment consisting of the
fog device, service request, and the identifier of the deployed container is created.
With this assignment, it becomes possible to keep track of all the deployed
services and corresponding containers in a fog colony. A successfully executed
service request is removed from the input set in Line 13 making sure the service
is deployed exactly once.

Line 18 checks if the outer-most fog device cycle is finished, the provisioning
round counter is smaller than the maximal defined number of tries, and if there
are still opened service requests. If this is the case, the round counter is increased
and the fog device iterator is re-initialized to restart the provisioning with the
remaining service requests (Lines 19 and 20). After all the requests are handled or
the maximum number of provisioning rounds is exceeded, the created assignments
and the open requests are returned (Lines 23 and 24). If the open requests list is
not empty, then the corresponding application requests are sent to the neighbor
fog colony and already deployed services from those applications are stopped.

Genetic Algorithm

We have presented a GA in Section 4.6. In this section we adapt this algorithm
and introduce additional constraints in the FSPP formulation in FogFrame.
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Algorithm 5.1: Greedy algorithm.

Input :Set<Fogdevice> fogDevices, Set<TaskRequest> requests
Output : List<TaskAssignment> assignments, List<TaskRequest>
openRequests

1 assignments < [|; round = 0;

2 sortedRequests < sortByServiceType(requests);

3 sortedFogDevices < sortByServiceType(fogDevices);

4 for fogDevice € sortedFogDevices do

5 for serviceType € fogDevice.serviceTypes do

6 for request € sortedRequests do

7 if servicelType == request.servicel'ype then

8 utilization < getUtilization( fogDevice);

9 containers < getContainerCount( fogDevice);
10 if checkRules(utilization) & containers <

MAX CONTAINERS then
11 container <
sendDeploymentRequest( fogDevice, request);

12 assignments.add( fogDevice, request, container);
13 sortedRequests.remove(request);
14 end
15 end
16 end
17 end

18 if !sortedFogDevices.hasNext() & round < ROUNDS &

sortedRequests.size() > 0 then

19 round = round + 1;
20 sortedFogDevices.reStart();
21 end
22 end

23 openRequests +sortedRequests;
24 return assignments, openRequests

As has been discussed in Section 4.6, GAs browse a large search space and provide
a viable qualitative solution in polynomial time [159, 163, 164]. One iteration
of a GA applies the genetic operators of selection, crossover, and mutation on
a generation of solutions of an optimization problem [149]. In our case, the
optimization problem is to make a decision about service placement on fog
resources, i.e., to produce a service placement plan.

A generation consists of individuals represented by their chromosomes. Each
chromosome denotes one solution to the considered problem, in our case a
chromosome is one service placement plan. The GA starts with the process

Solution Space

Operators
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Figure 5.7: Chromosome representation.

of selection of individuals for reproduction. For that, the fitness function of
each chromosome is calculated based on the goal function and constraints of the
service placement problem, and the best chromosomes are selected. To create
an offspring from the selected individuals, the crossover operator swaps genes
of each two chromosomes. In order not to lose the best-performing candidate
solutions, some individuals with the highest fitness values of their chromosomes
are forwarded to the next generation unaltered. They do not participate in
crossover, becoming the elite individuals. After that in order to ensure diversity
of the population, the mutation operator changes a random number of genes in
some of the chromosomes. As a result, a new generation is evolved consisting
from the elite and offspring individuals. The algorithm repeats this process until
activation of defined stopping conditions. Different approaches can be applied
as stopping conditions, for example, the total number of evolved generations,
a tolerance value of the fitness function, or elapsed time. In the following, we
describe the concrete implementation of the GA in FogFrame.

The chromosome representation is a vector corresponding to a service placement
plan (see Figure 5.7). The length of this vector equals to the total number of
services in the requested application. Each gene in a chromosome is an integer
number corresponding to the identifier of a fog device or the cloud. When a service
cannot be placed at any of the devices in the fog colony or in the cloud, it remains
unassigned. In this case, the whole corresponding application is delegated to the
closest neighbor colony. This chromosome representation ensures the placement
of all services, meaning that there are no invalid chromosomes. Additionally, the
chromosome representation stores necessary data to estimate utilization of devices
that includes CPU, RAM, and storage resources of fog devices, and estimated
response time of the application.

In the fitness function, we encourage the chromosome if it fulfills the constraints
of the system model presented in Section 5.6 and apply penalties if the constraints
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are violated [109]. The constraints of the optimization problem have been divided
into three sets which affect the fitness function to different degrees:

— A set U of constraints on capacities of CPU, RAM and storage resources of
fog devices,

— A set I' of implicit binary constraints derived from the goal function:
conformance to service types, indications if cloud or fog colony resources
have to be used, and prioritization of own fog colony resources, and

— A set T causing the ‘death’ penalty of the chromosome if the service types,
container capacities in devices, or deadlines are violated.

Let ¢ denote a chromosome. For constraints V3, € ¥, if 8,(c) < 0, the constraints
are satisfied. If 3,(c) > 0, then the constraints are not satisfied. These conditions
are formalized in (5.27).

_Jo, if Bp(c) <0
() = {1’ i 6,(c) > 0 (5.27)

Similarly, for the I' set of constraints, if 5,(c) = 0, then the constraints are
satisfied. If ,(c) = 1, the constraints are not satisfied.

For the T constraints, the penalty distance from the satisfaction of T constraints
for ¢ is defined in (5.28), where 3, denotes a constraint, and dg, (. indicates
whether a constraint has been violated in the current chromosome c: dg, () = 1.

D(c)= > 6,0 (5.28)
BuEY

The fitness function is calculated according to (5.29), where wg,(c) 1s the weight
factor of B, € W, wg (r) is the weight factor of 8, € I', and wj, is the penalty
weight factor for constraints in Y. If constraints 3, or 3, are satisfied in c,
then dg,() and dg () become 0, and the corresponding values within the first
and the second terms of (5.29) are added to the fitness function. When the
constraints are not satisfied, dg () and dg_ () become 1, and the corresponding
values resulting from the first and second terms are subtracted from the fitness
function. The third term in the fitness function ensures death penalty w,D(c)
for having D(c) other than 0, where the penalty factor w, has to be big enough
to forbid participation of the worst chromosomes to perform crossover and to
create the next generation of individuals. The weight values allow changing the
impact of constraints on the fitness function. In this work, weights equal to 1,
and the death penalty weight equals to 100000. When the GA is running, the
fitness value of chromosomes increases. This happens because less penalties are
applied to the chromosomes [109].

Constraints

VB, € ¥

Constraints
VB, el

Constraints

VB, €Y
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F(o)= Y ws,(1—-205,)+ Y wg,(1—205 () —wpD(c) (5.29)
BpeV Bl

The genetic operators were determined based on pre-experiments presented in
Section 4.6: We use a 80%-uniform crossover because the genes are integer values,
a crossover mixing ratio of 0.5, tournament selection with the arity 2, random
gene mutation with a 2% mutation rate, a 20% elitism rate, and a population
size of 1000 individuals.

Regarding the stopping condition, different options exist. Obviously, the fitness
value of the fittest individual in the generation has to be a positive number, since
a positive fitness value means that there are no death penalties applied to the
individual. Time-based stopping conditions of a number of iterations or execution
time of the algorithm are not clear to define [23]. A stopping condition based on
improving the variance of the fitness function over generations is identified as
assuring the algorithm’s convergence.

We use a tolerance value of the fitness function as the stopping condition of the
algorithm. It is calculated by dividing the incremental variance of the fitness
function values by the maximum fitness value over generations [23]. The tolerance
value of the fitness function is set to ¢ = 0.01, which is enough to obtain the
solution and not to converge in local maxima.

With either of the two service placement algorithms presented in Section 5.6.2
in place, we are now able to compute a service placement plan in fog nodes in
FogFrame.

5.7 Testbed Implementation

In our evaluation, Raspberry Pi computers are used as fog devices. Raspberry Pis
are based on an ARM processor architecture, which is also used in mobile phones,
smart phones, and digital television, to name just some examples. In general,
nearly 60% of all mobile devices use ARM chips [160]. Therefore, Raspberry Pis
can be considered as representative when building a fog landscape [83]. Fog nodes
and fog cells are deployed on Raspberry Pi 3b+ units (Quadcore 64-bit ARM,
1GB of RAM), which run the Hypriot operating system (see Figure 5.8 for an
example of testbed organization). The detailed setup configuration of FogFrame
is described in [14]. The fog controller is deployed with a Docker container on an
Ubuntu 18.04LTS VM with a 2-Core CPU, 4GB RAM, which is running on a
notebook with Intel Core i7-5600U CPU 2.6 GHz, and 8 GB RAM. The design
of the fog controller allows deploying it in the same manner as fog nodes and
fog cells on Raspberry Pis. For public cloud resources, we use Amazon AWS
EC2 services, specifically t2.micro VMs with the CoreOS operating system which
has a Docker environment setup by default. Temperature and humidity sensors



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.7. Testbed Implementation

Figure 5.8: Raspberry Pi computers organized in a fog landscape.

are installed on the Raspberry Pis for fog cells by the means of GrovePi sensor
boards?.

The FogFrame framework is implemented by means of Java 8 in combination with
the Spring Boot framework which provides a convenient persistence handling
with Spring Data and Java Persistence API. The framework is available as open
source software at Github®.

Since the two computational environments in a fog landscape (i.e., cloud and
edge) are different, the deployment mechanisms for services also need to differ. In
the cloud, services are deployed on Docker containers on VMs, which need to be

4Online; Accessed: Apr. 2023 https://www.dexterindustries.com/grovepi/
5Online; Accessed: Apr. 2023 https://github.com/softls/FogFrame—2.0
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deployed and managed. When a service request is sent to the fog controller from
a fog colony and there is no deployed VM in the cloud, the fog controller leases
and starts a new VM. If a VM is already running, the corresponding Docker
container of the necessary service image is deployed on that VM. The containers
are deployed on a cloud VM until a certain limit of containers is reached to ensure
the stability of the computational environment. If there are no free resources for
another container to be deployed on a VM, a new VM is leased and a container
is deployed there. When the execution is finished, containers are stopped. If
the VM is running with no load, the VM is stopped and the cloud resources are
released again.

For fog colonies, the deployment mechanisms differ. Fog cells and fog nodes are
by themselves services running inside their own Docker containers in a Docker
runtime environment which is provided by the host operating system of Raspberry
Pi units or cloud VMs. Therefore, during service deployment, a problem appears
when trying to instantiate other Docker containers in the Docker runtime from
inside the Docker containers of the running fog cells and fog nodes. To make it
possible for fog cells and fog nodes to start and to stop further Docker containers
on the host device, we make use of a Docker hook (see Figure 5.11) [14]. The
Docker hook provides a communication mechanism from inside the fog cell’s
and fog node’s Docker containers into the Docker environment of the operating
system of the Raspberry Pi. It resolves the problem of instantiating other Docker
containers on the Docker runtime of the host device from inside the Docker
containers of the running fog cells and fog nodes.

Services of FogFrame intercommunicate via REST APIs. The communication
within the testbed is done via a WLAN private network provided by a Linksys
Smart WiFi 2.4GHz access point. This access point also acts as a gateway
to connect every Raspberry Pi to the Internet. Every component needs to be
connected to the Internet since the fog services require the ability to download
Docker image data in order to create and deploy services. The private network
in which our fog landscape operates is deemed to be secure, and all components
of the fog landscape communicate via dedicated API endpoints on certain ports
and IP addresses specified in the framework. It is a matter of future work to
research other appropriate security mechanisms for fog computing [136].

Regarding the virtualization technology, cloud resources are virtualized by the
means of VMs. As discussed in Section 2.4, VMs are not a good choice for
fog devices, so for them, we use Docker containers instead. The implemented
service deployment and execution mechanisms for the cloud resources and fog
colonies are different, since the hardware used in these environments differs. In
order to use Docker containers in fog colonies, the base images of containers have
to be compatible with the ARM processor architecture of Raspberry Pis, and
accordingly in order to use Docker containers in cloud resources, the base images
of those containers have to be compatible with the processor architecture of the
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cloud-based VMs.

A fog landscape consists of both cloud and edge resources which operate on
different computing architectures [103]. Therefore, the service images of each
application have to be compiled for the processor architecture they are intended
to be executed on. To manage this heterogeneity, we apply two different solutions
for sharing service images. Service images of services to be executed in the cloud
are stored in the online repository Docker Hub®, which is accessible by cloud
VMs. In this case, service images are downloaded via a link address included in
the service request.

For service images of services to be executed in fog colonies, we implement a
shared storage that contains the shared service registry (see Section 5.4). Service
images intended to be executed at the edge are pushed to a fog node along with
the initial application request. Since applications are executed in a distributed
manner inside fog colonies, every device in a colony requires access to the service
images. For this reason, the devices of each fog colony share the service images in
a service repository using a shared storage. FogFrame uses a distributed key-value
store as underlying data management system within each colony to enable a
flexible schema for sharing the service image data among fog nodes and cells.

Such distribution is necessary because in order to be executed on specific fog
devices or in the cloud, each service image has to be compiled according to the
processor architecture of that computational resource. In the case when services
need to be executed in the cloud, they are downloaded via a link provided with
a service request. This is necessary because we do not consider having a pre-
configured pool of idle cloud resources with already stored service images. In the
case when services need to be executed on fog devices, service images are sent to a
fog node together with the initial application request. In fog colonies, applications
(or more precisely: their services) are distributed between different fog devices,
therefore every device needs access to the service images. This is ensured by the
shared storage component (see Figure 5.11). It has to be noted that there is no
limitation on where to host a shared storage because direct IP communication is
established in the framework. The communication between services is performed
with REST calls. The registration object in service registry contains a service
key identifier, its Docker image, exposed ports and privilege rights to let the
service almost same rights as the host. The ports and requests are predefined in
the configuration of the devices. Fog cell and fog node configurations receive IPs

of their parent devices during parent requests when connecting to a fog colony.

Deployed services via dedicated endpoints propagate service data to fog cells
where they are deployed, and then fog cells propagate data further to the fog
nodes.

50Online; Accessed: Apr. 2023 https://hub.docker.com/

Sharing Service

Images

Service
Repository

121


https://hub.docker.com/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5. 10T APPLICATION EXECUTION WITH FOGFRAME

Application
Settings

122

amazon

web services

DI

Fog Controller
192.168.1.101:8282

—_———— —_——

/// Fog Colony Neighbor Fog Colony >
[ Fog Node FN, \ l/ Fog Node FN, \|
| 192.168.1.105:8080 : | 192.168.1.106:8080 |
| (6:7), [2:2),(7; 7)1 Ll (8:10), [(8:8),(12;12)\.[t:] |
| | | |
| Fog Cell FC4 Fog Cell FC, || Fog Cell FC3 |
| 192.168.1.110:8081 192.168.1.111:8081 || | 192.168.1.112:8081 I
| (2:2). [t ta.ta] (4;7).[t1.ts] | : (10;10),[t1,t,ta] :
| I

|
b b b b AN @b b )
S Sensos SNl Sensors ___~

Figure 5.9: Experimental setup.

5.8 Experimenting with Resource Provisioning

In this section, we perform a testbed-based evaluation of FogFrame aiming to
show:

— How deployment times of services differ at the edge and in the cloud,

— How the services are distributed in the fog landscape by the service place-
ment algorithms according to different service request arrival patterns,
and

— How much time is spent on producing a service placement plan.

5.8.1 Experimental Setup

In our experimental setup, each application consists of a number of services
of certain service types, and is characterized by its makespan duration and a
deadline on the deployment and execution time, as has been formally described
in Section 5.6. For that, we have defined and implemented three possible service
types: Services of type t1 get data from temperature and humidity sensors and are
executable only on fog cells because services of this type need sensor equipment;
services of type to and t3 simulate processor load and are executable either on
fog devices or in the cloud. We have also developed a dedicated service to be
deployed and executed in the cloud which receives sensor readings and writes
them to a cloud database.



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

5.8. Experimenting with Resource Provisioning

Cloud VM Cloud VM

o o o oy
= 8 c = 8 c
> g s T > g S
o C o S o C o S

(@) (@) @] (@]
D3 2NG! D3 2N

EENR EEN EEE

Operating Operating

System System
(CoreQS) (CoreQS)

Figure 5.10: Deployment in the cloud.

In our evaluation, we implement two fog colonies with the head fog nodes F'INy
and F'Ny, which are connected to the fog controller (see Figure 5.9). The fog
colony controlled and orchestrated by F' Ny consists of two fog cells F'C; and
FC5, which are within the coverage area of F'N;. The fog colony controlled and
orchestrated by F'Ny has one connected fog cell F'Cl.

5.8.2 Metrics

Service Deployment Time To assess time spent on deployment in the cloud
and at the edge of the network, we calculate the service deployment time. This
metric is separately evaluated for the cloud and for fog colonies. The service
deployment time in the cloud depends on whether there have already been free
VMs running, or if a new VM has to be started. Furthermore, the deployment
time depends on the availability of the required service image. In case no free
VM is available, the service deployment time in the cloud equals the sum of the
VM booting time, the time to pull the service image, and the startup time of the
Docker container in that VM. If a free VM is available but the service image has
to be pulled, the service deployment time in the cloud equals the sum of the time
to pull the service image and the startup time of the Docker container, meaning
a cold start of the container. When both a free VM and the required service
image are available, the service deployment time in the cloud equals the startup
time of the Docker container. The service deployment times in fog colonies differ
from the ones in the cloud because in the fog colonies no VMs have to be started
before deploying the service containers. If a service image is not available locally
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Figure 5.11: Components of fog devices.

on the fog device, the deployment time equals the sum of the time to pull the
service image and the startup time of the Docker container. If a service image
is available, the service deployment time equals the startup time of the Docker
container.

Number of Deployed Services In order to show how services are distributed in
the fog landscape by different service placement algorithms, we record the number
of deployed services (containers) on each device in fog colonies and in the cloud.
We also record the total deployment time of each scenario. Furthermore, we
record the computational time of producing a service placement plan depending
on the number of service requests.

In order to show how services are recovered in the case of a failure or migrated
in the case of device overload, we record average metrics of recovery time per
service and time to migrate a service due to a device overload. We also record
how fast the framework reacts to a new device appearing in the fog landscape
and deploys services on it.

In the area of cloud computing and accordingly in fog computing, experiments
are prone to variations due to a multitude of factors, for example, hardware
differences and network quality. Some of the factors cannot be mitigated, instead,
a sufficient number of repetitions of experiments ensures that their results are
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not received due to a chance, but have a sound statistical confidence [110]. In
order to record the mentioned metrics and show the distribution of results, we
execute each experiment ten times. Through ten repetitions per experiment it
was noted that the results did not show large variations, and it is a reasonable
figure for the number of repetitions.

5.8.3 Experiments

In the first experiment, the aim is to assess deployment times. We show how
deployment times of services differ in the cloud and fog colonies. The application
used for this scenario is a cloud-edge data processing application with an equal
number of 15 service requests to be deployed in the cloud and on the fog devices.
The makespan duration of the application is 1 minute.

Second, we show how services are placed on different fog devices in time. For
this experiment, we use applications with different numbers of service requests
according to different arrival patterns: constant, pyramid and random walk (see
Figure 5.12). The arrival of application requests in all patterns happens every
60 seconds. The difference between arrival patterns is in the number of service
requests in every application request that is submitted to the head fog node. In
the constant arrival, an application request with 10 service requests is submitted
to the fog node. Pyramid arrival means application requests with 5, 10, 15, 10,
and 5 service requests accordingly are submitted with the same time span of 60
seconds between application requests, and then the pattern repeats itself. In the
random walk arrival pattern, an application consisting of a random number of
service requests from 2 to 15 is submitted for execution every 60 seconds. The
total number of application requests is 20 per one experiment regardless the
chosen pattern. The numbers of service requests in each arrival pattern aims to
test the load on the fog to the maximum and over the maximum capacities in

the fog resources in order to observe delegations of requests between fog colonies.

The start of each experiment is marked with the first submitted application
request. The last request in each experiment is submitted at the 19th minute
into the experiment. Each application has a makespan duration of 1 minute and
a deadline on deployment and execution times of 3 minutes. The arrival patterns
are shown along with the representative results of experiments. We evaluate
the two service placement algorithms presented in Section 5.6.2 — the greedy
algorithm and the GA. One VM and one Docker container with the service to
write sensor data into the cloud database are started before the experiment to
receive sensor data. Therefore, in total in this evaluation we observe 60 different
experiments which take more than 1600 minutes (approx. 27 hours) of compute
time in the fog based on the average time of one experiment (see Table 5.2).

In the third experiment, we submit applications with different numbers of service
requests to fog node F'N1, and observe the time needed for the GA to produce
a service placement plan in each case. The experiment is repeated ten times
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Figure 5.12: Different arrival patterns of service requests.

for 5, 10, 15, 25, 50, 100, 200, and 400 services, in order to show how the GA’s
computational time increases if the number of services grows. Computational
times are recorded only for the GA because, as has been described in Section 5.6.2,
in the greedy algorithm the deployment happens immediately when appropriate
edge devices are checked for placement, while in the GA a service placement plan
is generated, and only afterwards the services are deployed.

5.8.4 Results and Discussion

In the application executed in the first experiment regarding the assessment of
the deployment time, there are 30 service requests. Out of these, 15 need to be
deployed in the cloud, and 15 need to be deployed in the fog colonies. When
services have to be deployed in the cloud, in addition to the high start-up times of
VMs, VMs do not have previously stored or cached data, for example, previously
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Table 5.2: Assessment of deployment time.

(in seconds)  max min p o

Total (edge) 41.78 2722  29.76  4.08
Per service (edge)  2.78 1.81 1.98  0.27
)
)

Total (cloud) 251.03 180.75 209.42 20.41

Per service (cloud) 16.74 12.05 13.96 1.36
VM startup 72 40 48 12
Image pull (start) 33 32 32 0.01

Total 278.94 210.42 239.18 18.77

used service images. Therefore, for the cloud VMs, Docker images need to be
pulled every time. In contrast, fog devices download service images only once and
then reuse them whenever needed as the images have been cached. As can be
seen in Table 5.2, there is a significant difference between the measured service
deployment times at the edge and in the cloud. The average total deployment
time at the edge is at about 29.76 seconds (o = 4.08), whereas the average total
deployment time in the cloud is 209.42 seconds (o = 20.41). The Docker image
pull times of the VMs have been also recorded in this experiment. It takes on
average 32 seconds (o = 0.01) to pull and start the Docker container in the cloud
(see Table 5.2).

To summarize the outcome of this experiment, we compare the deployment times
in the cloud and in fog colonies. The deployment time in the cloud is higher
than the deployment times in the fog colonies because of additional latency, VM
start-up time, and service image download time before instantiating corresponding
containers. In fog colonies, the shared service registry ensures caching of all
available service images at the time fog devices enter the fog colony. In the
already running VMs in the cloud, all necessary service images are already cached
and can be reused. However, each additional new VM in the cloud requires
instantiation time and service image download time and caching time. Having
a pre-configured pool of idle cloud resources with cached service images in the
same manner as the shared service registry in fog colonies would negate the whole
concept of on-demand resources of the cloud. Therefore, cloud resources can be
an on-demand addition to the fog landscape, but are not suited to be the only
computational resource for latency-sensitive loT applications.

If applying the greedy algorithm presented in Section 5.6.2 and different arrival
patterns (see Figure 5.13), services are placed on fog cells to the maximum
capacity according to the available utilization parameters. If both fog cells in
the first fog colony (see Figure 5.9) are loaded to the maximum capacity, and a
new application request arrives with some services which need sensor equipment,
the deployment in the own fog colony becomes impossible, and therefore such a
request is delegated to the closest neighbor fog colony.
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Figure 5.13: Results of experiments with different placement algorithms and
arrival patterns.

In the GA, as discussed in Section 5.6.2, the requested applications are distributed
in a more balanced way between fog colonies and the cloud. Fog devices are
loaded less than to the maximum capacity. By delegating applications between
the colonies and distributing single services on different fog devices, the GA
placement spreads the load on the resources in fog colonies more efficiently, which
may be crucial if additional application requests are submitted and their services
need specific equipment, for example, temperature and humidity sensors.

In the pyramid and random walk arrival patterns, both algorithms perform
almost alike due to the fact that even if the greedy algorithm loads one fog cell
for all services in the application request, in most of the application requests
the workload is less than the maximum capacity of the available fog devices.
However, as can be seen in Figure 5.13, the load on fog devices is nevertheless
more distributed if the GA is used to compute a service placement plan.

To summarize the results of experiment of varying different arrival patterns of
service requests and placement algorithms, the GA performs better with regard
to distributing service requests within fog colonies. This makes it possible for
newly requested applications to be placed on the necessary resources. While
the greedy placement does not involve cloud resources, the GA spreads the load
between the fog colonies and the cloud. In the closest neighbor fog colony, the
deployment time per service is longer as there is only one fog cell connected, the
fog node’s resources also execute services, and services are deployed sequentially.
One particular positive aspect in the GA’s placement plan is that the resources
in the fog landscape are not close to overload, which gives more opportunities
for newly requested services to be deployed. The results of the experiment are
summarized in Table 5.3.
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Table 5.3: Overview of the experiments with different arrival patterns.

Metrics Algorithm  Constant ~ Pyramid Random

Groed 694.10 643.50 663.67
Deployment time Y (0 =70.92) (0 =9.54) (0 =19.99)
per scenario (sec) Genetic 684.00 644.88 654.90
(0 =16.34) (0 =9.00) (o =7.06)
Greed 3.67 2.18 2.90
Service deployment Y (0 =1.85) (0 =0.25) (0 =1.43)
time (sec) . 2.08 2.12 2.00
Genetic (_032) (0 =027) (0 =0.21)
Service deployment Greed 2.52 2.50 2.98
time in the 0 (0=0.60) (0=0.24) (o =0.30)
neighbor fog Genetic 2.12 2.23 2.38
colony (sec) (0 =0.13) (0=0.27) (o =0.56)
Service deployment . 3.25 3.97 3.19
fime, cloud (sec)  CMUC (0 Z018) (0 =0.13) (0 =0.92)

Number of services  Greedy 18 (0 =4) 24 (0 =4) 16 (0 =6)
delegated  Genetic 24 (0 =9) 22 (0 =4) 13 (c=4)

The measurements in this experiment show that the computational time of
producing a service placement plan using the GA is less than a second on average
in all the cases below 50 service requests (see Figure 5.14). After that, an increase
is observed, however, that increase is still within reasonable boundaries: a service
placement plan for 200 and 400 service requests is produced on average in 2.26
seconds (o = 0.16) and 3.64 seconds (o = 0.19), respectively.

The relatively small spread of whiskers and box sizes in Figure 5.14 show that

the computational time is rather stable for the specified number of services.

The results mean that increasing considerably the number of services to be
deployed affects the computational time, as the GA calculates fitness values for
each chromosome in each population as well as estimations to response times of
applications and fog landscape resource utilization.

Computational
Time

Summary of
FExperiment 3
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5. 10T APPLICATION EXECUTION WITH FOGFRAME
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Figure 5.14: Computational time of producing a service placement plan by the

GA.

5.9 Experimenting with Runtime Events

To evaluate FogFrame, we examine how services are distributed in the fog
landscape under different arrival patterns of service requests, and how FogFrame
reacts to different runtime events in the fog landscape.

5.9.1 Experimental Setup

As can be seen in Figure 5.15, fog nodes F'IN; and F'N3 are connected to the
fog controller. The fog colony controlled and orchestrated by F'Nj consists of
fog node F'Ns, and two fog cells F'C; and FC5. The fog colony controlled and
orchestrated by F'N3 has one connected fog cell F'C3. The implementation details
of the framework have been already presented in Section 5.7. The difference of
this fog landscape setup compared to the setup in the previous section is that
we showcase multiple fog nodes in a fog colony, i.e., we add the additional F' No,
which is a fog node that acts as a fog cell, i.e., it can execute certain services,
however, it also provides all the communication between fog cells F'C; and FCs
and the head fog node F'Nj.

In the experimental setup, each application consists of a number of service requests
of certain service types. For the purposes of the evaluation, we have defined and
implemented three possible service types: Services of type t1 receive data from
temperature and humidity sensors and are executable only on fog cells because
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Figure 5.15: Evaluation setup.

services of this type need sensor equipment; services of type to and t3 simulate
processor load by continuously writing into a string, and are executable either in
fog colonies or in the cloud. We have also developed a dedicated cloud service
which receives sensor readings and writes them to a cloud database.

5.9.2 Experiments

To evaluate the behavior of Fogkrame at runtime tackling the runtime events, we
apply different arrival patterns of application requests, i.e., constant, pyramid, and
random walk, as has been already presented in Section 5.8.3, and observe service
placement. The arrival patterns are shown along with the representative results
of experiments in Figure 5.16. The baseline for evaluation is the uninterrupted
operation of the fog landscape observed during the first ten minutes of each run
of the experiment. After ten minutes, failures are automatically introduced.

Specifically, failures are generated with the probability P(Failure) = 0.05% per
second, i.e., P(Failure) = 30% in 10 minutes, and recorded to be introduced
in each run. The device failure is simulated by stopping the fog cell application

Baseline

Failures
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5. 10T APPLICATION EXECUTION WITH FOGFRAME

container at the chosen device. In reality, device failures can be hardware,
software, or communication problems. Whenever a fog cell has a failure, we use
its Raspberry Pi to deploy a new fog cell. In this evaluation after the failure of
FC; we deploy a new cell F'Cy, and then after the failure of F'Cy4, we deploy a
new cell F'Cs.

Service We observe how the system redeploys services running on the disconnected fog

Migrations

Metrics

Different Arrival
Patterns and
Algorithms

FExperimenting
with Runtime
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cell and measure time-to-recover per service. The overloads may occur in the
course of execution, e.g., if the CPU load is 100%. In the case of an overload,
the device is still operating, however, some services have to be redeployed to
release resources, e.g., using a newly joined fog cell, already existing resources,
or cloud resources. We run the experiment ten times for each arrival pattern in
combination with each placement algorithm and provide statistical distributions
of results.

In order to show the results of the experiments, we measure the following metrics:

— Deployment time per service at the edge and in the cloud,
— Time-to-recover per service due to failures,

— Number of redeployed services due to failures,

— Percentages of successful recovery, and

— Time-to-redeploy a service due to overloads.

In order to examine the behavior of FogFkrame, we also record the workload of
each device in terms of the number of deployed services over time. We examine
this load in a stacked form, i.e., the load in each device and the total load.

5.9.3 Results and Discussion

The evaluation results for the six combinations of the two algorithms (first-fit,
GA) and three arrival patterns, i.e., constant, pyramid, random walk, during the
first ten minutes of each run are shown in Figure 5.16. In the first-fit placement,
the services are placed on the fog cells to the maximum capacity. If both fog cells
FC; and F'Cy are loaded, and a new application request arrives with services
which need sensor equipment, the deployment in the current fog colony becomes
impossible, and the fog node decides to delegate the application to the closest
neighbor colony. In the GA, more time is spent for the deployment of single
services compared to the first-fit placement because the algorithm requests device
utilization information before starting calculations. However, more application
requests are delegated to the neighbor fog colony, and the load on the resources
is better balanced, which allows to avoid overloads and is crucial if new services
need sensor equipment.

After ten minutes, we observe how FogFrame reacts on different runtime events.
The first case to consider is when a connected and successfully paired fog cell loses
its connection with the fog landscape due to a device failure. In this experiment,
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Figure 5.16: Results of experiments with different placement algorithms and
arrival patterns.

the device to fail is the Raspberry Pi of F'C;. We deploy new fog cells: F'Cy after
the first failure of F'C, and F'C5 after the second failure of FC;.

In the first-fit placement, the percentage of successful recovery is lower than in
the GA placement. This happens because in the first-fit placement both fog
cells are fully loaded, and some services which need sensor equipment cannot be
redeployed in the fog colony. In the GA, the fog colony’s resources are not loaded
to the maximum capacities, and therefore less services need to be redeployed, and
consequently the fog colony has enough resources to perform such redeployment.
In the course of the experiments, overloads occur mostly in F'Ns because this fog
node apart from executing services also handles the communication between the
connected fog cells and the cloud. In the GA placement, the underlying fog cells
and F'Ny are not fully loaded, and F'No has enough utilization capacities to deal
with the communication.

To summarize this experiment (see Table 5.4), the GA performs better with
regard to distributing service requests within the fog colony and between the fog
colonies. The positive aspect in the GA placement is that the resources in the
fog landscape are not close to overload, as can be also seen in Figure 5.16, giving
more opportunities for newly requested services to be deployed, i.e., because of
better availability of sensor equipment.

FExperiment
Summary
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5. T10T APPLICATION EXECUTION WITH FOGFRAME
Table 5.4: Overview of the experiments with runtime events.
Metrics Algorithm Constant Pyramid Random
First-fit 2.41 3.07 3.06
Deployment time per service, c=110 o¢=093 o0=1.08
edge (sec) Genetic 2.92 3.02 3.05
c=116 0¢=0.92 o¢=1.17
Deployment time per service, . 2.78 2.69 3.18
cloud (sec) Genetic 0=0.18 ¢=0.13 o =0.63
First-fit 26 24 24
. o =21 o =21 o =10
Number of services delegated Genetic 59 A6 9%
c=9 o=20 oc=13
First-fit 21 11 10
Number of services to recover Genetic ? 6_ 3 7 7_ 0 7 6_ g
oc=4 oc=4 o=2
First-fit 3.88 2.49 1.98
Time-to-recover per service c=312 o0=118 o0 =0.12
(sec) Genetic 2.09 2.02 2.07
0=024 o¢=018 ¢ =0.10
First-fit 90.00 89.36 99.11
Successful recovery (%) . o =1281 0 =11.62 0 =2.36
Genetic 100.00 100.00 100.00
0 =0.00 o¢=0.00 o¢=0.00
First-fit 1.80 9.41 3.16
Time-to-redeploy per service oc=0.06 o0=295 o0=1.13
(sec) Genetic 2.46 2.49 2.37
oc=0.05 o¢=0.05 o=0.17
5.10 Summary
In this work, we have designed and developed a framework for creating and
maintaining a fog landscape, and enabling [oT application execution according
to specified requirements. The foundation for the framework are lightweight
container technologies and loosely-coupled components to provide a stable and
fault-tolerant distributed system. By using this framework and based on single-
board computers, we have built a real-world fog computing testbed able to
receive requests for execution, allocate resources, deploy services, and execute
ToT applications. Having addressed the question of how to create a fog landscape,
we have focused on the development of the communication and application
management mechanisms. The framework enables the easy integration of new
components due to well-defined interfaces.
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5.10. Summary

FogFrame provides the necessary mechanisms for configuring a fog landscape
as well as for supporting application management and lifecycle. During the
implementation, we have identified and resolved technical issues of how to create
a real-world fog landscape based on Raspberry Pi computers, which are considered
as representative devices for fog computing as discussed in Section 5.7. We have
investigated how to instantiate containers in different computing environments
and how to store images of services and share those images within the available
infrastructure. A crucial part of this work has been devoted to the problem of
how to effectively distribute services in a fog landscape. Therefore, we formalized
a system model, and implemented a GA as well as a greedy algorithm for service
placement taking into account our findings about the real-world testbed.

Experiments are conducted to assess deployment times of applications, service
placement algorithms with different arrival patterns of service requests, and
computational time depending on the workload to be processed. The framework
is evaluated with regard to QoS parameters of IoT applications and the utilization
of fog resources using a real-world operational testbed. The evaluation shows
that the service placement is adapted according to the demand and available
resources in the fog landscape. The greedy placement leads to the maximum
utilization of edge devices keeping at the edge as many services as possible, while
the placement based on GA keeps devices from overloading by balancing between
the cloud and the edge. When comparing edge and cloud deployments, the service
deployment time at the edge takes 14% of the deployment time in the cloud. If
fog resources are utilized at maximum capacity, and a new application request
arrives with the need of certain sensor equipment, service deployment becomes
impossible, and the application needs to be delegated to other fog resources.
The GA better accommodates new applications and keeps the utilization of edge
devices at about 50% CPU. The GA placement distributes services in a balanced
way, while the greedy algorithm loads each of the fog devices with the maximum
available resource capacity. If there are no sufficient resources in the current
fog colony, applications are delegated to the closest neighbor fog colony. The
computational time of the GA remains stable for the specified number of services,
however with a considerably increasing number of services to be deployed, the GA
performs accordingly more computational operations to evaluate each possible
solution.

In this chapter, we focus also on monitoring and management of computational
resources in the cloud and at the edge of the network, as well as on the orches-
tration of those resources in order to deploy arbitrary services. To enable these
functionalities, FogFrame provides means for communication between different
resources in a fog landscape, means for application management, and means for
tackling runtime operational events that may occur in such a volatile system, i.e.,
failures or losses of connection between devices. We evaluate the framework and
the proposed mechanisms to tackle the volatility in the fog using the testbed.
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During our experiments, we recorded the workload on different computational
resources at the edge of the network and in the cloud, deployment times of
services, time to recover and recovery rates in the case of failures and overloads.
The framework successfully reacts to runtime events:

— Services are recovered when devices disappear from the fog landscape;

— Cloud resources and highly utilized devices are released by migrating services
to new devices;

— In case of overloads, services are migrated in order to release resources.

Services are successfully recovered and migrated when fog cells fail or experience
overload. Device discovery ensures efficient balancing and horizontal scalability in
the fog landscape. This releases cloud resources and other fog cells, which may be
intensively used in a fog colony, by migrating necessary services onto discovered
devices. The framework records information for measuring efficiency and for
evaluating performance based on application execution and resource utilization
monitoring.

This chapter constitutes Contribution III as defined in Section 1.2 and covers
requirements 11-18 from the identified requirements in Section 2.6:

11. A fog computing framework should be able to create and maintain a fog
landscape made up from computational resources at the edge of the network
and in the cloud.

12. The framework should establish communication and interactions in the fog.

13. It should efficiently perform service delivery, deployment and execution of
ToT applications.

14. For a resource- and QoS-efficient execution of the applications, resource
provisioning should be implemented.

15. IoT application execution may be requested at any time. The framework
should accordingly react to the workload and trigger resource provision-
ing. The available resource pool should be shared and optimized among
submitted IoT applications.

16. The IoT application execution as well as the resource pool should be
monitored at runtime. The monitoring should provide necessary data for
the evaluation of resource provisioning constraints.

17. The framework should dynamically react to the volatility of the fog. Cor-
responding countermeasures should be performed to tackle the volatility,
i.e., when devices lose connection or get overloaded, as well as when new
resources appear in the fog.

18. The framework should provide means to overview execution results and
calculate different performance metrics both of the framework runtime
and resource provisioning, e.g., deployment and execution time, number of
successfully executed applications, failure rate, QoS of single applications,
or utilization of resources.
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CHAPTER

State of the Art

The idea and initial results in this dissertation have been inspired by the seminal
works of Bonomi et al. [25, 26], Vaquero et al. [141], and Dastjerdi et al. [45]. The
authors discussed that applications may be placed in the fog, spanning potentially
heterogeneous cloud and edge resources, and that fog computing has to enable
different communication links, i.e., within the fog on different levels: between
different IoT devices, at the edge and with the cloud. In their discussion of
basic fog features, different concepts to realize fog architectures are considered,
including both centralized and decentralized, i.e., P2P, approaches. In particular,
the authors introduce the notion of edge clouds, which are private fogs made up
from IoT devices, resembling the notion of fog colonies in this dissertation.

This inspiration resulted in the first core publications of this dissertation (see Core
Publications) in early 2016 and 2017 abiding the mainstream in fog computing
research and introducing first concepts and resource provisioning models. After
that, in publications in 2018 and 2021, the work focused on the real-world
implementation and evaluation of various resource provisioning approaches with
the fog computing framework FogFrame.

Naturally, there is conceptual as well as fundamental work in related areas,
which needs to be regarded, despite it being published concurrently or later
than our publications. Therefore, this chapter considers fog computing concep-
tual mechanisms and simulations, resource provisioning and service placement
methods, real-world fog computing environments and implemented testbeds, and
investigates the state of the art on how to create and maintain a fog landscape.
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6.1 Resource Provisioning and Service Placement

In the following, we consider related work in the area of resource provisioning and
service placement in the fog. Notably, hundreds of studies on service placement
in the fog have been presented in recent years [19, 76, 123, 127]. An interesting
systematic review has been presented by Kashani et al. [88]. It provides com-
prehensive descriptions, advantages and disadvantages of approximate, exact,
fundamental, and hybrid methods of load balancing in fog computing. Most of the
methods mentioned in the survey are simulated, and it is promising to implement
the mentioned methods in a real-world fog computing environment. Furthermore,
some cloud computing resource provisioning methods can be adapted to fog
computing. For example, in a survey by Afzal and Kavitha [7], advantages and
limitations of existing load balancing methods in cloud computing are considered.
These methods can be implemented in FogFrame within the fog controller’s
reasoning mechanisms to manage additional cloud resources for fog colonies.

In the following, we focus on the closest work to our research on resource
provisioning and service placement in fog computing.

Hong et al. [77] present a programming model including a simple resource provi-
sioning strategy which relies on workload thresholds, i.e., if the utilization of a
particular fog cell exceeds a predefined value, another fog cell is leased. In the
work of Saurez et al. [126] the approach of Hong et al. is extended by implement-
ing the envisioned APIs and adding algorithms regarding the discovery, migration,
and deployment of fog cells and services. Furthermore, an experimental real-world
fog landscape is set up using containers deployed on several servers.

Aazam and Huh [1] present a sophisticated resource provisioning mechanism based
on the prediction of resource demands by means of historical usage data, records
of past customer activities, and pricing models. This approach is aimed at cost
optimization, while resource allocation depends on the probability fluctuations of
user workload demands, types of services they need, and their loyalty index. In
another paper, the authors propose an improvement of the theoretical resource
management model in terms of specifications of utilization and QoS in the context
of multimedia IoT devices [3]. These are interesting works focusing specifically
on pricing models and economy aspects, which are not implemented in Fogkrame.
FogFrame’s scope is on the fog landscape itself enabling efficient execution of
IoT applications, i.e., how to create a fog colony from the first device, how to
make devices interact, and how to execute applications in the fog. In the papers
of Aazam and Huh, the authors focus on establishing customer service from
the very first customer, i.e., how resources for a customer need to be estimated
and allocated based on customer history. In order to implement the mentioned
pricing models in the real-world fog in FogFrame, another level of management,
i.e., customer management, is needed within fog colonies.
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6.1. Resource Provisioning and Service Placement

In the work of Vogler et al. [145], a rule-based approach to optimize deployment
topologies on edge devices is presented. This approach offers an elastic application
deployment by the means of defining a ‘hot pool” of resources per service of
requested applications to enable additional scaling. A framework for dynamic
generation of deployment topologies for IoT applications called DIANE is proposed.
This framework monitors the deployment infrastructure, groups it according to
available resources, and stores the results for later analysis. It dynamically deploys
topologies for IoT applications by the means of a rule-base algorithm, and provides
their monitoring. In DIANE, only a rule-based algorithm is used for resource
provisioning, while in our work, we formulate a concrete optimization problem.
We also consider and implement a hierarchical structure of a fog landscape
focusing specifically on establishing communication between different devices
in the fog landscape, and providing application management. We also consider
runtime service placement optimization to account for dynamic infrastructural
changes in a fog landscape. We concentrate on a concrete formalization of the
optimization problem to be able to use this formalization in order to apply
different optimization and heuristic algorithms to solve this problem.

Urgaonkar et al. [138] present an approach on how to distribute services between
edge clouds, which resemble our notion of fog colonies. The authors assume that
there is a central cloud node, which controls the edge clouds. The placement of
services onto resources is formulated as a Markov Decision Problem and solved by
means of a control algorithm based on Lyapunov optimization, minimizing the cost
of execution and accounting for delays and location in constraints. In contrast,
in our work, fog resource and application models are explicitly formulated. The
fog landscape is considered as an extension of the cloud, and the optimization
model takes into account QoS metrics of applications.

Deng et al. [48] formulate a workload allocation problem for a fog landscape. For
this, the power consumption, computation and communication delays of three
subsystems are considered, i.e., of fog computing, WAN communication, and cloud
computing. According to these three subsystems, the authors formulate three
separate optimization problems to minimize power consumption and delays in
different environments. After solving these problems, the approximation problem
of how to unite these three solutions is proposed, but the evaluation of this
approximation is left for future work. In our work, we use different criteria for
service placement, i.e., we take into account QoS parameters of applications,
however, we do not account for power consumption of fog resources. This aspect
may enhance our optimization problem in the future.

Brogi and Forti [30] introduce the FogTorch tool which aims to perform resource
provisioning in a fog landscape. FogTorch accepts a fog landscape infrastructure
and application specifications as inputs, and calculates a deployment model. The
basis for the deployment is QoS-aware service placement. The placement approach
at first preprocesses all input requests to search a map of available resources

Vogler et
al. [145]

Urgaonkar et
al. [138]

Deng et al. [48]

Brogi and
Forti [30]
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for each service in each request and backtracks the results of preprocessing to
guarantee the deployment of all services. Then it applies a heuristic fail-first
algorithm to ensure the deployment of those services for which there are fewer
compatible nodes and which have bigger demands for resources. In contrast, in
our work, we implement FogFrame along with our own resource provisioning
mechanisms, and apply it in a real-world Raspberry Pi testbed. The integration
of FogFrame with FogTorch may become a good opportunity in the future to
deal with the reoptimization of network topologies of a fog landscape.

Xiao and Krunz [153] consider an offloading problem in fog computing. Opti-
mization is performed based on power consumption and Quality of Experience
(QoE) parameters. Their approach is called offload forwarding. In contrast to our
work, the authors use different criteria for optimization, namely, QoE and power
consumption. This is an interesting approach, and our models may be extended
to take into account power efficiency of the fog landscape and QoE inputs from
users.

Ni et al. [108] propose a resource allocation technique for fog computing which is
based on Priced Timed Petri nets. In the application model used in their work,
a fog application is orchestrated from single services. The time and price for
execution of these services differ for each device. The resources for allocation
are chosen by the users depending on the information received from the Petri
net and their own demands. In our approach, users are not involved in the
orchestration component, and the reasoning service reacts to application requests
automatically.

Saurez et al. [126] propose to allocate resources and migrate services in the fog
based on two possible triggers, i.e., meeting latency constraints and resolving
resource pressure. In contrast, in our work, apart from latency and resource con-
straints, we take into account QoS parameters, namely, deadlines on deployment
and execution of applications.

Nardelli et al. [107] introduce several heuristic approaches to efficiently identify
service placement considering the volatility of computing resources. They simulate
different network topologies and sizes of fog infrastructure. In their work, several
meta-heuristic algorithms are implemented: a greedy first-fit, tabu search and
local search algorithms. According to the findings of Nardelli et al., the greedy
first-fit algorithm is the fastest, however with the worst quality, whereas the local
search heuristics shows the best performance trade-off. In our work, we apply
different heuristic algorithms for service placement in a real-world fog landscape.
We also introduce different placement mechanisms to account for device discovery,
failures and overloads.

Mseddi et al. [105] introduce service placement implemented by the means of
particle-swarm optimization, a greedy algorithm, and an exact optimization.
The goal of their placement is to maximize the number of executed applications
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adhering to their time constraints. According to their results, Mseddi et al. state
that the particle-swarm optimization yields high resolution times and is not viable
in fog computing environments. Their greedy algorithm aims to minimize the
distance and delay between used fog resources taking into account their utilization.
In contrast, our greedy algorithm aims to maximally utilize a fog colony adhering
to QoS requirements and capacities of available resources as well as to the types
of services. In general, the service placement approach in our work differs from
the work of Mseddi et al. since it considers multiple fog colonies and offloading
of applications as well as contains separate policies to tackle operational events
in a fog landscape.

A novel rule matching approach to execute composite fog applications is proposed
by Spillner et al. [133]. Their goal is to automate deployment patterns of applica-
tions on different compute resources by solving the assignment problem with a
match-making approach. Their holistic definition of rules enables specification
and control of constraints in the system. The placement of single services of IoT
applications is achieved by ranking of all possible combinations of deployments
on all resources. The demonstration of performance is done via OsmoticToolkit,
which is an emulator of different computing environments. Their work considers
different types of rules and constraints, which may be beneficial to enhance
our Fogkrame model in future. Compared to the work of Spillner et al., we
address some of their mentioned limitations, for example, we account for the
volatility in the fog and perform migrations of services based on fog runtime
events. Furthermore, our watchdog services monitor each of the fog devices, and
provide those characteristics to the reasoner component in each fog node.

In the work of Abedi and Pourkiani [5], the authors introduce a service placement
algorithm based on an artificial neural network aimed to minimize response times
of applications while distributing them in the fog landscape. Their approach
is simulated with MATLAB, and therefore it is not clear how long it takes
to produce such a neural network in the real world. It has to be noted, that
this approach, as well as any other Machine Learning (ML) model, requires a
considerable volume of training data. This means that before any neural network
can be created, other placement algorithms or service placement policies have
to be used to historically record those placement decisions to receive a viable
training dataset.

Mostafa et al. [104] also implement an artificial neural network in a simulated
environment to make predictions of service placement based on historical place-
ment data. The algorithms in our work could provide a basis for training data
and eventually be substituted by ML models. An interesting recent survey of
Abdulkareem et al. [4] discusses areas where ML can be applied in fog computing:
ML for specific IoT service implementations and ML for decision making in
resource provisioning.

Spillner et
al. [133]

Abedi and
Pourkiani [5]

Mostafa et
al. [104] and
Abdulkareem et

al. [4]
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In work by Baresi and Mendonga [15], building blocks of a Serverless Edge Plat-
form are proposed to enable different application scenarios in densely distributed
fog with the Function-as-a-Service (FaaS) application model. The authors en-
vision multiple such serverless edge platforms at the network edge, which are
capable to self-organize and advertise their own resource pool capabilities and
performance scores. Alongside each of such platforms there is a load balancer,
which implements least response time optimization. The authors also propose a
mechanism to enable stateful services by storing session tokens. Their interesting
approach to deal with stateful services may be introduced in the future into
FogFrame’s resource provisioning.

In a recent work by Bermbach et al., a conceptual auction approach to enable
FaaS in the fog is introduced. In this approach, application developers place bids
for executing serverless FaaS funtions in the fog. These requests are collected and
presented to fog nodes, which can either accept the storage and execution of the
each of services or delegate them based on available workload capacities. Their
decision is based on performing comparison of bids and finding more ‘attractive’
ones. The system proposed is called AuctionWhisk which is realized as a proof-
of-concept simulated testbed of a FaaS platform. In FogFrame, compared to
AuctionWhisk, we solve different challenges. We focus on enabling both, a real-
world fog landscape with volatile fog devices potentially entering or leaving the
fog thus forming fog colonies, and on resource provisioning to efficiently execute
IoT applications.

To conclude this overview, the considered related works in resource provisioning
and service placement differ in many aspects, e.g., in the way the fog is simulated or
represented within models, how the goals of resource provisioning are formulated
and implemented, in introducing different constraints depending on the enabled
computational environment. This thesis introduces various approaches while
enabling end-2-end workflow, i.e, from creating a fog landscape to executing
real-world IoT applications and tackling volatility of the fog at runtime. Each of
the discussed works contains ideas and mechanisms that may applied to improve
this work.

6.2 Fog Computing Frameworks

To the best of our knowledge, already existing contributions in the area of fog
computing are often evaluated by the means of simulators along with artificially
generated data, since there is still a lack of research testbeds which could be used
to evaluate different mechanisms in fog computing. Therefore, in this section, we
focus on the works which provide concrete implementations of fog architectures.

de Brito et In the work of de Brito et al. [47], an IoT testbed is proposed based on Docker

al. [47]
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Swarm and the OpenMTC M2M Framework. Their architecture consists of two
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main entities, a fog orchestration agent and a fog orchestrator. An orchestration
mechanism for microservices in the fog environment is also discussed in their
work. The basis for that mechanism are Docker labels which are used to check
resource consumption constraints of applications. In the FogFrame framework, we
explicitly discuss in what way a fog landscape is formed and how communication
between different devices is established. In the work of de Brito et al., they
propose self-announcement mechanism for establishing communication, i.e., when
a fog device appears in the fog landscape, it announces itself either as a fog
orchestration agent, or as a fog orchestrator. In our framework, we also do self-
announcement, however, in our implementation the fog landscape is structured
and hierarchical, and self-announced devices, i.e., both fog nodes and fog cells,
can become members of certain fog colonies depending on different criteria, i.e.,
closest distance. With regard to orchestration, our approach is rather different to
Docker labels, i.e., we formalize a system model, and introduce different service
placement algorithms.

Tsai et al. [114] implement a distributed analytical fog computing platform based
on Raspberry Pis using TensorFlow and Kubernetes. Their testbed consists
of a centralized server and fog devices connected by an Ethernet switch. The
programming of the application model is performed by the means of TensorFlow,
i.e., applications are split into small operators. Kubernetes controls and monitors
the fog landscape, checks the available resources, and deploys containers of
operators on-demand. In contrast, in our work, we have developed an own
distributed management system for the fog landscape which is not centralized like
Kubernetes. Different fog devices in the fog landscape have different functionality.
Our fog nodes are lightweight compared to Kubernetes, and they monitor, manage
and orchestrate their own fog colonies.

Yigitoglu et al. [162] introduce the fog computing framework Foggy. In the Foggy
framework there is a three-tier infrastructure, namely edge devices, network
infrastructure, and cloud services. Their network infrastructure tier consists of
nodes and an orchestration server. The orchestration server creates and maintains
a resource catalog which contains data about the available resource pool, i.e.,
capacities, connections, and utilization. The authors also propose different
strategies to promote reliability when performing deployments of services. The
testbed is implemented based on Raspberry Pis. Resource provisioning in their
work is performed by an orchestration server, which runs on every node in the
network, and implements a first-fit provisioning method. Compared to our work,
we distinguish between different types of nodes, i.e., fog cells and fog nodes. Our
fog nodes perform orchestration in the own colonies. Hence, we do not have
only one orchestration server for a fog landscape, but many interconnected fog
colonies. We consider multiple fog colonies and the hierarchical structure of
a fog landscape; this is not foreseen by Yigitoglu et al. We focus on specific
communication and deployment mechanisms. And in our work different resource

Tsai et al. [114]

Yigitoglu et
al. [162]
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optimization methods are implemented.

He et al. [70] propose a simulated fog computing model introducing a static
dedicated and volatile opportunistic fog landscape as well as fog masters and fog
workers as the main entities in a fog landscape resembling our fog nodes and
fog cells. Similarly to our approach, the presented model enables multiple fog
masters in one fog environment. In their pairing mechanism, He et al. consider
invitations from fog workers in order to enter the fog landscape, while in our
work fog cells and fog nodes perform self-announcement. Even though their
system is simulated, He et al. provide very interesting insights on interactions
within different fog environments. A multi-tier fog computing model is simulated.
Dedicated fogs are static, while opportunistic fogs are volatile and consist of
various computational, storage and networking resources which may enter or leave
the fog. Considering the question of how to form a fog landscape, in opportunistic
fogs, fog devices are joined by invitation from fog masters. Each fog has at
least one fog master. An interesting aspect is that one fog can have multiple
fog masters to improve reliability. However, it is not described in detail, how
the coordination and management is performed by those multiple fog masters.
Compared to our work, FogFrame is not a simulation framework, but a real-world
fog computing framework. Fog masters resemble fog nodes in Fogkrame, and fog
workers resemble fog cells. We also enable multiple fog nodes in one fog colony.
In order to enter the fog landscape, we use self-announcement mechanism, while
He et al. propose an invitation mechanism.

Battulga et al. [17] introduce the FogGuru platform for fog computing imple-
mented via a real-world testbed. Their representative fog landscape is built out of
five Raspberry Pis united in a cluster and a cloud tier. The cloud is utilized to host
a static service to process sensor data. Their system utilizes a publish-subscribe
mechanism to push sensor data through a stream processing system and further
into the cloud tier. For orchestration purposes, Docker Swarm is used, and one
of the five Raspberry Pi units is used as a Swarm Manager. Unlike our work, the
work of Battulga et al. shows how to utilize a publish-subscribe mechanism in
fog computing. Their testbed is static, unlike ours, where we explicitly tackle
runtime operation events in the fog landscape and migrate necessary services
when needed.

In the work of Buyya et al. [99], alongside with a simulated environment via
iFogSim, the authors implement a small static testbed of eight smartphones as IoT
devices and five standard computers that act together as a fog cluster of resources
interconnected with LAN. This fog cluster operates within their framework called
FogBus. Service placement is based on a time-optimized QoS-based policy and
follows application deadlines. For this, a heuristic evolutionary algorithm to
create a placement map of applications onto available resources in the fog cluster
is applied. To address possible failures of resources within the fog cluster, in their
work a replication mechanism is provided. Compared to their work, our proposed
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framework ensures cooperation between different fog colonies. The fog landscape
automatically detects if devices appear or disappear from the fog landscape, and
places, migrates, and optimizes services accordingly.

Another Raspberry Pi-based testbed called piFogBed is presented by Xu and
Zhang [156]. Their system has a coordinator deployed on a standard computer that
contains user management functionality, a device allocator for service placement
of user applications, a container manager to save service images to DockerHub,
a network simulator and an application execution controller. Fog nodes are
deployed on four Raspberry Pi units and execute applications. Service placement
is implemented in a set of policies that ensure the utilization of closest fog nodes
until their capacities reach a certain threshold and taking into account bandwidth
and delay constraints. Their work is a good example of holistic and detailed
experiments. Compared to the work of Xu and Zhang, we consider multiple fog
colonies that utilize a decentralized service placement for application execution.

The fog computing testbest MockFog is presented by Hasenburg et al. [68]. Their
system emulates fog computing entities and infrastructure in the cloud, and imple-
ments and demonstrates an interesting approach of executing IoT applications in
the fog with a predefined orchestration schema. The fog infrastructure module of
MockFog allows modeling the needed fog resources. The application management
defines the IoT applications requirements, and allows specifying containers of
applications and assign where to deploy them referencing the needed fog resources.
Last but not least, the experimentation module allows users to create, configure,
and establish different scenarios of experiments. Emulations in MockFog provide
network graphs with specified connections and parameters. Fogkrame operates
in a real-world volatile fog, comprising from the devices at the network edge and
in the cloud, and where devices can enter or disappear from the fog landscape.
MockFog’s application management with network graphs and connections would
be interesting to use in FogFrame, as in the current implementation of FogFrame
IoT applications with their parameters are specified with API calls, telling to

FogFrame where to get each service image and what are the application demands.

An interesting combination of blockchain and fog computing technologies is
proposed in the work of Cech et al. [38]. Their decentralized architecture is based

on MultiChain nodes embedded in more powerful fog cells and a P2P network.

This P2P network overlay provides a distributed data store to share sensor data
between resources in a fog landscape. The authors implement a testbed with three
Raspberry Pi units connected to a standard computer. Docker Swarm is used for
the orchestration of applications. Blockchain functionality is implemented by a
Docker image of blockchain based on the MultiChain framework. In our work, we
focus on the fog landscape itself, on how it is formed, how the communication is
performed between different fog colonies, and how the volatility is tackled. The
mechanism of Cech et al. could be applied for a distributed data store, as well as
to enable tracking of application execution around the fog landscape.

Xu and
Zhang [156]

Hasenburg et
al. [68]

Cech et al. [38]
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A conceptual work by Varshney and Simmhan [143] describes coordination
models to be applied in fog computing. In their work, three different coordination
models in fog computing are considered, i.e., hierarchical, P2P, and hybrid. It
is emphasized that the hierarchical model enables only vertical communication.
The cloud is defined as the root of this hierarchy and is responsible for all the
coordination, orchestration, and execution of applications. In the P2P model,
horizontal communication is considered between different devices in the fog
landscape. Such communication has to be set up by a central entity, which can
be located either in the cloud or at the edge of the network, and which has
a global view on the overall pool of resources. The network topology is to be
maintained by the means of a distributed hash table. In a hybrid coordination
model, the authors consider both horizontal communication between different
resources as well as vertical communication to establish an ordered fog landscape
infrastructure. We place our work in such a hybrid model. In FogFrame, the
central entity to form and maintain a fog landscape is the fog controller. Fog
colonies are interconnected and collaboratively can recover from failures and
execute applications even if the fog controller is not available. With regard to fog
landscape operation, Varchney and Simmhan propose to change the coordination
model depending on changes of the fog landscape at runtime.

Zhang et al. [169] propose a conceptual regional cooperative fog computing
architecture. The authors distinguish between edge and fog layers, and a cloud
center. The fog layer is coordinated by a separate local coordination server. The
cloud center is a super fog server, however the coordination is in the exclusive
responsibility of the local coordination server. The authors focus on cooperation
in the fog landscape in terms of service migration, maintaining uninterrupted
service and reliability. With regard to communication, intra-fog and inter-fog
communication and management are envisioned. The virtualization mechanism
proposed in their work is by the means of VMs. Compared to our work, we use
containers instead of VMs, since VMs are heavyweight and therefore not suited
for rather lightweight IoT devices [103]. Similarly to Zhang et al., we also do not
design any coordinating fog landscape entities in the cloud. A local coordination
server resembles a fog node being the head of a fog colony. However, we provide
communication and collaboration between different fog colonies by the means of
their corresponding fog nodes.

Karagiannis et al. [87] propose an alternative to the hierarchical structure of
organizing the fog. The authors introduce self-organizing fog nodes that enable
flat network modeling as well as improved fault tolerance compared to hierarchical
fogs. Such fog nodes maintain connectivity with the neighbor fog nodes, and share
their resources to execute collaboratively IoT applications. The self-organizing fog
nodes form groups of fog devices. One node can belong to multiple groups. Fog
nodes are added to the groups by their proximity to other fog nodes. Karagiannis
et al. also provide an organization algorithm for fog nodes. In this dissertation,
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the fog is hierarchical within a fog colony. However, when considering multiple fog
colonies in a fog landscape, the approach of Karagiannis et al. could be beneficial
to help choosing a neighbor fog colony where to delegate application requests.

In the technical report of Shneidman et al. [129], the authors provide an infras-
tructure called Hourglass that is meant to be deployed over an established network
and to enable management of data flows in applications. Interestingly, Hourglass
operates in terms of circuits, i.e., connected data producers and consumers to-
gether with data flow links between them. Circuits correspond to the DDF model
discussed in Section 2.5.1. However, Hourglass has an own XML-based description
language to define all the parameters, semantics, and endpoints. Services are
either data producers or consumers. There is also a mechanism for announcement
of services and circuits with a distributed registry. Hourglass is implemented as
a testbed over a simulated distributed system. All in all, compared to Fogkrame,
Hourglass’s aim is to make an application’s circuit functional in the volatile
network, while FogFrame aims to enable both: infrastructure of a functioning fog
landscape and the means and algorithms to efficiently distribute IoT applications
tackling similar issues of volatility, mobility and geography. Some concepts could
be borrowed from this work instead of the DDF model, e.g., FogFrame could
benefit from providing more complex definitions of IoT applications, for exam-
ple, from their concept of topics and predicates to describe relations between
services and circuits. The circuit manager of Hourglass somewhat corresponds
to Fogkrame runtime event policies within the reasoning service. In Hourglass,
circuits are initiated by an application, i.e., it should implement a certain con-
forming compatible wrapper. Then, an application needs to find and decide
from where to receive data and establish and maintain corresponding circuits
with its circuit manager. In FogFrame, an IoT application consists of multiple
services which are deployed over available resources in a fog colony, in this case,
an application cannot choose anything, the distribution is done on the fog level
in the head fog nodes according to the calculated service placement plan.

In the work of Wang et al. [147], the containerized resource management frame-
work FogBus2 is built based on the new lightweight technology K3s'. FogBus2
implements different scheduling algorithms to execute IoT applications combining
resources in the fog and the cloud. K3s is a backbone for the framework consisting
of a master server deployed in the cloud and agents in the fog. In each pod only
a single component from FogBus2 is embedded. Each pod of K3s is assigned to a
different node thus showcasing workload balancing. One stated challenge by the
authors is that components need to bind their IP addresses before the system can
execute applications. Indeed, the K3s platform could provide Fogkrame with a
similar backbone to establish networking. Nevertheless, resource provisioning in
FogFrame is integrated into the fog nodes. Also, in FogFrame we tackle volatility
by triggering different policies corresponding to different events. Service registry

1Online; Accessed: Apr. 2023 https://k3s.io/
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Table 6.1: Overview of implementations of fog architectures.
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is distributed, i.e., whenever a service is registered, it is propagated to all fog
nodes. This is not available in FogBus2. Similar statement could be made about
OpenYurt?: on the infrastructure level it could enable networked devices, however
all the services of FogFkrame for establishing fog colonies with devices entering
and leaving the fog and the execution of IoT applications remain relevant.

The findings from the related fog computing architectures are summarized in
Table 6.1. This table provides insights for the most relevant considered work of
whether it is implemented or simulated, makes use of VMs and containers, is
a centralized solution or distributed, accounts for the communication within a
dedicated fog computing environment, and considers the communication between
multiple fog colonies.

In this dissertation, we model a conceptual fog landscape and an IoT application
to be executed by the means of fog resources. Based on these preliminaries, we
formulate the FSPP, which aims to maximize the utilization of fog resources
and the adherence to QoS parameters. We simulate a fog landscape and solve
the FSPP by a first-fit algorithm, a GA, and an exact optimization method.
In general, the contributions in resource provisioning and service placement
discussed in Section 6.1 differ from our work in terms of a system model for
service placement in the fog landscape, parameters which are included in this
model, and algorithms to provide a solution for this model. We have implemented
these mechanisms in FogFrame and evaluated them in a real-world testbed.

20nline; Accessed: Apr. 2023 https://openyurt.io/
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With regard to the framework implementation, we provide design details and
workflows in a fog landscape, eliminate the usage of simulators and implement a
representative real-world Raspberry Pi-based testbed with the FogFrame frame-
work. The framework

— Introduces mechanisms to create a fog landscape and account for its volatile
nature,

— Provides decentralized application execution in multiple fog colonies,

— Discusses communication mechanisms between different fog colonies,

— Introduces a service placement problem formulation to account for practical
issues dealing with delegating and deployment of applications,

— Implements a greedy algorithm and a GA to solve the service placement
problem, and

— Reacts to runtime events in the fog landscape and migrates necessary
services to balance workload between resources.

We extensively evaluate the framework with regard to deployment times of services
and utilization of resources.
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CHAPTER

Conclusion

In this last chapter, we aim to outline key takeaways from this thesis. In
Section 7.1, we provide answers to the research questions as specified in Section 1.1
and summarize the main contributions demonstrating what new artifacts, models,
and methods have been developed, and how they advance the already existing
research in the area of resource provisioning in fog computing. After that, we
shape topics and possible research directions towards future work in Section 7.2.

7.1 Summary of Contributions

This thesis aims to research, design, implement, and evaluate concepts, artifacts,
and methods to enable resource provisioning in fog computing. There are two
main views considered in this research: IoT applications and novel computational
environments. Regarding IoT applications, the modern use of ubiquitous IoT
devices generates an enormous high volume of data and is characterized by the
high velocity and variety of data. This imposes new challenges to the ways of how
to process data, e.g., how to optimize processing, how to adhere to the variety
of IoT devices emitting data, as well as how to execute IoT applications more
efficiently. This results in new requirements towards processing architectures, and
thus new computational environments emerge, i.e., fog computing. Fog computing
combines various heterogeneous resources at the edge of the network and in the
cloud, and aims to implement new concepts, workflows, and architectures to fulfill
TIoT demands.

In this dissertation, we begin with the discussion of key enablers of fog computing,
i.e., the IoT and cloud computing. We discuss what common features and
approaches of these major technology trends are the conditions for fog computing,
and which silos need to be addressed. We discuss several RAs that are relevant to
further advance the research in fog computing, but which do not provide to the
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needed extent the functionalities for resource provisioning in the fog. We discuss
the MEC framework, OpenFog, and FORA RAs to show which main levels of
management and pillars of requirements need to be considered when working
with the IoT. Next, to enable IoT application execution in the fog, we consider
how to represent computational resources in fog computing. For this, we discuss
container technologies aimed at both wrapping fog functionalities and enabling
the decentralized execution of IoT applications. Last but not least, after the
review of infrastructure topics and enablers in fog computing, we devote attention
towards providing a holistic background on resource provisioning, giving insights
about existing approaches towards enabling resource provisioning in distributed
environments.

In the main part of this dissertation, first, we provide concepts and functionalities
of a fog landscape. We discuss which entities have to be implemented to realize
the fog as well as means-end relationships between those entities. We introduce
the concept of fog colonies, which aim to act as mini data centers executing IoT
applications. We show a fog landscape consisting of multiple fog colonies, and fog
colonies consisting of fog nodes and multiple fog cells with attached IoT devices.
In order to enable the cloud-to-thing continuum in a fog landscape, cloud resources
complement fog colonies. This organization of a fog landscape is hierarchical
and enables the decentralization of IoT application execution, where each fog
colony becomes a geo-specific computational environment. To implement such a
hierarchical fog landscape, we introduce a fog computing model, its components
and communication details. The essential part of this model is the reasoning
capability of fog nodes. Fog nodes perform resource provisioning and service
placement. We provide our first system model for resource provisioning that aims
to maximize utilization of fog colony’s resources while executing IoT services.
To evaluate the system model, we create a fog landscape by simulating desired
computational resources and their parameters. The introduced fog landscape
entities and the fog computing architecture constitute Contribution I of this
thesis.

Second, we continue to advance into the topic of resource provisioning in fog
computing. In order to work with different optimization and heuristic methods
to implement resource provisioning, we focus on the holistic specification of a
resource model of a fog landscape as well as on a model of IoT applications to
be executed in the fog. We use these notions to formalize the FSPP. A solution
to the FSPP provides an optimized decision on how to place services onto fog
resources, either in fog colonies or in the cloud. We set the goal of the FSPP to
efficiently execute IoT applications, i.e., according to the desired QoS. Constraints
in the FSPP include adherence to capabilities and capacities of fog resources,
e.g., utilization of CPU, RAM and storage, and to demands of applications,
e.g., constraints on deployment and response times. This model differs from the
previous model in the first part of the dissertation by new decision variables and
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new constraints to enable delegation of services to other fog colonies in the case
when the current fog colony has got not enough resources to execute services. Two
solutions are proposed to the FSPP: first-fit heuristics and exact optimization.
The evaluation of the proposed resource provisioning approach is performed by
the means of simulating the fog.

Next, we advance into introducing one more approach, namely a GA to solve
the FSPP. This approach introduces fog chromosomes as a solution to the FSPP,
where each gene in a chromosome corresponds to one assignment of a service
onto a specific fog resource in the fog colony. Chromosomes keep the information
about utilization of resources in a fog landscape as well as QoS demands of
submitted IoT applications. We calculate the specified FSPP goal as well as
apply constraints within each chromosome’s fitness function. We evaluate the
GA within the same fog landscape as during the exact optimization. Our findings
show that the FSPP optimization prevents violations of QoS. The GA is more
efficient in balancing load on fog resources in the fog colony by delegating more
services to the neighbor colony, while the exact optimization utilizes to the
allowed maximum the resources in the fog colony and does less delegations to the
neighbor colony. The GA produces solutions which on average experience lower
deployment delays by the cost of exploiting more cloud resources. The FSPP
together with the implemented heuristic approaches and the exact optimization
constitute Contribution II of this thesis.

Advancing into the topic of resource provisioning needs insights from using a real-
world fog. Working purely theoretically and evaluating results with simulations
does not reveal the big picture of problems and challenges that are coming from
the fog. Therefore, we design and implement FogFrame, which is a fog computing
framework aimed to enable efficient resource provisioning in the fog. By the
means of this framework, an operating fog landscape is created and maintained.
We describe main workflows in the framework to show how fog colonies are
formed, how communication is established between different resources, and how
services are executed in fog colonies. Application management is enabled in the
framework, it shares workload between different resources in the fog, and deploys
and executes IoT applications. The investigated resource provisioning approaches
and the formalization of the FSPP from Contribution II are adjusted according
to the real-world fog landscape requirements and implemented in FogFrame.
During simulations from Contribution II, the challenge to track applications
in the fog was not evident, however, in the real-world testbed created in this
contribution, this issue evolved into an additional set of constraints in the FSPP,
which was accordingly extended and implemented. The evaluation of resource
provisioning is performed via the real-world fog computing testbed, created from
multiple single-board computers, i.e., Raspberry Pis with attached sensors, and
supplemented with cloud resources. We have developed a real-world application
to sense and process data on different levels in the fog. The underlying hardware

Chapter 5

153



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

7.

CONCLUSION

154

of the real-world fog landscape is monitored and the monitoring data is analyzed
to show how the workload is spread between different devices, as well as how
the framework reacts to the runtime volatility of the fog. Having implemented
FogFrame, we introduce and develop according application migration mechanisms
allowing FogFrame to dynamically react to those volatile changes in the fog, i.e.,
failures and overloads of devices, appeared new devices or disconnected devices
in the fog. All the considered mechanisms are implemented and extensively
evaluated. The framework that operates a real-world fog landscape together with
the implemented resource provisioning approaches constitutes Contribution III of
this dissertation.

At this point, it is beneficial to revisit the research questions as described in
Section 1.1 that shaped the research plan over this thesis. In the following, we
summarize how the presented contributions answer these questions.

Research Question 1

How can heterogeneous devices at the edge and the cloud be utilized together
to enable fog computing?

This dissertation provides concepts and artifacts to represent heterogeneous IoT
devices at the edge of the network, as well as functionalities and workflows needed
to utilize them in the fog. We show how coordinated control is established over
the physical and virtual IoT infrastructure at the edge together with additional
resources from the cloud in order to efficiently execute IoT applications. We
address the issue of virtualization and implement mechanisms and wrappers of
functionalities to reflect different levels of resources in the fog with fog colonies.
These entities are fog cells and fog nodes. Fog nodes within fog colonies manage
and maintain the fog network organization within fog colonies, tackle the volatility
and communicate with other fog colonies. Fog cells deploy and execute services
from IoT applications. Since the edge and the cloud are different computational
environments in a fog landscape, the deployment mechanisms for services differ
as well. Together with the conceptual artifacts, we solve practical problems of
deploying multiple service instances on a single fog device. The novelty compared
to the state of the art is in the introduced functionalities, capabilities, and
communication within and between fog colonies.

Research Question II

How can the execution of IoT applications in a fog landscape be optimized
for resource efficiency and adherence to QoS and SLAs?
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The focus in this thesis is on resource provisioning approaches in fog computing.
We formulate the FSPP with its goals and constraints, among which we introduce
novel relationships and interactions needed to provide a functioning fog landscape.
We explicitly consider how to delegate IoT applications in the fog and the
challenges around it. As an additional outcome, the FogFrame framework is
publicly available and can be freely used in the research community to develop
and evaluate different resource provisioning methods within a real-world fog.

Research Question ITI

How to achieve a highly available, consistent, and fault-tolerant real-world
fog landscape?

We design and build a real-world fog landscape based on lightweight containers
that aim at efficient resource provisioning, fault-tolerant and decentralized IoT
application execution. While most fog environments in research are simulated or
are static, in FogFrame we address specific processes of how to instantiate the fog
from a single fog device, and how to populate fog colonies device-by-device, which
parameters need to be considered to enable communication, and how to pair
devices. The FogFrame framework together with resource provisioning approaches
accounts for availability of resources in the fog by efficiently balancing the load.
Consistency is provided by various fall-back mechanisms in a fog landscape that
ensure that the volatility of the fog does not crash the deployed IoT applications.
Fault tolerance is ensured by implementing approaches to keep the record of the
current fog landscape state and migrate services in the case when runtime events
in the fog cause failures and change network constellations.

To summarize the contributions, their value in the state of the art research has
still a significant weight. Today, we would not be in the position to start research
with only few state of the art works from which to derive new requirements, as was
the case in 2016. This would allow to concentrate the research on other topics, to
use already enabled fog environments or frameworks, or to focus more on resource
provisioning or other relevant topics as discussed in the next section. Nevertheless,
FogFrame remains a decent framework, it is not a simulation but a real-world
testbed aimed to investigate resource provisioning and service placement in the
fog. Resource provisioning algorithms remain relevant. However, a possibility
to run new possibly proprietary solvers within IoT devices should be further
investigated. What could be improved - is the FSPP definition, for example, by
adding more constraints and goals for optimization from other related works.
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7.2 Opportunities for Future Work

Future research can be dedicated to advancing resource provisioning models and
approaches for fog computing, as well as to working with FogFrame introducing
new artifacts and mechanisms to manage the fog, to enhance monitoring of
resources and the IoT application lifecycle, or to introduce new levels of optimiza-
tion of the fog infrastructure, thus enabling new patterns in inter- and intra-fog
communication.

In this dissertation, we instantiate and execute IoT applications with a fog
landscape consisting of several fog colonies. It is a promising research topic to
investigate a meta control layer over the fog to enable not only communication
between fog colonies, but also between multiple fog landscapes. Such additional
coordination could be established either within the fog controller or be enabled
by some new component located in the cloud for additional meta control layer
in order to orchestrate multiple fog landscapes. Various components of the
introduced framework architecture can be substituted or extended, e.g., resource
provisioning and service placement methods or conceptual workflows on how to
pair devices in order to create the fog. FogFrame has intentionally been designed
and implemented in a loosely-coupled manner in order to enable modularity and
extendability.

A particular issue to address in the future work is how to scan and reconfigure
the fog landscape network organization based on different runtime events. When
devices appear and disappear in a fog landscape, the resulting network constel-
lation may become not optimal in terms of latency, bandwidth, network hops,
location mapping, and connection preservation. Another promising improvement
is adopting the ETSI standard on context information management and NSGI-LD
API metadata [58] within the implemented APT of the FogFrame framework. This
would unambiguously enable geographic location queries, temporal data, and
linked data coming from different sources. Currently, in the configuration of all
our fog devices in a fog landscape, we define a fall-back parent and grandparent
fog nodes. In the case when a head fog node is not available and a fog resource
needs to enter a fog colony, then it will connect with an already known fall-back
parent. Replacing already connected head fog nodes has not been considered.
However, such a mechanism can be implemented: If a fog controller detects
that one of head fog nodes is disconnected, this should trigger a reconfiguration
event in the corresponding fog colony. In the same way as the head fog node has
means to detect disconnected devices and tackle such events with a corresponding
policy, the fog controller should be enabled with the means to detect disconnected
head fog nodes of the colonies with the possibility to reassign the head and
reconfigure the fog colony. We have a mechanism to track ‘children’ of each fog
node, therefore, we would need to enable a fog controller to track children fog
nodes of each head fog node, and then to reconnect to one of the existing fog
nodes. From the children perspective, each fog device in case the head fog node
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disappears will have to receive a new parent. A concept for choosing priorities for
choosing a new parent should be considered in future work. Therefore, optimizing
fog landscape topologies is a promising research challenge, i.e., to establish a
meta-level of infrastructure for additional optimization and reconfiguration [86].

Another possible research direction is the investigation and implementation of
different application and delivery models that facilitate the development of IoT
applications to be executed in the fog, i.e., helping developers to functionally
split IoT applications into smaller instances or services and parametrize their
capabilities and resource demands [69]. In this work, we followed the DDF
application delivery model, however, other techniques should be investigated
too [13].

Having addressed the question of how to create a fog landscape, it is possible to
use these results as the basis for developing other communication and application
management mechanisms. Regarding communication, the framework enables easy
integration of new components according to well-defined interfaces. For example,
we can consider enabling each head fog node in a fog colony to keep not only
one closest neighbor nog node, but a list of multiple neighbors. This will require

additional mechanism to choose a neighbor for delegating application requests.

Regarding the application management, other resource provisioning and service
placement algorithms can be introduced to perform optimization according to
different goals, e.g., with regard to different cost models of fog resources or energy
efficiency [7, 88, 106].

Another research issue is that in the current implementation of the framework,
we do not consider delegating a single service from an application to a neighbor
fog colony. By delegating the whole application, we avoid high intra-application
latency and unnecessary coordination between fog colonies on the level of service
requests. It remains a matter of future work to identify approaches to address
mobility of the fog and enable various service execution tracking scenarios in
a fog landscape [24, 53]. Regarding application execution, service descriptions
with dynamic workload are not supported in the most cloud platforms offering
only fixed capacities of their services. One of the solutions to tackle this issue in
future may be regular update of the application model, e.g., daily, to adjust the
load according to operation measurements of services.

In the evaluation of FogFrame, we implemented several types of services to
be executable in the framework and corresponding to the processes of sensing
and processing data both at the edge and purely in the cloud. The framework
demonstrates how different service types can be deployed in the cloud and at
the edge. In real-world scenarios, service types can be even more heterogeneous
depending on the purpose and IoT device equipment, and therefore there is a
need in functionalities to accommodate different IoT resources, protocols and
architectures in the fog [95].

New Delivery
Models

Creating the Fog

Application
Mobility

Service Types

157



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

7. CONCLUSION

New Solvers

Machine
Learning

Fog Security

FEconomical
Impact

158

While the conducted experiments have shown that FogFrame is able to serve
its purpose to provide coordinated control of a fog landscape and to execute
applications, there are nevertheless some limitations with regard to the framework
itself. A considerable limitation is that the software to be executed on fog resources
have to be adapted or reimplemented according to the processor architecture of
the hardware of IoT devices, e.g., according to the ARM processor architecture
in a Raspberry Pi. This deals with both internal services of FogFkrame as well as
applications submitted by the users. For example, dynamic programming solvers
which can be used in service placement, such as IBM CPLEX solver, Java ILP,
or Gurobi, have not yet provided library distributions runnable on the devices
with the ARM processor architecture so far. This problem is not specific to our
work, but is a common problem when using fog infrastructure.

The proliferation of IoT data resulted in high popularity of Big Data topics
and ML for various use cases. To combine fog computing and ML, not only
ML as part of IoT applications can be investigated, but also to facilitate fog
computing itself, e.g., for resource management in the fog, for predictions of
failures of devices, for predictions of user behavior and arrivals of application
requests, or for predictions of QoS violations and security issues. However, when
intending to apply and run ML algorithms on fog devices, similar limitations
apply, as have been described above: the ARM processor architecture of most IoT
devices as well as limited computational, energy, and storage capacities highly
limit the usage options of ML models and their types in production runtime. ML
models trained conventionally can be used for the high-level organization of fog
colonies in a fog landscape or between fog landscapes, for example, for finding
best network configurations [4].

Fog computing is still a developing research area in terms of security mechanisms.
In this particular work, the private network in which the fog landscape operates
is deemed to be secure, and all components of the fog landscape communicate
via dedicated API endpoints on certain ports and IP addresses specified in the
framework. Additionally, ingress and egress rules can be set up on each device al-
lowing only specific framework-related interactions. Other software and hardware
security mechanisms for fog computing need to be further investigated [121, 136].

Even though practical use cases, such as transportation, smart cities, smart
buildings etc., of fog computing have been already researched and described in
related work, there is still a big gap between those use cases being academic
research and becoming a product available for industry. In order to marketize a
product, issues of e-government and e-commerce, pricing for users, ownership and
cost of investment related to fog computing need to be investigated. There has
been very few works related to economical impact and issues of fog computing [1, 2,
3]. Most publications either focus on infrastructures, architectures and simulations,
and scratch the surface of this topic. Several interesting articles have been
published, for example, an overview of relevant needed portals and information
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services is described within an end-2-end smart city platform [167]. The author
suggests that with the help of fog computing the cost of digitization of regions
for many use cases as well as corresponding investment costs can be drastically
reduced. Kim et al. [90] introduce a market model game for fog computing
theoretically describing a platform for brokering different dependencies between
service providers, subscribers, fog resource owners.

To conclude, the opportunities of the future work are manifold both on infrastruc-
ture side of the fog and on functional side of the execution of IoT applications. The
open topics include the research and development to enable the fog in its pre-life,
early-life or functional-life, as well as resource provisioning approaches with differ-
ent goals and constraints. FogFrame provides a foundation for other researchers to
extend it with new functionalities and validate new approaches on different func-
tional and technical levels.
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Glossary

application is built following the microservice architectural approach from
stateless services which need to be deployed and executed to achieve a
certain result. 103

application request defines a set of services to be placed and deployed in the
fog landscape together with QoS information for execution, for example,
deadlines on application execution and processing times. 104

distributed application is an application formed from cooperating services,
which exploit a virtual computational environment. 30

fog cell is a component of a fog colony that is an IoT device, has computational
power and is able to host and execute arbitrary services. 42

fog colony is a micro data center made up from an arbitrary number of fog
devices or so-called fog cells. 42

fog computing a horizontal, system-level architecture that distributes comput-
ing, storage, control and networking functions closer to the users along a
cloud-to-thing continuum. 2

fog controller is a mediator between fog colonies and the cloud in a fog land-
scape. 45, 46

fog device is a fog cell or a fog node, i.e., fog cells and fog nodes are two types
of fog devices in a fog colony. 45

fog landscape a combination of IoT devices at the edge of the network and
cloud resources that cooperate. 2

fog node is a component of a fog colony that manages and orchestrates fog cells;
fog nodes are themselves extended fog cells and are able to host services and
perform management activities, such as service placement and deployment.
45

service image is a not yet deployed service binary. 103

service placement plan is a result of calculation of a service placement algo-
rithm; it contains decisions indicating the placement of each needed service
on a specific resource in a fog landscape, namely, on a fog cell, fog node,
in the cloud, and a decision about delegating the whole application to a
neighbor fog colony. 104
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service type is bound to the capabilities of the devices in the fog landscape, e.g.,
a service intended to receive temperature measurements can be deployed
only on a fog cell with a temperature sensor attached, some services can
be executed either in the cloud or in the fog, and other services can be
executed only in the cloud. 103

smart system is a system that connects and processes data from distributed
data sources while using already existing computational resources, decreas-
ing processing latency, and offering the means to process data on-site, i.e.,
in a privacy-aware manner. 3
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Acronyms

API Application Programming Interface. 24

CoAP Constrained Application Protocol. 25, 26
CPS Cyber-Physical System. 64
CRI Container Runtime Interface. 29

DDF Distributed Data Flow. 21

FaaS Function-as-a-Service. 142

FBP Flow-based Programming. 22

FORA Fog Computing for Robotics and Industrial Automation. 22
FSPP Fog Service Placement Problem. 6

GA Genetic Algorithm. 7

ITIoT Industrial Internet of Things. 15
ILP Integer Linear Programming. 34
IoT Internet of Things. 1

M2M Machine-to-Machine. 25

MCC Mobile Cloud Computing. 21
MEC ETSI Mobile Edge Computing. 22
ML Machine Learning. 141

OCI Opensource Container Initiative. 28
OMA Open Mobile Alliance. 26
OPC UA Open Platform Communications Unified Architecture. 25

P2P Peer-to-Peer. 42

QoE Quality of Experience. 140
QoS Quality of Service. 2

RA Reference Architecture. 13

SLA Service Level Agreement. 2
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ACRONYMS

TSN Time-Sensitive Networking. 25

2

VM Virtual Machine.

VNF Network Function Virtualization. 22

VNF Virtualized Network Function. 22
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