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1. Introduction

Traditionally, the studies on vegetation dynamics have used spectral sensors, but they have some 

limitations such as the inability to penetrate forest canopies (Keane et al 2001). LiDAR technology has 

proven to be a reliable tool to measure forest structure parameters (Botallico et al 2017) and it is able to 

overcome that drawback. In this study, forest vertical structure has been associated to the seven different 

fuel types of the Prometheus classification system (Prometheus S.V 1999). 

The purpose of this study is to present a cost-effective methodology to provide a fuel type classification 

and dynamics of the vegetation based on conditional rules and according to the Prometheus classification 

system. 

2. Data and Methods

2.1 Study area 

The study area was located in La Rioja (Spain) and it was a tile with a side of two Km with south-west 

corner coordinates in UTM: 504,000; 4,660,000 (Figure 1). 

2.2 LiDAR data 

The discrete LiDAR data used in this study was open-access and provided by the Spanish Geographic 

Institute (IGN). Two different datasets were used in order to compare the vegetation structure: the 2010 

dataset, with a scan density of 0.5 pulses · m-2 and the 2016 dataset, that had a scan density of 2 

pulses · m-2. The LiDAR data was processed, and the metrics were extracted for a 20 x 20 m spatial 

resolution grid, using FUSION software v.4.10 and RStudio v.1.3.1093. 

2.3 Fuel type Classification 

In order to assign a fuel type (FT) to each cell, the rules shown in Table 1 were followed: 

Figure 1. Location of the study area (García-Cimarras et al 2021) 
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Table 1. Fuel type classification system used for the LiDAR data. Mode: the stratum with the highest 

number of returns, 2nd Mode is the second height interval with more returns. 3rd Mode: the third height 

interval with more returns. Max.Elev: maximum elevation (García-Cimarras et al 2021)  

2.4 Data validation 

For the data validation, 15 cells (when available) per fuel type and dataset were randomly selected. 

Then, a fuel type was assigned to each validation cell by observing the point cloud displayed in FUSION 

LDV and contrasted with the conditional classification showed in Table 1. The accuracy assessment was 

performed with a confusion matrix and summarized using overall accuracy and user’s accuracy, 

weighted producer’s accuracy (Olofsson 2013, Stehman 1996), and Kappa coefficient.  

3. Results and Discussion

The overall accuracy was nearly identical for the 2010 and 2016 datasets (80.72% and 81.26%, 

respectively). User’s and producer’s accuracies were generally high (from 0.60), but most of the error 

was found in forest with vertical continuity (FT7; 0.18 in the 2010 dataset), forest with shrubs (FT6; 

0.19 in the 2016 dataset) and low shrubs (FT2; 0.09 in the 2010 dataset). The Kappa coefficient was 

0.73 for both datasets. Figure 2 shows the classification results for both datasets.  

It can be seen that in 2016, low shrubs (FT2) had an even lower presence compared to 2010 dataset. 

Also, the area that was classified as forest with shrubs (FT6) in 2016 in the north-east of Figure 1 a), 

was classified in 2016 as forest without shrubs (FT5). Some potentially hazardous transitions from fuel 
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 >60 Pastures FT1 

≤60 

<50 

0.0-0.3 Pastures FT1 

0.3-0.6 Low shrubs FT2 

0.6-2.0 Medium shrubs FT3 

2.0-4.0 High shrubs FT4 

>4.0 

0.0-0.3 Pastures FT1 

0.3-0.6 Low shrubs FT2 

0.6-2.0 Medium shrubs FT3 

2.0-4.0 High shrubs FT4 

≥50 

0.0-0.3 Forest without understory FT5 

0.3-0.6 Forest with shrub layer FT6 

0.6-2.0 

>12.0 Forest with shrub layer FT6 

≤12.0 
Forest with vertical 

continuity 
FT7 

2.0-4.0 

>12.0 Forest with shrub layer FT6 

≤12.0 
Forest with vertical 

continuity 
FT7 

>4.0 

0.0-0.3 Forest without understory FT5 

0.3-0.6 Forest with shrub layer FT6 

0.6-2.0 

>12.0 Forest with shrub layer FT6 

≤12.0 
Forest with vertical 

continuity 
FT7 

2.0-4.0 

0.0-0.3 Forest without understory FT5 

0.3-0.6 Forest with shrub layer FT6 

0.6-2.0 
Forest with vertical 

continuity 
FT7 
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types without forest (FT5) or forest with shrubs (FT6) to forest with vertical continuity (FT7) were 

detected, especially in the south-west area.  

Figure 2. Classification results for the 2010 (a) and 2016 (b) LiDAR datasets. Borders of vegetation 

cover types (grey lines) from the Spanish National Forest Map are shown for reference (García-

Cimarras et al 2021) 

4. Conclusions

We present an inexpensive, simple, and accurate methodology to detect areas where of vegetation 

changes and growth, especially the understory layer, which can lead to an increase in fire hazard. It can 

save resources, especially where the difficult access makes impossible or too expensive the collection 

of field data. Additionally, it can be helpful to improve the management and the decision-making 

process. LiDAR data has proven to be able to provide vital information with an adequate accuracy of 

the fuel type transitions that occurred. 
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