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Abstract

Macro systems are powerful language extension tools for Ar-

chitecture Description Languages (ADLs). Their generative

power in combination with the simplicity of speci�cation

languages allows for a substantial reduction of repetitive

speci�cation sections. This paper explores how the introduc-

tion of function- and record types in a template-based macro

system impacts the speci�cation of ADLs. We present design

and implementation of a pattern-based syntax macro system

for the Vienna Architecture Description Language (VADL).

The macro system is directly integrated into the language

and is analyzed at parse time using a context-sensitive pred-

LL(*) parser. The usefulness of the macro system is illustrated

by some typical macro application design patterns. The e�ec-

tiveness is shown by a detailed evaluation of the Instruction

Set Architecture (ISA) speci�cation of �ve di�erent processor

architectures. The observed speci�cation reduction can be up

to 90 times, leading to improved maintainability, readability

and runtime performance of the speci�cations.

CCS Concepts: • Software and its engineering → Do-

main speci�c languages; Macro languages; • Hardware →

Hardware description languages and compilation.

Keywords: macro system, higher-order macros, pattern-

based, generative programming, architecture description

language
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1 Introduction

Macros and Domain-Speci�c Languages (DSLs) are two pro-

gramming concepts that contribute to faster development

of artifacts and code quality. Macros are used to simplify

repetitive code patterns by providing a shorter, more con-

cise expression. Domain-Speci�c Languages o�er a higher

level of abstraction than conventional General-Purpose Lan-

guages (GPLs) for a speci�c domain. DSLs allow for a wide

variety of applications, implementation techniques and de-

sign choices [18]. Macros and DSLs are strongly coupled.

Many DSLs are implemented as a collection of macro de�-

nitions, while on the other hand, macros can contribute to

the language extensibility for existing DSLs. A special form

of DSLs are Architecture Description Languages (ADLs). In

this article we present our experience with the development

of a macro system with special focus on ADLs. Through the

development of our Vienna Architecture Description Lan-

guage (VADL), see Section 2, we gathered valuable insights

regarding language extensibility for ADLs.

1.1 Architecture Description Languages

ADLs are computer languages used to describe the architec-

ture of hardware and software systems. Particularly interest-

ing for this article is the ADL subgroup of Processor Descrip-

tion Languages (PDLs). PDLs allow hardware designers to

describe instruction set, register set, memory hierarchy, and

other aspects of a microprocessor. We identi�ed a particular

need for macros regarding PDLs, especially when it comes

to the speci�cation of an instruction set architecture (ISA).

Section 2.2 will provide an overview of the fragment of VADL

used to describe ISAs and explain in more depth where the

repetitiveness comes from and how it in�uenced our macro

system design. Of course these observations are not limited

to us and can also be found in other description languages

like LISA [21], ISDL [10] or ArchC [2]. Additionally, we want

to clarify some key properties of VADL and PDLs in general.

A PDL is not, and should not be, an executable program. It

can be thought of as a complex con�guration for artifacts

like hardware, simulator or compiler. This is an important

concept as an error is no longer a programming error, which

can be debugged with the speci�cation alone. Debugging

a speci�cation requires specially generated tools and tech-

niques like co-simulation. Hence, it is most important to

reduce any other sources of errors, e.g. semantic errors, to
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a minimum. In Section 1.2, we describe how speci�c macro

designs contribute to this desired property.

1.2 Macro Systems

Macro systems are one of the oldest forms of language ex-

tensions. In general, macros are user-de�ned procedures,

transforming one program sequence to another program se-

quence. This transformation is calledmacro expansion. Based

on the technique used the macro system is categorized into a

lexical or syntactical, and procedural or pattern-based macro

system [16]. Lexical macro systems, such as the C prepro-

cessor (CPP) [23] and Unix M4 [12], are language agnostic

and work on a lexical level, for example a token stream. In

contrast to lexical macro systems, syntax macros are aware

of syntactic structures. They are integrated into the core

language and usually perform AST (Abstract Syntax Tree) to

AST transformations. Representatives for example are LISP

[24], Scheme [1] or Racket [9]. If the macro system supports

algorithmic computations on their inputs, they are classi-

�ed as procedural macro systems. On the other hand, macro

systems that rely on pattern matching and substitution are

called pattern-based. The presented concepts are not mutu-

ally exclusive and may be present in all combinations. The

Rust programming language [13] incorporate both, proce-

dural and pattern-based techniques within its macro system.

Another interesting example is the Java Syntactic Extender

(JSE) [3], which supports full procedural macros and an ex-

tendable pattern-matching engine. Finally, a concept often

considered when talking about macro system is hygienic

macros [4, 8, 14]. The main idea of hygienic macros is to

prevent accidental capture of identi�ers during expansion.

When we started the design of our macro system, we an-

ticipated, that macro hygiene was of secondary importance

for us as we either want to capture identi�ers or we pass

the identi�ers as arguments providing us with more con-

trol over the used names. We will address hygienic macros

again in Section 3.6 together with our lexical macros. For

now, hygienic macros are part of our future work.

1.3 Macros for DSLs

When we were considering language extensibility for our

DSL, syntax type safety and termination were the top priori-

ties. We use the term syntax type safety in the sense that a

syntax type safe macro system is able to detect syntax type

errors. Hence, the system prevents the generation of syntac-

tically incorrect code. Furthermore, many macro systems

designed for DSLs have a feature-rich host-language or en-

vironment they can exploit [5].

VADL on the other hand is a standalone DSL/ADL with

no meta- or host-language available. This decision helps

us to develop the VADL syntax more freely and explore

di�erent design possibilities for PDLs without syntactical

restrictions or super�uous features of a host language. The

drive of keeping the speci�cation simple led us to investigate

a lightweight and language dependent implementation, i.e. a

syntactical pattern-based macro system. We also considered

a language agnostic approach, but decided against it due

to the lack of safety, available debug information and IDE

support.

While we were satis�ed with the choice of syntactical

type safety, the pattern-based templates felt very limiting

in expressiveness. Switching to procedural macros is for

us (and we believe also for many other DSLs with a non

Turing-complete speci�cation language as host language)

not bene�cial as it compromises the simplicity of the host

language. This inspired us to develop the higher-ordermodels

for our macro system discussed in Section 3.

A �nal aspect worth considering is computation time for

DSLmacro systems. Macro expansion becomes a prerequisite

for any DSL related analysis and task. Therefore, a main goal

should be to make sure that the macro system’s execution

time is as short as possible. We incorporated our macro

system directly into the language grammarwithout requiring

any preprocessor. This helped us to reduce unnecessary pre-

computations. Additionally, our LL(k) parsable host language

encouraged us to preserve the top-down parsing fashion. We

designed the built-in macro system to be pred-LL(*) parsable.

Contribution.

• A simple pred-LL(*) parsable syntactical pattern-based

macro system for speci�cation languages

• Syntax type safe higher-order macro templates using

models

• Composable syntax types using records and type aliases

• Demonstration of the presented macro system using

the Vienna Architecture Description Language

Additionally, we present a variety of smaller macro fea-

tures supporting a high con�gurability and usability in the

context of speci�cation languages. We found the following

implemented features particularly useful for our exploratory

language design of VADL.

• Inheritance of macro de�nitions across language de�-

nitions

• Lexical manipulation of identi�ers and strings

• Con�gurable and conditional macro expansions using

match and command line arguments

2 Overview

In this section we give an overview of the Vienna Architec-

ture Description Language (VADL) with special focus on the

instruction set architecture (ISA) section.

2.1 Vienna Architecture Description Language

VADL is a Domain-Speci�c Language in the domain of com-

puter architecture and compiler construction. It permits the

complete formal speci�cation of a processor architecture.
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Additionally, it is possible to specify the behavior of gen-

erators which produce di�erent artifacts from a processor

speci�cation like a compiler or an instruction set simulator.

VADL strictly separates the speci�cation of the instruction

set architecture (ISA), the micro architecture (MiA) and the

application binary interface (ABI). To provide a proof of

concept, we only implemented and evaluated our macro

language for the instruction set architecture speci�cation

section. However, the ideas and techniques presented can

be applied to the other sections as well as to any similarly

structured DSL.

2.2 ISA Syntax Elements

Presenting the whole syntax and semantics of VADL used

to describe ISAs, let alone the VADL language as a whole, is

out of the scope of this article. Therefore, we will focus only

on the relevant portion of the instruction set architecture

de�nition. First, we have to establish how instructions are de-

�ned. VADL separates the abstract concept of an instruction

into three parts. The instruction de�nition, the instruction

encoding and the textual representation, i.e. assembly. The

instruction de�nition is the core part of the three de�nitions,

holding information on the name, the used encoding format

and the instruction semantics. The instruction encoding spec-

i�es the values of the static encoded �elds. The instruction

assembly de�nition speci�es a pattern on how the assembly

string is computed. Figure 1 shows a speci�cation of an ADD

instruction, which adds two registers together and stores the

result in a third. The format �elds of the format de�nition F,

which are not assigned to a static value inside the encoding

de�nition, become dynamic �elds or operands. Inside the

instruction semantics, we can observe that rd, rs1 and rs2

are indeed used as operands. The call expressions to X(.)

represent indexing of a register bank X, de�ned somewhere

else in the ISA.

If we de�ne a new instruction, e.g. AND, that di�ers from

ADD in a single encoding bit and the binary operator, we

would need to create a completely new instruction de�ni-

tion, encoding and assembly. Which brings us to the down-

side of such element or block based speci�cation languages

like VADL. We designed VADL to be descriptive and simple,

which led us to a very small core language for the ISA sec-

tion. While we support functions, our core type system is

very simple and does not support these de�nitions as �rst

class citizens. During our language development phase we

also experimented with di�erent language built-in features

that could reduce code duplication, but we came to the con-

clusion that they only introduce a lot of complexity and

obfuscate the original code. This led us to the idea of de-

signing a template-based macro system speci�cally directed

towards speci�cation languages.

1 format F =

2 { f un c t 7 : B i t s <7 >

3 , r s 2 : B i t s <5 >

4 , r s 1 : B i t s <5 >

5 , f un c t 3 : B i t s <3 >

6 , rd : B i t s <5 >

7 , opcode : B i t s <7 >

8 }

9

10 in s t ruc t ion ADD : F = {

11 X ( rd ) : = X ( r s 1 ) + X ( r s 2 )

12 }

13

14 encoding ADD =

15 { opcode = 0 b011 ' 0 0 1 1

16 , f un c t 3 = 0 b000

17 , f un c t 7 = 0 b000 ' 0 0 0 0

18 }

19

20 assembly ADD =

21 ( "ADD"

22 , r eg i s t e r ( rd ) , " , "

23 , r eg i s t e r ( r s 1 ) , " , "

24 , r eg i s t e r ( r s 2 )

25 )

Figure 1. ISA Example Speci�cation for an ADD instruction

3 VADL’s Macro System

In this section we give a detailed description about the syntax

and techniques implemented for VADL’s macro system.

3.1 Syntax Models

At the core of our macro system are the so-called syntax

models. A syntax model can be seen as a parameterized and

well typed template. Figure 2 shows how such a syntaxmodel

can be de�ned.

1 model Ins tMode l ( op : BinOp , name : Id )

2 : IsaDefs = {

3 in s t ruc t ion $name : F = {

4 X ( rd ) : = X ( r s 1 ) $op X ( r s 2 )

5 }

6 }

Figure 2. Syntax Model De�nition

Every model has a name, a typed parameter list, a result

type and a body. Note how the use of the parameters are

indicated by a leading "$". This design decision has two ad-

vantages. First, it simpli�es parsing as it explicitly marks

the use of a macro element. Second, the "$" captures the

model parameter names, preventing name collisions with
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ISA de�nitions, which strengthens the hygiene of the macros.

Similarly to the parameters, we use the "$" for the instan-

tiation of de�ned syntax models. Figure 3 shows how the

model from Figure 2 can be instantiated. To separate the

syntax elements from each other we use ";" as separator in-

side an instantiation. Recall the dilemma of Section 2.2, the

introduction ofmodels provides us now with a mechanism to

e�ciently specify both instructions without code repetition.

1 $ Ins tMode l ( ADD ; + )

2 $ Ins tMode l ( AND ; & )

Figure 3. Syntax Model Instantiation

In the example of Figure 2 we only used the identi�er

(Id), binary operator (BinOp) and ISA element (IsaDefs) syn-

tax types. However, the syntax model de�nition supports a

variety of types discussed in the following sections.

3.2 Syntax Types

This section introduces all the available core syntax types.

We designed our syntax types to have a one-to-one relation

to parser rules. This already provides us with a partial order,

where the relation is a partially ordered subtype relation.

Table 1 gives an overview of all the available base types

with a short description and examples. Additionally, it is

important to note that the presented base types, function

types (Section 3.4), record types and type aliases (Section

3.3) can be arbitrarily nested. The resulting types can be

used everywhere a syntax type is expected with the only

exception being result types of models and function types.

Figure 4 displays the subtype relation between the presented

core types. The macro type system provides an implicit up-

casting of the value types. For example, if a model expects

a value of type Val, any subtype, i.e. Bool, Int or Bin will be

accepted as argument.

Table 1. Core Syntax Types

Type Description Examples

Ex Generic VADL Expression X(rs1) + X(rs2)

Lit Generic VADL Literal 1, "ADD"

Val Generic VADL Value Literal 1, 0b001

Bool Boolean Literal true, false

Int Integer Literal 1, 2, 3

Bin Binary or Hexadecimal Literal 0b1, 0x�

Str String Literal "ADD"

CallEx Arbitrary Call Expression MEM<2>(rs1)

SymEx Symbol Call Expression rs1, MEM<2>

Id Identi�er Symbol rs1, ADD, X

BinOp Binary Operator +, -, *

UnOp Unary Operator -

Stat Generic VADL Statement X(rd) := X(rs)

Stats List of VADL Statements X(rd) := X(rs) . . .

IsaDefs List of VADL ISA De�nition instruction ADD : F = { . . . } . . .

Encs Element(s) of an Encoding De�nition func = 0b000, . . .

⊤

IsaDefsEncs

Stats

Stat

Ex

BinOp UnOp

CallEx

SymEx

Id

Lit

Val

Int BinBool

Str

⊥

Figure 4. Syntax Type Relation

3.3 Type Alias and Composition

The VADL macro system provides a feature rich type inter-

face. Besides the basic types mentioned in Section 3.2, the

macro system also supports type aliasing and a form of type

composition to make the typed templates more readable. Fig-

ure 5 shows a type alias de�nition BinExprType, which from

now on can be used instead of the function type (Ex, Ex) ->

Ex. An application of BinExprType can be seen in Figure 8.

Figure 6 shows a record de�nition used for type composi-

tions. In this particular case the record de�nition composes

an Id and BinOp type to the new type BinInstRec. The body

of a record consists of a parameter list providing typed �elds.

Figure 7 shows how the record is initialized and the �elds

name and op are accessed. Passing a record type argument

can be either done by reference or by creating a syntax tuple.

A syntax tuple is speci�ed the same way a model argument

list is provided, i.e. syntax elements are separated by ";" and

enclosed inside brackets. Accessing the passed elements is

done using the record’s name followed by a "." and the de-

sired �eld. Accesses of sub-records can be arbitrary chained

together. The whole access may be wrapped inside brackets,

i.e. "$(...)", to better indicate what is part of the access and

what belongs to the VADL speci�cation. Furthermore, it is

important to note that records are treated as type tuples.

Their �eld names do not a�ect the type and are only used to

access the internal elements.

1 model− type BinExType = ( Ex , Ex ) −> Ex

Figure 5. Syntax Type Alias Example

32



A pred-LL(*) Parsable Typed Higher-Order Macro System for Architecture Description Languages GPCE ’23, October 22–23, 2023, Cascais, Portugal

1 record B in I n s tRe c ( name : Id , op : BinOp )

Figure 6. Record Example

1 model Ins tMode l ( i n f o : B i n I n s tRe c )

2 : IsaDefs = {

3 in s t ruc t ion $ i n f o . name : F = {

4 X ( rd ) : = X ( r s 1 ) $ i n f o . op X ( r s 2 )

5 }

6 }

7

8 $ Ins tMode l ( ( SUB ; − ) )

9 $ Ins tMode l ( ( ADD ; + ) )

Figure 7. Record Application

3.4 Higher-Order Macros

To the best of our knowledge, we have not seen typed higher-

order macros in a pattern-based syntax macro system as pre-

sented in this paper. In this section we will shortly describe

how they are used in the context of our macro system. In

Section 3.8, we will further discuss why they are important

for ADLs and how we use them in VADL. A higher-order

macro is a statically evaluated function, mapping a list of

syntax types to a result syntax type. We chose the term

higher-order, to underline the capability of providing model

references as argument. In Figure 5 we have already de�ned

the type signature of a model in form of a function type. We

will reuse this type for the higher-order model BinExStat

in Figure 8. The instantiation of BinExStat in the presented

�gure, produces an assignment statement of X(rd) taking the

addition of X(rs1) and X(rs2) as argument.

A valid argument for a parameter with a function type

is either a model reference, as seen in the example, or a

parameter of function type from an outer model. In both

cases the types are evaluated and checked during parse time.

3.5 Conditional Expansion

A minor di�erence to some pattern-based approaches is our

conditional expansion. VADL macros provide an explicitly

typed match-statement shown in Figure 9. The entries are

processed from top-to-bottom and it uses the right-hand-side

of the �rst satis�ed left-hand-side for expansion. The match-

statement has the requirement of providing a default case

at the last position, indicated by the "_". Beside the default

case, each entry contains a condition that is either matching

equality ("=") or inequality ("!=") of a parameter and a syntax

element matching the type of the parameter. The comparison

is done on a lexical, i.e. token-based, level and performed

1 model B inExS ta t

2 / / ( Ex , Ex ) −> Ex

3 ( b inEx : BinExType ) : Sta t = {

4 X ( rd ) : = $b inEx ( X ( r s 1 ) , X ( r s 2 ) )

5 }

6

7 model AddExp ( rhs : Ex , l h s : Ex ) : Ex = {

8 $ rhs + $ l h s

9 }

10

11 $B inExS ta t ( AddExp )

Figure 8. Higher-Order Macro Example

on the expanded representation of the parameter. A match-

statement is only allowed inside a model. Therefore, it is only

evaluated if the parent model is instantiated, which is why

the argument-parameter pairs are always available for the

match-statement expansion. Figure 9 shows how it could be

used in con�guration management. More on con�guration

can be found in Section 3.7.

1 / / $ B i t S i z e ( Arch32 ) −> 32

2 / / $ B i t S i z e ( Arch64 ) −> 64

3 model B i t S i z e ( a rch : Id ) : In t = {

4 match : In t

5 ( $a rch = Arch32 => 32

6 ; $a rch = Arch64 => 64

7 ; _ => 0

8 )

9 }

Figure 9. Match Statement Example

3.6 Lexical Macro Functions

While most of the needs are covered by syntactical macros,

we came to the conclusion that string and identi�er manip-

ulation is best done using lexical macros. A lexical macro

acts on the abstraction level of token streams in contrast to

an already parsed AST. Through language exploration, we

narrowed the lexical macros down to two use-cases. These

use-cases are safely implemented using special macro func-

tions. Firstly, templates generating instruction behavior and

assembly used to require the instruction name once in form

of an identi�er (Id) and again in form of a string (Str). We

solved this issue by introducing the IdToStr function. This

function takes an Id typed syntax element and converts it to

a Str typed syntax element. Secondly, we encountered the

problem of not being able to e�ciently manipulate our iden-

ti�ers. This is especially tedious when dealing with di�erent

33



GPCE ’23, October 22–23, 2023, Cascais, Portugal Christoph Hochrainer and Andreas Krall

con�gurations. To provide a type safe identi�er manipula-

tion, we introduced the ExtendId function. This function

takes an Id typed identi�er and an arbitrary number of Str

typed syntax elements, concatenates them together and re-

turns a single Id typed syntax element. Figure 10 shows a

small example of both functions with their typed result as

comment. It is important to note that the context of the lex-

ical macros generated identi�ers is strictly separated from

the context of the syntactical macros. Therefore, it is not pos-

sible to de�ne or refer to a model name or parameter using

a generated identi�er.

For VADL, the lexical macro functions are the "alternative"

to hygienic macros. Consider the ISA elements described in

Section 2.2. When de�ning a new instruction we either want

to capture identi�ers, e.g. registers or memories, or we want

full control over the identi�er name. From our experience,

VADL’s IdToStr and ExtendId are su�cient for this use-case.

1 ExtendId ( I , "Am" , "An " , " I d e n t i f i e r " )

2 / / −−> IAmAn Id en t i f i e r : I d

3 IdToStr ( IAmAStr ing )

4 / / −−> " IAmAStr ing " : S t r

Figure 10. Lexical Macros Example

3.7 Con�guration and Inheritance

VADL provides the possibility of passing con�guring infor-

mation to the macro system using the command line. Cur-

rently, this mechanism is kept very simple and is based on

Id elements. To prepare a con�gurable macro variable, one

has to create a simple model of type Id containing a default

value. Figure 11 shows such a variable of name Arch, with the

default setting Aarch32. Without any passed con�gurations

the instantiation of Arch results in the identi�er Aarch32.

However, if VADL receives the command-line option -m or

–model, followed by the string "Arch=Aarch64" the value of

Arch is overridden. If Arch is instantiated given the previous

command-line option, it would result in Aarch64. In com-

bination with conditional expansion, see Section 3.5 and

Figure 9, this simple mechanism already provides powerful

con�guration capabilities.

1 model Arch ( ) : Id = { Aarch32 }

Figure 11. Macro Con�guration Variable

Additionally, we want to shortly mention VADL’s inher-

itance in this section. Every ISA component in VADL can

inherit from an arbitrary other ISA component using the key-

word extending. Since we tightly coupled the macro system

into our language, the inheritance and visibility does also

a�ect the macro system. Figure 12 shows this mechanism in

action and provides additional information in the comments.

1 in s t ruc t ion se t arch i tec ture A = {

2 model ModelA ( ) : IsaDefs = / / . . .

3 }

4

5 in s t ruc t ion se t arch i tec ture B

6 extending A = {

7 $ModelA ( ) / / OK, d e f i n ed in ISA A

8 }

9

10 in s t ruc t ion se t arch i tec ture C

11 extending B = {

12 $ModelA ( ) / / OK, d e f i n ed in ISA A

13 }

14

15 in s t ruc t ion se t arch i tec ture D = {

16 $ModelA ( ) / / ERROR , not d e f i n ed

17 }

Figure 12. ISA Inheritance Example

3.8 Macro Application in Processor Speci�cations

The following macro application design patterns demon-

strate with simpli�ed examples the usage of macros for in-

struction set architecture speci�cations. The simpli�ed ex-

amples are based on a real speci�cation of the AAarch32

instruction set architecture from ARM. The most common

case is a simple argument substitution pattern shown in

Figure 13.

AArch32 has a register �le called R consisting of 16 reg-

isters which are 32 bits wide. Conditions are speci�ed by

boolean expressions on �ags of the status register APSR, e.g.

the zero �ag Z. Every instruction can be executed condition-

ally. There are 15 di�erent conditions which are described

by an enumeration in the speci�cation and encoded by the

cc �eld in an instruction word which is 32 bits wide. Arith-

metic/logic instructions which have an immediate value as

second source operand share a common instruction encoding

speci�ed in the ArLoImm instruction format. The ALImmIn-

str instructions themselves di�erentiate each other only by

the unique instruction identi�er, the assembly instruction

name, the binary operation to be executed and the instruc-

tion encoding. Therefore, a model with these four parameters

is de�ned which substitutes these four parts in the instruc-

tion speci�cation. Then with a single line macro call an

arithmetic/logic immediate instruction can be speci�ed. This

leads to concise instruction set architecture speci�cations,
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1 r eg i s t e r f i l e R : B i t s <4 > −> B i t s <32 >

2

3 enumeration cond : B i t s <4 > =

4 { EQ / / equa l Z == 1

5 , NE / / not equa l Z == 0

6 / / . . .

7 , AL / / a lways

8 }

9

10 / / a r i t hme t i c / l o g i c immediate format

11 format ArLoImm : B i t s <32 > =

12 { cc [ 3 1 . . 2 8 ] / / c o nd i t i o n

13 , op [ 2 7 . . 2 1 ] / / opcode

14 , f l a g s [ 2 0 ] / / s e t s t a t u s r e g i s t e r

15 , rn [ 1 9 . . 1 6 ] / / s ou r c e r e g i s t e r

16 , rd [ 1 5 . . 1 2 ] / / d e s t i n a t i o n r e g i s t e r

17 , imm12 [ 1 1 . . 0 ] / / 12 b i t immediate

18 }

19

20 model ALImmInstr ( i d : Id , a s s : Str , op :BinOp ,

21 opcode : Bin ) : IsaDefs = {

22 in s t ruc t ion $ i d : ArLoImm = {

23 R ( rd ) : = R ( rn ) $op imm12

24 }

25 encoding $ i d =

26 { cc = cond : : AL , op = $opcode , f l a g s = 0 }

27 assembly $ i d = ( $ass , ' ' , r eg i s t e r ( rd ) ,

28 ' , ' , r eg i s t e r ( rn ) , ' , ' , decimal ( imm12 ) )

29 }

30

31 $ALImmInstr ( ADD ; " add " ; + ; 0 b000 ' 0 1 0 0 )

32 $ALImmInstr ( SUB ; " sub " ; − ; 0 b000 ' 0 0 1 0 )

33 $ALImmInstr ( AND ; " and " ; & ; 0 b000 ' 0 0 0 0 )

34 $ALImmInstr ( ORR ; " o r r " ; | ; 0 b000 ' 1 1 0 0 )

Figure 13. Instruction Speci�cation applying simple Macros

improves the maintainability and reduces the probability of

errors.

Most instruction set architectures are too complex to get

by with the substitution pattern. As in the AArch32 architec-

ture every instruction can be executed conditionally, a basic

instruction exists in 15 variants for 15 di�erent conditions.

This problem can be solved smartly by an extension macro

pattern using higher-order macros as demonstrated in Figure

14.

To reduce the number of macro arguments record types

are de�ned for an instruction and a condition. The Inst record

type de�nition groups the four arguments describing an

instruction from Figure 13 together. The Cond record type

de�nition consists of a string representing the extension of

the assembly name, the identi�er of the enumeration of the

condition encoding and a boolean expression for condition

evaluation.

In contrast to the previous example in Figure 14 now 15

di�erent instructions with a unique identi�er have to be

created. This can be handled with the lexical macro function

ExtendId by appending the extension string of the condition

to the identi�er.

The �nal problem is that there is a set of models which

describe di�erent kinds of conditional instructions and all

these models should be called 15 times for the 15 di�erent

conditions. This can be solved by the higher-order model

CondInstr, which takes the instruction model as �rst argu-

ment. The instruction model is then called 15 times with an

argument list, which has been extended by the conditions. In

the above example the 4 macro calls expand to 60 di�erent

instructions. The AArch32 architecture has instructions with

a lot of additional variants like setting the status register,

shifted operands or complex addressing modes. This leads to

a speci�cation with multiple higher-order macro arguments.

4 Implementation

In this section we give an overview of our macro system

implementation for VADL. VADL manages the macros in

two separated phases: parsing and expansion. It is important

to note that the parsing phase does only analyze the macros.

It guides the parser through the di�erent kind of macro ac-

tions while asserting their syntactical and partly semantical

correctness. Applications of the macro actions are done in

the expansion phase.

4.1 Parsing

Parser. The VADL frontend uses a modi�ed version of the

Xtext framework [6]. The Xtext framework is a Java based

DSL development tool. It takes a Xtext grammar �le as input

and generates a variety of useful artifacts, e.g. IDE integra-

tion, metamodel classes for the syntax-tree or a parser. We

have refrained from using any non LL(k) Xtext grammar

functionalities and disabled the backtracking feature of the

generated parsers to start our implementation from a true

LL(k) parser. A LL(k) parser is a top-down parser processing

the language from left to right. The k indicates a constant

lookahead, which may be performed by the parser. Addi-

tionally, we extended the implementation to allow semantic

predicates [20] and code actions. This grammar extension

lifts the parser to pred-LL(*). The pred pre�x indicates the use

of predicates in combination with grammar rules and the star

(*) lifts the lookahead requirement of a �xed constant k to

an arbitrary constant. The Xtext framework targets ANTLR

[19], which already supports code actions and semantic pred-

icates. Therefore, extending the grammarwas a quite straight

forward task for our simple purposes. In Sections 4.1 and 5.3

we will further comment on the context-sensitivity.

Concrete Syntax Tree. The Xtext framework automatically

creates classes for each non-terminal grammar rule that has

at least one labeled rule �eld. While parsing a source �le,

it uses these classes to build a concrete syntax tree (CST).

To keep the implementation e�ort manageable we kept this
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1 record I n s t r ( i d : Id , a s s : Str , op : BinOp , opcode : Bin )

2 record Cond ( s t r : Str , code : Id , ex : Ex )

3

4 model ALImmCondInstr ( cond : Cond , i n s t r : I n s t r ) : IsaDefs = {

5 in s t ruc t ion ExtendId ( $ i n s t r . id , $cond . s t r ) : ArLoImm = {

6 i f ( $cond . ex ) then

7 R ( rd ) : = R ( rn ) $ i n s t r . op imm12

8 }

9 encoding ExtendId ( $ i n s t r . id , $cond . s t r ) =

10 { cc = cond : : $cond . code , op = $ i n s t r . opcode , f l a g s = 0 }

11 assembly ExtendId ( $ i n s t r . id , $cond . s t r ) =

12 ( $ i n s t r . ass , $cond . s t r , ' ' , r eg i s t e r ( rd ) , ' , ' , r eg i s t e r ( rn ) , ' , ' , decimal ( imm12 ) )

13 }

14

15 model− type CondInstrModel = ( Cond , I n s t r ) −> IsaDefs

16

17 model CondIns t r ( model id : CondInstrModel , i n s t r : I n s t r ) : IsaDefs = {

18 $model id ( ( " eq " ; EQ ; APSR . Z = 0b1 ) ; $ i n s t r )

19 $model id ( ( " ne " ; NE ; APSR . Z = 0b0 ) ; $ i n s t r )

20 / / . . .

21 }

22

23 $Cond Ins t r ( ALImmCondInstr ; ( ADD ; " add " ; + ; 0 b000 ' 0 1 0 0 ) )

24 $Cond Ins t r ( ALImmCondInstr ; ( SUB ; " sub " ; − ; 0 b000 ' 0 0 1 0 ) )

25 $Cond Ins t r ( ALImmCondInstr ; ( AND ; " and " ; & ; 0 b000 ' 0 0 0 0 ) )

26 $Cond Ins t r ( ALImmCondInstr ; ( ORR ; " o r r " ; | ; 0 b000 ' 1 1 0 0 ) )

Figure 14. Instruction Speci�cation applying Higher Order Macros

default behavior. VADL does not have a separate preproces-

sor, therefore performs the macro expansion directly on the

generated CST.

WrapperRules. Since the CST consists of Java classes based

on grammar rules, we decided to introduce additional wrap-

per rules. Each rule, which we would like to use as macro

type, is enclosed in an additional rule to create a clear loca-

tion for replacement later on. In most cases, such a wrapper

rule contains two alternatives: a generic macro replacement

rule guarded by a semantic predicate and the concrete value

rule. The semantic predicate is used to perform a minor

lookahead to see if the next tokens are part of a concrete

value or a macro action. Unfortunately, this introduces a

slight overhead as we have to create an additional wrapper

rule for each syntax type. Figure 15 shows a wrapper rule

StringRule and a concrete rule ConcreteStringRule to express

strings. Retrieving the current context with re�ections or

the parser itself was quite tedious, so we decided to simply

parameterize our isMacroAction predicate with the current

syntax type context (Str). The StringRule rule can now be

used anywhere as if it was a normal grammar rule for strings.

Inside the StringRule the value �eld is used as location for

replacement. We implemented all non-terminal rules used

as syntax types (see Section 3.2) in the same fashion.

1 S t r i n gRu l e :

2 $$ i sMac roAc t i on ( Str ) $$ ?= > / / sem−pred

3 va l ue =MacroAct ionRule

4 | v a l u e = Conc r e t e S t r i n gRu l e

5 ;

6

7 Conc r e t e S t r i n gRu l e : / / . . .

Figure 15.Wrapper Rule Example

Context Sensitivity. By using a context-sensitive parse

approach, we guide the parser in such a way that only syn-

tactically and semantically correct macro occurrences are

parsable. To manage the context sensitivity, we implemented

a parser state speci�cally for macros. It provides an API used

by semantic predicates and code actions to compare and up-

date symbols and macro information. The core of the parse

state itself consists of a symbol table containing information

on macro related de�nitions in the current scope. Moreover,

it holds a variety of type information on actively parsed

macro constructs. In the initial parse state only the core

syntax types listed in section 3.2 are registered. During pars-

ing, ISA namespaces, models, their parameters, records and

syntax type aliases are added. Figure 16 shows a simpli�ed
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version of our grammar rules handling a model de�nition.

The start of the ModelRule is straight forward by expecting

the model keyword, a name, a typed parameter list and a

syntax type. Before the parser enters the model body, the

parse state has to be updated. In the example this is done by

the code actions, indicated with an opening and closing "$$".

We feed the parse state the name, the syntax type and the

parameters. Note that the passed values are CST nodes and

therefore already Java classes, making it possible to access

type and name of the parameters. Inside the parse state, the

symbol table is extended by the model name and the infor-

mation on the parameters. The passed type is used to select

the correct rule to parse the model body. This is done using

syntax predicates, which can be seen in Figure 16 inside the

ModelBodyRule. They are similar to code actions but with an

additional "? =>" after the enclosing "$$". The predicates are

tested in-order from top to bottom. If a predicate is satis�ed,

the parser tries to apply the rule(s) on the right-hand side of

the current alternative. The ModelBodyRule reveals another

slight overhead as we have to manually implement the re-

lation between syntax type and desired rule. The presented

example was of course just a simpli�ed version of the ac-

tual implementation and should help to understand the main

idea. A similar approach was applied for all the other context-

sensitive tasks, e.g. managing ISA namespaces or checking

the correctness of syntax types of passed arguments.

1 ModelRule :

2 " model " name= I d e n t i f i e r R u l e

3 " ( " pa ramete r s +=ModelParameterRule ∗ " ) "

4 " : " type =SyntaxTypeRule " = "

5 " { "

6 $$ s t a t e . enterModel

7 ( name , type , pa ramete r s ) ; $$

8 body=ModelBodyRule

9 $$ s t a t e . l eaveMode l

10 ( name , type , pa ramete r s ) ; $$

11 " } "

12 ;

13

14 ModelBodyRule :

15 $$ s t a t e . isModelBodyOfType ( S t r i n g ) $$

16 ?= > S t r i n gRu l e

17 $$ s t a t e . isModelBodyOfType ( I n t e g e r ) $$

18 ?= > I n t e g e r Ru l e

19 / / . . .

20 ;

21

22 ModelParameterRule :

23 name= I d e n t i f i e r R u l e

24 " : " type =SyntaxTypeRule

25 ;

Figure 16.Model Grammar Rules

4.2 Expansion

The macro expansion is done in a separate pass after parsing

and works solely on the CST representation. This pass is

responsible to perform all macro related CST manipulations.

Note that at this stage the correctness of the macros were

already checked by the parser. The examples in Figure 17 and

Figure 18 show a textual representation of the CST before

and after the expansion pass. The expansion is executed in

two steps.

Setup. The �rst step is to remove all the macro nodes of

the CST that do not produce any new nodes. This includes

model, syntax type alias and record de�nitions. During the

removal, each de�nition is stored in a symbol table to pre-

serve its information. Additional to the parsed de�nitions,

the command line con�gurations are added to the symbol

table.

Execution. The second step is the actual execution and ex-

pansion of macro code. The expansion is done in a top-down

fashion and performs iterative replacements on wrapper

nodes. The �rst top level construct, or root node, the macro

expander encounters, is by design a model instantiation node.

The instantiation contains information on the model and the

passed parameters. Similar to function inlining, the expander

creates a copy of the referenced model body and replaces

each parameter occurrence with the respective argument.

The new body is now passed again to the expander to re-

solve nested macro actions. Afterwards, the macro node is

replaced by the newly created subtree of the updated copy of

the model body. Conditional macro expansions are also done

during the model instantiation. The implementation is very

simple and currently only uses a uni�ed symbolic equality

comparison. The match statement is symbolically executed

and replaced by the right-hand side of the �rst satis�ed left

hand side condition. If no condition evaluates to true, the

mandatory last wild card statement is used. Similar to the

model instantiation, the resulting node is again iteratively

expanded. The implementation of the lexical macro actions

(IdToStr, ExtendId) are also straight forward. We simply cre-

ate a new identi�er or string CST node and replace the old

macro node occurrence with the newly created node. Recall

that the newly created identi�er is only part of the expanded

program and not available during expansion. This means

that it cannot be used to refer to macro models or macro

parameters.

Termination. Finally, we want to emphasize again the fact

that the termination of our expansion is always guaranteed.

Although we allow for multiple nested model instantiations

and invocation of higher-order model parameters, the top-

down parsing and our conscious opposition to use-before-

de�ne, make recursive model calls impossible. Note that a

model is only considered to be de�ned after it is fully parsed,

which prevents a recursive call to itself or passing itself as
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argument inside its body. Therefore, it should be clear that

our iterative expansion is bounded by a �nite number of

steps.

1 model I n c ( v a l : Ex ) : Ex = { $ v a l + 1 }

2 model Dec ( v a l : Ex ) : Ex = { $ v a l − 1 }

3 model I n s t rBody

4 ( func : (Ex ) −> Ex ) : Sta t = {

5 X ( rd ) : = $ func ( X ( r s ) )

6 }

7

8 in s t ruc t ion A : F = { $ In s t rBody ( I n c ) }

9 in s t ruc t ion B : F = { $ In s t rBody ( Dec ) }

Figure 17.Model Instantiation Example (before)

1 in s t ruc t ion A : F = { X ( rd ) : = ( X ( r s ) + 1 ) }

2 in s t ruc t ion B : F = { X ( rd ) : = ( X ( r s ) − 1 ) }

Figure 18. Model Instantiation Example (after)

5 Evaluation

For the evaluation of the macro system’s e�ciency and ex-

pressiveness we used VADL ISA speci�cations of AArch64,

Aarch32,MIPS IV, RISCV and our RISCV-like toy architecture

TriLen. The following section is separated into a qualitative

evaluation and a runtime evaluation section. The qualitative

evaluation investigates a variety of source code properties

like amount of models, records or type-alias. The runtime

section provides an overview of the execution time.

5.1 Qualitative Evaluation

This section should provide an overview on the macro sys-

tem’s expressiveness with a particular focus on the presented

macro concepts, e.g. higher-order models or type composi-

tions. For evaluation, we implemented data collection passes

before and after the macro expansion pass. Lines of code and

lines of comments were collected manually. Lines of code

exclude any trailing empty lines in a �le. To determine the

comments only lines, we used following regex:

(ˆ[” ”]∗//.∗$) | (ˆ[” ”]∗/\∗ [\B\(\=]+? \∗/)

Firstly, we present the overall expressiveness by providing

a comparison between the original speci�cations and their

expanded, pretty-printed results. Table 2 contains data on the

lines of code, lines of comments, CST nodes and instruction

de�nitions before and after expansion for each architecture

respectively. The instruction de�nitions value includes all

instruction language elements (see Section 2.2) no matter

if it contains placeholders or if it is located inside a model

template. The concept of CST nodes are described in Section

4.1. We believe that instruction de�nitions and CST nodes

are a more accurate metric to demonstrate the actual gen-

erative capabilities of our system. Lines of code (including

comment lines) is a more tangible metric, which is why we

also provided them.

It is important to note that our pretty printer does not

insert new lines in-between an expression, which in case

of nested if-else-expressions could result in even more out-

put lines. Additionally, all the comments are not preserved

during the parse step and are therefore missing in the output.

Table 2. Expansion Statistics

AArch32 AArch64 MIPS IV RISCV TriLen

Original

Lines of Code 1273 2334 1131 635 521

Lines of Comments 101 177 108 99 113

CST Nodes 17158 36699 10156 6264 8557

Instr. Def. 53 52 45 17 20

Expanded

Lines of Code 110369 10227 1432 612 1301

Lines of Comments - - - - -

CST Nodes 1520796 134601 14123 7698 16066

Instr. Def. 8865 799 106 37 123

Our prime examples are the ARM speci�cations AArch64

and especially AArch32. Their speci�cations heavily use the

macro system to model the di�erent instruction variations.

This can be seen by their 52 and 53 initial instruction def-

initions, which expand to 799 and a tremendous 8865 in-

struction de�nitions. These big numbers can be explained

by the fact that the �nal speci�cation explicitly models each

hardware mode and conditional execution combination as a

separate instruction de�nition. Although the other examples

are not that impressive,MIPS IV, RISCV and TriLen still show

improvements regarding code size and especially instruc-

tion de�nition abstraction. RISCV ’s lines of code is a perfect

example why we chose to provide additional metrics to com-

pare the expanded speci�cations to the originals. The lines

of codes decrease after the expansion, indicating that the

macro system introduced more verbosity. However, when

we look at the CST nodes and the instruction de�nitions,

one can see that there actually was an increase in syntax

elements after the expansion. Additionally, the instruction

de�nition amount doubled, which is an indication that the

system provides a good abstraction. Overall, we are satis�ed

with the expressiveness of the macro system as the code

reduction measured by the CST nodes of our examples are

between the factors 1.2 and 90.

Furthermore, we were interested in the absolute frequency

of each macro element for each architecture speci�cation

respectively. Table 3 displays the overall amount ofmodel def-

initions, their placeholders inside the template, model instan-

tiations (macro invocations), record de�nitions, type-alias

de�nitions and the uses of our macro conditional (match).
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Table 3. Macro Element Statistics

AArch32 AArch64 MIPS IV RISCV TriLen

Models 90 142 64 4 21

Placeholders 1168 1270 311 30 178

Instantiations 225 322 163 24 56

Records 4 9 0 0 0

Type-Alias 4 8 0 0 0

Match 0 12 2 0 0

An interesting discovery when looking at Table 2 and

Table 3 is that more model de�nitions and model instantia-

tions do not necessary mean a higher increase in CST nodes.

This can be seen by comparing the properties for AArch32

and AArch64. In general, complex architectures like AArch32,

AArch64 and even MIPS IV seem to use the set of features

more than the simpler ones like RISCV and TriLen. Espe-

cially, when it comes to the use of type aliases and records,

the complex architectures bene�t more from it. The reason is

that their model templates are more complex. For the given

examples, the ratios of placeholders to models seem to give

a good indicator on this complexity. Furthermore, it is inter-

esting to see that records, type aliases and match-statements

have been used sparsely.

Finally, we decided to provide an overview of a variety

of parameter related statistics for model de�nitions. Table

4 shows the minimum, maximum, absolute and average

amount of arguments for:

• Normal Parameters: This includes all model param-

eters.

• Flattened Parameters: This includes all model pa-

rameters with a slight manipulation. All parameters,

which resolve to the type record or tuple are �attened.

This means that each element inside a record or tu-

ple is iteratively unpacked and moved to the outer

parameter list. The original type container is removed.

• Higher-Order Parameters: This includes all parame-

ters that are of higher-order, i.e. are of type, or contain

a subtype, of the function type.

Table 4. Model Parameter Statistics

AArch32 AArch64 MIPS IV RISCV TriLen

Normal

Min 0 0 1 4 2

Max 9 8 5 6 8

Abs 343 417 187 21 96

Avg 3.81 2.93 2.92 5.25 4.57

Flattened

Min 0 0 1 4 2

Max 14 15 5 6 8

Abs 738 886 187 21 96

Avg 8.2 6.23 2.92 5.25 4.57

Higher-Order

Min 0 0 0 0 0

Max 3 2 0 0 0

Abs 37 36 0 0 0

Avg 0.41 0.25 0 0 0

Table 4 presents statistics regarding the number of macro

arguments. It shows that for the two complex architectures

the usage of record types halves the maximum and average

number of arguments. Higher-order and record arguments

are only used by the complex architectures.

5.2 Runtime Evaluation

The runtime evaluation was done on an Apple Mac mini M2

Pro with 32 GB memory under macOS Ventura 13.4 using

OpenJDK 64-Bit Server VM Temurin-17.0.6 and the newest

version of the VADL tool. Figure 5 shows the runtime of the

source parsing and macro expansion pass in milliseconds on

the original source speci�cation and on the expanded source

code which is the result of the expansion of all macros.

Table 5. Runtime of the Macro System in milliseconds

Original Source Expanded Source

Parse Expand Parse

AArch32 542 1144 2415

AArch64 579 213 782

MIPS IV 520 28 514

RISCV 449 10 454

TriLen 453 24 462

Each speci�cation was executed 3 times and the minimal

time was selected. The variance between the 3 runs was very

low. The parse pass scans the text and generates the CST.

The expansion pass traverses the CST, does macro expansion

and generates an expanded CST. Additionally, we applied

the same approach to the already expanded speci�cations to

have a direct comparison between parsing with and without

macros. This provides an idea for how much time is actually

taken up by the macro system. Table 5 shows that the macro

expansion adds almost no additional runtime for speci�ca-

tions with sparse use of macros. More surprisingly is the

savings in runtime for AArch32. This can be explained by the

increased I/O and parsing e�ort, compared to much faster

in-memory expansion operations.

5.3 Re�ection

In this section we would like to give a brief overview on in-

teresting experiences we gained while investigating a macro

system design for VADL.

To use VADL’s existing IDE integration feature, the syntax

errors must be detected by the parser. While most de�nitions,

e.g. models, did not impose a real problem, we soon realized

that model instantiations, and parameter uses are not safely

parsable in LL(k) without some form of syntax type hints.

These hints were essentially the syntax types of parame-

ters or models written before an identi�er, e.g. "$(�3 0)" or

"$((C<C 1)". While this helped in the context of grammar

ambiguities, the identi�ers may still fail in the latter applied

expansion pass as they were never checked. Furthermore, we

ran into similar issues when it came to parsing instantiation

arguments, as they potentially allow a huge set of syntax
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rules. With the small extension to pred-LL(*) we were able

to not only remove the unwanted syntax, but also guide the

parser in a much cleaner manner. Now the parser guarantees

syntactic correctness even before the macro expansion, all

while preserving the IDE functionalities.

Another interesting realization was that a macro system

for PDLs does not necessarily require hygienic macros. Most

of the time, capturing identi�ers is a desired behavior. For

the remaining cases we preferred the control over the names

provided by our lexical macro functions.

In contrast to GPLs, VADLmacros aremainly used for code

generation instead of language extension. Lexical macros

have proven to be prone to errors, especially for larger spec-

i�cations. Procedural macros are very powerful, but we have

not yet discovered a use case where the resulting increase

in complexity would be pro�table. This is why we found

the pattern-based macro approach extended with our higher-

order macros a sensible compromise between complexity and

implementation e�ort for PDL speci�cation.

Finally, we would like to make a few comments about the

uses of our macro elements. The record element improves

the readability of our speci�cation greatly as it enables us to

group related parameters together. The models were mostly

used to express variance of instruction semantic. The match

statement together with the command line con�gurability

were mainly used to model the variance of processors.

6 Related Work

Most of the related work we found that �ts our class of

macro system, i.e. syntactical and pattern-based, were focus-

ing on syntactically rich GPLs and not simple DSLs. Our

work took inspiration from <bigwig> [7] and programmable

syntax macros [26]. We tried to capture some core ideas and

incorporate them in our higher-order, composable syntax

types in form of the presented VADL macro system.

One of the �rst approaches to bring syntax macros to

syntactically rich languages or even languages outside the

LISP family are programmable syntax macros for C [26].

The pattern-based macro system by Weise and Crew uses

an extended version of the C language as macro language.

Similar to our approach, a macro is de�ned by a meta con-

struct providing the resulting syntax type, typed parameters

and a template body with placeholders. Weise and Crew’s

macro headers enable parameter parsing in form of patterns,

providing more syntactic freedom than our approach. How-

ever, this freedom may lead to unparsable macros if it cannot

be deterministically parsed, which is always guaranteed by

our approach. Both approaches rely on a context-sensitive

parser to manage macros. Weise and Crew’s macro system

does not support such a rich type system as ours (e.g. higher-

order, records, type-alias). Furthermore, they do not support

alternatives in their templates.

The <bigwig> [7] is an extensible system for interactive

web service. Similarities to our approach can be found in the

usage of non-terminal grammar rules as syntax types and

the way their macros and our models are de�ned. However,

our approach di�er in fundamental design decisions con-

cerning the metamorphisms. Morphing new keywords into

the host language’s grammar would require costly rebuilds

of our parser. As a result, we decided to increase the ini-

tial complexity by making our parser context-sensitive, but

save ourselves the execution of a preprocessor. The <bigwig>

macro system has a similar approach to our higher-order

models by allowingmetamorph rules as arguments. However,

these rules are translated into grammar rules. They are not

instantiated with syntax typed arguments, but guide the way

on parsing the arguments. This allows for more syntactic

freedom, for example arbitrary arity.

Similar to the previous mentioned techniques, the ExJS

[25], a macro system for JavaScript, also splits its macro

into a pattern and template part. Instead of metamorph non-

terminals, it uses so called phantom patterns to establish

arbitrary length repetition. Compared to us the template

syntax types are rather poor, as it only supports expressions

or statements. The biggest di�erence to us and the other ap-

proaches is the implementation. ExJS uses a �rst stage parser

to build a second stage macro-aware parser to retrieve the

AST. While similar implementations exist [4, 7], they fur-

ther convert the AST to S-expression, feed them to a scheme

macro expander and convert the resulting S-expression back

to macro-free JavaScript.

The Honu [22] macro system follows a simpler approach

when it comes to macro patterns and templates. Although

the patterns are still syntactically more expressive than our

simple parameter list, they follow a much simpler more LISP-

like convention. The main idea presented is the enforestation

parsing step, which converts a �at stream of tokens into an

S-expression-like tree. It allows for LISP-style extensibility

while still providing enough syntactic freedom to supporting

macro in�x operators.

One of the newer macro systems that is used in various

�elds ranging from DSLs to symbolic veri�cation language

extensions is the one from the Rust programming language

[11, 13, 15, 17]. Speci�cally, the pattern-based macro_rule! is

of interest compared to our work. It shares the technique of

specifying a pattern with typed parameters that is rewritten

based on a template. What stands out is that it supports

more general and meta types, e.g. token-tree, pattern or item.

Furthermore, the macros are invoked using their identi�er

and a trailing "!". The de�ned pattern is then provided inside

parenthesis. This is closer related to our LISP-like macro

invocation, in contrast to the previousmentioned approaches.

As with the previous macro systems, Rust does not support

higher-order macros.
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7 Conclusion and Future Work

We have designed and implemented a type-safe higher-order

macro system, speci�cally designed for (computationally

weak) architecture description languages. Our presented

pattern-based syntax macros are pred-LL(*) parsable and

require no preprocessor or complex host language. The im-

plementation was based on a context-sensitive top-down

parser and an iterative expansion algorithm with termina-

tion guarantee. We demonstrated our approach using our

work-in-progress speci�cation language VADL. The evalu-

ation of our macro system was conducted with the help of

VADL based ISA speci�cations for the AArch64, AArch32,

MIPS IV, RISCV and TriLen, our RISCV-like toy architecture.

Our macro system has still shortcomings we want to ad-

dress in future work. First, the VADL module management

and import system is currently put after themacro expansion,

which limits the scope of a macro de�nition to a single �le.

Second, we would like to increase the syntactical freedom,

for example variable arguments or arbitrary patterns, to see

if they work well with our type system. Third, we want to

extend our work by some form of hygienic macros. Finally,

we want to continue our exploration of design possibilities

for ADLs using macros.
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