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We study the problem of representing a graph as a storyplan, a recently introduced model 
for dynamic graph visualization. It is based on a sequence of frames, each showing a subset 
of vertices and a planar drawing of their induced subgraphs, where vertices appear and 
disappear over time. Namely, in the StoryPlan problem, we are given a graph and we 
want to decide whether there exists a total vertex appearance order for which a storyplan 
exists. We prove that the problem is NP-complete, and complement this hardness with two 
parameterized algorithms, one in the vertex cover number and one in the feedback edge 
set number of the input graph. We prove that partial 3-trees always admit a storyplan, 
which can be computed in linear time. Finally, we show that the problem remains NP-
complete if the vertex appearance order is given and we have to choose how to draw the 
frames.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let G = (V , E) be a graph with n vertices. We write [n] as shorthand for the set {1, 2, . . . , n}. A storyplan S = 〈τ , {Di}i∈[n]〉
of G is a pair defined as follows. The first element is a bijection τ : V → [n] that represents a total order of the vertices of 
G . For a vertex v ∈ V , let iv = τ (v) and let jv = maxu∈N[v] τ (u), where N[v] is the set containing v and its neighbors. The 
lifespan of v is the interval [iv , jv ]. We say that v appears at step iv , is visible at step i for each i ∈ [iv , jv ], and disappears at 
step jv +1. Note that a vertex disappears as soon as all its neighbors have appeared. The second element of S is a sequence 
of drawings {Di}i∈[n] , such that: (i) each drawing Di contains all vertices visible at step i, (ii) each drawing Di is planar, (iii) 
the point representing a vertex v is the same over all drawings that contain v (i.e., it does not change during the lifespan 
of v), and (iv) the curve representing an edge e is the same over all drawings that contain e. We introduce the StoryPlan

problem.
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StoryPlan

Input: Graph G = (V , E)

Question: Does G admit a storyplan?

In what follows, each drawing Di of a storyplan S is called a frame of S . Also, we denote by |Di | the number of vertices of 
Di , while the width of S is w(S) = maxi∈[n] |Di | −1 (we subtract one to align the definition with other width parameters). If 
G admits a storyplan, then the framewidth of G , denoted by fw(G), is the minimum width over all its storyplans; otherwise, 
the framewidth of G is conventionally set to +∞. We will observe that the framewidth of G upper bounds its pathwidth [2], 
since each frame can be interpreted as a bag of a path decomposition with the addition of conditions (ii)–(iv).

Motivation and related work. Testing for the existence of a storyplan of a graph generalizes planarity and it is of theoretical 
interest as it combines classical width parameters of graphs with topological properties. From a more practical perspective, 
computing a storyplan (if any) of a graph G is a natural way to gradually visualize G in a story-like or small-multiples 
fashion, such that each single drawing is planar and the reader’s mental map is preserved throughout the sequence of 
drawings (see, e.g., [3] for a similar approach). More in general, the problem of visualizing graphs that change over time 
has motivated a notable amount of literature in graph drawing and network visualization (see, e.g., [4–9]). While numerous 
dynamic graph visualization models have been proposed, two models are of particular interest for our research. The first 
one is the graph stories model introduced by Borrazzo et al. [6]. A graph story is formed by a graph G , a total order of its 
vertices τ , and a positive integer W . The problem is to find a sequence of drawings {Di}i∈[n] in which each Di contains all 
vertices v such that i − W < τ(v) ≤ i, and the position of a vertex is the same over all drawings it belongs to. Borrazzo et al. 
prove that any story of a path or a tree can be drawn on a 2W × 2W and on an (8W + 1) × (8W + 1) grid, respectively, 
so that all the drawings of the story are straight-line and planar. Note that having a fixed window of size W implies that at 
most O (W · n) edges of G can be represented, in particular, any edge whose endpoints are at distance larger than W in τ
does not appear in any drawing. Having both a fixed order and a fixed lifespan are the key differences with our setting. In 
particular, unconstrained lifespans allow us to find stories in which all edges are drawn in at least one step, while planarity 
still guarantees that even large frames are readable. Besides such differences in the models, our focus is on the complexity 
of the decision problem, rather than on area bounds for specific graph families. More recently, the graph stories model 
has also been investigated by Di Battista et al. [10] who studied the problem of computing graph stories by using a set of 
W + k points, for small values of k. They prove that the problem is NP-complete in general and it belongs to FPT when 
parameterized by W + k; they also give some positive and negative results on the existence of graph stories for various 
values of k and various families of graphs.

The second model is stream planarity introduced by Da Lozzo and Rutter [7]. Given a graph G , a total order τ of the 
edges of G , and a positive integer W , stream planarity asks for a sequence of drawings {Di}i∈[n] in which each Di contains 
all edges e such that i − W < τ(e) ≤ i, and the subdrawing of the vertices and edges shared by Di and Di−1 is the same in 
both drawings. Da Lozzo and Rutter prove that there exists a constant value for W for which the stream planarity problem 
is NP-complete. They also study a variant where a backbone graph is given whose edges must stay in the drawing at each 
time step; for this variant they prove that the problem is NP-complete for all W ≥ 2 and can be solved in polynomial time 
when W = 1 or when the backbone graph is biconnected. The difference of stream planarity with our problem, besides the 
fact that edges are streamed rather than vertices, is again having a fixed order and a fixed lifespan.

Contribution. The main results in this paper can be summarized as follows.

• We show that StoryPlan is NP-complete (Section 3.1). As we reduce from One-In-Three 3SAT and we blow up the 
instance by a linear factor, it follows that there is no algorithm that solves StoryPlan in 2o(n) time unless ETH fails. On 
the other hand, such a lower bound can be complemented with a simple algorithm running in 2O (n logn) time.

• Motivated by the above hardness, we study the parameterized complexity of StoryPlan and describe two fixed-
parameter tractable algorithms. We first show that StoryPlan belongs to FPT when parameterized by the vertex cover 
number via the existence of a kernel, whose size is however super-polynomial (Section 3.2). We then prove that Sto-

ryPlan parameterized by the feedback edge set number (i.e., the minimum number of edges whose removal makes the 
graph acyclic) admits a kernel of linear size (Section 3.3).

• In parameterized analysis, a central parameter to consider is treewidth. In this direction, finding a parameterized algo-
rithm for StoryPlan appears to be an elusive task. However, we show that for partial 3-trees (the graphs with treewidth 
at most three), a storyplan always exists and can be computed in linear time (Section 3.4).

• Finally, we initiate the study of the complexity of a variant of StoryPlan in which the total order of the vertices is fixed 
in advance (but the vertex lifespan remains unconstrained). We prove NP-completeness for this problem via a reduction 
from Sunflower SEFE [11] (Section 4).

Section 2 contains preliminaries and basic results, in particular, it shows some connections between framewidth and 
pathwidth. Section 3 contains the main results of this paper, namely the NP-hardness of StoryPlan along with two param-
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eterized algorithms and a technique for partial 3-trees. Section 4 concludes the contribution with the NP-hardness of the 
fixed-order setting. Section 5 discusses some open problems stemming from our research.

2. Preliminaries and basic results

A drawing � of a graph G = (V , E) is a mapping of the vertices of V to points in the plane R2, and of the edges of E
to Jordan arcs connecting their corresponding endpoints but not passing through any other vertex. The drawing � is planar
if no edge is crossed. A graph is planar if it admits a planar drawing. A planar drawing of a planar graph G subdivides the 
plane into topologically connected regions, called faces. The infinite region is the outer face. A planar embedding E of G is an 
equivalence class of planar drawings that define the same set of faces and the same outer face. For any V ′ ⊆ V , we denote 
by G[V ′] the subgraph of G induced by the vertices of V ′ and by �[V ′] the subdrawing of � representing G[V ′]. It may be 
worth remarking that, although some illustrations use straight-line curves for the edges, our algorithms produce topological 
drawings that may not be straight-line.

Connection with pathwidth. The next properties show some simple connections between storyplans and path decomposi-
tions [2]. A path decomposition of a graph G = (V , E) is a sequence {Xi}i∈[h] of subsets of V , called bags, for some integer 
h, such that: (1) for each edge e = uv ∈ E , there exists a bag Xi containing both u and v , and (2) for every three indices 
i ≤ j ≤ k, Xi ∩ Xk ⊆ X j . The width of {Xi}i∈[h] is equal to maxi∈[h] |Xi | − 1, and the pathwidth of G is the minimum width 
over all its path decompositions.

In order to prove that the pathwidth is upper bounded by the framewidth, we begin with the following lemma.

Lemma 1. Let G = (V , E) be a graph. If G admits a storyplan S = 〈τ , {Di}i∈[n]〉 of width ω = w(S), then it admits a path decompo-
sition of width at most ω.

Proof. It is easily seen that ω equals the vertex separation number of the total order τ , that is, for each index i ∈ [n] there 
are at most ω vertices v with τ (v) ≤ i having a neighbor u such that τ (u) > i. Suppose for a contradiction that this is not 
the case, namely, there exists an index i ∈ [n] such that there are at least ω + 1 vertices v with τ (v) ≤ i having a neighbor 
u such that τ (u) > i. Let u1 be the one of such neighbors that appears first. All the at least ω + 1 vertices are still visible 
at step τ (u1) and therefore the size of the frame at step τ (u1) is at least ω + 2, thus contradicting the fact that S has with 
ω. On the other hand, a total order τ with vertex separation number ω implies the existence of a path decomposition of 
width at most ω [12]. �
Theorem 1. Let G = (V , E) be a graph, then pw(G) ≤ fw(G). Also, if G is planar then it always admits a storyplan, and in particular 
pw(G) = fw(G).

Proof. If G does not admit a storyplan, for any total order of its vertices, then pw(G) < fw(G) = +∞. Otherwise, pw(G) ≤
fw(G) by Lemma 1.

If G is planar, we show that fw(G) ≤ pw(G). Namely, let {Xi}i∈[h] be a path decomposition of G . Without loss of gener-
ality, we can assume that this path decomposition is nice (or normalized), i.e., X1 contains exactly one vertex, and, for each 
bag Xi with 1 < i ≤ h, there is a vertex v such that either Xi = Xi−1 ∪{v} or Xi = Xi−1 \ {v}. Then we have that at each step 
at most one vertex is introduced in the decomposition, and hence we can associate each vertex v with an index lv such 
that lv = 1 if v is the first introduced vertex, and lv = lu + 1, where lu is the last vertex introduced before v , otherwise. We 
define a total order τ of V by setting τ (v) = lv . Let � be a planar drawing of G . Consider the set of n drawings such that 
Di corresponds to the subdrawing of � induced by the vertices that are visible at step i, for each i ∈ [n]. One immediately 
verifies that 〈τ , {Di}i∈[n]〉 is a storyplan of G of width pw(G). �

Since computing the pathwidth is NP-hard for planar graphs of bounded degree [13], the next corollary immediately 
follows from Theorem 1.

Corollary 1. Computing the framewidth of a graph is NP-hard already for planar graphs of bounded degree.

Analogously, computing the pathwidth of a graph is FPT in the pathwidth [14], hence computing the framewidth of a 
planar graph is also FPT in the framewidth.

Complete bipartite graphs. It is not difficult to verify that if a graph admits a storyplan, then it does not contain K5 as a 
subgraph. However, complete bipartite graphs always admit a storyplan and such storyplans have important properties. In 
particular, Lemma 4 plays a central role in most of our proofs. In order to prove it, we first prove a few auxiliary lemmas.

Lemma 2. Let Ka,b = (A ∪ B, E) be a complete bipartite graph with a = |A| and b = |B|. Let S = 〈τ , {Di}i∈[a+b]〉 be a storyplan of 
Ka,b. There exists i ∈ [a + b] such that all vertices of A or B are visible.
3
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Proof. Let i be such that Di contains the largest number t of vertices of A over all frames of S . If t = a, we are done. If 
t < a, there exist two vertices u, v of A such that ju < iv . Note that all vertices in B are adjacent to u, and hence they all 
appear at some step smaller than or equal to ju . On the other hand, since all vertices in B are adjacent to v as well, they 
cannot disappear before iv + 1. It follows that all vertices of B are visible at step ju . �
Lemma 3. Let Ka,b = (A ∪ B, E) be a complete bipartite graph with a = |A| and b = |B|. Let S = 〈τ , {Di}i∈[a+b]〉 be a storyplan of 
Ka,b. If a step i ∈ [a + b] contains at least three vertices of A (resp. B), then it contains at most two vertices of B (resp. A).

Proof. The statement immediately follows from the fact any frame of S is planar and hence cannot contain K3,3 as a 
subgraph. �

We are now ready to prove Lemma 4.

Lemma 4. Let Ka,b = (A ∪ B, E) be a complete bipartite graph with a = |A|, b = |B|, and 3 ≤ b ≤ a. Let S = 〈τ , {Di}i∈[a+b]〉 be a 
storyplan of Ka,b. Exactly one of A and B is such that all its vertices are visible at some i ∈ [a + b].

Proof. Consider the interval I = [s, t] ⊆ [a + b] of maximal length such that the vertices of A or B , say A, are all visible. By 
Lemma 2, I is not empty. Let j be one of the steps that contain the largest number h of vertices of B . Observe that, since I
is maximal, one vertex of A appears at s. Therefore, any vertex of B visible at a step smaller than s is visible also at step s. 
Similarly, by the maximality of I , one vertex of A disappears at step t + 1, therefore any vertex of B visible at a step greater 
than t is visible also at step t . Consequently, we can assume that j ∈ I , and we can conclude h ≤ 2 by Lemma 3. �

In view of Lemma 4, we have the following key definition.

Definition 1. For a complete bipartite graph Ka,b with 3 ≤ b ≤ a and a storyplan S of Ka,b , we call fixed the partite set of 
Ka,b whose vertices are all visible at some step of S , and flexible the other partite set.

3. Complexity of STORYPLAN

In this section we prove that: StoryPlan is NP-complete and cannot be solved in 2o(n) time unless Exponential Time 
Hypothesis (ETH) fails, but there is an algorithm running in 2O (n logn) time (Section 3.1); StoryPlan is in FPT parameterized 
by vertex cover number or feedback edge set number (Sections 3.2 and 3.3); graphs of treewidth at most 3 always admit 
a storyplan, which can be computed in linear time (Section 3.4). The ETH, combined with the Sparsification Lemma, states 
that 3SAT formulas on N variables and M clauses cannot be solved in 2o(N+M) time, see [15,16].

3.1. Hardness

We reduce from One-In-Three 3SAT, a variant of 3SAT which asks whether there is a satisfying assignment in which 
exactly one literal in each clause is true. Let ϕ be a 3SAT formula over N variables {xi}i∈[N] and M clauses {Ci}i∈[M] . We 
construct an instance of StoryPlan, i.e., a graph G = (V , E), as follows; refer to Fig. 1 for an illustration.

Variable gadget. Each variable xi is represented in G by a copy K (xi) of K3,3. Let Ai and Bi be the two partite sets of 
K (xi), which we call the v-sides of K (xi). A true (false) assignment of xi will correspond to set Ai being flexible (fixed) in a 
putative storyplan of G (see Definition 1).

Clause gadget. Consider a copy of K2,2,2 = (U1 ∪ U2 ∪ U3, F ). An extended K2,2,2 is the graph obtained from any such a 
copy by adding three vertices s1, s2, s3, such that these three vertices are pairwise adjacent, and each s j is adjacent to both 
vertices in U j , for j ∈ {1, 2, 3}. In the following, s1, s2, s3 are the special vertices of the extended K2,2,2, while the other 
vertices are the simple vertices. A clause Ci is represented in G by an extended K2,2,2, denoted by K (Ci). In particular, we 
call each of the three sets of vertices U j ∪ {s j} a c-side of K (Ci). The idea is that K (Ci) admits a storyplan if and only if 
exactly one c-side is flexible (each c-side will be part of a K3,3, see the wire gadget below).

Wire gadget. Let xi be a variable having a literal li j in a clause C j . Any such variable-clause incidence is represented in G
by a set of three vertices, which we call the w-side W (li j). All vertices of W (li j) are connected to all vertices of one of the 
three c-sides of K (C j), which we call U , such that the graph induced by W (li j) ∪ U in G contains a copy of K3,3. Also, each 
vertex of W (li j) is connected to all vertices of the v-side Ai (Bi) if the literal is positive (negative), such that the graph 
induced by W (li j) ∪ A (W (li j) ∪ B) in G is a copy of K3,3. Also, note that each c-side of K (C j) is adjacent to exactly one 
w-side.

Lemma 5. If graph G admits a storyplan then ϕ admits a satisfying assignment with exactly one true literal in each clause.
4
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Fig. 1. Illustration for the reduction of Theorem 2.

Fig. 2. Illustration for the reduction of Lemma 5.

Proof. Let S = 〈τ , {Di}i∈[n]〉 be a storyplan of G . For each variable gadget K (xi), we assign the value true to xi if and only 
if the v-side Ai is flexible in S . Consider any literal li j and the wire gadget W ij . If li j is a positive (negative) literal, then 
Ai (Bi) and W ij form a K3,3, hence by Lemma 4 the w-side W ij is fixed (flexible). Analogously, if we consider the clause 
gadget K (C j), the c-side connected with W ij is flexible (fixed). If Ai is fixed, and hence the v-side Bi is instead flexible, 
we assign the value false to xi . In this case, for any positive (negative) literal li j , the w-side W ij is flexible (fixed), while 
the corresponding c-side of K (C j) is fixed (flexible). In other words, the value of xi propagates consistently throughout all 
its literals. It remains to prove that, for any clause C j of ϕ , precisely one literal is true for the constructed truth value 
assignment of {xi}i∈[N] . Namely, we claim that exactly one c-side of K (C j) is flexible, while the other two are fixed.

We first argue that not all c-sides can be fixed in S . Assume, for a contradiction, that they are. Let Dh be the frame 
of S in which the last simple vertex v of K (C j) appears. Observe that all other simple vertices are also visible at step h. 
Namely, let u �= v be a simple vertex of K (C j). Either u is adjacent to v or in the same c-side as v . Hence, since iu < h
by assumption and since u cannot disappear until h + 1, it follows that u is visible at step h. It follows that Dh contains a 
drawing of K2,2,2, which is a maximal planar graph and hence has a unique planar embedding up to the choice of the outer 
face. In particular, vertex v and the other vertex on the same c-side as v , which we call v ′ , do not belong to the same face; 
see Fig. 2(a) for an illustration. Consider now the special vertex s adjacent to both v and v ′ . Vertex s cannot be visible at 
step h, else Dh would not be planar, as it would contain K2,2,2 plus a subdivided edge between v and v ′; see Fig. 2(b). On 
the other hand, it cannot have disappeared already, since s and v are adjacent. Hence, s has not appeared yet. Similarly, no 
5
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Fig. 3. Proof of Lemma 6: drawing the vertices of the fixed v-sides.

Fig. 4. Proof of Lemma 6: drawing the vertices of the fixed w-sides.

other special vertex is visible at step h, and since the special vertices are pairwise adjacent, it follows that none of them 
has appeared yet. Consequently, no vertex of K2,2,2 can disappear until the first special vertex has appeared, which implies 
the existence of a frame that contains a planar drawing of K2,2,2 plus a subdivided edge between two vertices in the same 
c-side, which contradicts the fact that the considered frame is planar.

We now rule out the case in which more than one c-side is flexible, which corresponds to a clause with more than 
one true literal. If a c-side is flexible, there can be no frame containing both its simple vertices. This follows from the fact 
that the special vertex is adjacent to both simple vertices, and hence there would be a frame containing all three vertices 
together, which is not possible since the c-side is flexible. On the other hand, when the last simple vertex appears, its four 
neighbors in K2,2,2 are all visible, and hence at least two c-sides must be fixed.

Altogether, we have proved that at least two c-sides are fixed and that at least one c-side is flexible. Therefore, in each 
clause gadget, exactly one c-side if flexible, which corresponds to having exactly one true literal, as desired. �
Lemma 6. If the formula ϕ admits a satisfying assignment with exactly one true literal in each clause, then graph G admits a storyplan.

Proof. Suppose that ϕ admits a satisfying assignment with exactly one true literal per clause. We show how to compute a 
storyplan S = 〈τ , {Di}i∈[n]〉 of G . In what follows, when the order of a group of vertices is not specified, it means that any 
relative order is valid.

Consider a single variable gadget K (xi). If xi is true in the satisfying assignment, then we let appear the three vertices of 
the v-side Bi of K (xi), that is, Bi is the fixed side of K (xi). If xi is false, we do the opposite, namely we let appear the three 
vertices of the v-side Ai of K (xi). This procedure is repeated for all variables in any order. For ease of presentation, we can 
imagine that all the drawn v-sides are horizontally aligned, as shown in Fig. 3. Thus, for the variable gadgets, it remains to 
draw their flexible v-sides.

Consider now a wire gadget W (li j). If xi is true and li j is positive, then W (li j) must be fixed because it forms a K3,3 with 
the v-side Ai of K (xi), which is flexible. Therefore, we let appear the three vertices of W (li j). Similarly, if xi is false and li j
is negative, then W (li j) must be fixed, and we let appear the three vertices of W (li j). Again, this procedure is repeated for 
all wires in any order. For ease of presentation, we can imagine that all the drawn w-sides are arranged along a horizontal 
line slightly above the variable gadgets, as shown in Fig. 4. Thus, also for the wire gadgets, it remains to draw the flexible 
w-sides.

At this point, observe that each flexible v-side can be drawn independently, by letting appear and disappear its three 
vertices one by one. When a vertex appears, its edges towards the fixed w-sides of its wire gadgets and the fixed v-side of 
its variable gadget form a star and thus they can be easily drawn without crossings; see Fig. 5(a).

We now draw the clauses one by one. We begin by showing how to draw a single clause gadget K (C j), ignoring the 
connections with the linked wire gadgets. Refer to Fig. 5 for an illustration. We first let appear the three special vertices 
of K (C j) (Fig. 5(b)). Now we let appear the two simple vertices of a false literal, which we denote by l1 for convenience 
(Fig. 5(c)). Note that the whole c-side representing l1 is visible. Right after, the special vertex connected to the two simple 
vertices can disappear. Next, we let appear the two simple vertices of the remaining false literal, called l2, hence again 
this c-side is entirely visible (Fig. 5(d)). Again this can be done without crossings, and the corresponding special vertex 
can disappear right after. Now we have a 4-cycle (depicted with a light blue background in Fig. 5(d)) formed by the edges 
connecting the simple vertices drawn so far, and the special vertex of the missing literal lying in one of the two faces made 
6
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Fig. 5. Proof of Lemma 6: (a) drawing the vertices of the flexible v-sides; (b)–(g) drawing a clause gadget. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

by the cycle. We let one of the two simple vertices of the true literal appear (Fig. 5(e)), we draw its edges planarly, and 
afterwards we let it disappear and replace it with the last simple vertex (Fig. 5(f)). Once the last simple vertex has appeared, 
all vertices of the clause can disappear. Hence, the last c-side hasn’t appeared together but instead acted as a flexible c-side.

Consider a wire gadget W (li j). Suppose first that li j is false. Then we have seen that its c-side in K (C j), say U , is fixed 
and hence W (li j) must be flexible. Note that both if li j = l1 (Fig. 6(a)) or li j = l2 (Fig. 6(b)), in the frame in which the three 
vertices of U are visible there is a face whose boundary contains the three vertices of the corresponding c-side. We can 
assume that this face encloses the drawings of all the w-sides and v-sides that are currently visible. Hence the vertices of 
W (li j) can be drawn one by one in this face. If li j is true, then its c-side U is flexible and hence W (li j) must be fixed. 
Again in the two frames in which the vertices of U appear (see Figs. 5(e) and 5(f)), the drawing of the clause has a face 
whose boundary contains the vertex of U visible in that frame. We can assume that this face encloses the drawings of all 
the w-sides and v-sides that are currently visible, and therefore the vertices of U can be connected planarly both to its 
neighbors in K (C j) and to its neighbors in W (li j) (see Fig. 7). By repeating this procedure for each clause we complete the 
storyplan. �

We can conclude the following.

Theorem 2. The StoryPlan problem is NP-hard and it has no 2o(n) time algorithm unless ETH fails.

Proof. Constructing the graph G from the formula ϕ clearly takes polynomial time, and the correctness of the reduction 
follows from Lemmas 5 and 6. This proves that StoryPlan is NP-hard.

For the second part of the statement, we recall that the ETH, combined with the Sparsification Lemma, states that 3SAT

formulas on N variables and M clauses cannot be solved in 2o(N+M) time, see [15,16]. On the other hand, there exists 
a polynomial-time reduction from 3SAT to One-In-Three 3SAT that transforms 3SAT instances with N + M variables and 
clauses into equivalent One-In-Three 3SAT instances with O (N + M) variables and clauses [17]. Finally, starting from an 
instance of One-In-Three 3SAT, our reduction constructs a graph with n vertices and m edges such that m = O (n) and 
n + m = O (N + M). Therefore, an algorithm solving StoryPlan in 2o(n) time would contradict ETH. �

The above lower bound for the running time of an algorithm solving StoryPlan can be easily complemented with a 
nearly tight upper bound. The proof of the next theorem also shows that StoryPlan belongs to NP. Namely, it gives a 
nondeterministic scheme to generate a set of candidate solutions, and then it shows how to check, in polynomial time, if a 
candidate solution is valid. In order to obtain a lower time complexity, the process of generating a set of candidate solutions 
and the process of checking if a solution is valid are not separated, but rather intertwined.

Theorem 3. The StoryPlan problem is in NP. Also, given an n-vertex graph G, there is an algorithm that solves StoryPlan on G in 
2O (n logn) time.

Proof. The key observation to claim that the problem belongs to NP lies in the fact that, since we consider topological 
drawings in which edges are Jordan arcs, once a total order of the vertices is fixed, the existence of a storyplan is equivalent 
to the existence of a sequence of planar embeddings that are “consistent”. Namely, for any two such planar embeddings, 
7
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Fig. 6. Proof of Lemma 6: drawing the false literals.

if they share a common subgraph, then their restrictions to this subgraph must coincide. With this observation, we can 
guess a candidate solution and verify, in polynomial time, if it is valid. However, we intertwine the generation process of 
the solutions and their validity check in order to obtain a more efficient time complexity.

More formally, we proceed as follows. We first guess a linear order of the vertices of G . Note that there are n! ∈ 2O (n logn)

such orders. For each i ∈ [n], we identify the set of vertices V i visible at step i and the corresponding set of edges Ei . By 
planarity, it must be |Ei | ≤ 3|V i | − 6, else we can immediately reject the instance. As already observed, we do not guess a 
drawing Di , but instead a planar embedding Ei for graph Gi = (V i, Ei).

If Gi is connected, the planar embedding Ei can be described by the circular order of the edges around each vertex, 
called rotation system, and by the choice of the outer face. Indeed, with this information, one can reconstruct the boundary 
of each face of Gi (in linear time). If G is not connected, we also need the pairwise relative positions of distinct connected 
components (if more than one). Let C1, . . . , Cq be the connected components of Gi and let Ei(C j) be the restriction of Ei

to C j for each j ∈ [q]. The position system is a rooted tree whose vertices are the faces of the embeddings Ei(C j) for each 
j ∈ [q], and a node ν has a parent μ in this tree if and only if the face corresponding to ν contains the face corresponding 
to μ in its interior and μ is the outer face of its connected component.
8
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Fig. 7. Proof of Lemma 6: drawing the true literal.

The number of possible rotation systems of Gi , denoted by nrot, is upper bounded by the number of possible permuta-
tions of edges around each vertex. Thus we have

nrot ≤
∏

v∈V i

deg(v)! <
∏

v∈V i

deg(v)deg(v) ∈ n
O

(∑
v∈V i

deg(v)
)

⊆ nO (n).

Each rotation system of Gi fixes the boundary of each face of each connected component of Gi . Hence we can verify (in 
linear time) whether the rotation system yields a planar combinatorial (up to the choice of the outer face) embedding of 
each connected component of Gi . If this is the case, there are O (n) possible outer faces for each connected component, 
we have O (n2) possible choices over all connected components. Once both the rotation system and the outer face of each 
connected component have been fixed, the number npos of possible position systems is npos ⊆ nO (n) , since it suffices to guess 
the parent of each node of the tree. Therefore, for each step i > 1, there are O (n2) · nrot · npos ⊆ nO (n) ⊆ 2O (n logn) distinct 
embeddings that we can guess.

Once we have generated all planar embeddings for each i ∈ [n], we aim at finding a sequence (if any) of planar embed-
dings, one for each step i, in which common subgraphs have the same embedding throughout the sequence. Namely, for 
each i > 1 and for each planar embedding Ei , we verify whether there is at least one planar embedding Ei−1 such that the 
restrictions of Ei and Ei−1 to the common graph Gi−1 ∩ Gi are the same. If this is the case, we keep Ei , else we discard it. 
The algorithm halts if the set of planar embeddings becomes empty, else it outputs at least one valid sequence. Overall, the 
procedure takes 2O (n logn) · 2O (n logn) = 2O (n logn) time. �
3.2. Parameterization by vertex cover number

A vertex cover of a graph G = (V , E) is a set C ⊆ V such that every edge of E is incident to a vertex in C , and the vertex 
cover number of G is the minimum size of a vertex cover of G . We prove the following by means of kernelization.

Theorem 4. Let G = (V , E) be a graph with n vertices and vertex cover number κ = κ(G). Deciding whether G admits a storyplan, 
and computing one if any, can be done in O (22O (κ) + n2) time.

Algorithm Description. Without loss of generality, we assume that the input graph G does not contain isolated vertices, as 
they do not affect the existence of a storyplan. Let C be a vertex cover of size κ = κ(G) of graph G . For U ⊆ C , a vertex 
v ∈ V \ C is of type U if N(v) = U , where N(v) denotes the set of neighbors of v in G . This defines an equivalence relation 
on V \ C and in particular partitions V \ C into at most 

∑κ
i=1

(κ
i

) = 2κ − 1 < 2κ distinct types. Denote by V U the set of 
vertices of type U . We define three reduction rules.

R.1: If there exists a type U such that |U | = 1, then pick an arbitrary vertex x ∈ V U and remove it from G.
R.2: If there exists a type U such that |U | = 2 and |V U | > 1, then pick an arbitrary vertex x ∈ V U and remove it from G.
R.3: If there exists a type U such that |U | ≥ 3 and |V U | > 3, then pick an arbitrary vertex x ∈ V U and remove it from G.
9
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Fig. 8. Illustration for Case A of the proof of Lemma 7.

Fig. 9. Illustration for Case B of the proof of Lemma 7.

Lemma 7. Let G ′ be the graph obtained from G by applying one of the reduction rules R.1–R.3. Then G admits a storyplan if and only 
if G ′ does.

Proof. One direction is trivial, since it is easily seen that admitting a storyplan is a hereditary property. Suppose now that 
G ′ admits a storyplan S ′ = 〈τ ′, {D ′}i∈[n′]〉, where n′ = n − 1. We distinguish three cases based on the reduction rule applied 
to G . In each case, we denote by x the vertex removed from G to obtain G ′ .

Case A (R.1). See Fig. 8 for an illustration. Let v be the neighbor of x in G , whose lifespan according to τ ′ is [iv , jv ]. We 
compute τ from τ ′ by inserting x right after v; consequently, the lifespan of x in τ is [iv + 1, iv + 1]. Similarly, compute 
{Di}i∈[n] from {D ′}i∈[n′] as follows. For each i ≤ iv , we set Di = D ′

i . For i = iv + 1, we draw x in D ′
iv

sufficiently close to v
such that xv can be drawn as a straight-line segment that does not intersect any other edge. We then set Di to be equal to 
the resulting drawing. Finally, for each i > iv + 1, we set Di = D ′

i−1.
Case B (R.2). See Fig. 9 for an illustration. By assumption, G ′ contains at least one vertex v �= x of type U , whose lifespan 

according to τ ′ is [iv , jv ]. We compute τ from τ ′ by inserting x right after v; consequently, the lifespan of v in τ is 
[iv + 1, jv ]. For each i ≤ iv , we set Di = D ′

i . For i = iv + 1, we extend D ′
i by drawing x sufficiently close to v and by 

drawing, for each neighbor w of x, the edge xw such that it follows the curve representing the edge v w . Since v w does not 
cross any other edge and v has degree two, the same holds for xw . We then set Di to be equal to the resulting drawing. 
Similarly, for each i ≤ [iv + 2, jv + 1], we extend (if needed) the frame D ′

i−1 by drawing any edge xw such that it follows 
the corresponding curve v w . Finally, for each i > jv + 1, we set Di = D ′

i−1.
Case C (R.3). Observe that, by assumption, the graph induced by the vertices of U ∪ V U contains a complete bipartite 

graph Ka,b with a ≥ 3 and b ≥ 3, whose partite sets are U and V U . We distinguish two subcases based on whether U is the 
fixed set or the flexible set of Ka,b .
10
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Fig. 10. Illustration for Case C of the proof of Lemma 7, when U is the fixed set.

Fig. 11. Illustration for Case C of the proof of Lemma 7, when V U is the fixed set.

Suppose first that U is the fixed set; see Fig. 10 for an illustration. Let I ∈ [n′] be the interval in which all vertices of 
U are visible. By assumption, G ′ contains at least three vertices v j �= x of V U , with j = 1, 2, 3. Observe that the lifespan 
of each vertex v j intersects I . Therefore there are at least two vertices, say v1 and v2, whose lifespans do not intersect, 
otherwise there would be a frame containing K3,3. Let [i1, j1] and [i2, j2] be the lifespan of v1 and v2, respectively, and 
suppose (without loss of generality) that j1 < i2. Observe that both j1 and i2 are in I . We compute τ from τ ′ by inserting 
x right after v1 disappears, such that its lifespan in τ is [ j1 + 1, j1 + 1]. For each i ≤ j1, we set Di = D ′

i . For i = j1 + 1, we 
take D ′

j1
and replace the drawing of v1 with the drawing of x. Namely, we place x on the same point of v1 and we draw 

each curve xw by following the curve v1 w . Since v1 w does not cross any other edge, the same holds for xw . The resulting 
drawing is Di . Finally, for each i > j1 + 1, we set Di = D ′

i−1.
Suppose now that V U is the fixed set; see Fig. 11 for an illustration. Let [s, t] ∈ [n′] be the maximal interval in which all 

vertices of V U in G ′ are visible. Let v �= x be the vertex of V U such that τ ′(v) = s. We compute τ from τ ′ by inserting x
right next v such that its lifespan in τ is [s +1, t +1]. For each i ≤ s, we set Di = D ′

i . For i = s +1, we extend D ′
i by drawing 

x sufficiently close to v and by drawing, for each neighbor w of x, the edge xw such that it follows the curve representing 
the edge v w . Note that in each frame D ′

i with i ∈ [s, t] there are at most two vertices of U , and that there are no edges 
between vertices of V U . Hence, similarly as in Case B, vertex v has degree at most two and the curve xw does not cross any 
other edge. We then set Di to be equal to the resulting drawing. Similarly, for each i ≤ [s + 2, t + 1], we extend (if needed) 
the frame D ′

i−1 by drawing any edge xw such that it follows the corresponding curve v w . Finally, for each i > t + 1, we set 
Di = D ′

i−1. �
Proof of Theorem 4. By [18], we can determine the vertex cover number κ = κ(G) of G and compute a vertex cover C
of size κ in time O (2κ + κ · n). We construct a kernel G∗ from G of size O (2κ ) as follows. We first classify each vertex 
11
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of G based on its type. We then apply reduction rules R1, R2, and R3 exhaustively. Thus, constructing G∗ can be done in 
O (2κ + κ · n) time, since O (2κ ) is the number of types and κ · n is the maximum number of edges of G . Also, G∗ contains 
n∗ ≤ 3 · 2κ + κ < 2κ+2 vertices.

From Lemma 7 we conclude that G admits a storyplan if and only if G∗ does. To establish whether G∗ admits a sto-
ryplan we proceed as follows: (1) We guess a total order τ ∗ of G∗; (2) For i = 1, we guess all planar embeddings of 
the graph induced by the vertices visible at step i; (3) For each i > 1, we consider the embeddings computed at the 
previous step i − 1, we remove from them the vertices (if any) that disappear at step i, we remove possible dupli-
cates, and we try to exhaustively extend each of the resulting planar embeddings by inserting the vertex that appears 
at step i. The algorithm halts if the set of planar embeddings becomes empty. It is readily seen that G∗ admits a sto-
ryplan if and only if the algorithm terminates at step n∗ with at least one planar embedding. Concerning the time 
complexity, step (1) takes O (2κ+2!) time. Since G∗ contains O (2O (κ)) vertices and edges, the number of possible planar 
embeddings are O ((2O (κ))(2O (κ))) = O (22O (logκ)·2O (κ)

) = O (22O (κ)
). Hence step (2) takes O (22O (κ)

) time and step (3) takes 
O (22O (κ)

) · O (22O (κ)
) = O (22O (κ)

) time. Starting from a storyplan of G∗ , we can reinsert the missing O (n) vertices each in 
O (n) time, as detailed in Lemma 7.

3.3. Parameterization by feedback edge set

A feedback edge set of a graph G = (V , E) is a set F ⊆ E whose removal results in an acyclic graph, and the feedback edge 
set number of G is the minimum size of a feedback edge set of G . We prove the following.

Theorem 5. Let G be a graph with n vertices and feedback edge set of size ψ = ψ(G). Deciding whether G admits a storyplan, and 
computing one if any, can be done in O (2O (ψ logψ) + n2) time.

Algorithm Description. A k-chain of G is a path with k + 2 vertices and such that its k inner vertices all have degree two. 
We define two reduction rules.

R.A: If there exists a vertex of degree one, then remove it from G.
R.B: If there exists a k-chain with k ≥ 3, then remove its inner vertices from G.

We first show that R.A and R.B are safe rules.

Lemma 8. Let G ′ be the graph obtained from G by applying one of the reduction rules R.A and R.B. Then G admits a storyplan if and 
only if G ′ does.

Proof. One direction is again trivial, since admitting a storyplan is a hereditary property. Suppose now that G ′ admits a 
storyplan S ′ = 〈τ ′, {D ′}i∈[n′]〉, where n′ < n. We distinguish two cases based on the reduction rule applied to G .

Case 1 (R.A). The argument is analogous as for rule R.1. Let u be the removed vertex and let v be its neighbor in G , 
whose lifespan according to τ ′ is [iv , jv ]. We compute τ from τ ′ by inserting u right after v , consequently, the lifespan of 
v in τ is [iv + 1, iv + 1]. Similarly, compute {Di}i∈[n] from {D ′}i∈[n′] as follows. For each i ≤ iv , we set Di = D ′

i . For i = iv + 1, 
we draw u in D ′

iv
sufficiently close to v such that uv can be drawn as a straight-line segment that does not intersect any 

other edge. We then set Di to be equal to the resulting drawing. Finally, for each i > iv + 1, we set Di = D ′
i−1.

Case 2 (R.B). Let 〈s, u1, . . . , uk, t〉 be the k-chain whose inner vertices, u1, . . . , uk , have been removed. Let [is, js] and 
[it , jt] be the lifespans of s and t according to τ ′ , respectively. Without loss of generality, we assume is < it . We compute τ
from τ ′ as follows. We insert u1 right after s and uk right after t . Now the order has length n′ + 2. For each i ∈ {2, . . . , k − 1}
(recall that k ≥ 3), we insert ui at step [n′ + i + 1]. Consequently, the lifespans of u1 and uk in τ are [is + 1, n′ + 3] and 
[it + 1, n′ + k], respectively, the lifespan of ui is [n′ + i + 1, n′ + i + 2], for each i ∈ {2, . . . , k − 2}, and the lifespan of uk−1
is [n′ + k, n′ + k]. For each i ≤ is , we set Di = D ′

i . For i = is + 1, we draw u1 in D ′
is

sufficiently close to s such that su1
can be drawn as a straight-line segment that does not intersect any other edge. Analogously, for i = it + 1, we draw uk in 
D ′

it
sufficiently close to t such that ukt can be drawn as a straight-line segment that does not intersect any other edge. 

Recall that k ≥ 3 and hence edge u1uk does not exist, which implies that all frames up to Dn′+2 are planar. For each 
i ∈ {n′ + 3, n′ + k} we have that vertex u j , with j = i − n′ − 1 appears, and the only visible vertices are u j−1, u j , and uk . 
In particular, the only edges to be drawn are u j−1u j and u juk if j = k − 1 (i.e., if i = n′ + k), hence they can be realized as 
crossing-free straight-line segments for any position of u j (avoiding the three vertices being collinear). �
Lemma 9. StoryPlan parameterized by feedback edge set number admits a kernel of linear size.

Proof. Let G be a graph with n vertices and let F be a feedback edge set of G of size ψ = ψ(G). Let G∗ be the graph 
obtained after applying exhaustively the reduction rules R.A and R.B. Graph G∗ is a kernel of G by Lemma 8. Let F ∗ ⊆ F
be the edges of F that belong to G∗ . Observe that removing the edges of F ∗ from G∗ yields a forest H∗ with at most 2ψ
12
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leaves in total. Indeed, any leaf of H∗ is an endpoint of some edge in F ∗ , as otherwise it would not be part of G∗ by R.A. 
Since H∗ is a forest, its number of vertices with degree larger than two is at most the number of leaves minus two, i.e., 
2ψ − 2. This also implies that the number of k-chains is at most 4ψ − 3. By R.B, G∗ (and hence H∗) contains a k-chain only 
if k < 3. Consequently, H∗ contains at most 2(4ψ − 3) vertices of degree two and 12ψ − 8 vertices in total. �

To conclude the proof of Theorem 5, observe that computing a linear kernel G∗ of G , i.e., applying exhaustively the 
reduction rules R.A and R.B, can be done in O (n + ψ) time. Afterwards, following the lines of the proof of Theorem 4, we 
can brute-force a solution for G∗ (if any) in 2O (ψ logψ) time, and reinsert the missing O (n) vertices each in O (n) time (as 
detailed in Lemma 8).

3.4. Partial 3-trees

We initiate the study of StoryPlan for graphs of bounded treewidth. A k-tree has a recursive definition: A complete 
graph with k + 1 vertices is a k-tree; for any k-tree H , the graph obtained from H by adding a new vertex v connected to 
a clique C of H of size k is a k-tree; C is the parent clique of v . A partial k-tree is a subgraph of a k-tree and partial k-trees 
are exactly the graphs of treewidth at most k. Since 2-trees are planar, they admit a storyplan by Theorem 1. We prove that 
the same holds for partial 3-trees (which may be not planar).

Theorem 6. Every partial 3-tree G with n vertices admits a storyplan, which can be computed in O (n) time.

Proof. We shall assume that G is a (non-partial) 3-tree. Indeed, if G is a partial 3-tree, a supergraph of G that is a 3-tree 
always exists by definition (and can be computed in O (n) time). We view the initial K4 as constructed by adding a vertex 
connected to a 3-cycle, which we call the initial 3-clique.

We now construct a specific tree decomposition T of G that will be used to compute its storyplan; refer to Fig. 12. For 
a definition of tree decomposition see [19]. The subgraph Cμ induced by the vertices of each bag μ of T is the subgraph 
associated with μ and it is a 4-clique for each bag μ of T , except for the root ρ of T for which Cρ is the initial 3-clique. 
A 3-clique of Cμ is called active if it can appear in some subgraph Cν associated with a child ν of μ, and it is called non-
active otherwise. The subgraph Cμ contains four 3-cliques, by construction, three of them are active and one is non-active. 
In particular, the unique 3-clique in Cρ is active. Each bag μ of T has one child ν for each vertex v whose parent clique is 
an active 3-clique of μ. The 4-clique Cν consists of the parent clique C of v , vertex v , and the edges connecting v to C ; C
becomes non-active in ν , while the other three 3-cliques are active. For each bag μ distinct from ρ , we denote by vμ the 
vertex shared by the three active 3-cliques of Cμ . We say that vμ is associated with μ. One easily verifies that T is a tree 
decomposition. Also, T has n − 2 bags: the root and a bag for each vertex of G that is not in the initial 3-clique.

We now associate to each bag μ a subgraph Gμ of G . For the root ρ , the subgraph Gρ is the initial 3-clique. For a bag 
μ with parent λ, the subgraph Gμ is obtained from Gλ by connecting vμ to the vertices of its parent clique.

Property 1. Every graph Gμ is an embedded planar 3-tree such that the active 3-cliques of Cμ are internal faces of Gμ.

The proof of Property 1 is by induction on the length of the path from the root ρ to μ in T . The graph Gρ consists of a 
3-clique, which is the unique active 3-clique and which is both an internal and an external face. The graph Gμ is obtained 
by adding the vertex vμ to Gλ and connecting it to its parent clique C , which is active in Cλ . By induction, C is an internal 
face of Gλ and therefore, by placing vμ inside this face, we obtain an embedded planar 3-tree such that the active faces of 
Cμ are the three faces created by the addition of vμ inside C .

Let μ �= ρ be a bag of T ; the next property follows from the definition of T .

Property 2. The neighbors of vμ distinct from those of its parent clique are all vertices associated with bags of the subtree of T rooted 
at μ.

Let ρ = μ1, μ2, . . . , μn−2 be an order of the bags of T according to a preorder visit of T . To create a storyplan of G , we 
define an ordering τ : v1, v2, . . . , vn of the vertices of G such that v1, v2, and v3 are the vertices of the initial 3-clique, and 
each vi with i > 3 is the vertex associated with μi−2.

Let Gi be the graph induced by the vertices that are visible at step i, for i ≥ 3; by Property 2 the graph Gi is a subgraph 
of Gμi which, by Property 1 is an embedded planar 3-tree such that the three active 3-cliques of Cμi are faces of Gμi . To 
simplify the description we prove that there exists a storyplan S = 〈τ , {Di}i∈[n]〉, where each Di is a drawing of Gμi . This 
implies that there exists a storyplan where each Di is a drawing of Gi . Let μ j be the parent of μi in T ; since the order 
τ corresponds to a preorder of the bags of T , we have j < i. Moreover, all bags μk with j < k < i, if any, belong to the 
subtrees of μ j visited before μi and for each such subtree T ′ no other bag of T ′ exists before μ j or after μi . By Property 2
all the vertices associated with the bags μk that belong to Gμi−1 do not have any neighbor after vμi and therefore they 
can be removed. The removal of these vertices transforms Gμi−1 into Gμ j (all the vertices associated with the bags μk for 
j < k < i had been added to Gμ j that had never been changed). By Property 1 the active 3-cliques of Gμ j are faces of 
13
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Fig. 12. (a) A 3-tree G . (b) The decomposition tree T of G . (c) The subgraph Gμ of G associated with bag μ, highlighted in (b). (d) The graph G∗; each 
vertex v of G∗ is labeled with the vertices of G whose representative vertex is v .

Gμ j . It follows that there exists a storyplan S = 〈τ , {Di}i∈[n]〉 whose frames Di are as follows. D1 is a planar drawing of a 
3-clique; given Di−1 of Gμi−1 , a drawing Di of Gμi can be computed by removing all vertices associated with the bags μk
for j < k < i, and adding vμi inside a face of D j .

It remains to prove that the above storyplan can be computed in O (n) time. If G is a partial 3-tree it can be augmented 
to a (non-partial) 3-tree in O (n) time [20]. The reverse of the order in which the vertices are added to construct G is called 
a perfect elimination ordering and can be computed in O (n) time [21]. Starting from this order we can compute T in O (n)

time. The order τ can be computed in O (n) time by performing a preorder visit of T . During this visit we also compute 
some information that are useful to compute efficiently all the drawings {Di}i∈[n] . First, we compute an embedded planar 
3-tree G∗ that is a supergraph of each Gi (refer to Fig. 12(d)). The idea to construct G∗ is to keep only one representative, 
for each set of vertices whose parent cliques have the same set of representatives. We construct G∗ starting with the initial 
3-clique (which is associated with the root); each vertex of this 3-clique is its own representative. When we visit a bag μ, 
we consider the three representatives of the vertices of the parent clique C of vμ; these three vertices can be obtained in 
O (1) time by storing for each vertex its representative. If a vertex v connected to the representative vertices of C already 
exists, we do not modify G∗ and store v as the representative vertex of vμ; if no vertex has already been connected to the 
representative vertices of C , we add a new vertex v to G∗ connecting it to the representative vertices of C and, also in this 
case, we store v as the representative vertex of vμ. Since both cases can be handled in O (1) time, the overall construction 
of G∗ can be executed in O (n) time. Also, G∗ has O (n) vertices and edges. Second, we store for each i (with i = 1, 2, . . . , n) 
the list �i of vertices that have to be removed when constructing Di from Di−1. These vertices are all the vertices associated 
with the bags of T that are visited before μi and after its parent μ j (this set of vertices may be empty) and they can be 
stored, in the reverse order of addition, while backtracking from μi−1 during the preorder visit.

Once we have G∗ we can use any existing O (n)-time algorithm to compute a planar straight-line grid drawing D∗ of 
G∗ (for example the shift algorithm [22]). By the construction of G∗ , each drawing {Di}i∈[n] is a sub-drawing of D∗ and 
therefore we can compute each Di by removing from D∗ the vertices and edges that do not belong to Gi . In particular at 
14
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Fig. 13. Illustration for Theorem 7. (a) An instance G1, G2, G3 of Sunflower SEFE; (b) The instance G constructed from G1, G2, G3; the subdivision vertices 
are circles with a white fill while the spectators are squares.

each step i we can use the list �i to find the vertices to be removed from Di−1; these vertices are removed in reverse order 
of addition and when a vertex is removed we also remove the three edges that connect it to its parent clique. Since each 
vertex and each edge is added once and removed once, the set {Di}i∈[n] can be computed in O (n) time. �
4. Complexity with fixed order

In this section we study the StoryPlanFixedOrder variant of StoryPlan, defined below. This variant is closer to the 
setting studied in [6] and it models the case in which the order τ of appearance of the vertices is given as part of the input.

StoryPlanFixedOrder

Input: Graph G = (V , E) with n vertices, total order τ : V → [n]
Question: Does G admit a storyplan S = 〈τ , {Di}i∈[n]〉?

We prove that StoryPlanFixedOrder is NP-complete by reducing from Sunflower SEFE. Let G1, . . . , Gk be k graphs on 
the same set V of vertices. A simultaneous embedding with fixed edges (SEFE) of G1, . . . , Gk consists of k planar drawings 
�1, . . . , �k of G1, . . . , Gk , respectively, such that each vertex is mapped to the same point in every drawing and each shared 
edge is represented by the same simple curve in all drawings sharing it. The SEFE problem asks whether k input graphs on 
the same set of vertices admit a SEFE, and it is NP-complete even when the pairwise intersection between any two input 
graphs is the same over all pairs of graphs [23,11]. This variant is called Sunflower SEFE, and the result in [23,11] proves
NP-completeness already when k = 3.

Construction. Refer to Fig. 13 for an example. Let G1, G2, G3 be an instance of Sunflower SEFE. Let V be the common 
vertex set of the three graphs, let E be the common edge set, and let Ei be the exclusive edge set of Gi for i = 1, 2, 3. 
We construct an instance 〈G, τ 〉 of StoryPlanFixedOrder as follows. Graph G contains all vertices in V and all edges in E . 
Also, for each edge e = uv in Ei , it contains a vertex wi

e , called a subdivion vertex of Ei , and the edges uwi
e and v wi

e (i.e., it 
contains the edge e subdivided once). Moreover, for each vertex z, either a vertex in V or a subdivision vertex of an edge, G
contains an additional vertex sz , called the spectator of z, and the edge zsz . To obtain the total order τ we group the vertices 
of G in a set of blocks B1, . . . , B8, and we order the blocks by increasing index, while vertices within the same block can 
be ordered arbitrarily. We denote by τ−

i and τ+
i the position in τ of the first and of the last vertex of Bi , respectively, for 

each i = 1, . . . , 8. Block B1 contains all vertices in V ; for i ∈ {2, 4, 6}, block Bi contains all subdivision vertices of E i
2

, while 
block Bi+1 contains all spectators of the vertices in Bi ; finally B8 contains all spectators of the vertices in B1.

Theorem 7. The StoryPlanFixedOrder problem is NP-complete.

Proof. Suppose first that G1, G2, G3 admit a SEFE �1, �2, �3. Let � be the drawing obtained as follows: (1) let �′ be the 
union of �1, �2, �3; (ii) let �′′ be the drawing obtained from �′ by subdividing all exclusive edges in Ei for each i = 1, 2, 3
(the subdivision vertex can be placed at any point along the curve representing the edge); (iii) finally, let � be the drawing 
obtained from �′′ by drawing for each vertex v its spectator sv sufficiently close such that the edge vsv can be realized as a 
straight-line segment that does not intersect any other edge. Then a storyplan 〈τ , {Di}i∈[n]〉 can be obtained by setting each 
drawing Di equal to the subdrawing of � induced by the vertices visible at step i. By construction, the position of a vertex 
is the same over all frames that contain it. It remains to prove that each frame is planar.
15
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• Each frame Di with i ∈ [τ−
1 , τ+

1 ] is a subdrawing of �[V ], which is planar because it contains only the edges that are 
part of the common intersection of G1, G2, G3.

• Each frame Di with i ∈ [τ−
2 , τ+

3 ] is planar because it is a subdrawing of �1 in which each edge has been subdivided 
and the spectators of such subdivision vertices have been drawn without introducing crossings.

• Observe that in τ−
4 , all spectators of the subdivision vertices of E1 disappear and hence the same holds for the sub-

division vertices of E1. It follows that each frame Di with i ∈ [τ−
4 , τ+

5 ] is planar because it is a subdrawing of �2 in 
which each edge has been subdivided and the spectators of such subdivision vertices have been drawn without intro-
ducing crossings. The same argument (with respect to E3) can be used to prove the planarity of each frame Di with 
i ∈ [τ−

6 , τ+
7 ].

• In τ−
8 all subdivision vertices of E3 disappear and again each frame Di with i ∈ [τ−

8 , τ+
8 ] is a subdrawing of �[V ] where 

some spectators of the vertices in V have been drawn without introducing crossings.

Suppose now that 〈G, τ 〉 admits a storyplan 〈τ , {Di}i∈[n]〉. Then a SEFE �1, �2, �3 of 〈G1, G2, G3〉 can be obtained as 

follows. Let �∗
1 = ⋃τ+

2

i=τ−
1

Di , let �∗
2 = ⋃τ+

4

i=τ−
4

Di , and let �∗
3 = ⋃τ+

6

i=τ−
6

Di . Observe that, for each i = 1, 2, 3, �∗
i is a planar 

drawing of Gi in which the exclusive edges of Ei are subdivided. Moreover, by construction it holds �∗
1[V ] = �∗

2[V ] = �∗
3[V ]. 

It follows that �i can be obtained by viewing each subdivision vertex as an inner point of the corresponding edge.
The membership to NP follows the lines of Theorem 3, simply ignoring the initial guess of a total order, which is instead 

given as part of the input. �
5. Discussion and open problems

Our work can stimulate further research based on several possible directions.

• It would be interesting to study further parameterizations of StoryPlan. Is StoryPlan parameterized by treewidth 
(pathwidth) in XP? In addition, we note that if the total order is fixed, then an FPT algorithm in the size of the largest 
frame (or the length of the longest lifespan) readily follows from the proof of Theorem 3.

• Conditions (iii) and (iv) of the definition of a storyplan can be replaced by the existence of a sequence of planar 
embeddings in which common subgraphs keep the same embedding. This is not true if we study more geometric 
versions of the problem, in which for instance edges are straight-line segments and/or vertices are restricted on an 
integer grid of fixed size (as in [6]).

• Condition (ii) of storyplan can be relaxed so to only allow specific crossing patterns [24,25], e.g., right-angle crossings 
or few crossings per edge.
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