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Kurzfassung

Sogenannte  kritische  Herkunftsgebiete  sind  ein  etabliertes  Konzept,  wenn  es  um  die  Eindämmung
diffuser  Gewässerbelastungen  geht.  Es  beruht  auf  der  Idee,  dass  nur  ein  begrenzter  Teil  eines
Flusseinzugsgebiets  wesentlich  zu  einer  stofflichen  Belastung der  zugehörigen  Oberflächengewässer
beiträgt.  Kennzeichnend  für  kritische  Herkunftsgebiete  sind  daher  hohe  Stoffemissionen  und
ein  hoher  Anbindungsgrad  an  Oberflächengewässer.  Obwohl  dieses  Konzept  grundsätzlich  auf
unterschiedlichste  stoffliche  Belastungen  angewendet  werden  kann,  ist  es  im  Fall  von  Schwebstoffen
und  sedimentgebundenen  Stoffen  wie  partikulärem  Phosphor  besonders  relevant.

Die  Hauptmotivation  für  seine  Anwendung stellt  die  Einbeziehung ökonomischer  Prinzipien  in
der  Wassergütewirtschaft  dar.  Empfohlene  Anpassungen  der  landwirtschaftlichen  Praxis,  die  auf
eine  Verbesserung der  Wasserqualität  abzielen,  gehen  oft  zu  Lasten  der  Ernteerträge  und  werden
daher  von  den  zuständigen  Behörden  häufig mit  finanziellen  Anreizen  begleitet.  Selbst  wenn
solche  Behörden  bereit  sind,  das  Konzept  der  kritischen  Herkunftsgebiete  anzuwenden,  ist  eine
detaillierte  Ausweisung auf  beispielsweise  der  Feldebene  schwierig,  weshalb  sich  diese  Behörden
oft  an  die  Flusseinzugsgebietsebene  halten,  die  einfacher  zu  handhaben  ist  und  in  der  Regel
ausreichend  Daten  für  die  Anwendung der  Wahrscheinlichkeitstheorie  als  Entscheidungsgrundlage
aufweist.

Der  hohe  Bedarf  an  Daten  und  Rechenressourcen  sowie  fehlendes  Prozessverständnis  verhindern  

oft  eine  detaillierte  Ausweisung kritischer  Herkunftsgebiete.  Ein  gestaffelter  Ansatz,  der  räumlich
aggregierte  mit  räumlich  verteilten  Modellen  kombiniert,  ist  jedoch  eine  mögliche  Lösung für
dieses  Problem.  Diese  Arbeit  konzentriert  sich  daher  auf  die  Reduktion  von  Bias  und  Erhöhung
der  Transparenz  im  Zuge  der  maßstabsübergreifenden  Ausweisung kritischer  Herkunftsgebiete,
indem  sie  (i)  ein  einfaches  Bayessches  hierarchisches  Modell  zur  Vorhersage  von  Sedimentfrachten
auf  Flusseinzugsgebietsebene  entwickelt,  das  sich  für  die  Einbindung in  räumlich  aggregierte  

Flusseinzugsgebietsmodelle  eignet,  (ii)  einen  Weg aufzeigt,  wie  man  die  Verbesserung eines
semi-empirischen,  räumlich  verteilten  Phosphoremissions-  und  Transportmodells  mit  Hilfe  einer
Kartierungskampagne  und  eines  weiteren  Bayesschen  hierarchischen  Modells  vorantreiben  kann,
um  den  Einfluss  kulturtechnischer  Maßnahmen  auf  diffuse  partikuläre  Phosphoremissionen  

in  landwirtschaftlichen  Einzugsgebieten  zu  bewerten,  und  (iii)  eine  Methode  zur  Ausweisung
kritischer  Herkunftsgebiete  auf  Feldebene  für  Flusseinzugsgebiete  mit  einer  Größe  von  mehreren
hundert  Quadratkilometern  entwickelt,  die  auf  den  Ergebnissen  potenziell  unterschiedlicher
räumlich  verteilter  Modelle  basiert  und  in  der  Möglichkeitstheorie  verankert  ist.

Da diese  Arbeit  hauptsächlich  in  einem  Umfeld  operiert,  in  dem  bestimmte  Daten  nur  äußerst
spärlich  vorhanden  sind,  wodurch  insbesondere  die  frequentistische  Wahrscheinlichkeitstheorie,
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die  sich  auf  Punktschätzungen  konzentriert,  nur  eine  sehr  begrenzte  Orientierungshilfe  dar-  

stellt,  macht  sie  in  erheblichem  Maß von  der  Bayesschen  Wahrscheinlichkeitstheorie  und  der
Möglichkeitstheorie  Gebrauch.  Insbesondere  letztere  passt  perfekt  zum  Vorsorgeprinzip  der  EU-
Wasserrahmenrichtlinie  und  kann  in  einem  sich  ständig wandelnden  Umfeld  an  der  Schnittstelle
von  Wirtschaft,  menschlichem  Verhalten,  Umwelt  und  technischem  Fortschritt  Orientierung
bieten.



Abstract

Critical  source  areas  are  a well-established  concept  in  the  field  of  diffuse  water  pollution  control.
It  is  based  on  the  idea that  only  a limited  share  of  a river  catchment  area significantly  contributes
to a pollution  load  of  the  corresponding surface  waters.  Characteristics  of  critical  source  areas
are  therefore  high  pollutant  emissions  and  a high  connectivity  to surface  waters.  While  this
concept  is  basically  applicable  to many  different  pollutants,  it  is  particularly  relevant  in  the  case
of  suspended  solids  and  sediment-bound  pollutants  like  particulate  phosphorus.

The  primary  motivation  for  its  application  lies  in  the  inclusion  of  economic  principles  in  water
quality  management.  Recommended  changes  in  agricultural  practices  aimed  at  improving water
quality  often  come  at  the  expense  of  reduced  crop  yields  and  thus  are  commonly  monetarily  

incentivised  by  responsible  authorities.  Even  when  such  authorities  are  willing to adopt  the  

concept  of  critical  source  areas,  their  detailed  designation  at,  for  example,  the  field  level  is
difficult,  hence  why  these  authorities  often  stick  to the  catchment  level,  which  is  easier  to handle
and  often  holds  enough  data for  the  application  of  probability  theory  as  a basis  for  decisions.

Demanding data and  computational  resource  requirements  as  well  as  lacking process  knowledge  

often  prevent  the  designation  of  critical  source  areas  at  larger  scales.  However,  a tiered  approach
combining lumped  catchment  models  with  spatially-distributed  models  is  a possible  solution  to
this.  This  thesis  therefore  focuses  on  reducing bias  and  increasing transparency  in  the  designation  

process  of  critical  source  areas  across  scales  by  (i)  developing a parsimonious  Bayesian  hierarchical
model  to predict  river  sediment  yields  at  catchment  scale  suitable  to incorporate  into lumped
catchments  models,  (ii)  showing a way  how  to push  the  enhancement  of  a semi-empirical,  spatially  

distributed  phosphorus  emission  and  transport  model  with  the  help  of  a small  mapping campaign
and  another  Bayesian  hierarchical  model  in  order  to assess  the  impact  of  agricultural  as  well  as
civil  engineering structures  on  diffuse  particulate  phosphorus  emissions  in  agricultural  catchments,
and  (iii)  developing a method  for  the  designation  of  critical  source  areas  at  field  level  within  

catchments  of  several  hundred  square  kilometres  based  on  the  results  of  potentially  diverse
spatially  distributed  models  and  rooted  in  the  theory  of  possibility.

As  this  thesis  mainly  operates  in  a sparse  data environment  where  particularly  frequentist
probability  theory  focusing on  point  estimates  only  provides  limited  guidance,  it  makes  consider-
able  use  of  Bayesian  probability  theory  and  the  theory  of  possibility.  Especially  the  latter  fits
perfectly  to the  precautionary  principle  of  the  European  Union  Water  Framework  Directive  and
can  provide  guidance  in  an  ever  changing environment  at  the  interface  of  economics,  human
behaviour,  environment  and  technological  progress.
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Introduction



10 1 Introduction

Who should  act  and  how?  This  is  an  important  and  common  question  when  it  comes  to 

manage  and  mitigate  environmental  problems.  A most  prominent  example  is  climate  change
these  days.  While  its  causes  and  underlying principles  are  well  understood  by  now,  the  question
who has  to reduce  emissions  of  climate  noxious  gases  by  what  extent  and  in  which  time  is
still  under  heavy  debate.  However,  the  current  debate  would  lack  an  important  scientific  basis
without  the  various  existing greenhouse  gas  emission  inventories.  An  important  aspect  of  such
inventories  is  their  scale.  One  can  establish  a single  inventory  for  the  whole  world,  one  for  each
e. g.  continent/economic  area,  national  state,  province  or  city.  Even  distinct  inventories  (so-called
carbon  footprints)  for  single  products,  services  or  human  beings  are  available.

Whereas  the  calculation  of  inventories  for  large  areas  at  small  map  scales  (e. g.  for  economic
areas  like  the  European  Economic  Area)  can  make  use  of  all  kind  of  average  values,  inventories
at  large  (map)  scales  (e. g.  for  human  beings)  require  detailed  data about  the  individual  under
“assessment”,  which in general  are  more  difficult  to acquire  if  available  at  all.  Trying to deduce
individual  properties  from  properties  of  groups  is  therefore  tempting,  but  poses  a great  threat
in  this  context  and  is  commonly  known  as  ecological  fallacy  (Freedman, 1999;  W.  S.  Robinson,
2009;  Huddart  Kennedy  et  al., 2015).  On  the  other  hand,  primarily  studies  focusing on  large
areas  may  suffer  from  a problem  known  as  (spatial)  aggregation  bias  (Gehlke  and  Biehl, 1934;
Clark  and  Avery, 1976;  Tukker  et  al., 2020).

Besides such challenges,  all  scales have  their  distinct  advantages and serve  different  purposes
as  well  as  stakeholders.  While  the  focus  of  smaller  scales  often  lies  on  the  interested  public
and/or  national/international  authorities,  larger  scales  frequently  address  authorities  of  smaller
geographic  units  (e. g.  state  or  city  governments)  and/or  even  single  companies  or  citizens.  When
it  comes  to mitigating environmental  problems,  however,  its  always  the  acts  and/or  omissions  of
indivisible  units,  i. e.  individuals,  which  count  and  add  up.

From  the  point  of  view  of  managing and  mitigating an  environmental  problem,  important
questions,  among others,  are  therefore:

1. Which  (geographical)  units  are  affected?

2. Which  (geographical)  units  cause  the  problem  (source  areas)?

3. Are  the  main  sources  evenly  distributed  among the  source  areas  or  is  there  maybe  a small
share  responsible  for  the  bulk  of  the  problem?

4. Who are  the  responsible  stakeholders  in  the  source  areas  or  maybe  a critical  subset  thereof?

5. How  can  the  responsible  stakeholders  be  enabled  and/or  motivated  or  even  forced  to take
appropriate  actions  and/or  to cease  harmful  practices?

Turning to river  sediment  yield  and  particulate  phosphorus  inputs  into Austrian  surface  waters,
which  are  the  main  topics  of  this  thesis,  Kroiss,  Lampert,  et  al.  (2005)  and  Kroiss,  Zessner,  

et  al.  (2006)  state  that  phosphorus  originating from  the  Danube  basin  is  the  main  driver  for  

phytoplankton  growth  and  consequently  algae  blooms  in  the  shallow  north-western  parts  of



11

the  Black  Sea.  In  order  to improve  this  situation,  they  recommend  the  application  of  a strong
precautionary  principle  with  respect  to nutrient  emissions;  measures  should  focus  on  reducing
inputs  from  waste  water  treatment  plants  (point  sources)  as  well  as  losses  from  agricultural  

areas  (diffuse  sources).  They  further  state  that  particularly  Germany,  Austria and  the  Czech  

Republic  already  made  significant  improvements  regarding phosphorus  emissions  from  waste
water  treatment  plants  in  the  past.

A more  recent  Austrian-wide  nutrient  emission  modelling study  (Gabriel  et  al., 2011)  with
the  lumped  catchment  model  MONERIS  (Behrendt  et  al., 1999;  Venohr  et  al., 2010)  adapted  to
Austrian  conditions  (Zessner,  Kovacs,  et  al., 2011)  estimates  that  despite  recent  advancements  in
reducing phosphorus  emissions  from  settlements  and  the  industry,  these  sources  still  dominate
phosphorus  exports  from  Austria in  the  direction  of  the  Black  Sea.  However,  when  looking at  the
water  bodies  of  about 20 % of  the  assessed  catchments  at  risk  of  not  meeting their  type-specific
environmental  quality  standard  for  orthophosphate,  this  picture  changes:  The  most  prominent
source  of  phosphorus  emissions  in  those  catchments  is  soil  loss  from  agricultural  areas.  Sediment-
bound,  i. e.  particulate  phosphorus,  is  entering surface  waters  and  becomes  partly  dissolved  and
therefore  plant  available  again  in  this  process.

Given  these  facts,  it  is  evident  that  assessing particulate  phosphorus  emissions  into surface
waters  can  take  place  on  different  tiers  with  different  scales.  In  the  field  of  diffuse  pollution  of
surface  waters,  the  concept  of  critical  source  areas  is  a well  established  one.  It  refers  to the
principle  that  the  majority  of  phosphorus  inputs  into the  surface  waters  of  a watershed  usually
originate  from  a limited  share  of  its  area.  In  principle,  this  concept  can  be  applied  to relations  of
arbitrary  scales:  larger  catchments  of  various  sizes  (e. g.  a multiple  of 102 or 103 km2)  within
basins  (e. g.  a multiple  of 105 or 106 km2),  hillslopes  (e. g.  several ha)  within  smaller  catchments
of  various  sizes  (e. g.  a multiple  of 102 or 103 ha)  or  even  single  fields  within  either  smaller  or
larger  catchments  of  various  sizes  or  even  within  whole  basins.

A primary  motivation  for  applying the  concept  of  critical  source  areas  in  water  quality
management  is  to address  economic  principles.  The  larger  the  first  and  the  smaller  the  second
scale  in  the  above  ratio,  the  more  effective  can  mitigation  measures  be  targeted.  This  is  not
only  true  when  it  comes  to the  economic  costs  of  possible  subsidies,  but  also when  considering
potential  losses  of  crop  yields  due  to changes  in  cultivation  practices.  So in  fact,  the  application
of  the  concept  of  critical  source  areas  constitutes  an  optimisation  problem  primarily  dealing with
an  optimal  allocation  of  crops,  the  application  of  best  management  practices  and  the  avoidance
of  direct  as  well  as  external  costs.  Furthermore,  since  action  to reduce  agricultural  soil  loss  takes
place  on  single  fields  and  is  carried  out  by  individual  farmers,  targeting mitigation  measures  on
catchment  level  may  result  in  diffuse  responsibilities.

Targeting single  fields  may  pose  a great  challenge  from  an  administrative  point  of  view.
The  Integrated  Administration  and  Control  System  of  the  Common  Agricultural  Policy  of  the
European  Union  already  collects  various  data about  every  field  subunit  (so-called  “Schläge” in
Austria)  nonetheless.  This  includes  geodata,  which  were  available  for  fields  (so-called  “Feldstücke”
in  Austria)  only  up  to the  year  2014.  After  a period  of  maturing,  these  data can  be  reliably
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used  from  the  year  2019 on  (Agrarmarkt  Austria, 2018).  Therefore,  it  should  be  reasonable  to
integrate  the  targeting of  single  fields  designated  as  critical  source  areas  into the  existing system.  

More  severe  problems  with  critical  source  areas  especially  at  large  scales  are  process  knowledge,
higher  spatial  as  well  as  temporal  variabilities,  which  require  high-resolution  data and  generally
lead  to higher  uncertainties,  and  the  fact  that  they  have  to be  designated  with  the  help  of
spatially-distributed  models,  which  are  computationally  expensive.  Lumped  catchment  models,
on  the  other  hand,  are  in  general  computationally  cheap.  Consequently,  a tiered  approach  is  a
possible  solution  to the  problems  of  required  vs.  available  computational  resources  in  a specific
amount  of  time  as  well  as  data requirements  (A.  L.  Heathwaite,  Dils,  et  al., 2005;  Doody  et  al.,
2012;  Zessner,  Gabriel,  Kuderna,  et  al., 2014).  In  this  approach,  critical  source  areas  are  first
designated  at  catchment  scale  with  the  help  of  a lumped  catchment  model  (first  tier)  and  a more
demanding spatially-distributed  model  (second  tier)  is  only  applied  to those  catchments,  which
were  designated  as  critical  source  areas  in  the  first  tier.  However,  the  higher  spatial  as  well  as
temporal  variabilities  at  the  larger  scale  of  the  second  tier  are  not  the  only  challenges.  Lacking
process  knowledge  and  sparse  or  even  missing data affect  almost  any  scale  when  it  comes  to
particulate  phosphorus  inputs  into surface  waters.  Their  degree  of  severity  is  generally  higher  for
larger  scales  though.

1.1 Structure  of  the  thesis

1.1.1 Chapter 2

The  lumped  catchment  model  MoRE  (Fuchs  et  al., 2017),  a derivative  of  the  MONERIS  model,
considers  eight  pathways  for  nutrient  emissions  into surface  waters,  which  can  be  grouped  into
direct  and  diffuse  emissions:

• direct  emissions  from  point  sources

– municipal  waste  water  treatment  plants

– industrial  direct  dischargers

• diffuse  emissions

– atmospheric  deposition  on  water  surface  areas

– erosion

– surface  run-off

– tile  drainages

– groundwater

– sewer  systems

As  the  fundamental  pathway  for  river  sediment  yield  is  erosion,  a more  detailed  look  is  taken
on  it.  The  calculation  of  river  sediment  yield  originating from  agricultural  areas  involves  several
processes  in  MoRE  (Amann  et  al., 2019):



1.1 Structure  of  the  thesis  13

1. soil  loss

2. overland  sediment  delivery

3. in-stream  retention  and/or  mobilisation

In  the  case  of  river  particulate  phosphorus  yield  and  orthophosphate  concentrations  there  are
even  further  processes  involved:  (i)  the  enrichment  of  particulate  phosphorus  during overland
transport  and  (ii)  the  transformation  of  particulate  phosphorus  into orthophosphate  within
streams.  The  former  describes  the  selective  transport  of  soil  particles.  Smaller  and  lower  weight
particles  are  transported  at  a higher  rate  and  at  the  same  time  possess  a higher  specific  surface
than  bigger  and  heavier  particles,  which  sediment  more  easily.  Since  a high  specific  surface
allows  for  the  adsorption  of  more  sediment-bound  phosphorus,  i. e.  particulate  phosphorus,  the
prevalence  of  transporting these  smaller  and  lower  weight  particles  leads  to a higher  ratio of
particulate  phosphorus  per  unit  weight  of  suspended  sediments  over  time.  MoRE  considers  this
process  with  the  help  of  the  so-called  enrichment  ratio (Auerswald, 1989).

The  main  motivation  for  Chapter 2,  which  is  based  on  the  paper  of  Zoboli,  Hepp,  et  al.  (2020),
is  the  fact  that  the  individual  processes  of  this  chain  are  difficult  to assess  and  evaluate  on  their
own.  For  example,  Parsons  et  al.  (2006)  consider  the  concept  of  the  sediment  delivery  ratio,  

which  is  defined  as  the  ratio between  annual  gross  erosion  and  annual  river  sediment  yield,  a
fallacy.  They  argue  that  it  is  merely  a practical  tool  in  special  cases  with  inherent  fundamental
scaling problems  on  the  spatial  as  well  as  temporal  scale.  So why  should  one  consider  it  after
all  when  the  actual  goal  is  the  estimation  of  total  fluxes  at  a certain  point  in  a catchment  for  a
given  period  in  time?

MoRE’s  role  in  a tiered  approach  is  one  that  usually  spans  the  scales  from  catchments  to 

basins.  For  this  purpose,  it  is  absolutely  not  necessary  to look  into the  different  processes  at  

work  within  the  modelled  catchments  as  is  the  case  with  the  existing process  chain.  Actually,
when  it  comes  to discharge,  Amann  et  al.  (2019)  utilise  the  balance  equation

𝑄GW = 𝑄net − (𝑄WS + 𝑄SR + 𝑄TD + 𝑄US + 𝑄OR + 𝑄WWTP + 𝑄ID) ,  

where:

𝑄GW is  the  contribution  of  groundwater  discharge

𝑄net is  the  net  discharge

𝑄WS is  the  balance  of  precipitation  on  and  evaporation  from  water  surface  areas

𝑄SR is  the  contribution  of  surface  run-off

𝑄TD is  the  contribution  of  tile  drainages

𝑄US is  the  contribution  of  urban  sewers

𝑄OR is  the  contribution  of  overland  roads

𝑄WWTP is  the  contribution  of  waste  water  treatment  plants
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𝑄ID is  the  contribution  of  industrial  direct  dischargers

A distinct  property  of  the  groundwater  discharge  term  here  is  that  it  is  estimated  as  the
difference  of  the  net  discharge  and  all  other  contributions,  which  makes  it  a catch-all  contributor.
While  one  could  argue  that  groundwater  discharge  is  a worse  catch-all  contributor  than,  for  

example,  surface  run-off,  the  principle  of  modelling and  validating the  sum  of  all  discharge  

contributions,  directly  estimate  those  contributors,  which  can  in  principal  be  observed  and  

therefore  validated  with  the  help  of  a representative  sample,  and  put  the  rest  into a catch-all
term  is  an  appealing one.

Instead  of  modelling suspended  sediment  inputs  into surface  waters  from  agricultural  areas
via the  existing process  chain,  whose  individual  steps  are  practically  impossible  to validate,  one
could  model  and  validate  total  river  sediment  yields  and  estimate  the  former  or,  going one  step
further,  the  erosive  suspended  sediment  inputs  from  all  land  use  types  together  as  the  remaining
amount  analogous  to groundwater  discharge.  This,  however,  implies  that  the  contributions  of
the  different  land  use  types  to the  total  river  sediment  yield  have  to be  assessed  with  the  help  of
spatially  distributed  techniques,  which  in  consequence  should  lead  to sounder  results.  In  case
the  delineation  of  the  catchments  is  concerned  about  maximizing distinct  characteristics,  each
catchment  can  be  associated  with  a certain  predefined  class  (e. g.  glacial,  alpine,  agricultural  and
urban),  which  in  turn  allows  to draw  an  appropriate  conclusion.

In  order  to estimate  the  catchments’  annual  net  discharges,  Amann  et  al.  (2019)  utilised  

observed  daily  discharges  where  possible.  Ungauged  catchments,  on  the  other  hand,  were  

estimated  with  the  help  of  a geostatistical  interpolation  technique  called  top-kriging (Skøien  

et  al., 2006).  In  comparison  to ordinary  kriging,  this  technique  is  not  only  based  on  spatial
autocorrelation,  but  as  well  on  topological  relationships,  which  are  characteristic  for  river  networks.
Since  the  Austrian  network  of  discharge  gauges  is  a dense  one,  kriging,  which  is  also known  as
Gaussian  process  regression,  generally  performs  well  for  this  purpose,  but  top-kriging outperforms
ordinary  kriging.  Considering the  topology  of  river  networks  and  their  axiomatic  direction  of
flow,  it  is  not  surprising that  the  information  from  neighbouring catchments  is  less  informative
than  the  one  from  downstream  and  particularly  upstream  catchments.  This  is  in  essence  what
top-kriging makes  use  of.

Taking up  the  fact  that  kriging can  be  considered  as  a generalisation  of  linear  regression,  

the  central  hypothesis  of  Chapter 2 is  that  hierarchical  linear  models,  which  pose  another
generalisation  of  linear  regression  models  and  are  also known  as  multilevel  models  or  mixed-effect
models,  hold  the  theoretical  power  to considerably  improve  the  performance  and  reliability  of
linear  regression  modelling when  it  comes  to predict  river  sediment  yields.  In  contrast  to plain
multiple  linear  regression  models,  which  assume  statistically  independent  samples,  hierarchical
linear  models  can  deal  with  dependent  observations  resulting from  nested  structures  as  they  

are  often  found  in  environmental  data.  In  our  case,  this  nested  structure  consists  of  annual
observations  of  river  sediment  yields  at  gauges,  multiple  gauges  along rivers  and  multiple  rivers
within  basins.
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Hierarchical  linear  models  work  by  estimating mean  coefficients,  the  so-called  fixed-effects,  and  

at  the  same  time  individual  coefficients  for  each  of  the  defined  levels,  the  so-called  random-effects.
This  makes  it  a balanced  approach  between  complete  pooling of  information  in  a grand  mean,
which  tends  to an  underfitted  model  with  high  bias,  and  no pooling at  all,  i. e.  individual
coefficients  for  each  observation,  which  usually  leads  to an  overfitted  model  with  high  variance.
They  are  therefore  capable  of  capturing variations  in  space  and  time,  but  put  less  weight  on
levels  with  only  few  observations  and  ultimately  lead  to a more  balanced  bias-variance  trade-off
(cf.  Geman  et  al., 1992).  Furthermore,  due  to the  possibility  of  considering multiple  scales  at
once,  they  can  be  used  to overcome  the  problem  of  aggregation  bias  (Raudenbush, 1988).

It  is  thus  put  forward  that  annual  river  sediment  yields  can  be  described  and  predicted  more
efficiently  by  using explicitly  the  information  contained  in  the  similarity  within  groups.  To 

test  this  hypothesis,  a novel  Bayesian  hierarchical  model  is  developed,  applied  to a sample  of
heterogeneous catchments and its fixed- and mixed-effects performances incorporating different
group  levels,  namely  gauges,  rivers,  basins  and  clusters  of  catchments,  are  compared.  With  

a parsimonious  linear  model  consisting of  only  four  variables  (specific  and  extreme  discharge,
elevation  and  retention  coefficient),  good  performance  criteria in  the  calibration  (NSE  of 0.79 to
0.85 instead  of  0.69)  and  cross-validations  for  temporal  and  spatial  predictions  (NSE  of  0.71 and
0.72,  respectively,  instead  of  0.65 and  0.64)  are  achieved.  These  results  support  the  promising
potential  of  this  technique.

A major  challenge,  however,  remain  spatial  predictions  of  river  sediment  yields  in  Austria.  

The  number  of  gauges  reporting on  daily  loads  of  suspended  solids  as  of  the  time  of  writing
Chapter 2 were  less  than  30.  These  are  further  located  in  mainly  alpine  catchments.  Agricultural  

catchments  and  particularly  catchments  with  a high  share  of  arable  land  are  almost  none  among
them.  Compared  to the  number  of  gauges  reporting on  daily  discharges,  which  amounts  to over
five  hundred,  this  number  is  very  small.  Since  MoRE  only  requires  annual  river  sediment  yields
and  not  daily  loads  as  input  data,  several  additional  dozens  of  well  placed  gauges  reporting on
daily  loads  of  suspended  solids  should  improve  spatial  predictions  already  tremendously.

Furthermore,  while  the  interpolation  results  of  kriging are  in  principle  based  on  spatial
autocorrelation,  but,  among others,  can  be  combined  with  a regression  (regression-kriging)  or
make  use  of  cross-correlations  (co-kriging),  hierarchical  linear  models  are  capable  to incorporate
all  this  and  even  more.  Chagneau  et  al.  (2011),  for  example,  present  a hierarchical  Bayesian
model  for  the  simultaneous  simulation  of  dependent  Gaussian,  count  and  ordinal  spatial  fields.
In  simpler  cases,  they  are  likewise  merely  enhanced  with  the  help  of  Gaussian  processes  (e. g.
over  size,  elevation,  shares  of  land  use  types  or  space  as  in  kriging).

In  particular,  incorporating one  or  more  Gaussian  processes  over  one  or  more  shares  of  land  use  

types  may  pose  a promising future  development  for  the  improvement  of  spatial  predictions,  as  one
can  assume  that  similar  land  use  types  result  in  similar  sediment  delivery  processes.  Chapter 3,
however,  indicates  that  this  is  only  true  to a certain  extent,  hence,  one  should  probably  consider
additional  appropriate  interaction  terms  (see  Section 1.1.2).
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Although,  due  to the  sparse  data environment,  one  cannot  expect  highly  reliable  results  from
any  model,  neither  the  outlined  integration  of BaHSYM into  MoRE  nor  its  current  approach  is
for  vain.  The  importance  of  managing suspended  sediment  inputs  and  inputs  of  sediment-bound
pollutants  into surface  waters  is  evident  and  taking appropriate  action  does  not  require  overly
reliable  results.  Nonetheless,  as  Chapter 4 shows,  there  exist  methods  to improve  the  accuracy
and  transparency  of  possible  measures  taken  even  in  sparse  data environments.

Results  of  multiple  scenarios  and  models  as  well  as  expert  judgement  can  be  combined  and
objectified  in  a  formalised  way  into  a  final  result  via  fuzzy  logic  based  on  fuzzy  sets  (Zadeh,
1965).  While  Chapter 4 shows  how  to apply  fuzzy  logic  to the  second  tier  (field  scale),  it  very
well  could  be  applied  to the  first  tier  (catchment  scale)  as  well.  Apart  from  that,  integrating the
results  of  statistical  models  like  hierarchical  linear  models  into MoRE  could  have  the  advantage
of  providing previously  unavailable  measures  of  uncertainty.

1.1.2 Chapter 3

The  focus  of  this  thesis  now  moves  to the  second  tier  of  the  described  tiered  approach  for  the  

designation  of  critical  source  areas  at  field  scale.  Chapter 3 is  based  on  the  paper  of  Hepp  

and  Zessner  (2019)  and  has  another,  yet  not  mentioned  fallacy  as  its  topic  on  the  meta-level:  

cross-level  fallacy  (Clark  and  Avery, 1976).  This  fallacy  can  occur  when  one  unconditionally
assumes  that  insights  from  one  group  are  also valid  for  other  groups  of  the  the  same  level/scale.
In  fact,  this  fallacy  can  easily  manifest  itself  when  making use  of  spatial  or  similar  types  of
autocorrelation.

As  the  only  way  to not  falling prey  to this  fallacy  is  to make  observations  of  every  existent  

group,  knowledge  about  the  number  and  nature  of  all  possible  groups  is  of  major  importance
in  the  first  place.  An  approach  to tackle  this  problem  is  cluster  analysis.  While  Luxburg et  al.
(2012)  initially  wonder  whether  clustering is  actually  a science  or  rather  an  art,  they  come  to
the  conclusion  that  labelling it  as  engineering is  more  appropriate,  if  any,  since  its  purpose  lies
in  solving end-user  problems.  This  implies,  however,  that  there  is  as  often  no guarantee  for  

finding the  “correct” solution  and,  as  Luxburg et  al.  (2012)  further  point  out,  is  an  “intrinsic
psychological  component” involved.

A maybe  not  “correct”,  but  therefore  optimal  solution  could  be  one  that  balances  effort  taken
for  the  collection  of  data and  acceptable  risk  of  falling prey  to cross-level  fallacy.  The  state  of  this
equilibrium  has  to be  defined  on  a responsible  team  or  even  personal  level.  A serious  problem  in
this  context  is,  though,  that  those  responsible  for  data collection  and  those  for  modelling usually
are  not  the  same.  While  such  an  unfortunate  situation  may  lead  to something comparable  to 

omitted-variable  bias  in  statistics  when  it  comes  to the  designation  of  critical  source  areas  at
field  level,  i. e.  the  effect  of  a transport  process  missing in  a certain  modelling study  is  attributed
to those  included,  there  are  means  to avoid  this  or  at  least  to point  it  out.

One  such  means  is  the  simple  mapping key  presented  in  Chapter 3.  It  is  designed  for  quick  and
systematic  assessments of  the  types of  agricultural  and civil  engineering structures present  in a
certain  agricultural  catchment  as  well  as  the  impact  they  may  have  on  the  spatial  distribution  of
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critical  source  areas  at  field  scale.  The  main  motivation  for  its  creation  was  that  the  preparation
and  evaluation  of  several  applications  of  the  semi-empirical,  spatially  distributed  PhosFate
model  (Kovacs,  Honti,  and  Clement, 2008;  Kovacs,  Honti,  Zessner,  et  al., 2012)  in  the  Austrian
federal  state  of  Upper  Austria (Kovacs, 2013;  Zessner,  Hepp,  Kuderna,  Weinberger,  Gabriel,
and Windhofer, 2014)  suggest  that  storm drains may  have  a significant  influence  on sediment
transport  into surface  waters.  

An  application  of  this  mapping key  to three  small  sub-catchments  of  a case  study  catchment
with  an  area of  several  hundred  square  kilometres  (one-stage  cluster  sampling)  in  the  Innviertel
region  of  Upper  Austria clearly  reveals  that  road  embankments  with  subsurface  drainage  can
exert  a major  influence  on  emissions  and  transport  pathways  of  sediment-bound  pollutants  like
particulate  phosphorus.

Due  to this,  the  PhosFate  model  is  extended  to separately  model  particulate  phosphorus
emissions  into surface  waters  via storm  drains  and  sewers  along road  embankments.  Furthermore,  

the  overall  share  of  road  embankments  with  subsurface  drainage  on  all  road  embankments  in  the  

case  study  catchment  is  inferred  with  the  help  of  a Bayesian  hierarchical  model.  The  combination
of  the  results  of  these  two models  shows  that  the  share  of  storm  drains  at  road  embankments  on
total  particulate  phosphorus  emissions  ranges  from  about  one  fifth  to one  third  in  the  investigated
area.

Here,  a hierarchical  model  is  once  more  used  to connect  scales.  For  the  one-stage  cluster
sampling,  the  case  study  catchment  was  divided  into approximately  150 small  sub-catchments,
whose  fields  were  then  systematically  mapped.  The  scales  connected  by  the  hierarchical  model,
however,  are  the  hillslope  (zero-order  catchment)  and  the  case  study  catchment  scale;  field  and  

sub-catchment  (cluster)  scales  only  acted  as  mediators  in  this  process.
While  three  mapped  clusters  are  definitely  a sparse  data environment  and,  from  a frequentist

statistical  point  of  view  focusing on  point  estimates,  hold  way  too little  power,  the  mode  and
highest  posterior  density  interval  of  a Bayesian  approach  still  provide  some  valuable  information.
In  the  present  case,  the  mode  of  the  share  of  road  embankments  with  subsurface  drainage  on  

all  road  embankments  is 77 % and  the 90 % highest  posterior  density  interval  ranges  from 54
to 100 %.  Particularly  in  the  light  of  the  precautionary  principle  of  the  European  Union  Water
Framework  Directive  (European  Comission, 2000),  this  may  already  be  enough  information  for  a
decision  maker  to take  action  though.

A more  precise  quantitative  estimate  for  the  size  of  the  share  of  road  embankments  with
subsurface  drainage  on  all  road  embankments  cannot  be  provided  at  the  moment  and  has  to be  left  

to future  research.  Moreover,  future  research  should  deal  with  the  question  if  there  is  a correlation  

between  fields  with  high  particulate  phosphorus  emissions  and  a corresponding downstream  road  

embankment  with  subsurface  drainage,  as  generally  assuming mean  conditions  in  this  respect  could  

pose  another  bias.  Despite  all  this,  a relevant  and  so far  omitted  transport  pathway  for  particulate
phosphorus  inputs  into surface  waters  could  be  revealed  and  its  consideration  successfully  be
incorporated  into a selected  spatially  distributed  phosphorus  emission  and  transport  model.
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As  initially  stated,  cross-level  fallacy  is  a dangerous  trap.  A more  recent  application  of  PhosFate  

to various  regions  of  Austria (Schmaltz  et  al., 2022)  in  turn  suggests  that  these  findings  from  the  

Innviertel  region  cannot  be  transferred  unconditionally  to other  regions  of  Austria.  In  particular,
the  Weinviertel  region  seems  to be  different,  since  storm  drains  at  road  embankments  appear  to
be  less  common.  The  presented  mapping key  should  therefore  be  applied  to at  least  this  region  as  

well,  in  order  to assess  if  there  exist  different  types  of  agricultural  and  civil  engineering structures  

(e. g.  roadside  ditches  without  subsurface  drainage  and  inter-field  ditches),  which  perhaps  require  

different  model  extensions.  In  this  context,  a future  research  question  could  read  the  following:  Is
there  an  interaction  between  the  number  of  storm  drains  at  road  embankments  and  the  amount
of  precipitation  or  discharge  across  regions?

1.1.3 Chapter 4

Poesen  (2018)  considers  scaling up  sediment  yields  from  field  to catchment  scale  as  one  of  the
main  challenges  in  geomorphological  research.  The  same  is  true  for  particulate  phosphorus  and
other  sediment-bound  pollutants.  Chapter 4,  which  is  based  on  the  paper  of  Hepp,  Zoboli,  et  al.
(2022),  takes  up  this  challenge.  The  importance  of  connecting these  two scales  unfolds  from
the  fact  that  a subsidised  mitigation  of  diffuse  phosphorus  emissions  from  agricultural  soils  into
surface  waters  at  catchment  scale  cannot  be  cost-effective.  Such  an  inefficient  allocation  of  money
is  neither  desirable  nor  in  line  with  the  inclusion  of  economic  principles  in  river  basin  and  water
quality  management  according to the  European  Union  Water  Framework  Directive,  hence  the
existence  of  the  second  tier  in  the  described  tiered  approach.

In  fact,  the  concept  or  critical  source  areas  in  itself  poses  a modifiable  areal  unit  problem  and
is  thus  prone  to aggregation  bias.  So while  the  designation  of  critical  source  areas  at  small  scales
is,  flippantly  said,  a waste  of  resources,  it  becomes  impossible  to handle  at  very  large  scales.  To
illustrate  this,  let  us  imagine  a raster-based  fate  and  transport  model  like  PhosFate  applied  to a
spatial  resolution  of,  for  example, 1 × 1 cm.  The  number  of  cells  with  high  inputs  into surface
waters  compared  to the  total  number  of  cells  would  probably  be  negligible.  Pushing this  to
the  extreme,  a raster  with  an  infinite  small  spatial  resolution  would  result  in  the  designation  of
infinite  small  critical  source  areas.  This  thesis  therefore  considers  the  field  scale  as  the  optimal
scale  for  this  purpose.

Designations  at  such  a large  scale,  however,  require  great  trust  of  all  relevant  stakeholders  in
order  to prove  useful.  So how  can  they  be  told  which  fields  are  potential  critical  source  areas  

in  the  context  of  the  respective  catchment?  As  there  are  complex  processes  at  work  and  all
fields  have  to be  compared  and  ranked  among each  other,  the  application  of  spatially  distributed  

models  is  a must  to successfully  tackle  this  problem.  At  the  same  time,  the  results  of  such  models
are  difficult  to comprehend  for  those  not  accustomed  to them  and  have  to be  interpreted  for  as
well  as  communicated  to the  relevant  stakeholders  and  in  particular  to the  individual  farmers
responsible  for  taking action  in  the  end.

One  of  the  main  challenges  in  this  connection  is  thus  the  coupling of  complex,  data-intensive
fate  and  transport  models  with  easy-to-use  information  on  field  level  for  management  purposes  at
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the  scale  of  large  watersheds.  To fill  such  a gap  and  create  a bridge  between  these  two tasks,  this
thesis  puts  forward  the  new  Particulate  PhozzyLogic  Index  based  on  the  innovative  combination
of  the  results  of  a complex  watershed  model  (in  this  case  the  PhosFate  model)  with  fuzzy  logic.
Its  main  feature  is  the  ability  to transform  the  results  of  diverse  scenarios  or  even  models  into a
final  map  showing a catchment-wide  ranking of  the  possibility  of  high  particulate  phosphorus
emissions  reaching surface  waters  for  all  agricultural  fields.

For  this  purpose,  the  PhosFate  model  is  enhanced  with  a new  algorithm  for  the  allocation  

of  particulate  phosphorus  loads  entering surface  waters  to their  sources  of  origin.  It  is  based
on  the  idea that  the  ratio of  the  outflowing local  particulate  phosphorus  emissions  to the  total
particulate  phosphorus  turnover  in  a raster  cell  is  related  to the  amount  of  particulate  phosphorus
originating from  the  respective  raster  cell.  To put  this  in  other  words,  raster  cells  with  a high
inflow  and  low  outflow  contribute  little  to the  particulate  phosphorus  inputs  into surface  waters;
the  sources  of  origin  are  rather  located  upstream  in  such  cases.

By  means  of  a sensitivity  analysis,  this  thesis  further  investigates  the  impacts  of  storm  drains,
discharge  frequencies  and  flow  directions  on  the  designation  of  critical  source  areas  with  the
help  of  present-day  scenarios  for  a case  study  catchment  with  an  area of  several  hundred  square
kilometres.  The  upfront  model  calibration  exhibits  a Nash-Sutcliffe  efficiency  (NSE)  of  about  0.95
and  a modified  Nash-Sutcliffe  efficiency  (mNSE)  of  around  0.83.  A core  result  of  the  sensitivity
analysis  is  that  the  scenarios  at  least  partially  disagree  on  the  identified  critical  source  areas
and  suggest  that  especially  open  furrows  at  field  borders  have  the  potential  to lead  to deviating
outcomes.

All  scenario results  nevertheless  support  the  80:20 rule  also known  as  Pareto principle,  which
states  that  about 80 % of  the  phosphorus  inputs  into the  surface  waters  of  a catchment  originate
from only  about 20 % of  its area (Sharpley,  Kleinman,  Jordan,  et  al., 2009).  Vice  versa,  as this
rule is in line with the scenario results,  which were obtained at  the field scale,  the choice of the
field  scale  for  the  designation  of  critical  source  areas  from  a practical  point  of  view  is  reassured.
From  the  same  point  of  view  the  choice  of  the  specific  mitigation  measure  as  well  as  its  exact
location  on  a critical  source  field  yet  should  be  left  to the  local  expertise  of  the  individual  farmer.  

Deviations  between  different  scenarios  or  models  can  be  taken  into account  by  the  methodology
used  to create  the  final  map  constituting the  Particulate  PhozzyLogic  Index  though.  The  range
of  the  index  lies  between  zero and  one,  where  zero can  be  translated  into “not  possible” and  one
into “perfectly  possible”.  Zadeh  (1978)  states  that  “when  our  main  concern  is  with  the  meaning
of  information—rather  than  with  its  measure—the  proper  framework  for  information  analysis
is  possibilistic  rather  than  probabilistic  in  nature”.  This  means  that  this  index  does  not  say
anything about  the  probability  of  a field  being a critical  source  area or  not,  but  about  the  degree
of  it  being possible.

A grassland  field  with  a slope  of  almost  zero,  for  example,  will  exhibit  no or  almost  no particulate  

phosphorus  emissions  into surface  waters  in  any  serious  modelling study.  Its  possibility  of  being a 

critical  source  area is  therefore  always  close  to zero,  no matter  if  the  field  borders  a surface  water
or  not.  On  the  other  hand,  an  arable  field  with  a high  slope  holds  a high  intrinsic  possibility  of
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being a critical  source  area.  This  high  intrinsic  possibility  is  even  higher  when  the  field  borders  a 

surface  water  or  a road  embankment  with  a rather  high  known  probability  of  having a subsurface
drainage  compared  to a similar  field,  which  does  not.  Further,  as  the  possibility/probability
consistency  principle  states  that  impossible  events  are  improbable,  but  improbable  events  not
impossible  (Zadeh, 1978),  the  theory  of  possibility  fits  perfectly  to the  precautionary  principle.

The  deviating outcomes  due  to open  furrows  at  field  borders  and  other  less  important  reasons
are  thus  taken  into account  by  combining the  possibilities  of  all  the  modelled  scenarios  into a final  

possibility.  This  combination  can  be  carried  out  in  different  ways.  For  example,  by  simply  picking 

the  lowest  (fuzzy  logic  AND  operator)  or  highest  (fuzzy  logic  OR  operator)  possibility,  where  the
former  reflects  a conservative  and  the  latter  a precautionary  approach.  In  this  thesis,  however,
the  combination  is  carried  out  by  the  so-called  convex  combination  operator  (Dubois  and  Prade,
1985;  Kandel, 1986),  i. e.  an  optionally  weighted  mean  operator,  which  neither  constitutes  a 

particularly  conservative  nor  precautionary,  but  a balanced  approach.  In  this  regard,  future
research  should  assess  the  impacts  of  the  different  operators  especially  on  the  applicability  of  the
80:20 rule  to the  final  index.  

A practical  problem  with  the  application  of  the  final  index  and,  generally  speaking,  with  the
application  of  every  kind  of  designation  of  critical  source  areas  could  be  that  focus  on  all  other
areas  is  lost.  If  particulate  phosphorus  emissions  are  decreased  on  critical  source  areas,  but  at
the  same  time  increased  on  other  areas,  it  could  happen  that  in  total  nothing is  gained.  In
order  to avoid  this,  additional  precautions  have  to be  taken.  One  such  precaution  could  be  the
simultaneous  introduction  of  a sediment  or  even  particulate  phosphorus  loss  inventory  on  farm
level  analogous  to,  for  example,  a farm’s  carbon  footprint.  This  should  lead  to the  application  of
best  management  practices  and  a better  choice  as  well  as  allocation  of  the  cultivated  crops  to
the  fields  at  hand  in  the  long term.

The  exploration  of  reasonable  designs  for  such  inventories  and  associated  actions  has  to be  left  

to future  research  though.  It  should,  among others,  assess  if  farms  with  a high  footprint  should  be  

treated  differently  than  farms  with  a low  footprint  and  if  the  available  budgets  should  be  lowered
over  time  so that  environmental  quality  standards  can  eventually  be  reached.  Furthermore,  the
question  if  the  respective  actual  crop  distributions  and  management  practices  or  standardised
conditions  should  be  used  for  the  initial  determination  of  the  available  budgets  should  be  pursued.

1.2 Overview  of  the  research  objectives  and  questions  as  well  as  their
core  answers

The  following research  objectives  and  questions  are  addressed  by  this  thesis:

Objective  1 Does  the  hierarchical  linear  model  approach  considerably  improve  the  performance
and  reliability  of  the  otherwise  unstable  linear  regression  approach  regarding the  prediction  of
annual  river  sediment  yields  in  Austria?
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Yes,  the  consideration  of  gauges  and  rivers  or  gauges  and  basins  as  hierarchical  levels  increases  

the  Nash-Sutcliffe  efficiency  from  0.69 to 0.85 for  the  best-fit  model.  Furthermore,  cross-validation
results  for  temporal  prediction  exhibit  an  increase  from  0.65 to 0.71 when  considering the  same
hierarchical  levels  and  for  spatial  prediction  an  increase  from  0.64 to 0.72 when  considering
catchment  clusters  as  the  only  hierarchical  level.

Objective  2 How  can  practitioners  quickly  and  systemically  assess  the  types  of  agricultural
and  civil  engineering structures  present  in  a certain  catchment  as  well  as  the  impact  they  may
have  on  the  spatial  distribution  of  critical  source  areas?

This task  can be  achieved with the  help of  the  simple  and extendible  mapping key  presented
in  this  thesis.  It  is  supposed  to be  applied  to mapping units  like  fields  or  zero-order  catchments
and  its  main  features  are  the  assessment  of  the  following mapping unit  properties:

• connected  or  not  in  a natural  way

• explanatory  details  for  mapping units  not  connected  in  a natural  way

• explanatory  details  for  mapping units  connected  in  a natural  way

• presence  or  absence  of  an  artificial  connection

• explanatory  details  for  mapping units  connected  in  an  artificial  way

• presence  and  absence  of  natural  features  as  well  as  artificial  point-shaped  and  linear
structures

Objective  3 Are  particulate  phosphorus  emissions  entering surface  waters  via storm  drains  and
sewers  at  road  embankments  a relevant  factor  in  an  Upper  Austrian  case  study  catchment  with
an  area of  several  hundred  square  kilometres?

Yes,  the  share  of  storm  drains  at  road  embankments  on  total  particulate  phosphorus  emissions
ranges  from  about  one  fifth  to one  third  in  the  investigated  area.  This  estimate  is  obtained  

by  combining the  results  of  a Bayesian  hierarchical  model  with  the  results  of  an  extended
semi-empirical,  spatially  distributed  PhosFate  model.

Objective  4 Can  PhosFate’s  existing algorithm  for  allocating the  particulate  phosphorus
emissions  actually  reaching surface  waters  to their  respective  source  areas  be  redesigned  so that
conservation  of  mass  is  guaranteed  under  all  circumstances?

Yes,  whereas  the  original  allocation  algorithm  based  on  a single  top-down  computation
guarantees  conservation  of  mass  only  on  the  level  of  zero-order  catchments,  the  newly  developed
algorithm  based  on  a top-down  as  well  as  bottom-up  computation  guarantees  conservation  of
mass  in  every  single  cell.
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Objective  5 What  are  the  impacts  of  selected  uncertain  input  data (flow  directions)  and  model  

parameters  (discharge  frequencies)  of  PhosFate  on  the  designation  of  critical  source  areas  at  field
scale?

The  conducted  sensitivity  analysis  based  on  18 scenarios  shows  that  while  the  impacts  of
tillage  directions  and  discharge  frequencies  are  rather  negligible,  open  furrows  at  field  borders
have  the  potential  to cause  deviating outcomes.

Objective  6 Can  decision  makers  be  provided  with  a transparent  identification  of  critical  source  

areas,  which  is  as  easy-to-use  as  the  one  resulting from  the  Phosphorus  Index,  but  more  accurate,
by  combining spatially  distributed  model  results  with  fuzzy  logic?

Yes,  with  the  help  of  fuzzy  membership  functions  results  of  complex  watershed  models  can  be
transformed  into well  understandable  maps  ranking all  agricultural  fields  of  a potential  large  

catchment  with  respect  to their  possibility  of  emitting high  particulate  phosphorus  emissions
actually  reaching surface  waters.  Furthermore,  transformed  results  of  diverse  scenarios  or  even
models  can  be  overlaid  in  order  to create  a final  index  map  taking into account,  among others,
the  uncertainty  of  input  data.  The  fields  designated  as  critical  source  areas  then  can  easily  be
pointed  out  by  colour-coding the  displayed  possibilities.  This  constitutes  a major  improvement
compared  to the  semi-quantitative  Phosphorus  Index  used  for  similar  purposes  in  the  past.

1.3 Data and  software  availability

The  dataset  and  scripts  of  Chapter 2 are  available  on  Zenodo (doi: 10.5281/zenodo.3514720)  and
the  source  code  of  the  enhanced  PhosFate  model  developed  in  Chapters 3 and 4 is  available  on
GitHub  in  the  form  of  an  R  package  called RPhosFate.

1.4 Authorship

The  author  contributions  to the  papers  on  which  the  thesis  is  based  on  are  made  transparent  via
Contributor  Role  Taxonomy  (CRediT)  statements  (Allen  et  al., 2019).

1.4.1 Chapter 2

Chapter 2 is  based  on  the  paper  of  Zoboli,  Hepp,  et  al.  (2020)  with  shared  first  authorship
between  Gerold  Hepp  and  Ottavia Zoboli.

Gerold  Hepp Conceptualisation,  methodology,  software,  formal  analysis,  data curation,  writing –
original  draft  as  well  as  visualisation.

Ottavia Zoboli Conceptualisation,  methodology,  validation,  formal  analysis,  data curation,
writing – original  draft  as  well  as  visualisation.

https://doi.org/10.5281/zenodo.3514720
https://github.com/gisler/RPhosFate
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Jörg Krampe Resources  as  well  as  writing – review  &  editing.

Matthias  Zessner Writing – review  &  editing,  supervision,  project  administration  as  well  as
funding acquisition.

1.4.2 Chapter 3

Chapter 3 is  based  on  the  paper  of  Hepp  and  Zessner  (2019).

Gerold  Hepp Conceptualisation,  methodology,  software,  formal  analysis,  data curation,  writing –
original  draft  as  well  as  visualisation.

Matthias  Zessner Conceptualisation,  writing – review  &  editing,  supervision,  project  adminis-
tration  as  well  as  funding acquisition.

1.4.3 Chapter 4

Chapter 4 is  based  on  the  paper  of  Hepp,  Zoboli,  et  al.  (2022).

Gerold  Hepp Conceptualisation,  methodology,  software,  formal  analysis,  data curation,  writing –
original  draft  as  well  as  visualisation.

Ottavia Zoboli Writing – review  &  editing.

Eva Strenge Data curation  as  well  as  writing – review  &  editing.

Matthias  Zessner Conceptualisation,  writing – review  &  editing,  supervision,  project  adminis-
tration  as  well  as  funding acquisition.
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2.1 Introduction

The  delivery  of  sediments  to surface  water  bodies  as  a result  of  soil  erosion  can  exert  a critical
effect  on  flood  risk  (S.  N.  Lane,  Tayefi,  et  al., 2007),  on  the  lifetime  of  reservoirs  (Kondolf  et  al.,
2014)  and  on  the  health  of  benthic  ecosystems  (Greig et  al., 2005).  It  can  also be  responsible  for
increased  water  treatment  costs  and  for  the  decline  of  fisheries  resources  (Bilotta and  Brazier,
2008).  Further,  the  transport  of  sediments  is  mostly  coupled  with  the  transfer  of  organic  carbon,
phosphorus  and  a broad  spectrum  of  particle-bound  contaminants  from  soil  into water,  which
further  contribute  to the  degradation  of  aquatic  environments  (Long et  al., 2006;  Moran  et  al.,
2017).  Prediction  and  control  of  riverine  sediment  transport  are  thus  fundamental  goals  for
water  managers  worldwide.  In  this  context,  models  are  essential  tools  to estimate  sediment  yield
(SY,  e. g. t yr−1)  at  catchment  outlets,  to interpret  spatial  and  temporal  dynamics  as  well  as  to
quantify  and  predict  the  consequences  of  climate  and  land  use  changes.  However,  the  extreme
complexity  and  variability  of  the  processes  linking soil  erosion  with  river  SY make  these  tasks
very  challenging.

The  need  for  estimates  of  sediment  yield  and  for  the  understanding of  the  major  factors  

and  processes  controlling SY from  watersheds  across  spatial  scales  is  a field  of  research  of  

long-standing nature  (L.  J.  Lane  et  al., 1997).  Yet,  the  reviews  of  Merritt  et  al.  (2003)  and  

de  Vente,  Poesen,  Verstraeten,  Govers,  et  al.  (2013),  which  compared  and  critically  discussed
existing models  designed  to predict  soil  erosion  and  sediment  yield  at  catchment  scale,  revealed
a scattered  and  still  unsatisfactory  situation.  Based  on  the  classification  system  proposed  by  

Wheater  et  al.  (1993),  Merritt  et  al.  (2003)  distinguished  between  empirical,  conceptual  and
physics-based  models.  Similarly,  according to de  Vente,  Poesen,  Verstraeten,  Govers,  et  al.  (2013)
models  can  be  conceptually  classified  as  follows:  spatially  lumped  and  spatially  distributed,  

empirical,  regression,  physics-based,  and  factorial  scoring models.  LISEM  (A.  P.  J.  de  Roo 

et  al., 1996),  PESERA (Kirkby  et  al., 2008)  and  SWAT  (Arnold  et  al., 1998)  are  examples  of  

widely-used  physics-based  models,  which  are  based  on  the  numerical  solution  of  fundamental
physical  equations,  such  as  transfer  of  mass,  momentum  and  energy.  Empirical  and  conceptual
models,  e. g.  WaTEM/SEDEM  (Van  Oost  et  al., 2000;  Verstraeten  and  Poesen, 2001),  do 

not  make  explicit  inference  on  detailed  physical  processes  and  rely  instead  on  observed  or  

stochastic  relationships  between  causal  variables  and  sediment  yield.  This  distinction  should  

not  be  interpreted  in  absolute  terms,  because  there  are  also models  which  consist  of  a mix  of  

physics-based  and  empirical  components  (e. g.  AGNPS;  Young et  al., 1989).  Factorial  scoring 

models  like  FSM  (Verstraeten,  Poesen,  de  Vente,  et  al., 2003)  are  semi-quantitative  methods
which  characterise  catchments  through  factors  coupled  with  scoring and  which  require  in  general
an  expert  assessment  in  the  field.  Approaches  for  statistical  modelling of  SY,  which  are  most  

typically  spatially  lumped,  include  multiple  linear  regression  (e. g.  de  Vente,  Verduyn,  et  al.,
2011)  and  non-linear  regression  models  (e. g.  BQART;  Syvitski  and  Milliman, 2007).  The  main
outcome  of  Merritt  et  al.  (2003)  was  that  simpler  empirical  and  conceptual  approaches  were  

more  appropriate  for  the  estimation  of  SY than  physics-based  or  more  complex  conceptual  

models  because  these  were  limited  by  the  lack  of  sufficient  spatially  distributed  data,  by  the
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over-dependency  of  the  results  on  the  experience  of  the  modeller  and  by  high  computational  

requirements.  The  more  recent  review  of  de  Vente,  Poesen,  Verstraeten,  Govers,  et  al.  (2013)
similarly  found  that  the  elevated  requirement  of  calibration  parameters  for  most  physics-based
models  often  leads  to equifinality  and  limits  their  applicability  for  spatial  extrapolations  and
for  scenario studies.  Further  outcomes  of  this  review  were,  among others,  that:  (i)  the  accuracy
of  existing models  differs  across  spatial  and  temporal  scales  and  that  different  models  should
be  selected  according to the  size  of  the  catchments  of  interest,  (ii)  a drawback  of  many  models
lies  in  the  fact  that  they  depict  only  selected  erosion  and  sediment  transport  processes,  which
limits  their  applicability  to catchments  where  such  processes  are  dominant  and  in  turn  requires
an  extensive  prior  knowledge  of  those  (e. g.  sheet,  rill  as  well  as  ephemeral  gully,  hillslope  and
channel  erosion),  (iii)  there  is  definitely  need  for  further  model  development  and  for  balancing
between  model  complexity  and  quality  of  input  data.

In  this  respect,  there  is  a powerful  technique  that  has  been  so far  overlooked  in  this  field.  We
refer  to hierarchical  linear  models,  also known  as  multilevel  models  or  random  coefficient  models.  

In  such  an  approach,  data is  grouped  in  a hierarchy  of  successively  higher-level  units  and,  instead  

of  considering observations  as  independent  from  each  other,  it  is  assumed  that  groups  within  each
level  (e. g.  annual  SY of  gauges,  gauges  of  rivers  and  rivers  of  basins)  share  certain  attributes
and  show  similarities.  The  key  idea is  to explicitly  use  this  information  by  considering both  the
within  and  between  group  variances,  with  the  goal  to improve  model  efficiency  and  estimate  

accuracy.  From  the  statistical  point  of  view  this  means  that  model  parameters  vary  at  more  

than  one  level  and  that  inferences  made  about  one  group  affect  inferences  about  another.  In
other  words,  the  model  operates  a partial  pooling within  levels,  providing a balanced  approach
between  complete  pooling (same  intercept  and  slopes  for  all  data points,  i. e.  underfitting)  and  no
pooling (individual  intercepts  and  slopes  for  each  data point,  i. e.  overfitting).  Major  advantages
of  hierarchical  models  are  improved  estimates  for  repeated  and  imbalanced  samples,  the  explicit
modelling of  the  variation  across  individuals  within  groups  of  the  data,  the  fact  that  there  

is  no need  to perform  averaging and  consequently  no associated  loss  of  information  as  well  

as  an  optimal  trade-off  between  overfitting and  underfitting (McElreath, 2015).  Hierarchical  

models  are  a well-established  method  in  social  and  medical  sciences  to divide  subjects  into
groups,  and they  are  increasingly  used in environmental  and ecological  sciences,  because  they
enable  incorporating cross-scales  interactions  and  thus  enhance  the  model  effectiveness  both  

in  understanding causal  effects  and  in  prediction  (Qian  et  al., 2010).  Further,  thanks  to the
exceptional  progress  of  computational  power  achieved  over  the  last  decades,  it  is  now  technically
feasible  to develop  hierarchical  models  within  a Bayesian  framework.  This  offers  important
possibilities,  among which  the  explicit  incorporation  of  prior  knowledge  into the  model  and  the
obtainment  of  probability  distributions  of  both  model  parameters  and  estimates.  The  latter  in
turn  allows  for  a thorough  analysis  of  the  significance  and  the  uncertainty  of  the  results  (Gelman
and  Hill, 2006).

Based  on  these  characteristics,  we  hypothesise  that  this  technique  holds  a considerable  potential
to efficiently  and  reliably  predict  SY at  catchment  level  and  that  it  might  help  to overcome,  at
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least  partially,  the  limitation  of  having to rely  on  different  models  depending on  the  scale  and
the  properties  of  the  catchments.  The  main  consideration  behind  this  hypothesis  is  that  on  the
one  hand  there  are  common  processes  regulating soil  erosion  and  transport  of  sediments  in  all
catchments  and  that  on  the  other  hand  their  relative  importance  changes  greatly  in  space  and
time.  We  can  for  instance  expect  that  catchments  with  similar  morphological  traits,  hydrological
regimes  and  land  use  also show  similarities  in  the  dominant  processes  determining SY at  their
outlets.  Further,  individual  catchments  typically  belong to larger  groups,  such  as  river  systems
or  basins.  This  constitutes  an  ideal  problem  for  Bayesian  hierarchical  models,  which  are  designed
to optimally  use  the  information  contained  in  the  variability  of  the  data across  nested  levels.

A widely-used  technique  in  hydrology,  top-kriging (Skøien  et  al., 2006),  relies  on  a similar
idea.  It  also makes  use  of  the  fact  that  information  provided  by  gauges  of  the  same  river  system
helps  to predict  a stream  flow  related  variable  at  an  unobserved  location  better  than  information  

provided  by  gauges  of  other  river  systems.  While  top-kriging incorporates  similarity  of  topological
relation  and  geographical  location  only, BaHSYM is  also capable  of  incorporating similarity  of
other  factors.

The  goal  of  this  work  is  to test  our  hypothesis  by  developing a Bayesian  hierarchical  model  able
to describe  and  predict  SY in  heterogeneous  river  catchments  in  Austria.  For  the  development
and  validation  of  the  model  we  consider  both  temporal  and  spatial  cross-validation.  According to 

the  outcomes  of  their  review,  de  Vente,  Poesen,  Verstraeten,  Govers,  et  al.  (2013)  discarded  linear
regression  equations  as  suitable  prediction  models,  since  in  a number  of  case  studies  they  proved
unstable  and  unsuitable  to extrapolate  sediment  yield  beyond  the  calibration  datasets  (de  Vente,
Verduyn,  et  al., 2011;  Grauso et  al., 2008;  Haregeweyn  et  al., 2008;  Verstraeten  and  Poesen,
2001).  We  hypothesise  that  the  Bayesian  hierarchical  approach  holds  the  theoretical  power  to
considerably  improve  the  performance  and  reliability  of  otherwise  unstable  linear  regressions.
This  is  why  in  this  work  we  develop  and  test  parsimonious  linear  regression  models  consisting of
few  explanatory  variables.

2.2 Methods

2.2.1 Study area

The  study  area includes  30 Austrian  river  catchments  for  which  data of  suspended  solids  

transported  at  the  outlet  is  available  for  multiple  years  with  high  temporal  resolution.  This
sample  consists  of  catchments  that  are  highly  heterogeneous  in  their  total  area (135 to 10 660 km2),
average  elevation  (256 to 2495 m a. s. l.),  mean  slope  (9 to 61 %),  long-term  mean  discharge  (1
to 305 m3 s−1)  and  land  use.  Most  of  the  gauges  are  located  in  alpine  or  mountainous  areas,
whereas  agricultural  catchments  in  lowland  are  more  sparse.  Figure 2.1 depicts  the  geographical
location  of  the  gauges,  whereas  the  basic  properties  of  the  corresponding catchments  are  reported
in  Table 2.1.  It  is  important  to observe  the  enormous  temporal  variability  of  sediment  transport
in  the  dataset,  with  annual  SY varying in  some  cases  up  to an  order  of  magnitude  at  the  very
same  gauge.



2.2 Methods  29

!(

!(

!(

!(

!(
!(

!(!(
!(

!(
!(

!(

!(

!(

!(

!(
!(!(

!(
!(
!(

!(

!(

!(!(

!(

!(

!(

!(

!(

Lake

River

National border

Elevation (m a.s.l.)
3800

100

Gauges

!( Cluster 1

!( Cluster 2

!( Cluster 3

0 10050 Kilometres´
Fig.  2.1: Location  of  the  catchment  outlet  gauges,  from  which  the  SY dataset  stems.  Gauges

are  reported  with  different  colours  depending on  the  cluster  they  belong to (please
refer  to Sections 2.2.5 and 2.3.1 for  details  regarding the  clusters).

2.2.2 Bayesian  Hierarchical  Sediment  Yield  Model  (BaHSYM)

BaHSYM consists  of  a linear  regression  model  embedded  within  a Bayesian  hierarchical  approach.
The  basic  level  that  we  consider  in  the  hierarchical  model  structure  are  individual  gauges,  i. e.
we  assume  that  at  each  gauge  SY observations  in  different  years  are  not  fully  independent  and
that  dominant  processes  are  to a certain  degree  similar.  Further,  we  hypothesise  that  a specific
gauge  shares  more  similarities  with  other  gauges  within  the  same  river  system  or  within  the
same  basin  than  with  gauges  located  in  other  river  systems  or  basins.  Therefore,  we  created  two
model  variants  in  which  we  nested  the  first  level  into a second  higher  level,  namely  the  level  

of  rivers  or  that  of  basins,  respectively.  To evaluate  whether  and  how  much  this  hierarchical
structure  improves  the  model  performance,  we  also tested  the  model  without  any  level,  which
would  correspond  to an  ordinary  linear  regression  model  in  a non-Bayesian  context.  We  refer
to the  variant  without  levels  as  fixed-effects  model  and  to the  variants  with  hierarchical  levels,
i. e.  random-effects,  as  mixed-effects  models.  In  a mixed-effects  model  the  fixed-effects  describe
the  effect  sizes  of  the  overall  mean  and  the  random-effects  the  individual  effect  sizes  of  the
hierarchical  levels,  which  have  to be  either  added  to or  subtracted  from  the  fixed-effects.



30 2 BaHSYM:  parsimonious  Bayesian  hierarchical  model  to predict  river  sediment  yield

Tab.  2.1: Basic  properties  of  the  catchments  whose  outlet  gauge  data is  used  to test  the  model:
A (total  area),  E  (average  elevation),  S  (average  slope),  Q  (long-term  mean  discharge),
SY (range  of  annual  sediment  yields  in  the  period  2009 to 2014).

Basin  River  Gauge  A  E  S  Q  SY  

(km2)  (m a. s. l.)  (%)  (m3 s−1)  (1000 t yr−1)

Bregenzerach  Bregenzerach  Kennelbach 838  1121  40  46  177–643
Drau  Drau  Lienz-Falkensteinsteg 658  1905  56  14  55–200
Drau  Drau  Dellach 2172  1981  56  63  286–622
Drau  Drau  Amlach 4779  1832  54  129  330–811
Drau  Drau  Lavamünd 10660  1379  43  256  70–498
Drau  Gail  Federaun 1297  1286  45  44  77–525
Drau  Isel  Lienz 1202  2145  58  39  276–769
Enns  Enns  Trautenfels 1518  1468  48  49  49–336
Enns  Enns  Jägerberg 5942  1162  49  166  173–1048
Ill  Ill  Gisingen 1230  1626  54  65  129–343
Inn  Brixentaler  Ache  Bruckhäusl 326  1318  44  11  48–478
Inn  Großache  Kössen-Hütte 706  1201  43  27  151–834
Inn  Inn  Innsbruck 5786  2148  57  164  863–2310
Inn  Inn  Rattenberg 8483  2027  56  257  1113–3167
Inn  Inn  Oberaudorf 9683  1917  54  305  1327–4104
Inn  Salzach  Golling 3620  1577  52  141  181–1332
Inn  Sanna  Landeck-Bruggen 728  2139  58  20  51–379
Inn  Sill  Innsbruck-Reichenau 856  1911  56  25  83–379
Inn  Ziller  Hart  im  Zillertal 1135  1897  57  45  96–434
Inn  Ötztaler  Ache  Tumpen 781  2495  57  26  338–917
Lech  Lech  Lechaschau 1012  1761  61  44  178–626
Leitha  Leitha  Deutsch  Brodersdorf 1592  694  28  9  6–53
Mur  Mur  Gestüthof 1701  1637  44  36  23–134
Mürz  Mürz  Kapfenberg-Diemlach 1506  1071  44  22  16–83
Pinka  Pinka  Pinkafeld 135  743  25  1  4–22
Raab  Raab  Neumarkt 1009  492  20  7  20–33
Steyr  Steyr  Pergern 919  946  48  36  18–94
Sulm  Sulm  Leibnitz 1113  582  23  16  19–156
Traun  Traun  Wels-Lichtenegg 3379  847  31  129  56–294
Wulka  Wulka  Schützen  am  Gebirge 404  256  9  1  2–9

Annual  SY was  not  modelled  as  such,  but  instead  as  the  logarithmic  transformation  of  the  

specific  annual  sediment  yield  (SSY , t km−2 yr−1).  Choosing SSY instead  of  SY enables  to
overcome  the  masking effect  of  different  catchment  sizes.  The  logarithmic  transformation  was
necessary  to meet  the  assumption  of  normality.

The  set  of  Equations 2.1 presents  the  mathematical  formulation  of  the  mixed-effects  model  

with  two different  group  levels.  It  is  formulated  using non-centred  parametrisation,  i. e.  with
subtraction  of  the  mean  (fixed-effects)  and  factored  out  standard  deviations  of  the  random-effects:

log(SSY i) ∼ Normal(𝜇i,  𝜎) ,  (2.1a)

𝜇i = 𝑋ijℬji ,  (2.1b)

ℬji = 𝛽j + 𝛽j,Level1i
⊙ 𝜎j,Level1 + 𝛽j,Level2i

⊙ 𝜎j,Level2 ,  (2.1c)

𝛽j ∼ Normal(0, 0.5) ,  (2.1d)

𝛽j,Level1i
∼ MVNormal(0j , Pj  k  ,Level1) ,  (2.1e)

𝛽j,Level2i
∼ MVNormal(0j , Pj  k  ,Level2) ,  (2.1f)
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Pj  k  ,Level1 ∼ LKJcorr(1) ,  (2.1g)

Pj  k  ,Level2 ∼ LKJcorr(1) ,  (2.1h)

𝜎j,Level1 ∼ Exponential(1) ,  (2.1i)

𝜎j,Level2 ∼ Exponential(1) ,  (2.1j)

𝜎 ∼ Exponential(1) ,  (2.1k)

where log(SSY i) is  assumed  to be  normally  distributed  with  mean 𝜇i and  standard  deviation
𝜎. 𝑋ij represents  the  matrix  of  explanatory  variables; ℬji the  combined  fixed-  and  random-  

effects  (i. e.  mixed-effects); 𝛽j the  slopes  of  the  fixed-effects; 𝛽j,Level1i
and 𝛽j,Level2i

the  slopes  

of  the  random-effects  of  the  two different  group  levels; 𝜎j,Level1 and 𝜎j,Level2 the  factored  out
standard  deviations  of  the  slopes  of  the  random-effects.  The  symbol ⊙ represents  the  Hadamard
product,  which  means  variable-wise  multiplication  of  the  slopes  of  the  random-effects  with  their
corresponding standard  deviation  in  the  present  case.  Furthermore, Pj  k  ,Level1 and Pj  k  ,Level2 stand  

for  the  correlation  matrices  of  the  slopes  of  the  random-effects.  With  respect  to the  matrix/vector
indices, i indexes  observations  (rows  of  the  matrix  of  explanatory  variables),  whereas j and
k index  explanatory  variables  (columns  of  the  matrix  of  explanatory  variables,  vectors  of  the  

effect  sizes  of  the  explanatory  variables,  rows  and  columns  of  the  correlation  matrices  of  the
explanatory  variables).

Due  to the  fact  that  the  response  variable  has  been  centred  and  scaled  and  thus  has  a mean  of
zero,  the  model  is  formulated  without  any  intercept.  Adding an  intercept  in  such  a case  would
not  significantly  improve  model  predictions.

Equations 2.1d to 2.1k define  standard  priors  for  centred  and  scaled  variables  according to
McElreath  (2020)  (see  Section 2.2.3 for  details  on  centring and  scaling).  While  these  standard
priors  do not  improve  model  predictions,  they  prevent  implausible  parameter  values.  Furthermore,
having only  centred and scaled explanatory  variables allows us to use  the  same  standard priors
for  all  of  them.  Apart  from  the  possibility  to incorporate  subjective  or  prior  information  into 

the  model,  in  our  opinion  an  underestimated  advantage  of  Bayesian  statistics  is  that  it  can
make  certain  modelling steps  simpler.  For  example,  back  transformation  of  logarithmic  response
variables,  i. e.  exponentiation,  is  straight  forward  and  does  not  require  a correction  such  as  the
one  explained  by  Laurent  (1963).

2.2.3 Explanatory variables

We  considered  a pool  of  potential  explanatory  variables  for BaHSYM,  which  are  reported  in
Table 2.2.  Since  this  work  focuses  on  the  methodological  approach  and  not  so much  on  identifying
the  best  performing variables,  we  constrained  the  selection  to a set  of  relatively  few  attributes,
which  have  the  theoretical  potential  to explain  the  spatial  and/or  temporal  variability  of  erosion
and  sediment  transfer  at  catchment  scale.  We  thus  have  chosen  average  and  extreme  hydrological
variables,  morphometric  traits  of  the  catchments  as  well  as  main  land  uses.  Additionally,  we
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Tab.  2.2: Description  of  selected  potential  explanatory  variables  for  the  model.

Variable  Description (unit)

Hydrological  and  morphometric  attributes

A  Total  area  of the  catchment  (km2)  

E  Average  elevation of the  catchment  (m a. s. l.)  

S Average  slope  of the  catchment  (%)  

C Compactness  ratio:  square  root  function of the  ratio  between A  and the  area  of the  circle  having
the  same  perimeter (-)

𝜉 Sediment  retention coefficient  calculated according  to  Equation 2.2 (-)  

lp Specific  main channel  length:  total  length of the  principal  waterway  normalised by  catchment  area
(km−1)  

la Specific  tributary  length:  total  length of secondary  waterways  normalised by  catchment  area  (km−1)
q  Specific  discharge:  average  annual  river discharge  normalised by  catchment  area  (m3 s−1 km−2)  

Qp95 Extreme  discharge:  maximum  annual  fraction of discharge  above  the  95th percentile  of monthly
discharge  (%)  

Pp95 Extreme  precipitation:  maximum  annual  fraction of precipitation above  the  95th percentile  of
monthly  precipitation (%;  cf.  Hanel  et  al., 2016)

Land  use

Glc  Percentage  of total  catchment  area  occupied by  glaciers  (%)  

Agr Percentage  of total  catchment  area  occupied by  arable  land (%)  

Agr4 Percentage  of total  catchment  area  occupied by  arable  land with slope > 4 %  (%)  

Agr8 Percentage  of total  catchment  area  occupied by  arable  land with slope > 8 %  (%)  

Nat  Percentage  of total  catchment  area  with natural  cover (mostly  forests)  (%)  

Alp Percentage  of total  catchment  area  occupied by  bare  alpine  surfaces  (%)  

Grl  Percentage  of total  catchment  area  occupied by  grassland (%)  

Lakes  Percentage  of total  catchment  area  occupied by  lakes  (%)

have  considered  the  sediment  retention  coefficient 𝜉,  a variable  conceived  by  Gavrilovic  (1976)  as
sediment  delivery  component  to be  combined  with  an  erosion  rate  in  a semi-quantitative  model
to predict  SY at  basin  scale  (de  Vente  and  Poesen, 2005).  It  is  thus  based  on  characteristics
which  mainly  influence  sediment  transport  and  retention  processes,  such  as  morphometric  traits
and  waterway  length.  It  is  calculated  as  follows:

𝜉 =

√︁
Pe · 𝐸 (𝐿p + 𝐿𝑎)

(𝐿p + 10) 𝐴
,  (2.2)

where Pe is  the  perimeter  of  the  catchment  (km), 𝐸 the  average  elevation  in km a. s. l., 𝐿p the
length  of  the  principal  waterway  (km)  and 𝐿𝑎 the  cumulated  length  of  secondary  waterways
(km).

The  selection  of  these  variables  was  driven  by  expert  knowledge  regarding the  specific  study
area.  In  other  regions,  different  variables  might  be  more  suitable  and  relevant.  All  variables,
including the  response  variable,  have  been  centred  and  scaled  for  modelling purposes.  Centring
refers  to the  practice  of  subtracting the  sample  mean  from  all  values  of  a variable,  whilst  scaling
describes  the  practice  of  dividing all  values  of  a variable  by  its  sample  standard  deviation.  As  a
result,  all  variables  have  a mean  of  zero and  a standard  deviation  of  one  and  their  effect  sizes  in
the  model  can  be  compared  independently  of  the  scale  of  the  original  variables.  The  additional
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centring and  scaling of  the  response  variable  mean  that  increasing or  decreasing an  explanatory
variable  by  one  standard  deviation,  while  keeping all  other  explanatory  variables  constant,  causes
the  response  variable  to change  by  one  standard  deviation  times  the  effect  size  of  the  adjusted
explanatory  variable.  Increasing an  explanatory  variable  with,  for  example,  an  effect  size  of  plus
0.5 by  0.5 would  therefore  cause  the  response  variable  to change  by  0.25 standard  deviations.
Thus,  centring and  scaling eases  the  interpretation  of  the  modelling results.

When  testing different  combinations  of  explanatory  variables,  we  selected  for  each  run  a
maximum  of  three  to four  variables  to keep  the  model  parsimonious.  Apart  from  additive  effects,
we  also tested  multiplicative  interactions  between  the  variables.

2.2.4 Data

For  27 out  of  30 gauges,  data on  daily  loads  of  transported  suspended  solids  were  provided  

for  the  years  2009 to 2014 by  the  Austrian  Hydrographic  Central  Bureau  (delivered  in  May
2017).  For  the  rivers  Pinka and  Wulka,  data on  suspended  solids  concentrations  corresponding
to 48 h composite  samples  were  provided  for  the  same  period  of  time  by  the  State  Government
of  Burgenland.  As  for  the  river  Raab,  data for  the  years  2009 to 2014 stems  from  a station
equipped  with  devices  for  continuous  monitoring of  water  quality  parameters,  which  is  operated
by  the  Institute  for  Water  Quality  and  Resource  Management  of  the  TU Wien  (Camhy  et  al.,
2013;  Fuiko et  al., 2016).  For  all  gauges,  daily  or  more  detailed  available  loads  were  summed  

up  to obtain  annual  sediment  yields  for  each  year,  i. e.  the  modelled  response  variable  in  the
proposed BaHSYM approach.

Daily  precipitation  data with 1 × 1 km spatial  resolution  were  extracted  from  the  SPARTACUS
dataset  of  the  Austrian  Central  Institution  for  Meteorology  and  Geodynamics  (Hiebl  and  Frei,
2018).  Daily  discharges  were  obtained  from  the  web  GIS  eHYD  (BMLRT, 2020).  Elevation  and
slope  data stem  from  the  official  digital  terrain  model  of  Austria,  which  has  a spatial  resolution
of 10 × 10 m (geoland.at, 2016a).  Detailed  land  use  data at  catchment  scale  for  the  period  2009
to 2014,  including river  network  length  and  lakes  surface,  was  made  available  by  Amann  et  al.
(2019).

2.2.5 Model  combined  with  catchment  clustering

Should  the  model  be  applied  for  spatial  prediction,  i. e.  to estimate  annual  SY for  unmonitored
locations,  it  would  not  be  meaningful  to use  specific  gauges  as  group  level.  For  this  purpose  we
employed  and  tested  a variation  of  the  mixed-effects  model,  in  which  the  group  level  consists  of
clusters  of  similar  catchments  only.  In  this  way,  it  shall  be  possible  to predict  SY for  new  gauges
by  assigning them  to one  of  the  identified  clusters.

We  formed  clusters  of  catchments  by  following a two-step  procedure.  In  the  first  place,  we  

carried  out  a Principal  Component  Analysis  (PCA;  Jolliffe, 2002)  based  on  a subset  of  the  

variables  reported  in  Table 2.2,  including topographic  attributes,  traits  of  the  surface  water
network,  land  use  and  river  discharge.
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Tab.  2.3: Principal  components  obtained  in  the  PCA:  percentage  and  cumulative  explained
variance  of  SY.

Component  Explained variance  (%)  Cumulative  explained variance  (%)

1 48.7  48.7
2 14.5  63.2
3 10.8  74.0
4 8.4  82.4
5 5.8  88.2

6–12 11.8  100.0

Thus,  in  a second  step  we  used  the  first  two principal  components,  which  explain  approximately
63 % of  the  total  variance  (Table 2.3),  to identify  clusters  of  catchments.  To perform  the  cluster
analysis,  we  applied  the  partitioning around  medoids  (PAM)  algorithm  (Kaufman  and  Rousseeuw,
1987;  Park  and  Jun, 2009).  The  identified  clusters  are  described  and  discussed  in  Section 2.3.1.

2.2.6 Model  evaluation

As  described  in  the  previous  sections,  we  tested  different  combinations  of  group  levels,  which
bring into being the BaHSYM variants  depicted  by  the  set  of  Equations 2.3.  These  equations
correspond  to variants  of  Equation 2.1c,  whereas  the  rest  of  the  general  modelling approach  

is  the  same  for  all.  For  the  reasons  discussed  previously,  we  tested  Equations 2.3a to 2.3c for
temporal  prediction  (e. g.  to fill  yearly  gaps),  whereas  Equation 2.3d was  employed  for  spatial
prediction  (e. g.  to extrapolate  SY for  catchments  without  monitoring of  sediment  transport):

ℬji = 𝛽j + 𝛽j,Gaugei
⊙ 𝜎j,Gauge (2.3a)

ℬji = 𝛽j + 𝛽j,Gaugei
⊙ 𝜎j,Gauge + 𝛽j,Riveri ⊙ 𝜎j,River (2.3b)

ℬji = 𝛽j + 𝛽j,Gaugei
⊙ 𝜎j,Gauge + 𝛽j,Basini ⊙ 𝜎j,Basin (2.3c)

ℬji = 𝛽j + 𝛽j,Clusteri ⊙ 𝜎j,Cluster (2.3d)

The BaHSYM variants  were  tested  through  a k-fold  cross-validation  procedure.  To test  the  use  

of  the  model  for  spatial  prediction  (to estimate  SY for  out-of-sample  gauges),  we  applied  a 10-fold
cross-validation  leaving out  gauges  stratified  by  cluster.  The  available  data was  split  in  ten
training and  test  sets.  Given  the  30 available  gauges,  each  training set  consists  of  approximately
27 sites  and  each  test  set  of  approximately  three  different  sites  each  time.  It  is  important  to note
that  all  annual  observations  at  one  site  stay  together  each  time,  i. e.  it  cannot  happen  that,  for
example,  the  years  2009,  2010,  2012 and  2014 of  one  site  are  in  the  training set  and  the  years
2011  and  2013  of  the  same  site  are  in  the  test  set.  This  type  of  cross-validation  is  solely  used
to test  the  model’s  capability  to predict  SY at  new  sites.  Furthermore,  stratifying by  clusters
makes  sure  that  each  test  set  contains  approximately  one  site  of  each  cluster.  The  goodness  of  fit
metrics  are  then  calculated  from  the  collected  predictions  of  all  test  sets.  Since  the  available
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dataset  of  SY comprises  six  years,  to test  the  performance  of  the  models  for  temporal  prediction
(to estimate  SY for  out-of-sample  years),  we  applied  a 6-fold  leave-one-year-out  cross-validation.
The  six  years  of  available  data was  split  into six  training and  test  sets.  Each  training set  consists
of  the  data corresponding to all  sites  for  five  years,  whereas  each  test  set  contains  the  data 

corresponding to all  sites  for  the  remaining year  (in  each  fold  a different  year).  This  type  of  

cross-validation  is  solely  used  to test  the  model’s  capability  to predict  SY for  new  years.  The
goodness  of  fit  metrics  are  then  likewise  calculated  from  the  collected  predictions  of  all  test  sets.

Following criteria were  selected  to quantify  the  performance  of  the  models  in  estimating annual
SY:  Nash-Sutcliffe  efficiency  (NSE),  modified  Nash-Sutcliffe  efficiency  (mNSE)  and  coefficient  of
determination  (R2).  NSE  measures  the  goodness  of  fit  of  the  model,  with  values  ranging from
−∞ for  poor  predictive  power  to one  for  perfect  match  between  modelled  values  and  data (Nash
and  Sutcliffe, 1970).  mNSE  is  a modification  of  NSE  which  is  less  sensitive  to extreme  values  

and  is  more  influenced  by  low  values  (Krause  et  al., 2005).  We  applied  it  to better  evaluate  

the  model  performance  for  catchments  with  relatively  smaller  SSY.  In  addition,  we  selected  

the  root  mean  square  error  (RMSE)  and  percent  bias  (PBIAS)  (Yapo et  al., 1996).  Whereas  

RMSE  calculates  the  standard  deviation  of  the  model  prediction  error,  PBIAS  indicates  the
average  tendency  of  modelled  values  to be  larger  or  smaller  than  the  observed  ones.  In  addition,
BaHSYM was  applied  to the  whole  dataset  to identify  the  best-fit  model.  The  general  best-fit
model  is  presented  and  discussed  in  Section 2.3.2,  while  the  results  for  temporal  and  spatial
prediction  are  described  in  Section 2.3.3.

2.2.7 Software

The  model  was  developed  and  tested  with  R  version  3.6.1 (R  Core  Team, 2019).  In  particular,
we  made  use  of  the  brms  package  version  2.10.0,  which  is  specifically  designed  to implement
Bayesian  multilevel  models  in  R  using the  probabilistic  programming language  Stan  (Bürkner,
2017;  Bürkner, 2018).

2.3 Results  and  discussion

2.3.1 Clusters  of  catchments

The  three  groups  of  catchments  obtained  through  the  cluster  analysis  are  depicted  in  Figure 2.1.
Before  analysing their  distinctive  traits,  it  is  important  to observe  that  they  largely  differ  in  

size.  Clusters  No.  1,  2 and  3 are  composed  by  15,  ten  and  five  catchments  respectively.  This
unbalance  is  mainly  caused  by  the  fact  that  available  SY data stems  in  the  majority  from  gauges
located  in  alpine  and  mountainous  regions,  whereas  lowland  areas  are  rather  under-represented.
Figure 2.2 shows  for  each  cluster  the  range  of  variation  of  the  variables  selected  for  the  PCA.

The  first  cluster  (No.  1)  is  characterised  by  a median  elevation  of 1911 m and  a median  slope  of
56 %.  Other  distinctive  attributes  are  the  presence  of  glaciers  and  large  shares  of  alpine  bare  areas  

and  alpine  grassland.  The  second  cluster  (No.  2)  is  mainly  composed  of  mountainous  catchments,
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Fig.  2.2: Ranges  of  variation  of  the  variables  selected  for  the  cluster  analysis  within  the  three
resulting clusters.

although  with  lower  median  elevation  (1182 m)  and  slope  (44 %).  In  this  cluster,  glaciers  and  bare
areas  are  present  as  well,  though  they  occupy  a much  smaller  share  of  land,  whereas  forests  and
grassland  are  largely  prevalent.  The  third  and  smallest  cluster  (No.  3)  has  a median  elevation  of
582 m and  a median  slope  of 23 %.  There  are  obviously  no glaciers,  and  bare  areas  and  grassland  

are  far  less  important.  This  cluster  has  a high  average  share  of  forest  cover,  but  its  most  distinct
trait  is the  significantly  larger  presence  of  steep arable  land.  With respect  to specific  discharge,
the  first  two clusters  are  quite  similar  with  a median  value  of 0.03 m3 s−1 km−2,  whereas  the
third  cluster  presents  a significantly  lower  value  of 0.01 m3 s−1 km−2.  Total  catchment  area is  not
a distinctive  factor  for  these  clusters.  We  can  only  observe  that  whereas  cluster  No.  3 presents
a very  narrow  range  of  variation  around  small  areas,  the  other  two are  characterised  by  broad
ranges.

2.3.2 Best-fit  model

The  best  model  and  cross-validation  results  were  obtained  with  an  additive  model  comprising
four  variables,  namely  average  elevation  (E),  specific  discharge  (q),  extreme  discharge  (Qp95)  

and  sediment  retention  coefficient  (𝜉).  It  performs  best  in  its  variant  with  two group  levels:
gauges  and  rivers.  This  model  is  described  in  the  set  of  Equations 2.4,  where  priors  consist  of
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Tab.  2.4: Estimate  and  significance  of  the  slope  parameters  (𝛽j)  for  the  input  explanatory
variables  of BaHSYM (best  variant  with  two group  levels:  gauges  and  rivers)  applied
to the  whole  dataset  (SE:  standard  error;  CI:  confidence  interval).

Variable  Estimate  SE 99 % CI 90 % CI

E 0.46  0.14  0.04–0.83  0.22–0.69
q 0.64  0.09  0.42–0.88  0.50–0.78
Qp95 0.27  0.07  0.10–0.46  0.16–0.38
𝜉 0.25  0.13 −0.13–0.59  0.03–0.46

standard  priors  for  centred  and  scaled  variables  according to McElreath  (2020)  and  are  described
by  Equations 2.1d to 2.1k:

log(SSY i) ∼ Normal(𝜇i,  𝜎) (2.4a)

𝜇i = 𝑋ijℬji (2.4b)

𝑋ij =
[︁
𝐸i qi 𝑄p95i

𝜉i

]︁
(2.4c)

ℬji = 𝛽j + 𝛽j,Gaugei
⊙ 𝜎j,Gauge + 𝛽j,Riveri ⊙ 𝜎j,River (2.4d)

As  reported  in  Table 2.4,  the  slope  parameters  (𝛽j)  of  the  first  three  variables  are  statistically
significant  with  a 99 % confidence  interval,  whereas  this  is  true  for  the  sediment  retention  

coefficient 𝜉 with  a 90 % confidence  interval.  An  investigation  of  the  residuals  furthermore
confirmed  that  the  assumption  of  normality  was  met  and  that  the  residuals  do not  show  any  signs  

of  non-linearity  or  heteroscedasticity.  The  residuals  plot  is  reported  in  Figure A.1 in  Appendix A.
Although  catchment  area has  been  considered  in  the  past  to be  a relevant  predictor  for  SSY,

the  critical  review  of  de  Vente,  Poesen,  Arabkhedri,  et  al.  (2007)  concluded  that,  depending
on  scales  and  regional  specificities,  the  relation  between  A and  SSY can  vary  from  positive  to
negative  and  is  often  non-linear.  It  is  thus  in  general  a poor  predictor  of  SSY.  This  is  in  line  

with  our  outcomes.  In  fact,  although  A is  indirectly  considered  in  this  work  as  component  of
the  sediment  retention  coefficient,  its  inclusion  as  separate  variable  does  not  improve  the  model
performance.  Slope  is  almost  interchangeable  with  elevation,  although  E  performs  slightly  better.
The  fact  that  they  hold  a similar  explanatory  power  can  be  explained  through  their  very  high
correlation  coefficient  of  0.92.  Likewise,  high  correlation  coefficients  between  most  land  use
variables  and  E  explain  to a large  extent  why  these  do not  bring almost  any  improvement  to the  

performance  of  the  parsimonious  model  indicated  above.  The  study  of  Gericke  and  Venohr  (2012)
on  erosion  in  German  mountainous  catchments  similarly  found  a strong correlation  between
SY and average  elevation.  For  a complete  overview of  the  correlation coefficients between the
variables  reported  in  Table 2.2,  please  refer  to Figure A.2 in  Appendix A.

Figure 2.3 graphically  shows  the  comparison  between  observed  and  modelled  SSY obtained
with  the  best BaHSYM variant  with  two group  levels  (gauges  and  rivers),  whereas  Table 2.5
reports  the  performance  criteria for  all BaHSYM variants  applied  to the  whole  dataset.
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Fig.  2.3: Observed  annual  SSY vs.  annual  SSY modelled  with BaHSYM (best  variant  with  two
group  levels:  gauges  and  rivers)  applied  to the  whole  dataset.  The  blue  dashed  line
indicates  the  perfect  match  between  modelled  and  observed  values.  The  results  for  two 

gauges  are  highlighted  in  colour,  as  examples  of  different  performance  of  the  model  for
specific  gauges.

Tab.  2.5: Results  of  the  different BaHSYM variants  applied  to the  whole  dataset  for  the
estimation  of  annual  SSY.

Model  R2 NSE  mNSE  RMSE  PBIAS 

(-)  (-)  (-)  (t km−2)  (%)

Fixed-effects  model 0.70  0.69  0.43  133  6.9
Mixed-effects  model  utilising  Equation 2.3a
One  group level:  gauges 0.84  0.83  0.62  96  5.5
Mixed-effects  model  utilising  Equation 2.3b
Two  group levels:  gauges,  rivers 0.85  0.85  0.63  92  6.1
Mixed-effects  model  utilising  Equation 2.3c
Two  group levels:  gauges,  basins 0.85  0.85  0.63  93  5.5
Mixed-effects  model  utilising  Equation 2.3d
One  group level:  catchment  clusters 0.80  0.79  0.54  108  11.3



2.3 Results  and  discussion  39

In  support  of  our  initial  hypothesis,  we  achieve  a notable  improvement  of  the  model  performance
through  the  technique  of  partial  pooling.  This  is  true  for  all  variants  of BaHSYM with  distinct
group  levels,  although  they  lead  to partially  different  outcomes.  The  variant  based  on  catchment
clusters  as  group  level  brings  a notable  enhancement  compared  to the  fixed-effects  model,  with
R2 raised  from  0.70 to 0.80,  NSE  from  0.69 to 0.79 and  mNSE  from  0.43 to 0.54 respectively,
whilst  RMSE  was  lowered  from 1.33 t ha−1 to 1.08 t ha−1.  This  improvement  comes  however  at
the  expense  of  a bias  increase  from 6.9 % to 11.3 %.  Nevertheless,  it  was  by  partially  pooling
over  gauges  and  over  the  combination  of  gauges  with  rivers  or  basins  that  we  achieved  the  real
breakthrough  in  model  performance.  R2 increased  to 0.84 to 0.85,  NSE  to 0.83 to 0.85,  mNSE
to 0.62 to 0.63,  whereas  RMSE  was  decreased  below 1 t ha−1.  Further,  these  three  variants  even
reduced  the  bias.

Despite  the  improvements,  we  can  observe  that  mNSE  is  consistently  lower  than  NSE  in  

all  model  variants.  In  other  words,  the  model’s  estimates  are  more  reliable  for  catchments
with  greater  SSY,  independently  from  their  size.  This  is  exemplified  by  the  performance  of  the
best BaHSYM variant  with  two group  levels  (gauges  and  rivers)  for  two gauges  highlighted  in
colour  in  Figure 2.3.  The  model  performed  very  well  for  the  gauge  Kössen-Hütte,  located  in  

the  mountainous  river  Großache  and  included  in  cluster  No.  2 (R2:  0.93,  NSE:  0.88,  mNSE:  

0.56,  RMSE:  106 and  PBIAS:  10.3).  The  performance  was  however  rather  poor  for  the  gauge  

Neumarkt,  located  in  the  rather  lowland  river  Raab  and  included  in  cluster  No.  3 (R2:  0.32,
NSE: −0.11,  mNSE: −0.07,  RMSE:  6 and  PBIAS:  9.7).  While  their  performance  visually  might
appear  comparable,  the  goodness  of  fit  metrics  clearly  show  the  difference.  Especially  the  NSE  is  

a sensitive  metric  for  the  relative  relationship  of  the  magnitude  of  modelled  residual  variance  and
measured  data variance.  In  this  respect,  viewed  in  isolation,  the  model  captures  the  measured
data variance  of  Kössen-Hütte  way  better  than  of  Neumarkt,  which  is  also clearly  reflected  by
the  R2 metric.

2.3.3 Model  for  temporal  and  spatial  prediction

Taking into account  the  huge  temporal  variability  of  SY observed  in  our  dataset,  the  fixed-effects
model  does  not  perform  badly  for  temporal  predictions,  with  a NSE  of  0.65 and  a RMSE  

of 1.41 t ha−1 (Table 2.6).  This  means  that  the  selected  combination  of  variables  has  a high  

explanatory  power  with  respect  to the  temporal  variability  of  SSY.  Two of  the  four  variables,
namely  specific  and  extreme  discharge,  are  time-dependent  and  especially  the  latter  largely  varies
from  one  year  to the  next.

Table 2.6 shows  the  considerable  improvement  of  the  model  performance  for  temporal  prediction
achieved  through  partial  pooling.  The  three BaHSYM variants  achieve  the  same  NSE  of  0.71.
The  combination  of  gauges  with  rivers  or  with  basins  in  a mixed-effects  model  with  two group
levels  slightly  improves  RMSE  from 1.41 t ha−1 to 1.27 t ha−1,  at  the  expense  of  a small  bias  

increase.  Taking individual  gauges  as  single  group  level  instead  than  the  combination  of  two
group  levels  leads  to a better  fit  for  individual  catchments,  also for  the  ones  with  smaller  SSY,
which  is  reflected  in  a slightly  higher  mNSE  of  0.50.  Nevertheless,  this  improvement  comes  at  a
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Tab.  2.6: Results  of  the  6-fold  leave-one-year-out  cross-validation  for  different BaHSYM variants
tested  for  temporal  prediction  of  annual  SSY.

Model  R2 NSE  mNSE  RMSE  PBIAS 

(-)  (-)  (-)  (t km−2)  (%)

Fixed-effects  model 0.66  0.65  0.39  141  6.9
Mixed-effects  model  utilising  Equation 2.3a
One  group level:  gauges 0.72  0.71  0.50  128  7.2
Mixed-effects  model  utilising  Equation 2.3b
Two  group levels:  gauges,  rivers 0.73  0.71  0.49  127  8.6
Mixed-effects  model  utilising  Equation 2.3c
Two  group levels:  gauges,  basins 0.73  0.71  0.49  127  8.4

small  expense  of  the  general  performance,  since  R2 and  RMSE  reflect  to a greater  extent  the  

dominance  of  catchments  with  high  SSY.  The  ability  of  the  fixed-effects  model  for  temporal
prediction  is  thus  enhanced  by  the  structure  of BaHSYM.  Including random-effects  allows  the
effect  sizes  of  the  explanatory  variables  to be  correlated.  Making use  of  at  least  one  explanatory
variable  that  varies  in  time  can  cause  the  effect  sizes  of  the  other  explanatory  variables  to 

depend  on  the  effect  size  of  that  time-dependent  variable.  For  example,  in  a year  with  high
extreme  discharge,  the  effect  size  of  the  retention  coefficient  (which  does  not  vary  in  time)  can  be
different  from  the  one  it  has  in  a year  with  low  extreme  discharge.  While  such  correlations  are
often  not  statistically  significant,  they  still  affect  the  predictive  power  of  models  making use  of
random-effects.  In  other  words,  random-effects  have  the  potential  to add  sometimes  complicated
“it-depends-structures” to a linear  regression  model.

de  Vente,  Poesen,  Verstraeten,  Govers,  et  al.  (2013)  state  that  extrapolating SY for  different
years  for  catchments  that  were  used  for  calibration  generally  leads  to better  validation  results  than
extrapolating SY for  out-of-sample  catchments,  since  differences  in  e. g.  land  use  and  dominant
erosion  processes  between  calibration  and  validation  datasets  are  relatively  small.  In  our  case,
the  model  performs  almost  equally  well  for  both  purposes.  The  two hydrological  variables  in  the
model  are  fundamental  to describe  temporal  variability,  but  their  combination  with  elevation  and
the  morphometric  variables contained in the  sediment  retention coefficient  also allow capturing
to a great  extent  the  spatial  variability.

This  model  application  further  supports  our  hypothesis  regarding the  potential  of  Bayesian
hierarchical  models  in  this  field.  As  reported  in  Table 2.7,  adding partial  pooling over  clusters
of  catchments  notably  improves  all  performance  criteria.  Although  lowland  catchments  with  

generally  lower  SSY are  under-represented  in  the  sample  available  for  model  training,  partial
pooling over  the  clusters  significantly  improves  mNSE  from  0.39 to 0.48.  This  implies  that  even
though  the  cluster  of  this  type  of  catchments  is  relatively  small,  it  conveys  a significant  amount
of  information  on  the  different  erosion  and  sediment  transport  processes  that  distinguish  these
catchments  from  the  mountainous  and  alpine  ones.  That  is  an  exemplary  benefit  of  this  technique
in  case  of  unbalanced  datasets.  Nevertheless,  it  is  clear  from  the  difference  between  NSE  (0.72)
and  mNSE  (0.48)  that  the  good  performance  of  the  model  is  dominated  by  mountainous  and
alpine  catchments  with  greater  erosion  and  larger  transfer  of  sediments.  Our  outcomes  show  that
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Tab.  2.7: Results  of  the  10-fold  cross-validation  leaving out  gauges  stratified  by  cluster  for
different BaHSYM variants  tested  for  spatial  prediction  of  annual  SSY.

Model  R2 NSE  mNSE  RMSE  PBIAS 

(-)  (-)  (-)  (t km−2)  (%)

Fixed-effects  model 0.66  0.64  0.39  142  6.1
Mixed-effects  model  utilising  Equation 2.3d
One  group level:  catchment  clusters 0.74  0.72  0.48  128  10.5

the  idea of  combining BaHSYM with  clusters  of  catchments  as  group  level  holds  a great  potential
for  spatial  extrapolation,  but  they  also reveal  its  limitations.  In  order  to apply  the  model  to
make  robust  predictions,  it  is  essential  that  new  catchments  share  fundamental  similarities  with
the  available  clusters.  In  our  case,  given  the  largely  heterogeneous  sample  available,  elevation,
slope,  land  use  and  discharge  were  all  important  factors  to determine  the  clustering.  However,  if
a more  homogeneous  sample  was  available,  more  specific  and  targeted  criteria could  be  used.

The  outcomes  of BaHSYM are  very  promising when  compared  to those  of  ordinary  linear  

regressions.  For  example,  de  Vente,  Verduyn,  et  al.  (2011)  attempted  to spatially  extrapolate  

SY and  SSY based  on  linear  regression  and  on  a wide  number  of  variables  for  a sample  of  61 

catchments  with  areas  comprised  between  30 and 13 000 km2 in  Spain.  Although  they  could
achieve  quite  good  results  for  calibration  (NSE:  0.58),  the  model  performed  very  poorly  in  the
validation  step,  with  a NSE  of −0.10.  For  the  same  dataset,  they  did  achieve  better  validation
results  (NSE  of 0.35 to 0.67 with  spatially  distributed  models  and  0.72 with  the  factorial  score
model),  but  such  models  are  more  complex  and  require  considerably  more  data and  expert
assessments  than  the  variants  of BaHSYM presented  in  this  paper  (de  Vente  and  Poesen, 2005;
de  Vente,  Poesen,  Verstraeten,  Van  Rompaey,  et  al., 2008).  Our  benchmark  is  not  the  model  by
de  Vente,  Verduyn,  et  al.  (2011)  per  se,  but  rather  the  use  of  ordinary  linear  regressions  of  which
their  study  is  an  example.  Nevertheless,  we  tested  the  performance  of  their  model  for  our  study
area.  To do that,  we  reproduced  the BaHSYM model  with  the  variables  selected  by  de  Vente,
Verduyn,  et  al.  (2011)  to model  SY and  SSY:  (i)  two topographic  variables,  namely  average  slope
(%),  also termed  “mean  slope  gradient”,  based  on  a 25 × 25 m digital  terrain  model  and  “relief
ratio” (m km−2)  calculated  as

𝐸m𝑎x − 𝐸min

𝐴
;  

(ii)  the  climatic  variable  “precipitation  concentration  index” (%)  calculated  as

12∑︁
i=1

p2
i

𝑃 2 · 100 ,

where pi is  the  average  monthly  precipitation  (mm)  and 𝑃 is  the  average  annual  precipitation
(mm);  (iii)  the  land  use  variable  “Matorral” and  (iv)  three  lithological  and  soil  texture  type  

variables,  namely  percentage  of  “acid  metamorphic  rock”,  “limestone” and  “Fluvisols” (%;
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Tab.  2.8: Results  of BaHSYM variants  tested  for  the  estimation  of  annual  SSY with  the  variables  

of  the  ordinary  regression  model  developed  by  de  Vente,  Verduyn,  et  al.  (2011).  Results
are  reported  for  the  model  with  sparsely  vegetated  area as  land  use  variable.

Model  R2 NSE  mNSE  RMSE  PBIAS 

(-)  (-)  (-)  (t km−2)  (%)

Model  fit  to  whole dataset
Fixed-effects  model 0.21  0.10  0.08  226  15.3
Mixed-effects  model  utilising  Equation 2.3a
One  group level:  gauges 0.61  0.60  0.47  150  6.1
Mixed-effects  model  utilising  Equation 2.3b
Two  group levels:  gauges,  rivers 0.61  0.60  0.47  150  6.1
Mixed-effects  model  utilising  Equation 2.3c
Two  group levels:  gauges,  basins 0.61  0.60  0.47  150  6.1
Mixed-effects  model  utilising  Equation 2.3d
One  group level:  catchment  clusters 0.36  0.29  0.21  201  15.6

Cross-validation  for  temporal  prediction
Fixed-effects  model 0.13 −0.11 −0.05  250  19.3
Mixed-effects  model  utilising  Equation 2.3a
One  group level:  gauges 0.43  0.38  0.29  187  9.7
Mixed-effects  model  utilising  Equation 2.3b
Two  group levels:  gauges,  rivers 0.43  0.37  0.28  188  10.7
Mixed-effects  model  utilising  Equation 2.3c
Two  group levels:  gauges,  basins 0.41  0.36  0.27  190  8.9

Cross-validation  for  spatial  prediction
Fixed-effects  model 0.001 −18.7 −1.2  1055  107.0
Mixed-effects  model  utilising  Equation 2.3d
One  group level:  catchment  clusters 0.007 < −103 < −103 > 106 > 106

European  Commission  and  European  Soil  Bureau  Network, 2004).  With  respect  to the  land  

use  variable,  there  is  no perfect  match  for  “Matorral” in  Austria,  which  corresponds  to a 

Mediterranean  and  sub-Mediterranean  evergreen  bush  and  scrub  land  use  type.  Instead,  we
tested  three  variables  closely  resembling this  land  use  type  in  the  Austrian  landscape,  namely
percentage  of  sparsely  vegetated  area,  transitional  woodland-shrub  and  natural  grassland  (%,
Corine  Land  Cover  codes  333,  324 and  321,  respectively).  The  results  of  this  comparative  exercise
are  reported  in  Table 2.8.  The  original  fixed-effects  model  overall  did  not  perform  well  and  an
important  reason  might  lie  in  the  variables,  which  were  selected  for  catchments  very  different
from  the  ones  included  in  our  study  area.  Nevertheless,  it  is  interesting to observe  that  adding
group  levels,  i. e.  turning it  into a mixed-effects  model,  did  improve  the  best-fit  model  (NSE  of
0.29 to 0.60 instead  of  0.10)  as  well  as  the  model  for  temporal  prediction  (NSE  of 0.36 to 0.38
instead  of −0.11)  considerably.  However,  adding group  levels  failed  for  the  use  of  the  model  for
spatial  prediction  (NSE < −103 instead  of −18.7).  The  comparison  of  these  two models  is  thus
useful  to show  that  more  complex  structures,  such  as  the  one  of BaHSYM,  can  indeed  be  very
beneficial,  but  only  in  combination  with  suitable  variables  for  each  application.  Otherwise,  they
might  even  worsen  the  model  performance.
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2.4 Conclusions  and  outlook

The  outcomes  of  this  study  support  the  hypothesis  that  Bayesian  hierarchical  models  hold  a great
potential  to improve  the  prediction  of  sediment  yield  in  rivers.  We  have  shown  that  through  the
implementation  of  this  technique  even  parsimonious  linear  regression  models  can  provide  relatively
robust  temporal  and  spatial  extrapolations.  This  means  that  with  a reduced  amount  of  data
availability  for  few  variables,  this  technique  enables  filling annual  gaps,  performing predictions  for
future  scenarios  and  extrapolating SY for  catchments  without  monitoring of  sediment  transport.
We  have  also shown  that  through BaHSYM the  limitation  of  having unbalanced  datasets  for
the  model  training is  partially  compensated  for.  Nevertheless,  the  power  of  this  technique  can
overcome  the  lack  of  information  only  to a certain  extent.  The  robustness  and  reliability  of  the
predictions  remain  constrained  by  the  availability  of  sediment  transport  data.  For  the  Austrian
case  study,  for  example,  it  is evident  that  at  present  an enhanced monitoring network  would be
required  in  lowland  catchments  with  dominant  erosion  on  arable  land.

What  we  put  forward  is  the  use  of  this  technique  for  an  enhanced  extrapolation  of  sediment
yield  across  scales,  but  the  model  per  se  will  likely  need  to be  adapted  for  each  case  study.
BaHSYM shall  be  thus  seen  as  a methodological  approach.  Specific  purpose,  data availability
and  required  temporal  and  spatial  scales  shall  determine  in  each  application  the  most  adequate
variables  and  group  levels  to be  used.

Future  lines  of  research  include  upgrading BaHSYM via advanced  correlation  structures  (e. g.
Gaussian  processes),  formulating informative  priors  as  well  as  extending the  application  of  this
technique  to the  investigation  of  the  selected  transfer  of  particulate-bound  contaminants  in  river
catchments.
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3.1 Introduction

Many  efforts  to control  diffuse  pollution  of  surface  waters  in  agricultural  catchments  are  based
on  the  concept  of  critical  source  areas.  This  concept  commonly  refers  to relevant  source  areas
connected  to surface  waters  in  a way  that  allows  significant  amounts  of  pollutants  to enter  surface
waters  (e. g.  A.  L.  Heathwaite,  Quinn,  et  al., 2005;  Pionke  et  al., 2000;  Strauss  et  al., 2007).
While  the  concept  of  critical  source  areas  is  basically  applicable  to many  different  pollutants,  it
is  particularly  relevant  in  the  case  of  particulate  phosphorus  (PP)  and  other  sediment-bound
emissions.

PP  emissions  in  agricultural  catchments  are  in  fact  often  dominated  by  soil  erosion  processes
and  PP  transport  into surface  waters  by  overland  flow.  In  this  context,  a common  approach  

to identify  critical  source  areas  is  the  use  of  spatially  distributed  models.  de  Vente,  Poesen,  

Verstraeten,  Govers,  et  al.  (2013)  compared  different  models  developed  to predict  soil  erosion
rates,  sediment  yield  and  in  case  of  spatially  distributed  models  also sediment  sources  and  sinks.
They  conclude  that  while  empirical/conceptual,  spatially  distributed  models  show  good  model
performances  in  comparison  to data requirements,  the  application  of  this  type  of  models  is  only
appropriate  in  cases  where  the  considered  erosion  (e. g.  sheet,  rill  and  ephemeral  gully  erosion)
and  sediment  transport  processes  (e. g.  overland  flow,  soil  creep  and  debris  flow)  effectively
dominate  the  catchment  of  interest.

This  implies  that  in  order  to successfully  apply  such  a model  to a certain  catchment,  a priori
knowledge  on  its  dominant  erosion  and  sediment  transport  processes  as  well  as  pathways  is
required.  Jetten,  Govers,  et  al.  (2003)  even  advocate  including observed  patterns  in  modelling
studies,  since  this  can  greatly  improve  model  results.  Such  knowledge,  however,  is  only  scarcely
available.

A number  of  studies  report  that  agricultural  and  civil  engineering structures  (e. g.  roads,
ditches  and  culverts)  may  exert  a decisive  influence  on  erosion  and  sediment  transport  within
catchments.  Roads  are  found  to “accelerate  water  flows  and  sediment  transport” (Forman  and  

Alexander, 1998)  and  are  responsible  for  altering flow  routing patterns  as  well  as  slope  lengths
(Aurousseau  et  al., 2009;  Van  Oost  et  al., 2000).  Particularly  in  combination  with  roadside
ditches  and  culverts,  they  can  directly  connect  sections  of  catchment  areas  to stream  networks,
which  otherwise  would  only  be  indirectly  connected  or  not  connected  at  all  (Alder  et  al., 2015;
Croke  et  al., 2005;  Doppler  et  al., 2012;  Hösl  et  al., 2012;  La Marche  and  Lettenmaier, 2001;
Wemple  et  al., 1996).

Moussa et  al.  (2002)  furthermore  point  out  that  inter-field  ditch  networks  increase  the  portions
of  catchment  areas  directly  contributing to the  discharge  of  surface  waters.  In  short,  linear  

agricultural  and  civil  engineering structures  hold  a large  potential  to boost  direct  pollutant
emissions  into surface  waters  even  from  remote  and  at  first  glance  disconnected  fields.

This  a priori  knowledge  is  very  valuable  when  it  comes  to applying a model  to a certain
catchment.  In  case  of  catchments  where  roads  play  a major  role,  they  are  capable  of  extending
the  natural  stream  network  considerably.  Or  to say  it  with  the  words  of  Hösl  et  al.  (2012):
“Ditches  may  occur  near  almost  every  road  or  track  to drain  road  systems.”
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Despite  all  these  observations,  linear  structures  are  rarely  considered  in  models  and  modelling
studies  (Fiener  et  al., 2011).  A notable  exception  is  the  WaTEM/SEDEM  model  (Van  Oost  et  al.,
2000;  Van  Rompaey  et  al., 2001;  Verstraeten,  Van  Oost,  et  al., 2002),  which  optionally  takes  a
roads  data layer  as  additional  input.  Instead  of  integrating linear  structures  into models,  there
is,  however,  also the  alternative  of  digital  elevation  model  (DEM)  pre-processing.  The  RIDEM
model  (Duke  et  al., 2003;  Duke  et  al., 2006)  takes  this  approach.  It  utilises  cross-sectional
templates  of  different  configurations  of  roads  and  roadside  ditches  to enforce  their  effect  on  flow
directions.  Although  DEM  pre-processing  has  the  advantage  of  not  necessarily  being  dependent
on  a certain  model,  it  does  not  seem  to be  widely  applied  in  the  context  of  linear  structures.

While  the  role  of  roads  and  ditches  in  altering overland  flow  patterns  is  generally  rather
well-known,  still  vague  is  the  role  of  another  common  agricultural  and  civil  engineering structure:
storm  drains  (Gramlich  et  al., 2018).  This  point-shaped  structure  is  similarly  capable  of  directly
connecting remote  fields  to surface  waters.  The  main  difference  to ditches  lies  in  its  subsurface
transport  pathway  via sewers.  In  direct  comparison  with  ditches,  this  means  there  is  less  retention,  

given  that  roadside  ditches  are  often  at  least  partly  vegetated  with  grass  and  occasionally  cleaned.
The  preparation  and  evaluation  of  several  applications  of  the  semi-empirical,  spatially  dis-  

tributed  PhosFate  model  (Kovacs,  Honti,  and  Clement, 2008;  Kovacs,  Honti,  Zessner,  et  al.,
2012)  in  the  Austrian  federal  state  of  Upper  Austria (Kovacs, 2013;  Zessner,  Hepp,  Kuderna,  

Weinberger,  Gabriel,  and  Windhofer, 2014)  suggest  that  storm  drains  may  have  a significant
influence  on  sediment  transport  into surface  waters.  Verstraeten,  Poesen,  Gillijns,  et  al.  (2006)
state  that  the  effect  of  riparian  vegetated  buffer  strips  at  catchment  scale  may  be  rather  low,
since  a considerable  amount  of  sediment  bypasses  them  through  sewers,  among others.  Another
study  found  that  artificial  zones  like  farm  courtyards  are  responsible  for  about  half  of  the  fields
connected  to the  stream  network  (Gascuel-Odoux  et  al., 2011).  While  they  do not  decidedly  

mention  storm  drains  or  sewers,  it  can  be  reasoned,  that  they  are  a major  cause  of  this.  In
addition,  Djodjic  and  Villa (2015)  express  that  surface  water  inlets  are  common  in  Sweden  and
due  attention  should  be  paid  to them.

As  a result  of  a field  mapping campaign  in  a catchment  in  north-western  Switzerland,  Bug
(2011)  reports  that  storm  drains  occur  mainly  at  asphalt  roads  leading across  a hillside  and  in
areas  with  flow  convergence.  However,  for  another  catchment  in  the  German  federal  state  of
Lower  Saxony,  he  depicts  a dense  network  of  ditches  but  no storm  drains  at  all.  This  indicates
that  there  exist  different  traditions  in  implementing agricultural  and  civil  engineering measures.

Since  detailed  datasets  on  the  existence  of  ditches  and  storm  drains  are  rarely  available  but  a
prerequisite  for  modelling studies  aiming at  the  identification  of  critical  source  areas,  there  is  a
need  to map  them.  Although  several  studies  have  carried  out  related  field  mapping campaigns
in  the  past  (e. g.  Bug, 2011;  Croke  et  al., 2005;  Hösl  et  al., 2012),  no ready  to use  mapping 

key  exists  for  this  task.  This  study  therefore  intends  to develop,  present  and  discuss  a simple  

mapping key  suitable  for  practitioners  interested  in  a quick  and  systematic  assessment  of  the
types  of  agricultural  and  civil  engineering structures  present  in  a certain  catchment  as  well  as
the  impact  they  may  have  on  the  spatial  distribution  of  critical  source  areas.
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Tab.  3.1: Additional  properties  of  the  case  study  catchment.

Min.  1st Qu.  Median Mean 3rd Qu.  Max.

Field size  in ha  0.01  0.36  0.90  1.60  2.02  28.16
Slopea in %  0.00  4.59  8.41  10.22  13.50  241.23
Dischargeb in m3 s−1 0.94  1.87  2.68  4.58  4.23  117.00

a Based on a  DEM with 10 × 10 m resolution.
b Period 2008  to  2013  of the  gauge  204867,  Pramerdorf/Pram  close  to  the  outlet
with a  catchment  area  of approx. 340 km2 (BMLFUW, 2015).

A further  objective  is  to estimate  the  share  of  PP  emissions  entering surface  waters  via storm  

drains  and  sewers  at  road  embankments.  The  relevance  of  these  structures  is  assessed  for  a case
study  catchment  with  an  area of  several  hundred  square  kilometres.  This  is  seen  as  essential  

information  for  policy  makers  facing the  task  to meet  water  quality  targets  in  catchments  of
similar  size.

3.2 Material  and  methods

3.2.1 Case  study catchment

This  study  was  performed  on  the  catchment  of  the  river  Pram  in  the  Austrian  federal  state  of  

Upper  Austria,  which  is  located  in  the  northern  part  of  the  country.  Its  area is  approximately
380 km2 in  size  and  it  belongs  to the  geologic  formation  Molasse  basin  with  small  parts  in  the
north  and  northeast  belonging to the  crystalline  Bohemian  Massif.  The  prevalent  soil  texture  is
silt  loam  (nearly 50 % of  the  soil  surface)  followed  by  other  types  of  loam.  Only 5 % of  the  soil
surface  are  dominated  by  clay.  Soil  textures  dominated  by  sand  are  not  present  in  the  catchment
area.

Annual  precipitation  ranges  from  roughly 900 mm in  the  north  with  an  elevation  of  about
300 m a. s. l.  to around 1200 mm in  the  south  with  an  elevation  of  about 800 m a. s. l.  Agricultural
land  (approx. 45 % arable  land  and 25 % grassland)  is  prevailing in  the  predominantly  hilly  

terrain.  Forests  account  for  about 20 % and  built-up  areas  for  almost 10 % of  the  catchment  

area.  The  most  important  crops  are  winter  grains  and  maize  covering approximately  40 and
30 % of  the  arable  land  respectively.  Additional  catchment  properties  are  listed  in  Table 3.1.
Diffuse  PP  emissions  are  totally  dominated  by  erosion  from,  especially,  agricultural  land.  Other
types  of  sources  are  negligible  (Zessner,  Gabriel,  Kovacs,  et  al., 2011).  Altogether,  anthropogenic
influence  can  be  considered  as  high  in  this  catchment.

3.2.2 Mapping key

The  mapping key  was  developed  based  on  the  hydrological  connectivity  definitions  related  to
landscape  features  and  hillslope  scale  as  collected  by  Ali  and  Roy  (2009,  Table  1).  Among these
definitions,  the  one  from  Croke  et  al.  (2005)  distinguishes  “two types  of  connectivity:  direct
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connectivity  via new  channels  or  gullies,  and  diffuse  connectivity  as  surface  run-off  reaches  the
stream  network  via overland  flow  pathways.”

For  this  mapping key,  the  direct  connectivity  type  was  extended  to include  not  only  channels  and
gullies  but  also ditches,  culverts,  storm  drains  and  sewers.  Direct  connectivity  was  furthermore
split  into known  and  unknown  direct  connectivity  in  order  to differentiate  between  areas  connected
to an  existing (e. g.  governmental  mapped)  stream  network  dataset  and  areas  connected  to the
actual  stream  network  via features  unknown  to such  a dataset  (cf.  Mosimann  et  al., 2007).  The
term  diffuse  connectivity  was  kept  as  it  is.

A major  issue  with  all  connectivity  mapping methods  is  that  they  merely  record  “snapshots”
(Bracken,  Wainwright,  et  al., 2013).  Within  the  concept  of  hydrological  connectivity  one  can  

distinguish  static/structural  and  dynamic/functional  elements  of  connectivity  (Bracken  and  

Croke, 2007;  Turnbull  et  al., 2008).  A simplified  view  on  these  elements  comprehends  space  

as  structure  and  space-time  as  function  (Wainwright  et  al., 2011).  Omitting the  functional
element  leads  to a purely  structural  approach,  which  is  solely  capable  of  pointing out  potential
connectivity  (Bracken,  Wainwright,  et  al., 2013).

de  Vente,  Poesen,  Verstraeten,  Govers,  et  al.  (2013)  note  that  empirical/conceptual,  spatially
distributed  models  are  frequently  built  on  the  RUSLE  (Renard  et  al., 1997).  Since  this  erosion
model  as  well  as  its  precursor  USLE  (Schwertmann  et  al., 1987;  Wischmeier  and  Smith, 1978)
estimate  long term  yearly  erosion  rates  under  average  climatic  conditions  only,  which  can  likewise  

be  considered  a potential  (erosion  potential),  they  match  comparatively  well  with  purely  structural
connectivity  approaches.

Ultimately,  the  development  of  this  mapping key  aimed  at  aiding practitioners  in  preparing
modelling studies  with  empirical/conceptual,  spatially  distributed  models  for  water  quality
management  at  catchment  scale.  It  therefore  was  based  on  a purely  structural  approach  focusing
on  discrete  mapping units  like  fields  or  (parts  of)  zero-order  catchments.  With  the  term  zero-  

order  catchments  we  refer  to the  catchment  areas  of  all  zones  in  a landscape  exhibiting an
overland-channel  transition  (Figure 3.1).

For  each  mapping unit,  this  mapping key  fundamentally  records  if  it  is  (i)  connected  or  (ii)  not
connected  in  a natural  way  and/or  if  an  (additional)  artificial  connection  is  (i)  present,  (ii)  not
present  or  (iii)  present  in  a downstream  mapping unit.  It  is  thus  required  to map  from  downstream
to upstream.  Both  of  these  types  of  connectivity  are  further  supported  by  explanatory  details,
which  include  the  cause  of  a mapping unit  being connected  or  not  in  a natural  way  and,  in  case
one  is  present,  the  type  of  the  artificial  connection.

Additionally,  this  mapping key  allows  for  mapping artificial  point-shaped  and  linear  structures  

as  well  as  natural  features  like  channels  missing in  existing datasets.  This  can  help  with  retracing
flow  pathways  in  case  of  questions  once  the  mapping has  been  completed.  The  full  ready  to use
and  basically  adaptable  mapping key  tables  can  be  found  in  Appendix B.

Since  connectivity  is  linked,  among others,  to discharge  frequency,  especially  the  categorisation
of  mapping units  regarding connected  in  a natural  way  or  not  is  somewhat  arbitrary  and  in  

danger  of  subjectivity  of  the  person(s)  carrying out  a mapping campaign.  This  issue  can  be
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Fig.  3.1: Example  of  a zero-order  catchment  (catchment  area belonging to a single  overland-
channel  transition  zone)  based  on  a DEM  with 10 × 10 m resolution  and  the  D8 single
flow  direction  algorithm  (O’Callaghan  and  Mark, 1984).

addressed  by  defining a threshold  obstacle  height.  Mosimann  et  al.  (2007)  acknowledge  obstacles
higher  than 50 cm as  effective  barriers  for  surface  run-off,  preventing connectivity,  and  so do we.

In  order  to efficiently  apply  this  mapping key,  a mobile  geographic  information  system  (GIS)
supporting a global  navigation  satellite  system  (GNSS)  with  at  least  two datasets  is  required:
(i)  an  existing stream  network  and  (ii)  borders  of  the  desired  mapping units  as  well  as  the  ability
to alter  them.  Additional  digital  orthophotos  help  furthermore  with  orientation  and  locating
certain  landscape  features.

3.2.3 Application  of  the  mapping key

For  the  application  of  the  mapping key,  agricultural  fields  were  chosen  as  mapping units.  

The  statistical  population  of  the  case  study  catchment  is  therefore  the  total  amount  of  its  

fields.  Survey  sampling was  carried  out  with  the  help  of  one-stage  cluster  sampling.  Cluster
sampling is  particularly  useful  when  the  statistical  population  under  consideration  can  be  grouped
geographically.  In  the  present  case,  it  was  grouped  into small  sub-catchments,  which  allowed  for
minimising travel  times.
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Tab.  3.2: Mapped  agricultural  land  and  number  of  fields  per  catchment  and  agricultural  land
use  type.

Cluster A  Cluster B  Cluster C  Total

Mapped 

agricultural  

land in ha

Arable  land 128  206  149  483
Grassland 23  69  76  168

Total 151  275  225  651

No.  of fields  Arable  land 37  67  73  177
Grassland 21  49  76  146

Total 58  116  149  323

Average  field 

size  in ha
Arable  land 3.5  3.1  2.0  2.7
Grassland 1.1  1.4  1.0  1.2

Total 2.6  2.4  1.5  2.0

Generally  speaking,  one-stage  cluster  sampling refers  to the  random  selection  of  a subset  of
all  clusters  and  the  systematic  assessment  of  all  elements  within  the  selected  clusters.  On  the
contrary,  two-stage  cluster  sampling  refers  to  not  only  the  random  selection  of  a  subset  of  all
clusters  but  also to the  random  selection  of  a subset  of  the  elements  to be  assessed  within  the
selected  clusters.  In  this  context,  three  small  sub-catchments/clusters  (Figure 3.2)  were  randomly
selected  from  the  total  of  154 small  sub-catchments/clusters  of  the  case  study  catchment.  The
one-stage  cluster  sampling was  then  carried  out  by  systematically  mapping all  of  their  fields.

For  this  task,  a tablet  computer  running Microsoft  Windows  10 with  Esri  ArcPad  version  10.2.1
employing an  external  Global  Positioning System  (GPS)  receiver  was  used.  The  field  borders  

could  be  taken  from  a (geo-)database  related  to the  Integrated  Administration  and  Control
System  (IACS)  of  the  Common  Agricultural  Policy  (CAP)  of  the  European  Union  (EU)  (Hofer
et  al., 2014).  A high-quality  governmental  mapped  stream  network  was  available  from  the  Federal
Office  of  Metrology  and  Surveying (2015)  and  digital  orthophotos  were  contributed  by  the  State
Government  of  Upper  Austria.  Moreover,  for  referencing,  a picture  geodatabase  was  created
containing overview  pictures  and  pictures  showing the  relevant  details  of  each  field.

About 650 ha of  agricultural  land  corresponding to 323 fields  were  mapped  in  total  (Table 3.2).
These  are  approximately 2.5 % of  the  overall  agricultural  land  within  the  case  study  catchment.
Each  mapped  cluster  has  its  own  characteristics:  cluster  A is  elongated  with  tendentiously  steep
slopes  and  roads  mainly  on  the  ridges,  cluster  B  has  a tree-like  stream  network,  tendentiously
gentle  slopes  and  roads  mainly  on  the  ridges  as  well  and  cluster  C  has  roads  primarily  leading
across  hillsides  and  partially  cased  streams.  The  fairly  smaller  average  field  size  of  cluster  C
may  be  due  to its  roads  leading across  hillsides,  which  split  more  fields  apart.  While  cluster  A’s
diffuse  PP  emissions  reaching surface  waters  are  with  roughly 3.4 kg ha−1 rather  high  due  to
its  steep  slopes,  those  of  cluster  B  and  C  are  lower  and  amount  to roughly  1.4 and 1.1 kg ha−1

respectively.
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Fig.  3.2: The  case  study  catchment  with  the  three  randomly  selected  and  systematically  mapped
clusters  as  well  as  the  seven  water  quality  gauges  along the  river  Pram  used  for
calibrating PhosFate.
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Fig.  3.3: Roadside  ditch with multiple  storm drains at  varying distances.  The  left  picture  was
taken  upstream  of  the  right.

3.2.4 Modelling the  impact  of  storm  drains  at  road  embankments  on  PP  transport

3.2.4.1 The  PhosFate  model

PhosFate  is  a semi-empirical,  spatially  distributed  phosphorus  emission  and  transport  model
created  for  the  identification  of  critical  source  areas  in  a management  context  at  catchment  scale
(Kovacs,  Honti,  and  Clement, 2008;  Kovacs,  Honti,  Zessner,  et  al., 2012).  It  is  based  on  raster
GIS  data and  utilises  the  (R)USLE  (Renard  et  al., 1997;  Schwertmann  et  al., 1987;  Wischmeier
and  Smith, 1978)  incorporating a single  flow  algorithm  version  of  the  slope  length  factor  of
Desmet  and  Govers  (1996).  PP  emissions  are  then  calculated  from  the  erosion  and  PP  content
of  each  raster  cell  considering a local  enrichment  ratio (Kovacs, 2013).

The  PP  transport  part  of  PhosFate  consists  of  the  computation  of  the  PP  retention  via an  

exponential  function  of  the  cell  residence  time  and  a mass  balance  equation  considering the  

inflowing PP  load,  the  local  PP  emission  and  the  local  as  well  as  the  transfer  PP  retention.
Computing the  cell  residence  time  requires  the  calculation  of  the  hydraulic  radius  among others.
This  variable  in  turn  involves  model  parameters  related  to discharge  frequency  (Kovacs, 2013).
So again,  a potential  (transport  potential)  is  calculated.  PP  transport  as  calculated  by  PhosFate
thus  reflects  maximum  potential  PP  transport  for  a chosen  discharge  frequency.

3.2.4.2 Storm  drains  model  extension

The  current  version  of  PhosFate  does  not  consider  any  linear  structures  potentially  influencing PP  

transport.  As  a result  of  the  field  mapping campaign  (see  Section 3.3.1),  it  was  deemed  necessary
to take  storm  drains  at  varying distances  along road  embankments  often  in  combination  with
roadside  ditches  (Figure 3.3)  into account.  An  algorithm  incorporating known  locations  of  storm  

water  infrastructure  is  the  (W)ASI  algorithm  (Choi  et  al., 2011;  Choi, 2012).  At  catchment  scale,
however,  particularly  the  locations  of  rural  storm  drains  are  hardly  known.

It  was  therefore  decided  to regard  every  raster  cell  bordering and  flowing in  the  direction  of  a
road  as  a storm  drain  with  its  outlet  at  the  nearest  stream  cell  (cf.  Alder  et  al., 2015).  Since  the
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flow  lengths  in  roadside  ditches  between  the  actual  locations  of  surface  run-off  leaving a field  and
entering a storm  drain  remain  unknown  choosing such  an  approach,  the  retention  potential  in
roadside  ditches  is  likewise  unknown.  Retention  in  roadside  ditches  was  thus  considered  globally
by  means  of  a transfer  coefficient.  This  transfer  coefficient  represents  the  share  of  PP  emissions
reaching a storm  drain,  which  is  further  routed  to a stream  cell.  In  this  way,  it  emulates  retention
in  roadside  ditches.

In  order  not  to account  retention  in  roadside  ditches  to the  bottom  cells  of  fields  bordering
roads,  it  was  necessary  to introduce  an  additional  raster  layer  taking care  of  this.  The  purpose
of  this  layer  is  to store  the  amount  of  PP  emissions  further  routed  to a stream  cell,  which  allows
for  calculating the  amount  of  PP  retained  in  roadside  ditches  among others.

3.2.4.3 Modelling case  study

The  storm  drains  model  extension  was  tested  at  a spatial  resolution  of 10 × 10 m on  several  

scenarios  within  the  case  study  catchment:  two road  and  three  transfer  coefficient  scenarios.  

Both  types  of  scenarios  were  combined  one  by  one  adding up  to six  scenarios  in  total.  The  

first  road  scenario takes  all  asphalt  roads  (termed  all  roads)  and  the  second  just  major  roads
into account.  Road  data was  taken  from  an  up-to-date  governmental  reference  routing dataset
(geoland.at, 2016b)  and  while  the  major  roads  scenario encompasses  about  100 urban  and 200 km
non-urban  roads,  the  all  roads  scenario encompasses  about  500 urban  and 850 km non-urban
roads.

Compared  to the  natural  stream  network,  which  is  about 700 km long,  this  means  that  the
non-urban  road  network  is  even  longer  than  the  natural  stream  network.  In  this  comparison,  it  

has  to be  considered,  though,  that  roads  usually  have  one  uphill  side  only,  whereas  streams  are
fed  from  both  of  their  sides.

Regarding the  transfer  coefficient  scenarios,  values  of 0.4, 0.6 and 0.8 were  chosen  and  kept
constant  during calibration.  The  channel  deposition  rate  was  furthermore  calibrated  on  a fixed
total  in-channel  PP  retention  at  catchment  outlet  of  approximately 20 %.  This  value  was  adopted
from  a modelling study  (Zessner,  Hepp,  Kuderna,  Weinberger,  Gabriel,  and  Windhofer, 2014)
with  the  lumped  catchment  model  MONERIS  (Behrendt  et  al., 1999;  Venohr  et  al., 2010;  Zessner,
Kovacs,  et  al., 2011).  The  period  of  the  modelling case  study  ranged  from  the  year  2008 to the
year  2013 and  all  model  parameters  related  to discharge  frequency  for  the  calculation  of  the
hydraulic  radius  were  set  accordingly,  i. e.  to a recurrence  interval  of  six  years.

As  most  important  input  data for  the  model  served  the  already  mentioned  (geo-)database
related  to the  IACS  of  the  CAP  of  the  EU (Hofer  et  al., 2014).  It  not  only  contains  field  borders
of  agricultural  land  but  also detailed  information  on  cultivated  crops  as  well  as  the  different
factors  of  the  USLE.  Other  important  input  data were  a DEM  with 10 × 10 m resolution  utilised  

for  flow  routing as  well  as  slope  calculation,  a dataset  based  on  the  digital  cadastre  map  providing
non-agricultural  land  use  and  another  dataset  derived  from  the  digital  soil  map  of  Austria
encompassing top  soil  characteristics.  The  State  Government  of  Upper  Austria contributed  the
latter  three  datasets.  In  addition,  Manning’s  roughness  coefficients  were  taken  from  Engman
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(1986)  and  data on  PP  accumulation  in  top  soil  from  Zessner,  Gabriel,  Kovacs,  et  al.  (2011)  and
Zessner,  Zoboli,  et  al.  (2016).  Zessner,  Hepp,  Zoboli,  et  al.  (2016)  and  Zessner,  Hepp,  Kuderna,
Weinberger,  and  Gabriel  (2017)  give  more  detailed  information  on  the  input  data.

Calibration  quality  was  assessed  with  the  help  of  Nash-Sutcliffe  efficiency  (NSE),  modified
Nash-Sutcliffe  efficiency  (mNSE),  percent  bias  (PBIAS)  and  ratio of  the  root  mean  square  error
to the  standard  deviation  of  measured  data (RSR)  (Krause  et  al., 2005;  Moriasi  et  al., 2007)  by
comparing observed  mean  annual  PP  loads  of  seven  water  quality  gauges  along the  river  Pram
(Figure 3.2)  with  modelled  mean  annual  PP  loads  at  the  same  locations  (Table 3.4).

Water  quality  data was  available  from  the  surface  water  monitoring programme  of  the  State
Government  of  Upper  Austria (Kapfer, 2014)  for  the  full  period  of  the  modelling case  study
(2008 to 2013).  It  is  a routine  sampling programme  with  a sampling interval  of  two weeks  and
measures  PP  concentration  according to EN ISO  15681-2 and  EN ISO  6878 with  a minimum  limit
of  quantification  (LOQ)  of 0.005 mg L−1.  This  data was  then  combined  with  stream  discharge
from  the  web  GIS  eHYD  (BMLFUW, 2015)  and  mean  annual  PP  river  loads  were  calculated
according to the  flow  intervals  method  of  Zoboli,  Viglione,  et  al.  (2015).

This  method  facilitates  the  calculation  of  river  loads  for  different  flow  conditions.  Since  the
PP  loads  modelled  by  PhosFate  represent  solely  rainfall  induced  loads  stemming from  erosion,
they  cannot  be  directly  compared  to total  PP  river  loads.  For  this,  the  total  PP  river  loads  first
have  to be  reduced  by  the  amount  of  PP  emanated  during base  flow  conditions.

One  of  the  results  of  the  extended  PhosFate  model  is  the  ratio of  emissions  reaching surface
waters  via cells  defined  as  storm  drains  on  total  emissions.  In  order  to check  the  chosen  transfer
coefficients,  which  strongly  affect  this  ratio,  for  plausibility,  it  was  possible  to obtain  data 

concerning roadside  ditch  cleaning from  the  State  Government  of  Upper  Austria (personal  

communication).  Although  this  data is  from  the  year  2015 only,  it  integrates  over  a period  of  

approximately 10 to 15 years  as  this  is  the  regular  interval  of  cleaning campaigns.  It  was  not  

possible  to get  additional  years,  since  data on  these  operations  is  not  part  of  general  record
keeping.

In  total,  data on  the  amount  of  material  removed  from  a cleaned  length  of  about 80 km was
collected.  This  data was  then  used  to estimate  average  minimum  and  maximum  values  of  PP
retention  per  metre  roadside  ditch  (3.0 to 11.3 g m−1).  Despite  the  consideration  of  different  soil  

particle  densities  and  material  types  as  well  as  cleaning intervals  to account  for  uncertainty,  this
best  to worst  case  range  has  to be  considered  as  indicative  only,  as  it  originates  from  little  data.
Nonetheless,  the  minimum,  mean  and  maximum  values  of  this  estimated  range  could  be  used  to
check  if  the  modelled  retention  rate  due  to the  chosen  transfer  coefficients  in  roadside  ditches  is
plausible.

3.2.5 Statistical  inference  of  the  overall  impact  of  storm  drains  at  road  

embankments  on  diffuse  PP  emissions

While  fields  appear  to be  the  “natural” mapping unit  from  a management  point  of  view,  they
are  problematic  from  a statistical  point  of  view.  Due  to potential  flow  routing from  one  field  to
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another,  not  all  of  them  are  statistically  independent.  This  problem  was  solved,  however,  by
allocating all  mapped  fields  influenced  by  road  embankments  to delineated  zero-order  catchments.

Subsequently,  we  applied  a Bayesian  hierarchical  model  on  the  reallocated  data.  The  purpose
of  this  model  was  to infer  the  mode  as  well  as  an  equal-tailed  credible  and  highest  posterior
density  interval  (HPDI)  for  the  share  of  road  embankments  with  subsurface  drainage  on  all  road
embankments  in  the  case  study  catchment.  In  order  to make  a best  estimate  of  the  overall  impact  

of  storm  drains  at  road  embankments  on  diffuse  PP  emissions,  the  results  of  the  Bayesian  model
in  turn  were  combined  with  the  results  of  the  extended  PhosFate  model.

The  Bayesian  model  considered  all  154 clusters  of  the  case  study  catchment  of  which  the  data
of  three  was  known.  First,  the  number  of  zero-order  catchments  influenced  by  road  embankments  

was  drawn  from  a Poisson  distribution  with  a weakly  informative  gamma prior  for  the  unmapped
clusters.  Then  the  number  of  influenced  zero-order  catchments  with  subsurface  drainage  was
estimated  from  the  total  number  by  means  of  a binomial  distribution.  Its  success  probability  was  

allowed  to vary  on  the  logit-scale  for  each  cluster.  For  this,  a weakly  informative  normal  prior  on
its  mean  and  a weakly  informative  half-Cauchy  prior  as  a conservative  choice  on  its  standard
deviation (Gelman, 2006;  Gelman,  Jakulin,  et  al., 2008)  were  applied.  Since  the  parameter  of
interest  is  the  share  of  zero-order  catchments  influenced  by  road  embankments  with  subsurface
drainage  on  all  zero-order  catchments  influenced  by  road  embankments,  a possibly  occurring
overdispersion in the  lower  level  of  the  model  is not  relevant.  The  model  was written in R (R
Core  Team, 2016)  using JAGS  (Just  Another  Gibbs  Sampler;  Plummer, 2003).

3.3 Results

3.3.1 Field  mapping campaign

Among the  mapped  clusters  and  agricultural  land  use  types,  the  minimum  share  of  fields
connected  in  a natural  way  is  about  50 and  the  maximum  about 75 %,  whereas  fields  connected
in  an  artificial  way  constitute  approximately 10 to 30 % (Figure 3.4).  The  proportion  of  fields
showing both  attributes  lies  between  roughly  5 and 15 % and  fields  not  connected  at  all  exhibit  a
minimum  share  of  0 and  a maximum  of  about 10 %.

Furthermore,  a fifth  category  was  identified  and  termed  “vegetated  buffer  strips” (VBS).  These
are  grassland  fields  connected  in  a natural  way  and  located  between  arable  land  and  streams
showing some  of  the  properties  (i. e.  dimensions)  of  “normal” VBS.  They  are,  however,  not  arable
land  with  VBS  but  leftovers,  which  for  some  reason  were  not  turned  into arable  land  and  are  

not  subject  to fertiliser  restrictions.  Their  share  varies  between  approximately  10 and 15 %
among the  grassland  fields  and  constitutes  roughly 5 % of  all  mapped  fields.  Moreover,  a general
comparison  of  all  these  results—especially  when  accounting the  mapped  “VBS” to grassland
fields  connected  in  a natural  way—indicates  a rather  low  overall  variability.

Due  to the  assessment  of  the  explanatory  details,  it  was  possible  to analyse  the  causes  of  fields
not  being connected  in  a natural  way  and  the  different  types  of  artificial  connections  present  in
the  mapped  clusters  (Figure 3.5).  Fields  categorised  as  “VBS” were  excluded  from  this  analysis.
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Fig.  3.4: Proportions  of  the  assessed  connectivity  types  among the  mapped  clusters  and  agricul-
tural  land  use  types.  The  results  indicate  a rather  low  overall  variability  (“Vegetated
buffer  strips” can  be  considered  as  grassland  fields  connected  in  a natural  way).

Table 3.3 shows  the  causes  and  their  respective  shares  as  identified  in  the  field  mapping campaign.
These  data clearly  reveal  that  road  embankments  are  the  main  cause  of  influence  on  emissions
and  transport  pathways  (approx. 65 %).  They  are  followed  by  single  storm  drains  unrelated  to
roads  or  roadside  ditches  and  influences  stemming  from  differences  between  the  actual  and  the
mapped  stream  network  (e. g.  as  a result  of  cased  streams  or  unknown  channels)  (both  approx.
15 %).  The  remaining almost 10 % are  composed  of  a variety  of  causes  including sinks  and
settlements.

Considering all  mapped  fields,  road  embankments  with  subsurface  drainage  (i. e.  storm  drains
at  varying distances  along road  embankments  often  in  combination  with  roadside  ditches)  are
responsible  for  influencing emissions  and  transport  pathways  of  almost  a quarter  of  the  fields.  

Given  that  about 45 % of  the  mapped  fields  are  subject  to an  influence,  road  embankments
with  subsurface  drainage  account  for  approximately  half  of  all  influences  present  in  the  mapped  

clusters.  They  furthermore  constitute  about 80 % of  the  fields  influenced  by  road  embankments.

3.3.2 Impact  of  storm  drains  at  road  embankments  on  PP  transport

The  calibration  quality  of  the  six  modelled  scenarios  (two road  and  three  transfer  coefficient
scenarios)  indicates  good  model  performance  (cf.  Moriasi  et  al., 2007)  and  is  consistent  across
all  scenarios (Table 3.4).  Unfortunately,  a validation with independent  river  loads could not  be
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Fig.  3.5: Exemplified  visualisation  of  some  of  the  results  of  the  field  mapping campaign  with
connectivity  types  shown  on  the  left  and  explanatory  details  on  the  right  side  of  the
figure.  The  part  above  connectivity  types  on  the  left  side  of  the  legend  is  common  to
both  sides.  Please  note  that  the  top-  and  rightmost,  bright  looking field  behind  the
north  arrow  does  not  belong to the  mapped  cluster.
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Tab.  3.3: Causes  of  influence  on  emissions  and  transport  pathways  expressed  as  percentage  of
all  influenced  fields  as  well  as  all  mapped  fields.

Cause  Arable  land Grassland Total

% of influenced fields

Road embankments  with subsurface  drainagea 57  45  51
Road embankments  with overland drainageb 10  5  8
Road embankments  without  artificial  drainage 4  6  5
Single  storm  drainsc 10  15  13
Stream  network  differencesd 12  17  14
Other 7  12  9

% of mapped fields

Road embankments  with subsurface  drainage 24  21  23
Road embankments  with overland drainage 5  2  3
Road embankments  without  artificial  drainage 2  3  2
Single  storm  drains 5  7  6
Stream  network  differences 5  8  6
Other 3  5  4

Total 43  45  44
a Storm  drains  with or without  roadside  ditches. b Roadside  ditches  and/or culverts.
c Storm  drains  unrelated to  roads  or roadside  ditches.
d Differences  between the  actual  and the  mapped stream  network  (e. g.  due  to  cased
streams).

performed,  since  not  all  of  the  input  data are  available  at  the  same  spatial  resolution  in  another
period  of  time.

The  plausibility  check  of  the  chosen  PP  transfer  coefficients  in  roadside  ditches  utilising the
estimated  PP  retention  per  metre  roadside  ditch  range  demonstrates  that  a transfer  coefficient  of
0.6 fits  best  with  both  road  scenarios.  Whereas  a transfer  coefficient  of  0.8 scrapes  at  the  lower
limit  of  the  estimated  PP  retention  per  metre  roadside  ditch  range  in  both  instances,  a transfer
coefficient  of  0.4 only  scrapes  at  the  upper  limit  of  the  major  road  scenario and  indicates  that
the  best  fit  actually  seems  to be  somewhere  between  a transfer  coefficient  of  0.5 and  0.6 in  the
other  case.

A comparison  of  the  modelled  shares  of  storm  drains  at  road  embankments  on  total  PP
emissions  between  the  six  modelled  scenarios  results  in  a small  range  of 8 to 14 % for  the  major
roads  scenarios  and  a big range  of 27 to 44 % for  the  scenarios  considering all  roads.  Overall,  the
range  encompasses  a share  of  as  little  as  approximately  one  tenth  and  as  much  as  almost  one
half.

3.3.3 Best  estimate  of  the  overall  impact  of  storm  drains  at  road  embankments  on
diffuse  PP  emissions

Overall,  the  retention  rate  as  calculated  by  the  extended  PhosFate  model  fits  well  to real  world
data.  By  comparing the  values  of  the  transfer  coefficients  and  the  resulting mean  estimated  PP
transfer  ratios  in  roadside  ditches,  it  can  be  concluded  that  a transfer  coefficient  of  0.6 fits  best
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Tab.  3.4: Modelled  shares  of  storm  drains  at  road  embankments  on  total  PP  emissions  including
the  calibration  quality  of  the  six  modelled  scenarios  and  plausibility  check  of  the
chosen  PP  transfer  coefficients  in  roadside  ditches  utilising the  estimated  PP  retention
per  metre  roadside  ditch  range.  The  closer  the  values  of  the  modelled  mean  PP
retention  in  roadside  ditches  and  the  mean  estimated  PP  retention  per  metre  roadside  

ditch  range  for  a given  transfer  coefficient  scenario are,  the  more  plausible  we  consider
the  coefficient.

all  roads  major roads

PP  transfer coeffi-
cient 0.4  0.6  0.8  0.4  0.6  0.8

Calibration quality

NSE 0.95  0.94  0.94  0.95  0.95  0.95
mNSE 0.83  0.83  0.82  0.84  0.84  0.84
PBIAS −2.3 −1.6 −1.5 −2.6 −2.6 −2.6
RSR 0.22  0.22  0.22  0.21  0.21  0.21

Plausibility  check  utilising  the  estimated PP  

retention per metre  roadside  ditch range:
3.0 to 11.3 g m−1 with a  mean of 7.1 g m−1

Modelled mean PP  

retention in roadside
ditches  in g m−1 9.5  5.7  2.6  11.4  7.4  3.6

Share  of storm  

drains  at  road em-  

bankments  on total
PP  emissions 0.27  0.36  0.44  0.08  0.11  0.14

and  is  therefore  the  most  likely  coefficient.  However,  neither  the  major  roads  nor  the  all  roads
scenario seems  to appropriately  reflect  the  situation  in  the  case  study  catchment.

According to the  results  of  the  Bayesian  model,  the  mode  of  the  share  of  road  embankments
with  subsurface  drainage  on  all  road  embankments  is 77 % and  the  equal-tailed 95 % credible  

interval  ranges  from 20 to 98 %.  While  this  is  quite  a big range,  the 90 % HPDI  ranges  from
54 to 100 % only.  Taking into account  that  the  case  study  catchment  appears  all  in  all  fairly
homogeneous,  our  best  estimate  of  the  share  of  storm  drains  at  road  embankments  on  total  PP
emissions  consequently  ranges  from  about  one  fifth  to one  third.  This  estimate  was  obtained  by
combining the 90 % HPDI  with  the  PhosFate  results  of  the  all  roads  scenario with  a transfer
coefficient  of  0.6.

3.4 Discussion

By  applying the  mapping key  presented  here,  it  could  be  shown  that  it  is  capable  of  collecting
valuable  information  on  agricultural  and  civil  engineering structures  potentially  influencing
emissions  and  transport  pathways  in  agricultural  catchments.  It  clearly  revealed  that  the  main
influencing factor  in  the  mapped  clusters  are  road  embankments  with  subsurface  drainage  and
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that  the  most  important  question  in  this  case  study  catchment  is  whether  a road  embankment  is
equipped  with  one  or  more  storm  drains  or  not.  

A limitation  of  the  mapping key  is  that  it  is  adequate  to assess  structural  but  not  functional
elements  of  connectivity.  It  thus  only  points  out  potential  connectivity  (Bracken,  Wainwright,
et  al., 2013).  This,  however,  fits  well  to spatially  distributed  models  like  PhosFate,  which
incorporate  the  (R)USLE,  as  this  equation  only  estimates  an  (erosion)  potential  as  well.  Beyond
that,  due  to the  involvement  of  parameters  for  the  calculation  of  the  hydraulic  radius  related  to
discharge  frequency,  PhosFate  again calculates a (transport)  potential  only.  This calculation of
mere  potentials  can  be  considered  a limitation  of  the  chosen  modelling approach,  which  otherwise  

shows  a good  ratio of  model  performance  to data requirements  (cf.  de  Vente,  Poesen,  Verstraeten,
Govers,  et  al., 2013).

Calibrating PhosFate  on  several  water  quality  gauges  along the  main  river  of  the  case  study
catchment  ensured  that  the  utilised  input  data reflect  the  spatial  distribution  of  the  relevant
transport  pathways  and  that  the  assumption  of  global  calibration  parameters  was  justified.  The
fact  that  all  modelled  scenarios  show  an  equally  good  calibration  quality  further  supports  this.

When  interpreting the  channel  and  in  particular  the  field  deposition  rate  resulting from  

calibration,  one  has  to bear  in  mind,  though,  that  they  include  a temporal  component.  This
means  that  apart  from  integrating catchment  properties  influencing transport  (e. g.  density  and
average  width  of  hedges  as  well  as  reins  not  covered  by  the  land  use  input  data),  they  also relate  

the  local  modelled  mean  annual  transport  loads  corresponding to the  chosen  discharge  frequency
of  the  hydraulic  radius  to the  global  observed  mean  annual  loads  at  water  quality  gauges.  In
other  words,  they  at  least  partly  control  whether  a certain  area contributes  to the  overall  river
load  (i. e.  becomes  connected)  or  not  (cf.  S.  N.  Lane,  Reaney,  et  al., 2009).

Another  limitation  of  the  mapping key  is  its  use  of  discrete  mapping units.  For  one  thing,  they
are  of  different  sizes,  for  another,  due  to potential  flow  routing from  one  unit  to another,  not  all
of  them  may  be  statistically  independent.  The  latter  can  be  solved  by  delineating zero-order
catchments  and  using these  as  mapping units.

Addressing the  issue  of  different  sizes  is  more  challenging.  In  fact,  assuming an  equal-sized
sampling grid  at  a spatial  resolution  smaller  than  the  average  field  size  would  increase  the  issue
of  dependent  samples,  whereas  a sampling grid  at  a spatial  resolution  larger  than  the  average
field  size  would  lead  to ambiguity.  This  already  is  a problem  with  fields  (e. g.  same  field  on  both
sides  of  a ridge)  and  means  that  a certain  property  is  sometimes  only  valid  for  the  majority  but
not  all  of  the  assessed  area.

Getting back  to zero-order  catchments,  though,  and  assuming that  the  sizes  of  those  (parts)
showing a certain  property  and  those  not  showing a certain  property  average  out  in  a sampling
cluster  (i. e.  small  sub-catchment  in  this  case),  this  issue  can  probably  be  neglected,  as  the  weights
stay  the  same  in  both  cases.  This  would  even  allow  for  a geostatistical  approach,  interpolating
ratios  between  clusters  (Krivoruchko et  al., 2011).  The  total  number  of  affected  units  and  their
associated  areas  or  pollutant  loads  could  then  be  estimated  with  the  help  of  auxiliary  data.
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Ali  and  Roy  (2009)  compare  different  spatial  sampling schemes  and  conclude  that  cyclic
sampling is  the  most  adequate  sampling design  for  geostatistical  analysis.  It  should  therefore  be
investigated  how  and  with  how  much  effort  it  can  be  successfully  applied  to cluster  sampling
within  catchment  areas  of  several  hundred  square  kilometres  and  if  the  above  assumption  holds
true.

So while  the  use  of  fields  as  mapping units  worked  well,  there  may  be  much  precision  to gain
by  switching to zero-order  catchments  in  the  future.  This,  nonetheless,  has  the  complication  of
many  possible  statistical  populations  (cf.  Poeppl  and  Parsons, 2018),  each  strongly  depending
on  the  type  and  resolution  of  elevation  data as  well  as  flow  routing algorithm  used  for  their
delineation.  Again,  future  research  should  investigate  if  mapping results  are  sensitive  to these
and  if  it  may  be  advantageous  to only  consider  zero-order  catchments  with  a certain  minimum
size  or  showing a certain  shape  for  statistical  inference.

Furthermore,  another  limitation  of  the  chosen  modelling approach  results  from  using a global
transfer  coefficient.  As  storm  drains  are  usually  built  at  locations  of  high  overland  flow  concentra-
tion,  it  is  not  unlikely  that  their  locations  also exhibit  high  erosion  and  in  turn  high  diffuse  PP
emissions  along with  steep  slopes  and  short  or  even  no passages  through  roadside  ditches  where
retention  can  take  place.  A global  transfer  coefficient  simply  considering average  conditions  may
therefore  overestimate  retention  under  such  conditions.  Thus,  the  overall  impact  of  storm  drains
at  road  embankments  on  diffuse  PP  emissions  may  be  even  higher.  This  consideration  should
likewise  be  subject  of  future  research.

Finally,  if  one  wanted  to know  the  exact  locations  of,  for  example,  storm  drains  or  culverts,
a conceivable  solution  could  be  to focus  on  a narrow  strip  along roads  only.  In  this  case,  the
question  could  be  formulated  as  machine  learning classification  problem  for  which  several  existing
model  types  could  be  utilised  (e. g.  logistic  regression,  decision  trees,  support  vector  machines
and  artificial  neural  networks).

A good  start  for  this  might  be  to use  high  resolution  orthophotos  in  combination  with  high
resolution  airborne  topographic  Light  Detection  And  Ranging (LiDAR)  data as  input  to learn
from.  Another  possibility  would  be  to equip  a car  with  appropriate  sensors  and  collect  topographic
LiDAR  data including pictures  and  videos  from  the  roadsides  by  merely  driving along all  of  

them  or  at  least  along those  of  interest  (Holland  et  al., 2016).  In  the  light  of  rather  recent
advancements  in  image  recognition  with  deep  neural  networks  (e. g.  He  et  al., 2015)  and  their
emerging ability  to produce  a measure  of  uncertainty  even  in  the  context  of  large-scale  image
classification  problems  (Heek  and  Kalchbrenner, 2019),  such  a task  becomes  less  and  less  utopian.
To get  an  idea of  what  is  going on  in  a catchment  area,  such  detail,  however,  is  usually  not
required.

3.5 Conclusions

The  influence  of  road  embankments  with  subsurface  drainage  can  be  of  importance  in  catchment
areas  with  a strong tradition  towards  this  drainage  type.  In  case  there  is  indication  of  this  in
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a certain  catchment,  a field  mapping campaign  assessing the  degree  of  their  influence  should
be  performed.  This  is  particularly  important  when  trying to identify  critical  source  areas  and
finding suitable  spots  for  the  implementation  of  measures  reducing pollutant  emissions  into
surface  waters  (cf.  Blackwell  et  al., 1999).

Field  observations  capable  of  collecting valuable  information  on  agricultural  and  civil  en-  

gineering structures  potentially  influencing emissions  and  transport  pathways  can  already  be
accomplished  with  very  simple  means.  Carried  out  with  a mobile  GIS  application  and  a simple
mapping key  as  the  one  presented  in  this  study,  they  can  easily  be  integrated  into the  preparation  

of  modelling studies  aiming at  the  identification  of  critical  source  areas  at  catchment  scale.  In  the
end,  the  combination  and  comparison  of  field  observations  with  simplifying hypothesis  (Ludwig 

et  al., 1995)  and  model  output  (Jetten,  A.  de  Roo,  et  al., 1999;  van  Dijk  et  al., 2005)  proved  to
be  of  great  help  in  assessing the  impact  of  agricultural  and  civil  engineering structures  in  this
case  study  catchment.
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4.1 Introduction

An  innovative  aspect  of  the  European  Union  Water  Framework  Directive  (European  Comission,
2000)  is  the  inclusion  of  economic  principles  in  river  basin  and  water  quality  management
(Martin-Ortega and  Balana, 2012).  In  particular,  conservation  measures  must  be  evaluated  with
respect  to how  cost-effectively  they  contribute  to the  achievement  of  the  “good  status” of  water
bodies.  The  effectiveness  and  thus  the  cost-effectiveness  of  measures,  however,  is  not  uniform  

and  strongly  depends  on  the  location  of  their  implementation.  This  non-uniformity  exists  on
different  scales  and  ranges  from  the  national  to the  local  scale  and  beyond.

In  the  field  of  diffuse  pollution,  one  can  find  the  concept  of  critical  source  areas  (CSAs)  on  

one  of  the  largest  scales,  i. e.  often  the  field  scale.  CSAs  are  commonly  defined  as  those  areas
within a watershed,  which contribute  disproportionately  to the  pollution load in surface  waters
via one  of  many  possible  transport  pathways  (e. g.  A.  L.  Heathwaite,  Quinn,  et  al., 2005;  Pionke
et  al., 2000;  Strauss  et  al., 2007).  This  concept  is  especially  applicable  to particulate-bound
pollutants,  whose  emission  into water  bodies  is  primarily  driven  by  soil  erosion.  Phosphorus  is  a
classic  example  of  such  substances.  Upon  excessive  fertilisation,  the  surplus  of  phosphorus  not
taken  up  by  crops  becomes  almost  “fixed” in  the  soil  through  processes  of  sorption,  precipitation,
immobilisation  and  mineralisation  (Tiessen, 2008).

The  transfer  of  phosphorus  strongly  bound  to particles  (particulate  phosphorus:  PP)  via soil
erosion  and  surface  run-off  into surface  waters  represents  a major  environmental  concern,  due  to
its  eutrophication  and  water  quality  impairment  potential  (Sims  and  Sharpley, 2005).  Differences
in  e. g.  slope,  crop  cover,  agricultural  practices  and  connectivity  to streams  lead  to considerable
differences  in  the  extent  of  contributions  to the  total  PP  load  reaching water  bodies.  Usually,  

only  a small  portion  of  a watershed  is  responsible  for  the  majority  of  phosphorus  inputs  into
its  surface  waters  (e. g.  Kovacs,  Honti,  Zessner,  et  al., 2012;  Strauss  et  al., 2007;  White,  Storm,
et  al., 2009).  Sharpley,  Kleinman,  Jordan,  et  al.  (2009)  state  as  a rule  of  thumb  that  about 80 %
of  the  phosphorus  inputs  into the  surface  waters  of  a catchment  originate  from  only  about 20 %
of  its  area.  This  relationship  is  also known  as  the  80:20 rule  or  the  Pareto principle.

An  early  approach  to identify  such  hotspot  areas  is  the  Phosphorus  Index  (Lemunyon  and
Gilbert, 1993),  which  was  originally  developed  in  the  USA but  has  found  its  way  to Europe  since
then  (L.  Heathwaite  et  al., 2003).  By  now,  there  exist  several  modifications  and/or  localisations
of  the  Phosphorus  Index  (Buczko and  Kuchenbuch, 2007).  A general  advantage  of  all  of  them
is  that  they  are  simple,  easy  to communicate  and  capable  of  identifying high-risk  regions  for  a
cost-effective  implementation  of  emission  mitigation  measures  (Cherry  et  al., 2008).

The  separation  of  source  and  transport  factors  and  the  incorporation  of  hydrologic  return
periods  by  Gburek  et  al.  (2000)  comprises  an  important  modification.  Although  the  Phosphorus
Index  is  still  a semi-quantitative  tool,  especially  the  Iowa Phosphorus  Index  tries  to approximate
biologically  available  phosphorus  loads  entering surface  waters  (Mallarino et  al., 2002).  Beyond
that,  with  its  stronger  physical  basis,  the  Swedish  Phosphorus  Index  requires  more  input  data
and  is  not  as  easy  to calculate  as  other  Phosphorus  Indices  (Buczko and  Kuchenbuch, 2007).



4.1 Introduction  67

This  leads  us  to another  approach  to identify  CSAs:  semi-empirical/conceptual,  spatially
distributed  soil  erosion  and  phosphorus  transport  modelling.  While  this  approach  usually  requires  

even  more  input  data and  higher  calculation  efforts,  it  can  be  expected  to provide  more  accurate
results  than  the  Phosphorus  Index  approach,  due  to its  improved  quantitative  basis.  It  generally
represents  a good  compromise  between  solely  empirical  and  process  based  models  (Cherry  et  al.,
2008).  Examples  are  the  WaTEM/SEDEM  (Onnen  et  al., 2019;  Van  Oost  et  al., 2000;  Van  

Rompaey  et  al., 2001;  Verstraeten,  Van  Oost,  et  al., 2002)  and  PhosFate  (Kovacs,  Honti,  and
Clement, 2008;  Kovacs,  Honti,  Zessner,  et  al., 2012)  models.

However,  as  it  is  well  pointed  out  by  Ghebremichael  et  al.  (2013),  one  major  drawback  of  this
approach  is  that  it  is  not  outright  clear  how  to translate  model  results  into catchment-wide  risk
assessments  at  field  level,  i. e.  at  the  lowest  spatial  unit  managed  by  farmers  and  thus  the  level
at  which  conservation  measures  can  actually  be  applied.  One  problem  with  linking results  of
hydrological  models  to prioritisation  at  field  scale  is  that  field  and  farm  boundaries  do not  usually
coincide  with  hydrological  boundaries.  This  gap  makes  the  outcome  of  complex  catchment-scale
models  of  limited  application  and  use  for  policy  makers,  farmers  and  practitioners  involved  in
agri-environmental  programmes.  We  put  forward  that  fuzzy  logic  could  be  the  key  to both
overcome  this  shortage  and  to reduce  vagueness  in  identifying CSAs.

Fuzzy  logic  was  developed  in  the  mid-sixties  of  the  twentieth  century  and  is  based  on  fuzzy
sets  (Zadeh, 1965).  Later  it  was  developed  further  into a theory  of  possibility  (Zadeh, 1978).  As
possibility  theory  and  Phosphorus  Index  surprisingly  share  some  very  basic  ideas,  we  hypothesise
that  the  potential  of  phosphorus  loss  or  movement  into surface  waters  from  a certain  site  as  it  is
used  by  the  Phosphorus  Index  is  conceptually  related  to possibility  theory.  It  is  yet  lacking its
theoretical  foundation  in  mathematics.  Hence,  why  it  is  called  an  index.

While  fuzzy  logic  has  been  previously  applied  successfully  to,  for  example,  river  quality  (e. g.
Lermontov  et  al., 2009;  Liou  et  al., 2003),  groundwater  quality  (e. g.  Rebolledo et  al., 2016;
Vadiati  et  al., 2016)  and  landslide  susceptibility  (e. g.  Champati  ray  et  al., 2007;  Pourghasemi
et  al., 2012;  Tien  Bui  et  al., 2012)  analyses,  to our  knowledge  it  has  not  been  used  in  the  context
of  the  identification  of  CSAs  so far.

The  main  research  goal  of  this  study  is  to develop  a novel  semi-empirical  “index” for  PP
based  on  the  combination  of  spatially  distributed  models,  i. e.  PhosFate  in  our  case,  with  fuzzy
logic.  As  a prerequisite  to this,  we  aim  to completely  redesign  and  enhance  the  model’s  existing
algorithm  for  allocating the  PP  emissions  actually  reaching surface  waters  to their  respective
source  areas  so that  conservation  of  mass  is  guaranteed  under  all  circumstances.  Furthermore,
the  study  conducts  a sensitivity  analysis  to determine  the  impacts  of  selected  uncertain  input
data (flow  directions)  and  model  parameters  (discharge  frequencies)  on  the  designation  of  CSAs
in  the  form  of  present-day  scenarios  for  a case  study  catchment  with  an  area of  several  hundred
square  kilometres.
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Tab.  4.1: Additional  properties  of  the  case  study  catchment.

Min.  1st Qu.  Median Mean 3rd Qu.  Max.

Slopea in %  0.00  4.59  8.41  10.22  13.50  241.23
Dischargeb in m3 s−1 0.94  1.87  2.68  4.58  4.23  117.00
Field size  in 104 m2 0.01  0.36  0.90  1.60  2.02  28.16

a Based on a  DEM with 10 × 10 m resolution covering  the  whole  catchment  area.
b Period 2008  to  2013  of the  gauge  204867,  Pramerdorf/Pram  close  to  the  outlet
with a  catchment  area  of approx. 340 km2 (BMLFUW, 2015).

4.2 Material  and  methods

4.2.1 Case  study catchment

The  present  study  was  conducted  on  the  catchment  of  the  river  Pram  in  the  north-western  part
of  the  Austrian  federal  state  of  Upper  Austria.  According to Zessner,  Gabriel,  Kovacs,  et  al.  

(2011),  erosion  from  agricultural  land  is  its  only  relevant  source  of  diffuse  PP  emissions.  The
catchment  predominantly  belongs  to the  geologic  formation  Molasse  basin  and  is  approximately
380 km2 in  size.  Only  some  small  parts  in  the  north  and  north-east  belong to the  crystalline
Bohemian  Massif.  Various  types  of  loam  with  silt  loam  being the  most  prominent  (nearly 50 %
of  the  catchment  area)  dominate  its  soil  surface.  Clay  is  only  dominant  in  about 5 % of  the  area
and  sandy  soils  are  not  present  at  all.

The  elevation  of  about 300 m a. s. l.  at  the  mouth  of  the  river  in  the  north-west  gradually
rises  to about 800 m a. s. l.  in  the  south.  Annual  precipitation  shows  a similar  gradient  ranging
from  roughly 900 mm to around 1200 mm.  The  catchment’s  major  land  use  type  is  agricultural
land  covering approximately 70 % of  the  area and  can  be  further  divided  into about 45 % arable
land  and 25 % grassland.  Other  important  land  use  types  are  forests  and  settlements,  which
sum  up  to about 20 % and  almost 10 % of  the  area respectively.  Winter  grains  are  cultivated  on
approximately 40 % and  maize  on  approximately 30 % of  the  mostly  hilly  arable  land.  Table 4.1
lists  a few  additional  catchment  properties.

4.2.2 PP  emission  and  transport  modelling

4.2.2.1 The  PhosFate  model

Originally  created  by  Kovacs,  Honti,  and  Clement  (2008)  and  Kovacs,  Honti,  Zessner,  et  al.  (2012),  

the  semi-empirical,  spatially  distributed  phosphorus  emission  and  transport  model  PhosFate  was
recently  extended  by  Hepp  and  Zessner  (2019)  with  a module  capable  of  taking into account
storm  drains  at  road  embankments.  It  models  erosion  with  the  help  of  the  (R)USLE  (Renard
et  al., 1997;  Schwertmann  et  al., 1987;  Wischmeier  and  Smith, 1978)  making use  of  a raster  GIS
data based  single  (D8)  flow  algorithm  version  of  the  slope  length  factor  (Desmet  and  Govers,
1996).  The  PP  emission  part  of  the  model  then  combines  the  erosion  with  the  PP  content  of
the  top  soil  and  a local  enrichment  ratio of  each  raster  cell  in  order  to calculate  local  gross  PP
emissions  (Kovacs, 2013).
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PP  retention  in  turn  is  computed  via an  exponential  function  of  the  cell  residence  time  and  a
mass  balance  equation  including terms  for  the  inflowing PP  load,  the  local  gross  PP  emission
and  the  local  as  well  as  the  transfer  PP  retention.  The  hydraulic  radius,  among  others,  is  a
requirement  for  the  calculation  of  the  cell  residence  time  and  itself  involves  model  parameters
related  to discharge  frequency  (Kovacs, 2013).  With  the  channel  as  well  as  overland  PP  deposition
rates  and  the  PP  transfer  coefficient  of  the  storm  drains  model  extension,  PhosFate  features
three  potential  calibration  parameters.

4.2.2.2 Revised  allocation  algorithm

One  major  output  of  PhosFate  is  the  calculation  of  PP  cell  loads  via an  allocation  algorithm.
The  PP  cell  loads  describe  the  amount  of  local  PP  emissions  actually  reaching surface  waters,  i. e.  

the  PP  cell  load  of  a single  cell  represents  its  local  PP  emission  minus  the  cumulated  amounts  of
retention  taking place  in  all  of  its  downstream  cells  (Kovacs, 2013).  Since  the  original  allocation
algorithm  of  the  PhosFate  model  based  on  transmission  coefficients  was  developed  for  larger  

cell  sizes  (e. g. 100 × 100 m resolution)  than  used  in  this  study  (10 × 10 m resolution),  it  was
necessary  to revise  it.  A major  drawback  of  the  original  algorithm  is  that  conservation  of  mass  is
not  guaranteed  in  every  single  cell,  but  only  on  the  level  of  zero-order  catchments.

The  original  algorithm  requires  a single  top-down  computation  starting with  the  lowest  and
finishing with  the  highest  flow  accumulations.  Its  results  are  the  PP  retentions  as  well  as
transports.  The  revised  algorithm  builds  on  this  computation  and  adds  an  additional  bottom-up
computation  starting with  the  highest  and  finishing with  the  lowest  flow  accumulations  to it.  

Its  results  are  the  PP  cell  loads  for  which  the  local  net  PP  emissions  calculated  as  local  PP
emissions  minus  PP  retentions  constitute  the  upper  PP  cell  load  limits.

This  latter  computation  in  turn  involves  the  calculation  of  PP  cell  transfers.  These  are  the  

cumulated  amounts  of  PP  entering a cell  from  upstream  cells,  which  are  transferred  through  

the  cell  and  actually  reach  a surface  water  (again  minus  the  cumulated  amounts  of  retention
taking place  in  all  of  its  downstream  cells).  The  complete  bottom-up  computation  thus  consists
of  cycles  of  the  following steps,  which,  however,  are  executed  for  overland  cells  only:

1. Initialising an  intermediate  cell  load  either  as  the  transported  amount  of  PP  entering a
surface  water  (riparian  cells  – first  cycle)  or  as  the  apportioned  cell  transfer  in  the  last  step
of  the  previous  cycle  (all  other  cells  – subsequent  cycles).

2. Initialising an  intermediate  cell  transfer  by  setting it  equal  to the  previously  initialised
intermediate  cell  load.

3. Updating the  intermediate  cell  load  by  multiplying it  with  the  ratio of  the  local  and  the
local  plus  the  sum  of  the  inflowing PP  transports.

4. Setting the  final  cell  load  utilising the  local  net  PP  emission  as  upper  limit  (minimum  of
the  previously  updated  intermediate  cell  load  and  local  net  PP  emission).
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5. Calculating the  cell  load  carry-over  as  the  maximum  of  the  intermediate  cell  transfer  minus
the  final  cell  load  and  zero.

6. Setting the  final  cell  transfer  to the  previously  calculated  cell  load  carry-over.

7. Weighted  apportioning of  the  cell  load  carry-over  to the  inflowing cells  utilising their  PP
transports  as  weights.

4.2.2.3 Coupling of  the  PhosFate  with  the  STREAM  model

The  STREAM  model  was  designed  to simulate  overland  flow  and  erosion  in  agricultural  catchments
(Cerdan,  Bissonnais,  et  al., 2002;  Cerdan,  Souchère,  et  al., 2002;  Le  Bissonnais  et  al., 2005).
Yet  it  does  lack  the  ability  to simulate  the  emission  and  transport  of  chemical  substances  like
phosphorus.  What  makes  it  appealing from  the  point  of  view  of  phosphorus  emission  and  

transport  modelling,  though,  is  its  capability  to simulate  a flow  network,  which  accounts  for  

tillage  directions  among others  (Couturier  et  al., 2013).  The  effect  of  tillage  direction  on  flow
direction  has  been  thoroughly  studied  by  Souchere  et  al.  (1998)  and  Takken,  Govers,  Jetten,  et  al.
(2001),  Takken,  Govers,  Steegen,  et  al.  (2001),  and  Takken,  Jetten,  et  al.  (2001)  and  depends
mainly  on  the  angle  between  tillage  direction  and  topographic  slope  aspect,  topographic  slope
gradient  and  surface  roughness.

In  order  to let  PhosFate  benefit  from  the  last  mentioned  feature,  we  coupled  both  models,  i. e.
we  used  version  3.7.1 of  the  STREAM  model  to pre-process  the  flow  direction  data handed  over
to PhosFate.  For  this,  we  applied  a stepwise  approach  with  (i)  topographic  flow  directions  only
(TOPO  scenario),  (ii)  the  sole  enforcement  of  tillage  directions  on  topographic  flow  directions  for
arable  land  (TILL scenario)  and  (iii)  the  combined  enforcement  of  tillage  directions  and  open
furrows  at  all  field  borders  (sides  as  well  as  headlands,  which  demonstrates  an  extreme  case)  on
topographic  flow  directions  for  arable  land  (FURR  scenario).  Fortunately,  field  border  data was
available  from  a (geo-)database  related  to the  Integrated  Administration  and  Control  System  

(IACS)  of  the  Common  Agricultural  Policy  (CAP)  of  the  European  Union  (EU)  (Hofer  et  al.,
2014).

As  tillage  directions  are  an  input  parameter  to the  STREAM  model,  they  first  had  to be
derived.  This  was  accomplished  by  means  of  minimum  bounding rectangles  with  smallest  areas
enclosing each field and the  assumption that  tillage  directions are  parallel  to the  longer  sides of
those  rectangles.  A sample  of  176 fields  was  then  used  to compare  such  derived  tillage  directions
to visually  determined  tillage  directions  from  orthophotos.  In  only  about 16 % of  the  cases  

(29 fields),  they  deviated  by  more  than ±22.5∘.  Two more  required  input  parameters  are  the
average  surface  roughness  in  tillage  direction  and  the  average  surface  roughness  perpendicular  to
tillage  direction.  These  were  globally  set  to 1 to 2 cm and 2 to 5 cm,  respectively.  Slopes  were
generally  calculated  in  the  direction  of  the  topographic  or  enforced  D8 flow  directions.
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4.2.2.4 Present-day case  study scenarios

Drained  roads  and  storm  drains  can  be  a relevant  emission  pathway  into surface  waters  in  

Switzerland  (Alder  et  al., 2015;  Bug, 2011;  Doppler  et  al., 2012;  Prasuhn, 2011;  Remund  et  

al., 2021).  Hepp  and  Zessner  (2019)  came  to the  same  conclusion  for  Austria and  estimated  

that  in  the  same  catchment  as  examined  in  this  study,  about 77 % of  all  fields  upstream  to
roads  are  artificially  drained  by  one  or  more  storm  drains  with  a 90 % highest  posterior  density  

interval  (credible  interval,  sometimes  also called  the  Bayesian  confidence  interval)  ranging from
approximately 54 % to almost 100 %.  They  further  performed  a plausibility  check  of  the  transfer
coefficient  of  the  storm  drains  model  extension  accounting for  retention  in  roadside  ditches,  which
delivered  a result  of  roughly  0.60,  i. e. 60 % of  all  PP  emissions  that  enter  roadside  ditches  and
subsequently  storm  drains  are  reaching surface  waters  via such  bypasses.

With these  introductory  words said,  the  three  factors used to define  the  case  study  scenarios
are  as  follows:  (i)  transfer  coefficients  of 0.32, 0.46 and 0.60 corresponding to 54 %, 77 % and
100 % of  0.60 (TC0.32,  TC0.46,  TC0.60),  (ii)  discharge  frequencies  of  one  (T1)  and  six  years  (T6)  

(utilised  for  the  calculation  of  the  hydraulic  radius/residence  time  and  in  turn  PP  retention)  and
(iii)  the  three  described  STREAM  model  flow  direction  scenarios,  namely,  TOPO  (topographic
flow  directions),  TILL (enforcement  of  tillage  directions)  and  FURR  (tillage  directions  combined
with  open  furrows  at  all  field  borders).  So all  in  all  18 scenarios  (three  transfer  coefficients  times
two discharge  frequencies  times  three  flow  direction  data sets)  were  modelled  and  assessed.

Storm  drains  at  road  embankments  of  almost  all  asphalt  roads  were  taken  into account  with
the  help  of  the  storm  drains  model  extension.  A governmental  reference  routing dataset  provided
the  necessary  road  data for  this  (geoland.at, 2016b).  The  period  of  the  modelled  scenarios
ranged  from  the  year  2008 to the  year  2013.  Water  quality  data of  seven  water  quality  gauges
(additionally  shown  in  Figure 4.6)  could  be  used  to calculate  mean  annual  PP  river  loads  using
the  same  methodology  as  of  Hepp  and  Zessner  (2019).

A detailed  overview  on  all  input  data is  provided  by  Zessner,  Hepp,  Zoboli,  et  al.  (2016)  

and  Zessner,  Hepp,  Kuderna,  Weinberger,  and  Gabriel  (2017).  Some  other  notable  datasets
nevertheless  are  (i)  the  already  mentioned  (geo-)database  related  to the  IACS  of  the  CAP  of  the  

EU contributing detailed  information  on  the  cultivated  crops,  the  different  factors  of  the  USLE  as
well  as  the  field  borders  (Hofer  et  al., 2014),  (ii)  a DEM  with 10 × 10 m resolution,  which  served
as  the  main  input  data for  the  STREAM  model,  (iii)  non-agricultural  land  use  based  on  the
digital  cadastre  map  and  (iv)  top  soil  characteristics  derived  from  the  digital  soil  map  of  Austria.
The  latter  three  datasets  were  supplied  by  the  State  Government  of  Upper  Austria.  Lastly,  data
on  PP  accumulation  in  top  soil  was  extracted  from  Zessner,  Gabriel,  Kovacs,  et  al.  (2011)  and
Zessner,  Zoboli,  et  al.  (2016)  and  Manning’s  roughness  coefficients  from  Engman  (1986).

Each  of  the  nine  T6 scenarios  was  then  calibrated  individually  under  a channel  deposition  rate  

of  zero utilising the  previously  calculated  mean  annual  PP  river  loads  as  targets  and  the  overland  

deposition  rate  as  the  only  calibration  parameter.  This  more  or  less  reflects  long-term  conditions
including in-stream  phosphorus  stock  depletion  effects  caused  by  major  flood  events  (Zoboli,
Viglione,  et  al., 2015).  It  can  also be  considered  a rather  conservative  approach  for  identifying
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CSAs,  as  it  generally  leads  to lower  PP  loads  from  cells  farther  away  from  surface  waters  due  to
higher  overland  deposition  rates.  The  overland  deposition  rates  of  the  nine  T1 scenarios  were
subsequently  adopted  from  the  corresponding T6 scenarios  thus  simulating conditions  as  if  no
respective  flood/transport  event  took  place  in  the  modelled  period  of  six  years.  In  order  to
achieve  this,  the  discharge  frequency  related  parameters  of  the  hydraulic  radius  calculation  are
altered  accordingly  (Liu  and  De  Smedt, 2004;  Molnár  and  Ramírez, 1998).

4.2.3 Particulate  PhozzyLogic  Index (PPLI)

While  providing interesting details,  a map  displaying the  PP  cell  loads  with,  for  example, 10×10 m
resolution  is  not  outright  helpful  to policy  makers,  who have  to decide  where  to cost-effectively
implement  an  emission  mitigation  measure  and  where  not.  This  information  therefore  has  to be
somehow  transformed.  For  this  purpose,  we  first  calculate  the  total  absolute  PP  contributions  to
surface  waters  for  each  field,  i. e.  the  sum  of  all  PP  cell  loads  of  each  field  with  the  help  of  zonal
statistics  and  then  apply  a fuzzy  membership  function  to those  results.

4.2.3.1 Fuzzy membership  function

A short  introduction  to fuzzy  sets  and  fuzzy  membership  functions  is  given  by  V.  B.  Robinson
(2003).  Basically,  fuzzy  membership  functions  are  functions  turning data sets  of  arbitrary  ranges
and  scales  into fuzzy  sets  consisting solely  of  values  between  zero and  one,  where  zero can  be
translated  into “not  possible” or  not  a member  of  a given  set  and  one  into “perfectly  possible” or
a member  of  a given  set.  All  other  values  between  zero and  one  represent  a varying degree  of
possibility  or  membership  in  a given  set.  A value  of,  for  instance,  0.7 thus  stands  for  a higher
degree  of  possibility  or  membership  in  a given  set  than  a value  of  e. g.  0.4.

Possibility  must  not  be  confused  with  probability,  even  though  they  share  the  same  value  range.
While  probabilities  are  estimated  based  on  data as  well  as  certain  assumptions  and  provide  

confidence  intervals,  possibility,  especially  due  to the  subjective  choice  of  fuzzy  membership
functions,  is  less  objective.  Nonetheless,  once  one  or  more  fuzzy  membership  functions  have  been
chosen,  possibility  is  perfectly  objective  and  can  even  be  used  to objectively  compare  expert
judgements.  This  approach  is  particularly  interesting and  helpful  in  a sparse  data environment
such  as  in  the  case  of  a cost-effective  implementation  of  mitigation  measures  against  PP  inputs
into surface  waters.

The  fuzzy  membership  function  we  have  chosen  is  the  so called  fuzzy  large  membership  function.
It  has  the  form

𝜇(x)  =  

1

1 +
(︂

x

p2

)︂−p1
,

where p1 is  the  spread  and p2 is  the  midpoint.  For  the  spread,  we  generally  put  in  one,  which
makes  the  shape  of  the  function  somewhat  similar  to that  of  a logarithmic  function,  and  for  the
midpoint,  we  put  in  a different  value  for  each  scenario.  These  values  were  calculated  so that 80 %
of  the  respective  agricultural  land  received  a value  of  less  than  0.5 and 20 % a value  of  0.5 or
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Fig.  4.1: Examples  of  fuzzy  large  membership  functions  with  a midpoint  of 4 kg yr−1 PP  cell  

load  per  field  and  spreads  ranging from  one  (dark  blue  curve)  to five  (yellow-green
curve).  With  increasing spread,  the  function  gradually  transforms  itself  from  a function
with  a shape  similar  to that  of  a logarithmic  function  to one  with  a shape  similar  to
that  of  a sigmoid  function.  The  black  dashed  lines  shall  help  illustrate  the  meaning of
the  midpoint  (possibility  of  0.5).

more  (Pareto principle;  cf.  Sharpley,  Kleinman,  Jordan,  et  al., 2009).  In  this  way,  the 20 % of
the  total  area of  agricultural  land  belonging to the  fields  with  the  highest  absolute  PP  inputs
into  surface  waters  received  a  value  of  0.5  or  more  and  are  therefore  what  we  consider  CSAs.
Figure 4.1 provides  examples  of  fuzzy  large  membership  functions  with  a midpoint  of 4 kg yr−1

PP  cell  load  per  field  and  spreads  ranging from  one  to five.

4.2.3.2 Final  Particulate  PhozzyLogic  Index creation

While  the  application  of  the  described  fuzzy  large  membership  function  to the  model  results  of  a
single  scenario could  already  be  referred  to as  a fuzzy  logic  based  PP  index,  this  is  only  the  first
step,  since  multiple  fuzzy  sets  can  further  be  overlaid  in  order  to take  into account,  among others,
the  uncertainty  of  input  data.  A simple  technique  for  this  is  the  so-called  convex  combination
(Dubois  and  Prade, 1985;  Kandel, 1986).  In  the  process  of  convex  combination,  each  involved
fuzzy  set  can  be  assigned  a weight,  which  makes  it  a weighted  mean  operator  with  weights  adding
up  to one.  Charnpratheep  et  al.  (1997)  also propose  a modified  version  of  this  operator,  which
sets  the  overall  result  to zero in  case  one  or  more  of  the  combined  fuzzy  sets  are  zero.
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As  no indication  exists  that  one  of  our  18 scenarios  is  more  possible  than  another  as  far  as  

it  comes  to a single  field  and  we  neither  favour  one  discharge  frequency  over  the  other,  we  

used  equal  weights  to overlay  the  fuzzy  sets  of  all  our  scenarios  with  the  unmodified  convex
combination  operator  in  order  to create  the  final  PPLI.  Using the  modified  operator  does  not
contribute  to the  quality  of  the  result  in  the  absence  of  a knock-out  criterion.

4.3 Results  and  discussion

4.3.1 STREAM  model  flow  directions

All  in  all,  the  flow  direction  of  about 28 % (approx. 440 000 cells)  of  the  arable  land  were  altered  

by  enforcing tillage  directions  on  topographic  flow  directions  (TOPO  vs.  TILL).  While  comparing
TOPO  and  FURR  results  in  a somewhat  higher  share  of  about 31 % (approx. 500 000 cells),
comparing TILL and  FURR  only  shows  a rather  small  share  of  about 8 % (approx. 130 000 cells).  

This  is  reasonable,  since  the  field  borders  merely  comprise  a small  portion  of  the  cells  representing
the  arable  land  of  the  catchment.  Additionally,  these  shares  reveal  that  about 5 % of  the  cells
were  altered  two times,  first  by  the  TILL and  then  by  the  FURR  scenario.

Of  the  roughly  7000 arable  fields,  nearly  6200 (approx. 88 %)  are  affected  by  at  least  one
cell  with  altered  flow  directions  due  to tillage  directions  and  obviously  all  fields  are  affected  by
altered  flow  directions  due  to open  furrows.  An  example  of  the  resulting flow  directions  of  the
three  scenarios  is  given  in  Figure 4.2.

4.3.2 Calibrated  overland  deposition  rates

Calibration  quality  of  the  nine  independently  calibrated  T6 scenarios  is  altogether  very  similar.
They  all  exhibit  a Nash-Sutcliffe  efficiency  (NSE)  of  about  0.95,  a modified  Nash-Sutcliffe
efficiency  (mNSE)  of  around  0.83,  a percent  bias  (PBIAS)  of  almost  zero and  a ratio of  the  root
mean  square  error  to the  standard  deviation  of  measured  data (RSR)  of  roughly  0.21 (Krause
et  al., 2005;  Moriasi  et  al., 2007;  Nash  and  Sutcliffe, 1970).  Figure 4.3 shows  the  observed  

and  modelled  yearly  PP  loads  of  the  representative  TC0.46-T6-TOPO  scenario at  the  seven
water  quality  gauges  along the  river  Pram.  Deviations  are  bigger  for  smaller  loads,  which  is  also
why  the  mNSE  indicates  a poorer  performance.  Poesen  (2018)  considers  scaling up  sediment  

yields  from  field  to catchment  scale  one  of  the  main  challenges  in  geomorphological  research.
Particularly  seen  in  this  light,  these  results  are  thus  very  promising.

Calibrated  overland  deposition  rates  range  from 0.91 × 10−3 to 1.46 × 10−3 s−1 and  decrease
with  lower  transfer  coefficients  (1.16 × 10−3 to 1.46 × 10−3 s−1 for  0.60 and 0.91 × 10−3 to
1.21 × 10−3 s−1 for  0.32),  which  is  reasonable,  as  lower  inputs  into surface  waters  from  fields
upstream  of  roads  have  to be  compensated  with  higher  inputs  from  fields  upstream  of  surface
waters.  Generally,  the  deposition  rates  of  the  FURR  scenario group  are  approximately  by
0.30 × 10−3 s−1 lower  than  those  of  the  other  two STREAM  model  scenario groups.



4.3 Results  and  discussion  75

Arable field border

Flow directions

Topographic flow direction

Altered flow direction

´0 10050 Metres

Fig.  4.2: Example  of  the  resulting flow  directions  of  the  TOPO  (top  left),  TILL (bottom  left)
and  FURR  scenario (bottom  right).  Especially  the  FURR  scenario leads  to partially
more  extreme  flow  accumulations,  as  it  concentrates  flow  at  field  borders  and  limits
spillovers  to neighbouring fields  to cells  with  a single  possible  downstream  path.
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Fig.  4.3: Observed  and  modelled  yearly  PP  loads  of  the  representative  TC0.46-T6-TOPO
scenario at  the  seven  water  quality  gauges  along the  river  Pram.  The  solid  black  line
represents  the  1:1 line  and  the  grey  dashed  lines 30 % deviations  from  the  1:1 line.

The  lower  deposition  rates  of  the  FURR  scenarios  may  appear  counter-intuitive.  They  are,
however,  a product  of  partially  lower  flow accumulations in the  interior  of  the  fields and higher
flow  accumulations  along the  field  borders.  Apparently,  the  higher  transport  potential  along field
borders,  which affects rather  few cells,  does not  fully  compensate  the  lower  transport  potential,
which  affects  the  comparatively  higher  number  of  cells  of  field  interiors.  Thus,  the  process  of  

calibration  has  to result  in  the  overall  lower  deposition  rates  of  the  FURR  scenario group  in
order  to make  up  for  the  gap  between  the  modelled  and  calculated  PP  river  loads.

4.3.3 PP  inputs  into surface  waters

Catchment-wide  PP  inputs  into surface  waters  range  from  about 8.0 to 8.7 Mg yr−1 for  the  

T1 scenario group  and 15.9 to 16.2 Mg yr−1 for  the  T6 scenario group.  Storm  drains  at  road
embankments  account  for  approximately  one  quarter  to almost  one  half  of  the  PP  inputs.  The
respective  shares  range  from 24 to 29 % for  the  TC0.32 scenarios, 32 to 37 % for  the  TC0.46
scenarios  and 39 to 44 % for  the  TC0.60 scenarios.  This  is  in  line  with  findings  of  Prasuhn  (2011)  

whose  ten  year  long field  survey  resulted  in  a share  of 22 % of  the  total  eroded  soil.  He  also states
that  about  half  of  the  eroded  soil  was  already  retained  within  the  borders  of  the  source  field
though.  This share  therefore  at  least  has to be  doubled in order  to account  for  the  input  into
surface  waters  alone.
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Tab.  4.2: Selected  percentiles  of  the  sums  of  the  PP  cell  loads  per  field  of  arable  land  in kg yr−1

for  two selected  scenarios.

Scenario/percentile  0.30  0.50  0.70  0.90  0.92  0.94  0.96  0.98

TC0.46-T1-TOPO 0.01  0.08  0.46  2.27  2.79  3.65  5.04  8.09
TC0.46-T6-TOPO 0.03  0.24  1.09  4.75  5.98  7.71  10.15  16.28

Fields  of  arable  land  are  predominantly  responsible  for  the  catchment-wide  PP  inputs  into
surface  waters  (96.6 to 98.0 %).  Grassland  fields  (1.1 to 1.8 %)  and  other  land  use  types  (0.9 to
1.6 %)  contribute  insignificant  amounts  only;  hence,  our  focus  lies  on  arable  fields.  Table 4.2 shows
selected  percentiles  of  the  sums  of  yearly  PP  cell  loads  per  field  of  arable  land  for  two selected
scenarios.  The  distributions  are  as  expected  very  skewed.  In  the  case  of  the  TC0.46-T1-TOPO
scenario, 70 % of  the  fields  contribute  less  than 0.5 kg yr−1 PP  to the  total  PP  emissions  into
surface  waters  and  even  in  the  case  of  the  TC0.46-T6-TOPO  scenario the  same  percentile  amounts  

to as  little  as  nearly 1.1 kg yr−1 PP.  The  amounts  of  the  higher  percentiles  are  increasing rapidly
from  there  on.

Individual  yearly  PP  cell  loads  and  transfers  of  a small  area within  the  case  study  catchment
are  displayed  in  Figure 4.4 for  the  TC0.46-T6-TOPO  scenario.  The  figure  clearly  depicts  that
forests  hardly  contribute  to PP  emissions  into surface  waters,  but  act  as  important  transfer  zones
for  upstream  PP  loads  mainly  via preferential  flow  pathways.  This  finds  confirmation  in  the
outcomes  of  tracer  experiments  conducted  e. g.  in  France  (van  der  Heijden  et  al., 2013)  and  in
Germany  (Julich  et  al., 2017),  which  have  shown  that  phosphorus  transport  in  forests  occurs
along preferential  flow  pathways,  largely  bypassing the  nutrient-poor  soil  matrix  of  forests.

4.3.4 Identified  critical  source  areas

The  number  of  fields  classified  as  a CSA,  i. e.  fields  with  a possibility  of  0.5 or  more,  ranges  from
1151 to 1233 for  all  the  modelled  scenarios. 14 538 fields,  on  the  other  hand,  are  not  classified  as
a CSA in  any  of  the  scenarios.  This  denotes  an  average  of 1196 fields,  which  in  relation  to the
total  number  of  fields  of 16 320 constitutes  a share  of  about 7.3 %.  The  differences  in  the  number
of  CSAs  can  be  regarded  as  negligible  among the  scenarios.

Furthermore,  the  median  area of  fields  classified  as  a CSA in  at  least  one  scenario is 2.94×104 m2

with  an  interquartile  range  of 3.30 × 104 m2.  The  median  area of  fields  never  classified  as  a CSA
is 0.74 × 104 m2 with  an  interquartile  range  of 1.31 × 104 m2.  This  considerable  difference  in
the  median  field  size  and  interquartile  range  explains  the  relative  small  share  of  fields  regarded
as  CSAs  compared  to the  approximately 20 % of  the  total  area of  agricultural  land  under
consideration.

A major  reason  for  this  percentage  mismatch  is  the  choice  of  the  sum  of  all  PP  cell  loads  per
field  as  input  to the  fuzzy  large  membership  function,  which  favours  the  selection  of  comparatively
large  fields.  The  purpose  of  this  choice  is  the  maximisation  of  the  anticipated  decrease  in  PP
emissions  into surface  waters  per  field  due  to the  implementation  of  suitable  mitigation  measures
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Fig.  4.4: Individual  yearly  PP  cell  loads  (left)  and  transfers  (right)  of  a small  area within  the
case  study  catchment  for  the  TC0.46-T6-TOPO  scenario.

and,  at  the  same  time,  the  minimisation  of  the  number  of  farmers  involved.  While  other  choices
like  the  average  of  all  PP  cell  loads  per  field  may  offer  a better  overall  potential  cost-effectiveness
ratio,  from  a pragmatic  perspective  it  would  be  likely  more  beneficial  to have  to convince  fewer
farmers  to participate  in  a catchment-wide  water  quality  protection  programme.  With  potential
cost-effectiveness  ratio,  we  here  refer  to the  area of  arable  land  taken  out  of  production  and
thus  associated  with  possible  monetary  compensations  in  order  to reduce  PP  inputs  into surface
waters  by  a given  amount.

The  applied  fuzzy  large  membership  functions  are  designed  to classify 20 % of  the  total  area of
agricultural  land  as  CSAs.  Depending on  the  scenario,  this  share  is  responsible  for 79 to 83 % of
the  total  PP  inputs  into surface  waters,  in  line  with  the  general  80:20 rule  (Sharpley,  Kleinman,
Jordan,  et  al., 2009).  Furthermore,  apart  from  two outliers,  all  fields  classified  as  a CSA in  at
least  one  of  the  scenarios  (1782 fields)  are  arable  fields.  As  a result,  the 20 % share  of  the  total
agricultural  land  classified  as  a CSA actually  represents  roughly 30 % of  the  total  arable  land.
This  nonetheless  underlines  the  general  principle  at  work.

Table 4.3 shows  the  number  of  times  as  well  as  the  cumulative  share  in  which  the  same  field  is
classified  as  a CSA.  For  the  TC  and  T  scenario groups,  the  shares  of  fields  classified  as  a CSA
in  all  of  their  respective  scenarios  lie,  despite  their  different  group  sizes,  around 50 %.  For  the
flow  direction  scenario groups  (TOPO,  TILL and  FURR),  the  same  shares  account  for  somewhat
more  than 60 % of  the  fields.  These  differing shares  can  be  explained  by  the  fact  that  all  flow
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Tab.  4.3: Number  of  times as well  as the  cumulative  share  in which the  same  field is classified
as  a CSA shown  separately  for  each  of  the  assessed  scenario groups.  Please  note  that
the  scenarios  of  the  TC  and  flow  direction  scenario groups  each  occur  only  six  times
(the  three  scenarios  of  the  respective  other  group  times  the  two scenarios  of  the  T  

scenario group),  while  the  scenarios  of  the  T  scenario group  each  occur  nine  times  

(the  three  scenarios  of  the  TC  scenario group  times  the  three  scenarios  of  the  flow
direction  scenario group).

Scenarios  9  8  7  6  5  4  3  2  1  0

No.  of fields

TC0.32 857  80  210  100  212  157  14 704
TC0.46 840  94  183  118  194  174  14 717
TC0.60 825  97  192  110  205  156  14 735
T1 815  92  75  141  72  75  133  104  145  14 668
T6 816  63  80  149  65  87  119  108  118  14 715
TOPO 928  114  113  96  116  130  14 823
TILL 927  121  108  100  108  139  14 817
FURR 924  103  92  99  94  114  14 894

Cumulative %

TC0.32 53  58  71  77  90  100
TC0.46 52  58  70  77  89  100
TC0.60 52  58  70  77  90  100
T1 49  55  59  68  72  77  85  91  100
T6 51  55  60  69  73  79  86  93  100
TOPO 62  70  77  84  91  100
TILL 62  70  77  84  91  100
FURR 65  72  78  85  92  100

directions  and  in  turn  flow  accumulations  are  homogeneous  within  the  flow  direction  scenario
groups,  but  heterogeneous  within  the  other  scenario groups.

So-called  UpSet  plots  allow  for  a rather  easy  to interpret  visualisation  of  multiple  intersecting
sets  (Conway  et  al., 2017;  Lex  et  al., 2014).  Figure 4.5 shows  such  a plot  for  a subset  of  the  

intersections  of  the  CSAs  of  all  T6 scenarios.  All  nine  scenarios  agree  on  816 (46 %)  of  the  in
total 1782 fields,  which  are  classified  as  a CSA at  least  once.  Furthermore,  there  are  153 (96 plus
57; 9 %)  CSA fields  where  the  FURR  scenario group  makes  a clear  difference.  This  discrepancy
emphasises  the  importance  of  knowing the  relevant  preferential  flow  pathways  in  a catchment
under  consideration.  Another  recognisable  pattern  is  that  the  scenarios  with  lower  transfer
coefficients  (especially  TC0.32)  differ  slightly  from  those  with  higher  transfer  coefficients  (TC0.46
and  especially  TC0.60).  The  T1 scenarios  exhibit  a similar  pattern,  albeit  not  as  distinct  as  the
one  of  the  T6 scenarios.

Evenson  et  al.  (2021)  compared  the  use  of  five  different  watershed-scale  models  for  the  

identification  of  CSAs  of  phosphorus  emissions  in  the 17 000 km2 Maumee  River  watershed.
Their  study  reveals  that  on  average  only 16 to 46 % of  sub-watersheds  were  identified  as  CSAs
by  more  than  one  model.  This  large  disagreement  is  attributable  to differences  in  input  data,
parametrisation  and  model  structure.  Based  on  these  outcomes,  Evenson  et  al.  (2021)  conclude
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Fig.  4.5: UpSet  plot  for  a subset  of  the  intersections  of  the  CSAs  of  all  T6 scenarios.  While  

the  set  sizes  of  the  nine  sets  are  presented  in  the  bottom  left  and  their  intersection
sizes  in  the  top  right  area,  the  bottom  right  area provides  information  about  the  sets
involved  (black  dots  connected  with  a black  line  or  single  black  dots)  in  each  of  the
above  displayed  intersections.
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that:  (i)  the  share  of  watershed  identified  as  CSAs  by  the  different  models  can  be  selected  for
conservation  measures  with  a high  level  of  confidence;  (ii)  a comprehensive  uncertainty  analysis
is  essential  in  this  field  of  research  to enhance  understanding and  acceptance  of  modelling results
by  planners,  decision  makers  and  farmers.

All  in  all,  our  18 scenarios  perfectly  agree  on  720 of  the 1782 fields  classified  as  a CSA.  This  is
a share  of  about 40 %.  Therefore,  similarly  to the  conclusion  of  Evenson  et  al.  (2021),  emission
mitigation  measures  could  concentrate  on  these  areas  with  a high  level  of  confidence.  The
remaining 60 % of  fields  allocated  as  CSAs  are  diversely  distributed  among the  various  possible
degrees  of  scenario intersections.  Through  the  set-up  of  scenarios  accounting for  different  sources  

of  uncertainty,  this  study  provides  a transparent  basis,  which  allows  to understand  which  reasons
lead  to the  different  identification  of  CSAs.  By  merging the  information  of  this  screening as
well  as  the  uncertainty  reasons  with  local  knowledge  of  farmers  and  practitioners  active  on  the
territory,  an  optimal  selection  of  fields  could  be  achieved  for  the  implementation  of  measures.

Including even  more  scenarios  could  push  these  two numbers  even  further  apart,  particularly,
since  each  of  the  assessed  scenario groups  comes  with  its  own  limitations.  A limitation  of  the  

transfer  coefficient  scenario group  is  for  sure  the  choice  of  a global  transfer  coefficient.  This  

assumption  may  not  hold,  as  areas  with  higher  flow  accumulations  may  also exhibit  higher
transfer  rates.  Another  limitation  is  that  the  presence  or  absence  as  well  as  the  exact  location  of
individual  storm  drains  remains  uncertain  (Hepp  and  Zessner, 2019).

While  the  erosion  part  of  PhosFate  based  on  the  (R)USLE  reflects  average  conditions,  its  

transport  part  has  to be  adjusted  to a specific  discharge  frequency.  With  longer  periods  both
parts  eventually  represent  average  conditions.  Especially  the  T1 scenarios  exhibit  a mismatch
in  this  regard.  Increasing the  discharge  frequency  (e. g.  from  six  to one  year)  yet  has  a similar
effect  as  increasing the  overland  deposition  rate.  Since  the  latter  acts  as  calibration  and  therefore
as  catch-all  parameter  for,  among others,  the  effects  of  catchment  elements,  which  cannot  be
represented  by  the  chosen  spatial  resolution  of 10 × 10 m,  but  where  retention  can  take  place  (e. g.
unploughed  strips  between  fields  and  hedges),  the  former  can  be  used  as  a proxy  for  studying
the  effects  of  the  presence  or  absence  of  such  elements.  The  global  nature  of  such  an  increase  in
discharge  frequency  once  more  poses  a severe  limitation,  as  it  mainly  influences  long-distance
transport.

Finally,  the  limitations  of  the  flow  direction  scenarios  stem  from  limited  knowledge  on  the
actual  tillage  directions,  surface  roughness  in  and  perpendicular  to tillage  directions  and  exact
locations  of  open  furrows  capable  of  concentrating flow.  Some  or  even  all  of  these  shortcomings
may  be  remedied  by  better  available  data or  improved  methods  to derive  them  from  existing data 

in  the  future.  Tillage  directions,  for  example,  could  be  more  accurately  derived  for  L-shaped  fields
from  field  border  data encompassing every  single  cultivated  crop  and  not  only  the  outer  border
of  all  crops  in  direct  vicinity,  which  are  cultivated  by  the  same  farmer.  The  latter,  unfortunately,
applies  in  this  case  with  the  field  borders  currently  available.
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4.3.5 The  final  Particulate  PhozzyLogic  Index map

Figure 4.6 presents  the  final  PPLI  map  of  the  case  study  catchment.  The  fields  coloured  violet
can  be  considered  the  most  possible  CSAs.  Most  CSA fields  are  located  near  the  catchment
boundary,  where  the  slopes  are  comparably  higher,  and  in  the  northwest  of  the  catchment.  This
map  is  the  result  of  only  a single  option  of  overlaying multiple  fuzzy  sets.  Further  options,  which  

should  be  tested  in  future  research,  are,  for  example,  the  application  of  different  weights  or  other
fuzzy  overlay  operators  like  the  fuzzy  gamma operator  (Zimmermann  and  Zysno, 1980).

No matter  how  the  different  fuzzy  sets  are  combined  in  the  end,  such  a PPLI  map  can  be  

a significant  step  forward  in  practice,  since  it  allows  each  farmer  to compare  his  or  her  fields  

to all  the  other  fields  within  a certain  catchment.  This  can  be  of  great  help  when  it  comes  to
evaluating if  – in  the  context  of  the  entire  catchment  – a certain  field  substantially  contributes
to the  overall  PP  emissions  into surface  waters  or  not.  Furthermore,  such  a map  provides  a
clear  ranking for  policy  makers  and  could  be  used  as  a starting point  for  developing a state  aid
programme,  which  promotes  the  implementation  of  mitigation  measures  in  a cost-effective  way.
For  this  purpose,  the  height  of  subsidies  could  even  be  linked  to the  degree  of  possibility  of  a
field  being a CSA or  not.

Such  a map  can  thus  foremost  provide  a detailed  screening for  the  selection  of  the  farmers  to
be  involved  in  a programme  of  measures.  Yet  we  consider  it  important  that  the  final  decision  

on  the  kind  and  exact  location  of  the  implemented  mitigation  measure  stays  with  the  farmer,  

as  he  or  she  has  the  best  knowledge  with  respect  to local  details,  which  are  not  available  for
modelling.  For  example,  in  many  cases  only  a small  portion  of  vegetated  buffer  strips  receives
the  majority  of  overland  flow  (Djodjic  and  Villa, 2015;  White  and  Arnold, 2009),  hence,  the  

concept  of  CSAs  can  even  be  translated  to a single  field.  Allowing farmers  to choose  from  a
variety  of  mitigation  measures  and  combine  them  in  a smart  way  may  be  capable  of  significantly
improve  the  implementation  quality  and  effectiveness.

Sharpley,  Kleinman,  Flaten,  et  al.  (2011),  while  praising easy-to-use  and  well  understandable
colour-coded  maps  derived  from  P  Indices,  criticise  their  reliability  and  address  the  need  of  

considering the  spatial  complexity  of  watersheds,  the  heterogeneous  response  time  as  well  as
delayed  release  of  legacy  PP,  which  eventually  determine  the  expected  effectiveness  of  measures  on  

the  long-term.  The  PPLI  map  presented  here  has  the  same  traits  praised  by  Sharpley,  Kleinman,
Flaten,  et  al.  (2011)  and  conveys  information  in  a straightforward  and  easily  interpretable  way,
but  at  the  same  time  it  builds  on  a much  more  solid  basis,  namely  on  the  results  of  a complex
fate  and  transport  model.

More  recently,  Wang et  al.  (2020)  highlight  in  their  review  of  modelling of  phosphorus  loss
from  field  to watershed  the  strong need  for  integrating comprehensive  uncertainty  analyses  in
the  studies  to provide  a more  transparent  and  robust  support  to decision  makers.  Despite  the
above-mentioned  limitations,  the  PPLI  map  based  on  the  one  hand  on  the  outcomes  of  the  

PhosFate  model  and  on  the  other  hand  on  the  overlay  of  several  present-day  scenario fuzzy  

sets,  which  take  into account  multiple  sources  of  uncertainty,  clearly  meets  the  criteria of  the
advocated  way  forward  in  this  field  of  research.
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Fig.  4.6: Final  PPLI  map  of  the  case  study  catchment:  fields  with  an  overall  possibility  of  0.5 or
more,  which  can  be  considered  the  most  possible  CSAs,  are  coloured  violet.  A darker
tone  thereby  indicates  a higher  possibility.
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4.4 Conclusions

This  study  successfully  developed  a new  algorithm  for  the  allocation  of  PP  emissions  entering
surface  waters  to their  respective  source  areas.  The  algorithm  was  implemented  into the  existing
semi-empirical,  spatially  distributed  phosphorus  emission  and  transport  model  called  PhosFate.
An  innovative  aspect  of  this  algorithm  is  that  in  comparison  to the  existing one  it  does  guarantee
conservation  of  mass  in  every  single  cell  and  not  only  on  the  level  of  zero-order  catchments.

With  the  help  of  fuzzy  logic,  it  was  then  possible  to translate  these  model  results  into a novel
Phosphorus  Index  with  a sound  theoretical  foundation  in  mathematics  and  a great  value  for
management  purposes.  The  novel  Particulate  PhozzyLogic  Index  (PPLI)  ranks  all  agricultural
fields  of  a potential  large  catchment  with  respect  to their  possibility  of  emitting high  PP  emissions
actually  reaching surface  waters.  Its  range  of  possibility  lies  between  zero (“not  possible”)  and
one  (“perfectly  possible”).  Possibility  values  of  0.5 or  higher  imply  that  a field  belongs  to the
20 % of  agricultural  land  responsible  for 80 % of  the  PP  inputs  into surface  waters,  which  is  also
our  definition  of  CSAs.

The  sensitivity  analysis  based  on  18 scenarios  shows  that  especially  open  furrows  at  field
borders  have  the  potential  to cause  deviating CSAs.  A thorough  validation  of  the  identified  CSAs
within  a catchment  of  several  hundred  square  kilometres  poses  a major  challenge  and  future  

research  has  to be  carried  out  concerning the  development  of  adequate  validation  strategies.
While  a validation  strategy  based  on  a representative  sample  of  fields  may  be  a conceivable  option,
an  indirect  strategy  based  on  long-term  measurements  of  PP  concentrations  in  a representative
sample  of  small  sub-catchments  may  be  a more  viable  yet  also more  approximative  choice.

Another  topic  of  future  research  should  be  the  advancement  of  methods  able  to derive  the
positions  of:  (i)  open  furrows  and  other  features  capable  of  concentrating flow  and  (ii)  agricultural
and  civil  engineering structures  (e. g.  storm  drains)  acting as  potential  short  cuts  for  surface
run-off  on  its  way  to surface  waters.  In  addition,  a multi-flow  version  of  the  presented  allocation
algorithm,  which  is  not  only  capable  to model  flow  concentration,  but  also flow  divergence  may
be  a relevant  topic  for  future  research.
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Fig.  A.1: Plot  of  residuals  for  the  best  fit  model.
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Fig.  A.2: Correlation  matrix  for  the  explanatory  variables  tested  in  the  model.
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Tab.  B.1: Connected  or  not  in  a natural  way.  Mosimann  et  al.  (2007)  acknowledge  obstacles
higher  than 50 cm as  effective  barriers  for  surface  runoff,  preventing connectivity,  and
so do we.

Code  Description

0  Not  connected in a  natural  way  

1  Connected in a  natural  way

Tab.  B.2: Explanatory  details  for  mapping units  not  connected  in  a natural  way.  Particularly
code  4 and  5 in  combination  with  the  codes  of  Tab. B.3 can  also be  used  to indicate
a change  in  connectivity  (e. g.  a change  from  direct  towards  diffuse  connectivity).

Code  Description

1 Road embankment
2 Levee  or other linear structure
3 Depression
4 Previously  mapped stream  is  missing
5 Previously  mapped stream  is  cased

99 Other

Tab.  B.3: Explanatory  details  for  mapping units  connected  in  a natural  way.

Code  Description

1 Directly  connected to  a  previously  mapped stream
2 Direct  connectivity  via  a  previously  unknown channel
3 Direct  connectivity  via  a  gully
4 Diffuse  connectivity

99 Other

Tab.  B.4: Artificial  connection.

Code  Description

0  Not  present  

1  Present  

2  Diffusely  present  in a  downstream  mapping  unit
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Tab.  B.5: Explanatory  details  for  mapping units  connected  in  an  artificial  way.  Diffuse  connec-
tivity  in  this  context  means  that  an  artificial  connection  is  either  diffusely  present  in
a downstream  mapping unit  (see  code  2 of  Tab. B.4)  or  that  an  artificial  structure  is
not  directly  connected  to a surface  water  (e. g.  a ditch  ending in  a forest).

Code  Description

1 Direct  connectivity  via  an inter-field ditch
2 Direct  connectivity  via  a  roadside  ditch
3 Direct  connectivity  via  a  storm  drain
4 Direct  connectivity  via  a  culvert
5 Direct  connectivity  via  a  (roadside)  ditch with (a)  storm  drain(s)
6 Direct  connectivity  via  a  (roadside)  ditch with (a)  culvert(s)
7 Diffuse  connectivity  via  an inter-field ditch
8 Diffuse  connectivity  via  a  roadside  ditch
9 Diffuse  connectivity  via  a  storm  drain

10 Diffuse  connectivity  via  a  culvert
11 Diffuse  connectivity  via  a  (roadside)  ditch with (a)  storm  drain(s)
12 Diffuse  connectivity  via  a  (roadside)  ditch with (a)  culvert(s)
99 Other

Tab.  B.6: Presence  and  absence  of  natural  features  as  well  as  artificial  point-shaped  and  linear
structures.

Code  Description

1 Channel
2 Gully
3 Inter-field ditch
4 Roadside  ditch
5 Storm  drain
6 Sewer
7 Culvert
8 Stream  casing
9 Missing,  previously  mapped stream

99 Other
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