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Abstracts in English, German and French

English abstract
The starting point for this thesis was the article [36] by Chapon, Fusy and Raschel, where the
authors noticed that in some asymptotic expansions of lattice path models in the quarter plane
the dependency on the endpoint is given by so-called discrete polyharmonic functions, and went
to show that the continuous analogue holds (i.e. the heat kernel allows for an expansion using
continuous polyharmonic functions).

It was already shown by Denisov and Wachtel in [51] that, under some slight technical
assumptions, the asymptotics of the number of lattice paths in a cone are in a first-order ap-
proximation directly tied to discrete harmonic functions, i.e. that if q(x;n) denotes the number
of paths from the origin to x with n steps, we have, up to periodicity,

q(x;n) ∼ γnV (x)

nc
.

Here, γ and c are some (real) constants, and V is a discrete harmonic function. It is now a
natural question to ask whether one could extend such asymptotics, i.e. whether it would be
possible to write for any k ∈ N,

q(x;n) =
γn

nc

k−1

p=1

vp(x)

np
+O 1

nk
, (1)

where γ, c are constants as before, and now each vp(x) is a (discrete) polyharmonic function of
degree p. This would in a sense be an analogue to the continuous case, where an asymptotic
heat kernel expansion allows for a very similar representation [36, 11].

Furthermore, unlike in the continuous case, the computation of discrete polyharmonic func-
tions in cones has, to the author’s knowledge, not been studied before.

These two topics will form the main part of this thesis. After introducing some basic
notions and going through some technical prerequisites in Chapters 1 and 2, it will be shown
in Chapter 3 how one can construct a basis of the space of all discrete polyharmonic functions.
This will be done in two ways; one of them arguably more straightforward and purely algebraic
in nature, which works in any case and leads to a basis consisting of functions with algebraic
generating function. The downside to this basis, however, is that the functions therein does not
allow for a scaling limit, and that they do not allow an easy representation of the polyharmonic
functions appearing in the asymptotics of lattice paths in the quarter plane. The second method
uses decoupling functions similar as in [12], and allows us to construct discrete polyharmonic
functions for all finite group models. If the correlation coefficient is an integer fraction of π,
then the resulting functions will even have rational generating functions of a rather nice shape.

In Chapters 4 and 5, the question about the form of asymptotics of the number of lattice
paths in the quarter plane will be addressed. For so-called orbit-summable models, which
exhibit a remarkable algebraic property tied to their reflection group and were first studied
in [31], we will see in Chapter 4 using a saddle point method that one can indeed find an
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asymptotic expansion as in (1). In Chapter 5, a class of infinite group models is treated, using
a parametrization of the kernel curve via Jacobi ϑ-functions. Perhaps surprisingly, it turns out
that in this case the asymptotic expansion is somewhat more complicated, including logarithmic
terms. Nonetheless, the dependency on the endpoint is still given by discrete polyharmonic
functions.
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Deutsche Kurzfassung
Der Ausgangspunkt für diese Dissertation war der Artikel von Chapon, Fusy und Raschel [36],
in dem die Autoren bemerkten, dass die Abhängigkeit vom Endpunkt in der asymptotischen
Entwicklung der Anzahl von Gitterpfaden in der Viertelebene bei manchen Modellen durch
sogenannte diskrete polyharmonische Funktionen gegeben ist, und das dazugehörige Analogon
im Kontinuierlichen zeigten.

Denisov und Wachtel hatten in [51] bereits gezeigt dass, unter milden technischen Voraus-
setzungen, die Asymptotik dieser Art von Gitterpfaden in erster Ordnung eng mit diskreten
harmonischen Funktionen verknüpft ist. Bezeichnet q(x, n) die Anzahl der Pfade vom Ursprung
nach x mit n Schritten, so ist nämlich (abgesehen von etwaiger Periodizität)

q(x;n) ∼ γnV (x)

nc
.

Dabei sind γ und c (reelle) Konstanten, und V ist eine diskrete harmonische Funktion. Es
ist nun eine sehr natürliche Frage ob sich das erweitern lässt, also ob es möglich ist, für ein
beliebiges k ∈ N eine Entwicklung der Form

q(x;n) =
γn

nc

k−1

p=1

vp(x)

np
+O 1

nk

zu finden, wobei γ, c wie zuvor Konstanten sind, und jede Funktion vp (diskret) polyharmonisch
vom Grad p ist. Das wäre in einem gewissen Sinn ein Analogon zum stetigen Fall, in dem der
Wärmeleitungskern im Wesentlichen dieselbe Repräsentation erlaubt [36, 11].

Abgesehen davon ist (soweit dem Autor bekannt) auch die Konstruktion von diskreten poly-
harmonischen Funktionen in der Viertelebene (im Gegensatz zu ‘normalen’, kontinuierlichen
polyharmonischen Funktionen) noch nicht untersucht.

Diese zwei Fragen werden den Hauptteil dieser Dissertation ausmachen. Nachdem in den
Kapiteln 1 und 2 einige Grundlagen und technische Voraussetzungen eingeführt werden, wer-
den wir in Kapitel 3 sehen wie eine Basis aller diskreten polyharmonischen Funktionen kon-
struiert werden kann. Das wird auf zwei Arten passieren; die erste davon rein algebraisch
und womöglich etwas direkter. Diese funktioniert in jedem Fall, führt aber zu einer Basis die
von einem kombinatorischen Standpunkt aus nur wenig brauchbar ist. Die zweite Methode
verwended sogenannte ‘decoupling functions’, ähnlich wie in [12], und erlaubt uns, diskrete
polyharmonische Funktionen für alle Modelle mit endlicher Gruppe zu konstruieren. Ist π ein
ganzzahliges Vielfaches des Arkustangens des sogenannten Korellationskoeffizienten, so haben
die resultierenden Funktionen sogar rationale erzeugende Funktionen mit einer recht simplen
Struktur.

Die Kapitel 4 und 5 sind der Frage nach der Form einer asymptotischen Entwicklung der An-
zahl von Gitterpfaden in der Viertelebene gewidmet. Für sogenannte Orbit-summierbare Mod-
elle, die aufgrund der algebraischen Eigenschaften ihrer Reflexionsgruppe bemerkenswert schöne
Lösungen zulassen und zuerst in [31] untersucht wurden, werden wir in Kapitel 4 mit Hilfe der
Sattelpunktmethode sehen, dass die Vermutung der Autoren von [36] tatsächlich stimmt, und
erhalten eine Asymptotik wie bereits erwähnt. In Kapitel 5 betrachten wir eine Klasse von
Modellen mit unendlicher Gruppe. Das Hauptwerkzeug dabei ist die Parametrisierung der
resultierenden elliptischen Kurve mittels Jacobi ϑ-Funktionen. Es ist vielleicht etwas über-
raschend dass sich die Asymptotik in diesem Fall anders verhält; sie enthält nun auch logarith-
mische Terme. Was sich hingegen nicht ändert ist, dass die Abhängigkeit vom Endpunkt durch
diskrete polyharmonische Funktionen gegeben ist.
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Résumé en français
Le point de départ de cette thèse est l’article [36], écrit par Chapon, Fusy et Raschel. Dans cet
article les auteurs remarquent que dans un développement asymptotique du nombre de chemins
dans le quart de plan Z≥0×Z≥0, la dépendance du point final est décrite par des fonctions dites
‘polyharmoniques discrètes’. Ils montrent aussi que dans le cas continu, le noyau de la chaleur
conduit à un un développement utilisant des fonctions polyharmoniques continues.

Il est déjà connu grâce à Denisov et Wachtel [51] que, sous des hypothèses plutôt faibles
dans une approximation de premier ordre, ce développement asymptotique est étroitement lié
aux fonctions harmoniques discrètes. Plus précisement, soit q(x;n) le nombre de chemins de
l’origine au point x et de longueur n, alors on peut écrire (aux questions de périodicité près)

q(x;n) ∼ γnV (x)

nc
,

où γ, c sont des constantes (réelles), et V (x) est une fonction harmonique discrète. On peut
alors se poser la question si on peut étendre ce résultat, c’est-à-dire écrire pour un k ∈ N
quelconque

q(x;n) =
γn

nc

k−1

p=1

vp(x)

np
+O 1

nk
,

où γ, c sont des constantes comme ci-dessus, et chaque vp est une fonction polyharmonique
(discrète) de degré p. Ce serait dans un certain sens un analogue du cas continu, où un
développement du noyau de la chaleur permet un développement de cette forme [36, 11].

De plus, contrairement au cas continu, la construction des fonctions polyharmoniques dis-
crètes dans le quart des plan n’est (à la connaissance de l’auteur) pas encore étudiée.

Ces deux questions forment la partie principale de cette thèse. Après avoir introduit cer-
taines notions basiques et préliminaires techniques dans les chapitres 1 et 2, nous construisons
dans le chapitre 3 une base de l’espace des fonctions polyharmoniques discrètes dans le quart de
plan par deux méthodes différentes. La prmière est plus simple techniquement et strictement
algébrique. Par contre, elle mène à une base qui est, il semble, peu applicable dans un contexte
combinatoire. La deuxième approche utilise des fonctions de découplage comme dans [12], et
nous permet de construire des fonctions polyharmoniques discrètes pour tous les modèles avec
un groupe fini. Si π est un multiple entier de l’arc tangente du coefficient de corrélation, alors
cette base est formée de fonctions dont les fonctions génératrices sont rationnelles et d’une
forme assez simple.

Les chapitres 4 et 5 sont consacrés à la deuxième question, relative à la structure du
développement asymptotique. Pour les modèles qui satisfont une certaine condition (nous
disons dans ce cas qu’ils permettent une ‘sommation orbite’, ce qui signifie qu’ils ont des pro-
prietés algébriques remarquables liées à leur groupe de réflexion [31]), nous prouvons dans le
chapitre 4 la conjecture des auteurs de [36], en utilisant la méthode du points-selle. Dans le
chapitre 5, nous considérons une famille de modèles avec groupes infini. L’outil principal pour
traiter ces modèles est la paramétrisation de la courbe du noyau par des fonctions ϑ de Jacobi.
Il se trouve, peut-être étonnamment, que pour ces modèles la structure de ce développement
est vraiment plus compliquée : il contient aussi des termes logarithmiques.

8



Chapter 1

Introduction

Last time, I asked: "What does mathematics mean to you?" And some
people answered: "The manipulation of numbers, the manipulation of
structures." And if I had asked what music means to you, would you
have answered: "The manipulation of notes?"

Serge Lang

The goal of this introduction is to give a brief overview over the main topics of this thesis, as
well as to give a bit of context and references to recent works. We will state some principal
results and sketch the main techniques used to obtain them. For precise definitions and a more
technical introduction to the main concepts which will be necessary later on, see Chapter 2.

1.1 Random walks in cones
In order to give an intuition of what a random walk is, and what kind of questions one might
ask themselves about them, one very commonly finds the analogy to a (very) drunk person,
who happens to be somewhere and wants to find their way home. Now, due to a lack of either
physical or mental capacity (or, in fact, both), this person will not just walk back home, but
instead take steps in an arbitrary direction, one after another. As mathematicians, we now ask
ourselves how long (i.e. how many steps) it will take for this person to get back home, or if
at all1. For a more thorough discussion on how one or multiple drunk people, either nice or
vicious, can behave/interact, their survival probability etc., see e.g. [72].

This example in fact already demonstrates very clearly the main points of a random walk2:
we have a process, which

1. moves at (not necessarily fixed) discrete time intervals in a random way (one cannot
expect the drunk person to take steps at constant time intervals, but in a finite amount
of time they will surely only take a finite number of steps),

2. this movement depends on the current state, but not on anything else (if the drunk person
is in front of a wall they cannot go forward, and it does not matter how they got to their
current position there since they cannot remember it anyway).

Formally, this could lead to the following definition:
1While it might also seem natural to ask if this person will turn out to be fine, this is not a question I have

found in any textbook.
2by which I do not mean mathematicians’ lack of empathy
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Definition 1. Given a state space X , a random walk is a stochastic process Xn such that

P (Xn+1 = y | Xi = xi, i = 0, . . . , n) = P (Xn+1 = y | Xn = xn) ∀x0, . . . , xn, y ∈ X .

One could imagine the time between Xn and Xn+1 to be distributed according to a suitable
distribution of one’s choice, but this is not important in the following. It is also interesting
to note that the above definition is effectively the same as for a time-discrete Markov chain.
Indeed, it turns out that the name ‘random walk’ is not used consistently throughout literature.
In [37], for instance, a random walk is defined to be a stochastic process traversing the vertices
of a graph, at each step traveling to a neighbour uniformly at random (whereas a Markov chain
is defined to be the same, but the distribution does not have to be uniform). This coincides
with the standard definition of a random walk on a graph (at least in the unweighted case), as
used for instance in the survey paper [99], or in [127] (though for directed, weighted graphs,
it is defined in the latter using the transition probabilities induced by the weights of outgoing
edges; which again leads to the definition of a Markov chain in [37]).
In Donsker’s famous theorem [52] about the scaling limit of random walks (although he did
not use this name), the latter is just a sum of independently, identically distributed random
variables. This is the same definition as is used in [51], which will be important later on. Note
that this definition explicitly excludes random walks on graphs as defined above, seeing as
graphs do in general not have the necessary translation symmetry. In the setting of this thesis,
we will be even more specific, using the same definition as in the classical book by Spitzer [128]
or in the more recent book by Lawler and Limic [100], which restricts random walks to the
lattice Zd:

Definition 2. Given a random variable X taking values on Zd for some d, a random walk
(with starting point x0 ∈ Zd) is the stochastic process given by

Sn := x0 +
n

i=1

Xi,

where the Xi are independent copies of X.

Seeing as we are taking the sum of independent copies of the same random variable, it is
perhaps not surprising that a kind of central limit theorem for random walks exists. This is
essentially what the following famous theorem named after Donsker (based on previous work
by, amongst others, Kolmogorov) states; if we let a random walk continue for long enough, and
rescale appropriately, then the random walk looks like a Brownian motion, as is illustrated in
Fig. 1.1.

Theorem 1.1 (Donsker). Suppose X is a d-dimensional random variable such that its second
moment are finite, and with E[X] = 0, Cov(X) = Id. Let Sn be the corresponding random walk
as defined above, and let

Bn(t) :=
S⌊nt⌋√

n
.

Then we have the convergence in distribution

Bn(t) → B(t),

where B is the standard d-dimensional Brownian motion.

10



Figure 1.1: Realizations of a simple random walk (with steps {→, ↓,←, ↑}) with 5000, 25000
and 100000 steps.

Here, ⌊nt⌋ denotes the largest integer smaller than or equal to nt (a necessary requirement, as
the discrete process Sn is defined only for integer indices). Note also that, if X has a covariance
other than the identity matrix, via a linear transformation we can transform it to a process with
identity covariance; and as linear transformations are continuous this carries over to the limit,
i.e. we will obtain a Brownian motion with the same covariance. When we will be interested
in the asymptotic counting of lattice paths later on, Thm. 1.1 will turn out to be very useful,
as it tells us that we can approximate a long random walk by a Brownian motion. On a more
intuitive level, this means that we can look at Brownian motion first, and expect many of its
properties to carry over to a discrete setting.

An important special case is that of random walks in cones. A d-dimensional cone is defined
by picking an open, connected subset Σ ⊂ Sd−1 of the d− 1-dimensional unit sphere, and then
drawing all rays from the origin through Σ, although usually some additional conditions like
convexity are imposed [51, 57]. One such cone is the quadrant, which is also a particularly
nice in the sense that it satisfies all conditions in aforementioned literature. For some standard
results on Brownian motion in cones see for instance [47, 11].

Random walks in cones are studied for multiple reasons. They appear in conjunction with
nonintersecting paths, or paths in Weyl chambers [50, 60, 71, 94, 129], feature prominently
in queueing theory [39, 38, 70, 74, 94] or finance [42], and can be used to model some other
physical or biological processes [3, 15, 72]. Additionally, they are studied for their combinato-
rial properties; they appear for instance in conjunction with Young tableaux or the study of
permutations [31, 27]. For some more examples see the references at the end of this section or
in Section 1.2.2.

Given a process and a cone, one can now ask the question of how long this process will stay
inside the cone. For Brownian motion, it turns out that

Px τB > t ∼ c1t
−au(x), (1.1)

where Px denotes the probability depending on the starting point x of the Brownian motion,
c1 is some constant, τB is the first exit time of Brownian motion from the cone, a is a constant
depending on the dimension and shape of the cone, and u(x) is a harmonic function (see
Section 1.3) on the cone [11, 47, 51, 49]. Under some moment conditions and mild technical
assumptions on the shape of the cone, it is shown in [49, 51] that this translates directly to the
discrete setting: given a random walk Sn, the we can define

V (x) := lim
n→∞

Ex [u(Sn); τ > n] . (1.2)
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This function V (x) then turns out to be (discrete) harmonic (see again Section 1.3), and for
the exit time τ and some constants c2 and a (the latter again depending on the dimension and
shape of the cone, as well as the random walk) we have

Px(τ > n) ∼ c2t
−aV (x). (1.3)

Additionally, one has the local limit theorem

Px
Sn√
n
∈ D | τ > n → µ(D), (1.4)

for compact sets D, with µ being a measure with explicit density function of H0u(y)e
−|y|2/2,

where H0 is a constant and u is the same harmonic function as in (1.1). This allows us to give
a first order asymptotic estimate not only of the probability that the random walk starts at a
point x and survives for a certain amount of time, but also to consider the dependence on the
endpoint. In particular, this leads to (ignoring possible periodicity)

Px (Xn = y, τ > n) ∼ κn−aV (x)V ′(y), (1.5)

for again κ, a some constants, and the V, V ′ (adjoint) discrete harmonic functions [51]. Note
that the probability on the left-hand side of (1.5) is nothing but a discrete heat kernel.

In the continuous setting, a heat kernel is defined as the fundamental solution of the heat
equation3

∂u

∂t
= △u

over a certain region. This heat kernel has an interpretation in the context of probability theory
as well, namely it gives the transition density of Brownian motion, which is the probability
density function of the transition probability kernel

Px(Bt ∈ dy, τ > t),

where again τ is the first exit time [90]. This continuous heat kernel has been studied in more
detail in [11, 47]; and in [36] it is shown that the continuous heat kernel admits a complete
asymptotic expansion in terms of continuous polyharmonic functions for the Laplacian. One
can understand Thm’s 4.5 and 4.7 as discrete counterparts of this fact.

The cone which will interest us the most in the following is the quarter plane Z≥0×Z≥0. The
reason for this is that the combinatorics for walks in the entire or half-plane are much better
understood and the respective path counting functions are a lot easier to compute explicitly via
the standard kernel method, see for instance [9, 10, 133, 32]. The same applies for models on
Z or on the half-line. Walks in the orthant, on the other hand, or generally in cones of higher
dimension than 2, are understood a lot less, and many of the methods used in this thesis fail
due to the existence of additional boundary terms and the resulting more complicated structure
of the kernel curve (see Section 2.1.2). Walks in the quarter plane are therefore a nice middle-
ground, so to say, which are not easy to understand, but still leaving us a range of tools to
do interesting mathematics with. In particular, as we will be considering models with finitely
many steps, it is easy to check that all regularity conditions as in [51, 49] are satisfied. It is
also worth noting that for some models we have bijections from quarter plane walks to some
other cone: in case of the Gouyou-Beauchamps model with steps {←,→,↖,↘}, these walks
are in bijection with simple walks in the Weyl chamber {(x, y) : 0 ≤ x ≤ y} [43]. Walks in
Weyl chamber are of particular interest in combinatorics, seeing as they are in bijection, or
at least in a close relation with a variety of different objects. See for instance [14, 13] (with
a strong emphasis on the link with representation theory), [78, 60, 95, 50, 71] (in relation to
reflectable random walks) and [106, 109, 108] (on highly symmetric lattice path models). For
more general information about walks in Weyl chambers see e.g. [50, 60, 94].

3Depending on the notation there might be a factor of 1
2 on the right-hand side.
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1.2 Lattice path enumeration in the quadrant
While one can see a random walk as a stochastic process, it is also an interesting object from
a combinatorial point of view, leading to lattice path enumeration. A lattice path is nothing
but a realization of a given random walk. Alternatively, one can also give a direct definition:

Definition 3. Given a lattice Zd and a set S ⊆ Zd of allowed steps, a lattice path (of length
n) is a sequence of points x0, x1, . . . , xn ∈ Zd such that xk − xk−1 ∈ S for k = 1, . . . , n.

Historically speaking, as the excellent survey article [87] describes, the reason lattice paths were
first looked at were indeed due to their aptitude for modeling probabilistic processes. While it is
hard to say that a single person ‘invented’ lattice paths, possibly the first time that something
one might call a lattice path was used was in 1654, when Pascal wrote to Fermat, concerning the
problem called now ‘Problem of points’ or ‘Division of the stakes’. In this problem, two people
are playing dice. Each turn, the one with a higher number gains a point, and the first one to
reach a fixed number of points wins the game. However, they have to leave before the game is
decided, so they have to divide the prize between them. Clearly, if at the time they are finishing
one of the players has more points than the other, then dividing equally might not be fair, so
the question was how to justly distribute the money.4 While Pascal’s and Fermat’s proposed
solution did not in fact introduce lattice paths as a geometrical object, it already contained all
the important ideas: they reasoned that the division of the prize should not in fact depend on
the past but only the current state of the game, and from then on took a recursive approach,
in a sense counting paths for either player to victory [92].
It turns out that this problem is very closely related to the one called the ‘Gambler’s ruin’,
where at each turn not only does the winner gain a point, but he takes it from his opponent;
so one of the two players will always have 0 points. Already mentioned by Pascal in a letter, it
was then treated amongst others by Huygens, Bernoulli and de Moivre, as well as a bit later
by Bertrand, Laplace and Lagrange.
The gambler’s ruin is itself closely tied to the so-called ‘Ballot problem’, in which, given an
election where two candidates A and B obtain fractions p and q of the total votes respectively,
one wants to know the probability that the victor is ahead throughout the entire count. This
problem was proposed by Bertrand and solved by André [4], although he did in fact not use
the famous reflection principle named after him. It was in conjunction with this problem that
Allen Whitworth made what might have been the first drawing of an actual lattice path [134].
From a modern point of view, it is clear how these three problems all relate to counting lattice
paths: for the problem of points, one can consider a walk moving either upwards or to the right,
and the game ending once it hits the upper or right edge of a square; for the gambler’s ruin
the path goes to the northeast or southeast, and the game ends if the path leaves a horizontal
strip of a certain width, and for the ballot problem we are interested in what is now commonly
called Dyck paths ending at a certain point. One might argue at this point that the gambler’s
ruin is formulated more easily as a question of probabilities rather than counting lattice paths,
seeing as we do not know the length of the path, and are only interested in where it leaves the
strip. Indeed, a modern solution would probably avoid the counting problem altogether and
make direct use of either martingale theory or the underlying random walk.

Nowadays, lattice paths are not only studied in the context of probability, but they have
instead become a main topic of interest in combinatorics. Clearly, there is a link between the
two: the discrete heat kernel in a cone Px(Sn = y, τ > n) is nothing but the sum of all lattice
paths of length n from x to y, staying inside this cone, weighed by their probability. We will

4This problem had in fact been considered earlier by Pacioli, but his approach was much more simplistic and
not probabilistic in nature [117].
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in the following consider more general weights ωs on our step set S, which we do not require
to come from a probability distribution.

Furthermore, in this thesis we are not so much interested in giving the precise number of
lattice paths from a start- to and endpoint, but rather in its asymptotic properties. A very
quick overview of what kind of properties in particular we are interested in will be given in the
following.

1.2.1 Asymptotic expansions

Given a step set S ⊂ Z2 together with weights (ωs)s∈S , denote by q(x, y;n) the number of
lattice paths in the quarter plane (that is, paths in Z2 satisfying the additional condition that
xi ∈ Z≥0 × Z≥0 for all 0 ≤ i ≤ n) from x to y with n steps, where each path x0, . . . , xn is
counted by its weight

n

i=1

ωxi−xi−1
.

It turns out that for some models, we have (depending on the model at least for some (x, y) ∈
Z2) explicit formulas for q(x, y;n) [30]. For the simple walk for example, consisting of steps
{↑,→, ↓,←} with equal probability, one finds that for y = (i, j) we have

q((0, 0), y) = 4−n (i+ 1)(j + 1)

(n+ 1)(n+ 2)

n+ 2
n+i−j+2

2

n+ 2
n−i−j

2

(1.6)

for i + j ≡ n mod 2, and 0 otherwise. For general models, however, we don’t have an ex-
plicit formula. Instead, one can utilize (1.5) and obtain the asymptotic equivalence (see once
again [51])

q(x, y;n) ∼ κ
ρn

na
V (x)V ′(y), (1.7)

with ρ being an exponential factor which depends on the model. The expression A(n) ∼ B(n)
here means asymptotic equivalence in the sense that

A(n) = B(n) + o (B(n)) ,

with the small Landau-o, or, equivalently, that we have

lim
n→∞

A(n)

B(n)
= 1

Given (1.6), for instance, one can check that we have ρ = 1, and obtain (with the additional
condition that i+ j be of the same parity as n, due to the periodicity of the model)

q((0, 0), (i, j);n) ∼ 4

π

(i+ 1)(j + 1)

n3
. (1.8)

This kind of asymptotic estimate is nothing new and has been considered by various authors
in the past; an overview of relevant literature is given in Section 1.2.2. However, in particular
given that for the simple walk we have an explicit formula, one could also try to find a more
precise asymptotic approximation of q((0, 0), y;n). And indeed, by a simple series expansion
of (1.6) at n = ∞ we obtain, as for instance in [36], that for any point (i, j) we have (again up
to periodicity)

q((0, 0), (i, j);n) =
4

π

∞

p=1

vp(i, j)

np
(n → ∞), (1.9)
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where the functions vp(i, j) depend on the endpoint only. This equality is in the sense of [136,
110]: the asymptotic equality

A(n) =
∞

p=1

Bp(n) (n → ∞)

means that for any k ∈ N we have

A(n) =
k

p=1

Bp(n) + o (Bk(n)) .

In our case of the simple walk, we can compute the functions vp in (1.9) explicitly. We have,
for instance,

v1(i, j) =(1 + i)(1 + j), (1.10)

v2(i, j) =− 1

2
(1 + i)(1 + j)(15 + 4i+ 2i2 + 4j + 2j2), (1.11)

v3(i, j) =
1

4
(1 + i)(1 + j)(317 + 168i+ 100i2 + 16i3 + 4i4 + 168j + 32ij + 16i2j

+ 100j2 + 16ij2 + 8i2j2 + 16j3 + 4j4)).
(1.12)

It turns out that each function vp is what is called a discrete polyharmonic function of order p
(see Sections 1.3 or 2.2.1). Additionally, each vp is a polynomial.

Given this (and a few similar) examples of an asymptotic expansion of q(x, y;n), a few
questions suggest themselves:

1. For general models, can we obtain a complete asymptotic expansion of q(x, y;n)?

2. If so, what is the dependency of the lower order terms on the start- and endpoints x, y?

3. Will we only ever find exponential-polynomial parts (of the form ρn

nα ) in n, or can there
be more complicated (logarithmic, for instance) terms?

These questions were the starting point for [36], and also for a large portion of this thesis. In
the setting of walks with small steps in the quarter plane, we will see that for a large class of
models, we can answer them.

In terms of previous literature, to the author’s knowledge, so far higher order estimates for
asymptotics have barely been studied in connection with lattice path counting. There seem to
be very recent results for walks on the half-line [48], showing that they allow for an expansion
similar to (1.9). Some general information about asymptotic series can be found in [34, 65].
In the context of graph theory, for instance, some work in this direction has been done for
example in [136, 110]. Before describing the approaches used and some of the results in this
thesis concerning the asymptotic counting of lattice paths, we will give a short overview about
previous work in this regard.

1.2.2 Earlier literature on asymptotics of lattice walk models

The kernel method and algebraic solutions

In lattice walk enumeration, a standard method to obtain asymptotic expansions is the so-called
kernel method. In dimension 1, the kernel method yields algebraic expressions for the generating
function of the numbers of excursions (with given length, starting and ending points), starting
from which it is possible to compute arbitrarily precise asymptotic expansions of the coefficients,
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using standard singularity analysis, see [9, 10, 32] (although only one-term asymptotics are
derived). In a few cases of dimensions 2 and 3, the kernel method (or subtle variations of
it, using the idea of half-orbit sums) also yields algebraic expressions for the path generating
function, for example for Kreweras’ model, see [74, 30, 28, 31], Gessel’s model [24], or for some
three-dimensional models [23]. Again, in these cases, it is possible to deduce precise asymptotic
expansions of the numbers of walks.

The kernel method and transcendental, D-finite solutions

In dimension 2 and more, the kernel method may also yield D-finite expressions for the gener-
ating functions as positive parts of rational functions, see [30, 31] for small steps in dimension
2, [23] for small steps in dimension 3 and [19] for large steps in dimension 2. Let us notice that
these ideas go beyond the case of quadrant (or octant) walks and also apply, for instance, in
the framework of walks in the slit plane or the three quarter plane [29, 33].

There are several ways to pursue and to deduce from these expressions the asymptotics of
the number of walks. In a few cases, it is possible to extract the coefficients in an explicit
way (for instance, for Gouyou-Beauchamps walks), and then to deduce asymptotic expansions
starting from these closed-form expressions. Many examples are provided in [30, 31, 23, 43,
19].

Another possibility to continue is to use the modern theory of analytic combinatorics in
several variables (ACSV), see for instance [43, 108, 106] for examples of applications in the
framework of lattice walks. In principle, using ACSV, one can deduce from these positive part
expressions full asymptotic expansions for the numbers of walks. However, the applicability
of the method is still restricted to properties very similar to orbit-summability as outlined in
Section 2.1.3, and the constants appearing in the prefactors of the asymptotic terms are not
always easily computable.

The kernel method and non-D-finite solutions

In a small number of cases, the (iterated) kernel method also applies to more singular models,
associated to non-D-finite generating functions, see for instance [107]. In those cases it is also
possible to deduce some asymptotic estimates.

Weyl chambers

As mentioned in the previous section, Weyl chambers represent another popular class of cones,
particularly due to its links with non-intersecting paths and other probabilistic and physical
models, for which various asymptotic estimates exist. As mentioned above, we refer to [14, 13]
(with a strong emphasis on the link with representation theory), [78, 60, 95, 50, 71] (in relation
to reflectable random walks) and [106, 109, 108] (on highly symmetric lattice path models).

Guess and prove

In a few works, the authors were able to guess the asymptotic behavior of various lattice path
sequences, see [20] and [7]. There are also various experiments by Tony Guttmann, which are
mainly not published.

Probabilistic and potential theory

Another possible approach makes direct use of the link between probability theory and combi-
natorics, taking local limit theorems and translating them directly into combinatorial estimates.
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In particular, the exponential growth of the number of excursions (resp. total number of walks)
is given in [76] (resp. [77, 91]).

These rough estimates are refined in [51, 58], where the authors obtain precise asymptotics
of the numbers of excursions and of the total numbers of walks (the last result under the
additional hypothesis of a drift equal to zero or directed to the vertex of the cone). A summary
of these methods is also given in the thesis [57].

In the particular case of quadrant walk models with infinite group, these asymptotics are
worked out in [21]. In particular, the critical exponent is shown to be non-rational in all these
infinite group models.

Another fruitful approach is based on harmonic functions, which are deeply related to these
lattice walk asymptotics problems. Indeed, they first appear as prefactors in the asymptotic
estimates [51]; more than that, their polynomial growth encodes the critical exponent of the
number of walks [132, 45, 111]. This approach has been generalized in [36], where formal
asymptotic expansions are derived in terms of polyharmonic functions.

Boundary value problems and applications

Following the pioneering works of Iasnogorodski and Fayolle [68], Malyshev [103], see also [70],
Cohen and Boxma [39] and Cohen [38], functional equations may be written for the generating
functions of various probabilities (also for counting walks), which can then be treated via
boundary value problems. This method results in contour integral expressions for the generating
functions, on which one may try to apply singularity analysis, see [69].

Other techniques

Finally, there are a few other techniques, different from the ones mentioned above. In dimension
3, the numbers of walks may be connected to the computation of triangle eigenvalues [16, 46]. In
dimension 2, there are also hypergeometric expressions [22], which lead to precise asymptotic
estimates. One may consult [18] for a nice and complete survey of lattice walk problems,
containing in particular many asymptotic results.

1.2.3 Approaches in this thesis

In this thesis, the approaches used will start out from the classical kernel method. The principal
idea is to utilize a functional equation for the path generating function

Q(x, y; t) =
t≥0

tn

k,l≥0

xkylq((0, 0), (k, l);n),

counting paths of length n from the origin to (k, l). Note that since we are working in the
quarter plane, we never have negative powers anywhere, and thus Q(x, y; t) is a well-defined
power series. This kind of functional equation is derived for instance in [9, 31], and reads

K(x, y)Q(x, y) = xy −K(x, 0)Q(x, 0)−K(0, y)Q(0, y) + tQ(0, 0), (1.13)

where K(x, y) is the so-called kernel, encoding the combinatorial information about the model:
given a model with small steps (that is, which go at most 1 in either direction), it is defined as

K(x, y) = xy 1− t
−1≤i,j≤1

ωi,jx
iyj .

Note also that we leave out the t in the notation to keep things shorter, so we write Q(x, y)
instead of Q(x, y; t) and so on. For the (unweighted) simple walk, for instance, one obtains
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K(x, y) = xy 1− t x+ y + 1
x
+ 1

y
. For some more general information about the kernel

and its properties, see Section 2.1.2. The equation (1.13) is attractive insofar as the right-hand
side has a fairly simple structure; except for the single monomial xy it has nicely separated two
parts depending on only x and y respectively. From this point on, we will use two different
strategies depending on the model.

Approach via orbit summation

The main strategy in [31] is that of so-called orbit summation. The authors observed that the
kernel K(x, y) is – in the case of the simple walk – invariant under the two transformations
(x, y) → 1

x
, y and (x, y) → x, 1

y
. These two involutions form a reflection group, which is

finite; in particular its orbit reads

(x, y) → 1

x
, y → 1

x
,
1

y
→ x,

1

y
, (1.14)

where the last element would once again map to (x, y). Now, adding up (1.13) when substituting
the orbit of (x, y), with alternating signs (the so-called ‘orbit sum’) gives, seeing as most terms
on the right-hand side cancel,

xyQ(x, y)− y

x
Q

1

x
, y +

1

xy
Q

1

x
,
1

y
− x

y
Q x,

1

y
=

xy − y
x
+ 1

xy
− x

y

K(x, y)
. (1.15)

The fact that Q(x, y) is a power series, i.e. it contains only positive powers of x, y, directly
implies that 1

xy
Q 1

x
, 1
y

contains only negative powers of x, y. Consequently, when extracting
the positive powers of the left-hand side, it vanishes. In a similar fashion, the other two
unwanted terms on the left-hand side vanish if extracting positive coefficients of either x and
y, leaving us with

xyQ(x, y) = [x>] [y>]
xy − y

x
+ 1

xy
− x

y

K(x, y)
, (1.16)

where [x>] , [y>] denote the linear operators extracting positive powers of x and y respectively
of some series. Being able to write the generating function as in (1.16) is the defining property
of orbit-summable models (though the exact shape of the right-hand side will depend on the
exact model). Since K(x, y) = 1− tS(x, y), where in case of the simple walk we have S(x, y) =

x+ y + 1
x
+ 1

y
, the denominator on the right-hand side can be seen as a geometric series in

t, and we can write

xkyltn xyQ(x, y) = xkyl S(x, y)n xy − y

x
+

1

xy
− x

y
. (1.17)

This finally allows us to compute this coefficient via a Cauchy type integral, of the form

xkyltn xyQ(x, y) = − 1

4π2
γ

S(x, y)n xy − y
x
+ 1

xy
− x

y

xk+1yl+1
dxdy, (1.18)

where γ is suitable contour around the origin. The main idea in Chapter 4 is to utilize a saddle
point approach in order to approximate the integral in (1.18). One can select the contour γ
such that the absolute value of S(x, y) is maximal at a finite set of saddle points, which means
that for large values of n the integral will behave approximately like its local value around these
points. This will then allow us to find an asymptotic expansion of q((0, 0), (k, l);n), and by
symmetry properties also one of the form q((u, v), (k, l);n). In particular, this will allow us to
show
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Theorem (see Thm. 4.5). Suppose that S is a step set satisfying the general assumptions stated
in Chapter 2 and that S is orbit-summable (see Section 2.1.3). Then there are a constant c ∈ N
and γ ∈ R+, roots of unity αi, βi, ζi as well as functions vp(k, l, u, v) such that for any m ∈ N
we have

q((u, v), (k, l);n) =
γn

nc

m−1

p=1

vp(k, l, u, v)
r
i=1 α

u−k
i βv−l

i ζni
np

+O 1

nm
.

The vp(k, l, u, v) are polynomials precisely if the drift is zero (else they contain exponential
factors). In this case they are of bidegree c+2(p−1) in both (k, l) and (u, v), and of total degree
2c+ 4(p− 1). Each vp(k, l, u, v) is multivariate γ-polyharmonic of degree p (see Section 2.2).

The values (and number) of the roots of unity appearing depend on the saddle points defined
more closely in Section 2.1.4, as well as the periodicity properties of the model. Thm. 4.5
completely answers the three questions posed above in the case of orbit-summable models.
Additionally, by finding a suitable decomposition of the functions vp(k, l, u, v), it allows us to
extend (1.7) (albeit requiring far stronger assumptions). We will also see in App. B that this
method extends to orbit-summable models with large steps, or in higher dimension.

In addition, we will see that we can rewrite each vp as a sum of the form

vp(u, v, k, l) =

kp

i=1

hp,i(u, v)gp,i(k, l), (1.19)

where the summation index kp is bounded polynomially in p, and the hp,i and gp,i are both
polyharmonic of degrees which sum up to at most p for each i, see Thm. 4.7. In particular, for
p = 1 we recover the result (1.5) of [51] (albeit requiring much stronger conditions).

Approach via elliptic functions

Another approach in dealing with the functional equation (1.13) lies in parametrizing the kernel
curve Ct := {(x, y) : K(x, y; t) = 0}, which is, in non-degenerate (see Chapter 2) cases and for
small t, an elliptic curve [82, 56]. A parametrization of the kernel curve via elliptic functions
has been used for instance in [97, 82] to show that the path generating function Q(x, y; t)
is not differentially finite for unweighted infinite group models. Asymptotics of lattice path
enumeration using elliptic functions, however, is a fairly new concept, first being used, to the
author’s knowledge, in [61]. The main idea in Chapter 5 will be to find a parametrization for
a class of infinite group models with steps {←, ↑,→, ↓,↗}, the latter with an arbitrary weight
a (not equal to 0, which would result in the simple walk). It turns out that in this case we can
find a parametrization of the form

X(z) = c
ϑ(z | τ)ϑ(z + γ | τ)

ϑ(z − γ | τ)ϑ(z + 2γ | τ) .

Y (z) = c
ϑ(z | τ)ϑ(z − γ | τ)

ϑ(z + γ | τ)ϑ(z − 2γ | τ) = X(−z).

Here, ϑ(z | τ) is the Jacobi ϑ-function. It can be written either in terms of τ or q = eiπτ , and
is given by

ϑ(z) = ϑ(z|τ) =
∞

n=0

(−1)neiπτ(n+
1
2
)2 e(2n+1)iz − e−(2n+1)iz

= ϑ(z, q) = 2i
∞

n=0

(−1)nq(n+
1
2
)2 sin((2n+ 1)z).
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Intuitively, writing the functions in terms of τ gives us more control on the geometric side, when
trying to construct functions with certain periods (as the invariant J(z) defined in Chapter 5),
whereas the expression in terms of q is more convenient to handle on the analytic side, as we
can treat ϑ(z, q) as a power series in q (which converges for q < 1).

We can rewrite the functional equation (1.13) on the kernel curve as

X(z)Q (X(z), 0) + Y (z)Q (0, y(z)) =X(z)Y (z). (1.20)

As X(z), Y (z) by construction satisfy K (X(z), Y (z)) = 0, we can rewrite

X(z)Y (z) =
1

a

1

t
−X(z)− Y (z)− 1

X(z)
− 1

Y (z)
(1.21)

This in turn implies that we can seperate the terms depending on X(z) and Y (z) and find
a function J(z) such that we can express J(z) (in some regions) as a function in X(z) or as
another function in Y (z), formally

J(z) =
1

2t
− atX(z)Q (X(z), 0)−X(z)− 1

X(z)
(1.22)

=− 1

2t
− atY (z)Q (0, Y (z))− Y (z)− 1

Y (z)
. (1.23)

Making use of periodicity properties of X(z), Y (z) allows us to give an explicit expression for
J(z) in term of ϑ-functions, namely

J(z) = −ϑ′(0, γ
π
)ϑ(2γ, τ)ϑ(z + π

2
, γ
π
)

cϑ(π
2
, γ
π
)ϑ′(0, τ)ϑ(z, γ

π
)

. (1.24)

Utilizing (1.24) together with, for example, (1.22) then lets us to obtain an expression for X(z)
in terms of Jacobi ϑ-functions. To turn this into an asymptotic expansion, we then make use
of the Jacobi transformation. This transformation makes use of the symmetry q ←→ q̂ given
by

log(q) log(q̂) = π2, (1.25)

and the associated the Jacobi identity

ϑ(z, q) = − log(q̂)

π
exp

log(q̂)z2

π2
ϑ

i

π
log(q̂)z, q̂ . (1.26)

This transformation admits a direct combinatorial interpretation, in that applying it on the
theta-expression for the generating function, we will exactly obtain the expression of the func-
tion at the critical point. From here, using classical singularity analysis, we can deduce imme-
diately a complete asymptotic expansion. In other words:

• q = 0 (q̂ = 1) ←→ series (Taylor) expansion at t = 0;

• q̂ = 0 (q = 1) ←→ series expansion at the critical point t = 1
ρ
.

While the duality (1.25) is classical in physics literature, its use to obtain asymptotic expansion
at criticality seems to be less studied, though there has been some work done e.g. by Kostov [96]
on the six-vertex model on a random lattice.

The approach using Jacobi ϑ-functions finally allows us to show for the class of models in
question the following
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Theorem (see Thm. 5.9). If the angle θ, given as the arctangent of the correlation coefficient
(see Section 2.1.2), has the property that π/θ is irrational, then for any p > 0 (not necessarily
integer), there is a ρ > 0 such that we have

q((0, 0), (k, l);n) = γn

i≥1,j≥m≥0
iρ+j<p

vi,j,m(k, l)
(log n)m

nkρ+ℓ
+O t−n

c

log n

n

p

,

where the vi,j,m are discrete γ-polyharmonic functions of order j −m+ 1. If π/θ = u
v
∈ Q with

u and v coprime integers, then the same holds with the additional condition that the summation
index k be at most v.

Thm. 5.9 gives us a complete asymptotic expansion, and it is novel in the sense that it is, to
the author’s knowledge, the first time that logarithms appear in an asymptotic expansion of
lattice path enumeration in the quadrant, nor do they occur in the continuous setting, when
deriving a complete asymptotic expansion of the heat kernel [36]. Seeing as it appears that
the methods used might generalize, one could conjecture that a representation as in Thm. 5.9
might hold for all models with infinite group.

1.3 Polyharmonic functions
Compared to harmonic functions, which are probably at least vaguely familiar to anyone having
ever heard an introduction to (complex) analysis, polyharmonic functions have been a lot less
studied. Still, there are a variety of results in particular in the continuous case; for a more
thorough introduction see for instance [5]. While in particular (1-)harmonic and biharmonic
functions have by now found a variety of applications in the theory of stochastic processes and
physics (see for instance [102, 6, 41]), the appearance of discrete polyharmonic functions in
asymptotics of path counting problems (as will be discussed in Chapters 4 and 5) was to the
author’s knowledge noticed only fairly recently in [36]. Correspondingly, there is only very little
literature about them. On finite graphs and/or trees, they have been studied in [120, 40, 84],
but it appears that describing them on infinite graphs, in particular in cones, has not been
done before. Let us consider the better known continuous polyharmonic functions first, and
only then proceed to the discrete case.

1.3.1 Continuous polyharmonic functions

Though most of what follows works in Rd for arbitrary d, we will from now on restrict our-
selves to the two-dimensional setting. In this case, given a Brownian motion with (positive
semidefinite) covariance matrix

Σ =
σ11 σ12

σ12 σ22
,

then its infinitesimal generator is the Laplacian

△ =
1

2
σ11

∂2

∂x2
+ 2σ12

∂2

∂x∂y
+ σ22

∂2

∂y2
.

Definition 4. Given an open set A ⊆ R2, we call a function f (continuous) polyharmonic
of degree k, if

△kf(x) = 0 ∀x ∈ A, (1.27)
f(x) = 0 ∀x ∈ ∂A. (1.28)

We call a function (continuous) harmonic if it is polyharmonic of degree 1.
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Clearly, the fact whether or not a given function is polyharmonic depends on the choice of the
Laplacian. In the following, we will usually have A = R+×R+. Note also that we have defined
polyharmonic functions here as solutions to a Dirichlet problem; one could be more general here
and allow for other boundary conditions. However, in the context of lattice path enumeration
later on it will become clear why this definition suffices for our purposes.

Possibly the first person to systematically study (continuous) polyharmonic functions was
E. Almansi, who in 1899 showed the following

Theorem 1.2 (Almansi, [2]). Let A ⊆ Cd be a star-shaped domain around 0. Then we can
write any function f(x) which is polyharmonic of degree k5 uniquely as

f(x) =
k−1

n=0

|x|2nhn(x), (1.29)

where the hn(x) are harmonic functions.

For a proof see for instance [5, Prop. 1.3]. Thm. 1.2 is interesting due to (at least) two reasons:
it gives us a canonical representation of a given polyharmonic function; but it also allows
us to iteratively construct polyharmonic functions of higher degree from a given sequence of
harmonic functions. In this sense, one could argue the construction of polyharmonic functions
in Chapter 3 works in a rather similar fashion. Similar to how discrete polyharmonic functions
appear in the asymptotics of some path-counting problems, their continuous analogues occur
when studying the asymptotics of exit times of Brownian motions [5, VI.], [36, Thm. 2.3].

The theory of continuous polyharmonic functions is well-developed, and computing them
in a region as nice as the quarter plane is not a big challenge anymore. A common approach
is to switch to polar coordinates, and then consider eigenfunctions of the resulting spherical
Laplacian, as in [36, 79]. In order to find continuous (poly-)harmonic functions, the standard
approach is to transform the Laplacian into polar coordinates, and then construct them via its
eigenfunctions, see e.g. [36]. An alternative approach, which is closer to the one applicable in
the discrete setting, is suggested in [125, App. A]: seeing as applying the Laplacian translates to
multiplication with a quadratic polynomial to the Laplace transform, this makes it possible to
rewrite conditions (1.27,1.28) as a functional equation in the Laplace transform. This functional
equation, which is very similar to (1.49), is a rather large hint that there might be a connection
between discrete and continuous polyharmonic functions; and in some cases one can use these
equations to compute discrete and polyharmonic functions in very similar manners. For the
harmonic and biharmonic cases this has already been done via a direct computation in [36,
2.2]; this will be explored in more detail in Section 3.4.2.

1.3.2 Discrete polyharmonic functions

In order to define discrete polyharmonic functions, one first needs a suitable discretization
of a Laplacian. To give an intuition of how to do so, recall first the defining property of an
infinitesimal generator of a Brownian motion. It serves in a similar fashion as a Taylor expansion
in time, i.e. for a reasonably smooth function f(x) we have

Ex [f (B(t))] ≈ f(x) +
1

2
△f(x). (1.30)

If we compute the same expectation for a discrete random walk, we obtain

Ex [f(X1)] =
s

ωsf(x+ s) = Pf(x), (1.31)

5In fact, allowing for infinite summation one can locally represent any holomorphic function in this manner,
cf. [5, Thm. 1.1].
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with P defined as above being the standard Markov operator, see e.g. [118, 135]. Bringing
(1.31) into the same form as (1.30) and forgetting about the factor 1

2
, we thus obtain

△ = P − Id, (1.32)

which is the standard definition for a discrete Laplacian [100, 135]. Given this operator, we can
now proceed directly as in Def. 4.

Definition 5. Given a subset A of Z2, we call a function f (discrete) polyharmonic of
degree k, if

△kf(x) =0 ∀x ∈ A, (1.33)
f(x) =0 ∀x ∈ Ac. (1.34)

We call a function (discrete) harmonic if it is polyharmonic of degree 1.

Later on, we will sometimes have a factor t on the right-hand side of (1.32), i.e.

△ = P − t Id . (1.35)

In this case, unless the definition of the corresponding Laplacian is clear from the context, we
speak of (discrete) t-polyharmonic functions.

As for the continuous case, in order to decide if a given function is polyharmonic or not,
we first need to fix a random walk, and with it the discrete Laplacian. In the following, we
will choose for A the quarter plane Z≥0 × Z≥0, though the above definitions (as well as the
construction for a discrete Laplacian) would work for any graph.

A first intuitive reason for why polyharmonic functions might be interesting from a combi-
natorial point of view is that if we have a quantity which behaves similar to a lattice path and
has reasonably nice asymptotics, then we will find polyharmonic functions in the coefficients.
More formally, one can show

Lemma 1.3. Let q(x;n) be some combinatorial quantity depending on n and a point x ∈ Zd,
and let S ⊂ Zd be some step set. Suppose that q(x) satisfies a recursive relation of the form

q(x;n+ 1) =
s∈S

ωsq(x− s;n),

and that for each m ∈ N we can write

q(x;n) =
m−1

k=1

fk(n)vk(x) +O (fm(n)) ,

where limn→∞
fk+1(n)

fk(n)
= 0 and limn→∞

fk(n+1)
fk(n)

= 1 for all k ≥ 1, and the Landau-O is to be
understood with respect to n. Then, for all k ≥ 1, vk(x) is a polyharmonic function of degree k.

The conditions on the coefficients fk are, for example, satisfied for fk = (logn)a

nb for any b > 0.
We will see asymptotics of this kind in Chapters 4 and 5. A proof of Lemma 1.3 is given in
App. A. In a certain sense this lemma is not yet optimal, as we will later on prove refinements
of it in Lemmas 4.3, 4.6 and 5.13. However, in all of the latter, the underlying idea is the same,
and we merely make use of additional knowledge of the structure of the fk.
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1.3.3 Canonical candidates/interpretation

On a bounded domain, or on a finite graph, one can find a reasonably simple probabilistic
interpretation of (discrete or continuous) polyharmonic functions. To see this, first suppose
we are given a Brownian motion which starts somewhere inside a bounded, open set A ⊂ Rd.
Suppose we are interested in the first exit time τB of a standard Brownian motion of A, when
starting a certain point x ∈ Rd. It can be shown (e.g. [53]) that, given any bounded and
measurable function g defined on the boundary ∂A, then the function

f(x) := Ex g τA
c

= E g τA
c | B(0) = x (1.36)

satisfies the Dirichlet problem

△f(x) = 0 ∀x ∈ A, (1.37)
f(x) = g(x) ∀x ∈ ∂A. (1.38)

In other words, f(x) is a harmonic function. This turns out to be a consequence of the fact
that the infinitesimal generator of Brownian motion is given by 1

2
△ (see e.g. [116]). In [83],

Helms shows that this generalizes in a certain way: suppose instead of f(x) =: f1(x), we look
at the functions

fk(x) := Ex (τB)k−1g B τB . (1.39)

Then it turns out that the fk satisfy a very similar boundary value problem, namely

△kfk(x) = 0 ∀x ∈ A, (1.40)
fk(x) = g(x) ∀x ∈ ∂A, (1.41)

which is to say that the fk are polyharmonic of degree k.
If we translate this to a discrete setting, then instead of a Brownian motion we consider

a finite subset A of Zd, and an arbitrary random walk Sn. Since the geometry of Zd is a bit
more involved, possibly the easiest way to formalize a boundary value problem is to define the
function g on the entire complement Ac (alternatively, one would have to define the boundary
depending on the step set, which is not difficult per se but would lengthen the notation). In
this setting, the following discrete analogue holds:

Proposition 1.4. Let A ⊂ Zd be bounded, and let (Sn)n≥0 be a random walk starting at some
x ∈ Zd. Let τ be the exit time of Sn from A, and g : Ac → C be any function. Finally, define
for k ∈ Z+:

fk(x) := Ex τ k−1g (Sτ ) . (1.42)

Then the fk satisfy the discrete Dirichlet problem

△kfk(x) = 0 ∀x ∈ A, (1.43)
f(x) = g(x) ∀x ∈ Ac. (1.44)

This means that, again, fk is (discrete) polyharmonic of degree k. A proof of Prop. 1.4 is
given in App. A. While it might at first glance be tempting to try and extend this kind of a
probabilistic interpretation to the quadrant, it turns out that this is not possible: the fact that
the domain A is bounded turns out to be crucial for the existence of the expected value. In
fact, on a bounded domain harmonic functions with zero boundary conditions need to vanish
due to the maximum value property, see e.g. [5]. This is clearly not the case for unbounded
domains like the quarter plane, where we could pick, for instance, f(x, y) = xy. Note that the
same holds true for discrete harmonic functions.
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In general, it is not easy to find one, or even all positive harmonic functions on a given
domain. Indeed, this leads to the theory of the so-called Martin boundary (introduced by
Martin in [104]), which serves as parametrization of the set of all such functions. See for
instance [135] for a introduction to this topic, and [128] for the case of homogeneous random
walks. With respect to random walks on the half plane, the Martin boundary for irreducible
walks was first described by Ignatiouk in [88], and for the quadrant with Loore in [89]. The
latter was independently done by Kurkova and Raschel in [98] a bit later, using kernel methods
similar as in this thesis. It turns out that, in our context of walks in the quarter plane, in the
zero drift case there is a unique positive harmonic function, which is the one naturally appearing
in the asymptotics as in (1.5). If one wants to translate this to a case with drift, then one needs
to utilize a Cramér transform as in [49], as is explained in Section 2.2.4. In this case, instead
of harmonic functions, in the same asymptotics we will have a t-harmonic function, and for the
arising value of t this will indeed turn out to be the unique positive harmonic function [101].6
Even if one has a canonical, unique positive harmonic function, however, it is not at all clear
what a canonical candidate for a biharmonic, or generally polyharmonic function should look
like. One could go ahead and talk about second order asymptotics of counting problems, but
this does not seem as satisfactory as for the harmonic case. On top of this, there is no reason
at all why the functions in the second order asymptotics should be positive.

1.3.4 Constructing discrete polyharmonic functions in the quarter
plane

While constructing continuous polyharmonic functions (in somewhat nice regions, at least) is,
as previously mentioned, not much of a challenge anymore, it had not been known previously
how to systematically find discrete polyharmonic functions in the quarter plane. While there
had already been work done on other graphs (see for instance [120, 40]), the first general method
to compute harmonic functions in the quarter plane for models with small steps and zero drift
was given in [123], via translation into a complex boundary problem. This approach has then
been extended upon in [86, 85]. To give a very rough outline of the strategy, the main idea is,
given a discrete harmonic function h(k, l), to consider its generating function7

H(x, y) :=
k,l≥0

h(k, l)xkyl. (1.45)

From here on, one then finds a functional equation, which is satisfied if and only if H(x, y) is
the generating function of a harmonic function, which reads

K(x, y)H(x, y) = K(0, 0)H(0, 0)−K(x, 0)H(x, 0)−K(0, y)H(0, y). (1.46)

Here, K(x, y) is the same kernel as in Section 1.2.38, where the parameter t takes the value
of 19, and again encodes the allowed steps and their weights. As previously mentioned, it will

6Note that the asymptotics mentioned here are arising from counting q(x, y;n), i.e. one counts them by
start- and endpoint. If one fixes the starting point only (i.e. counting all admissible paths of a certain length),
then it is a priori not so clear which positive harmonic functions appear, and in fact the structure and difficulty
of this problem seem to heavily depend on the direction of the drift, see e.g. [58, 59].

7The notations differ slightly in the literature; in e.g. [123], the quarter plane is defined as Z+ × Z+, not
including the axes like here, leading to a shift in the indices.

8In some articles the sign of the kernel is reversed, leading to different signs on the right-hand side of (1.46),
see e.g. [36, 86, 114].

9The value the parameter t takes would be different if we were to consider t-polyharmonic functions instead
(and indeed these two ts would be the same). It is, however, always a constant, unlike when computing the
path counting function.
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be rigorously defined in Section 2.1.2. Note that this functional equation looks very similar
to the one for the path counting function (1.13). Considering how harmonic functions arise
naturally from path enumeration problems, this is not entirely surprising. The main difference
is, however, that unlike for the counting function we do not have a parameter t (which previously
was the counting variable; and we are not counting anything here). As K(x, y) is quadratic
in both variables due to the assumption of having only small steps, we can find an algebraic
function X±(y) such that K(X±(y), y) = 0, and via substitution we then obtain

K(X+(y), 0)H(X+(y), 0)−K(X−(y), 0)H(X−(y), 0) = 0. (1.47)

Seeing as on some closed contour we have X+(y) = X−(y) (with x̄ denoting the complex
conjugate of x), this translates to

K(x, 0)H(x, 0)−K(x̄, 0)H(x̄, 0) = 0, (1.48)

valid on the boundary of some domain G (except for a single discontinuity). This kind of
boundary value problem is then solvable by standard theory, leading to a certain conformal
mapping ω(x), and allowing us to give a basis of the space of harmonic functions by

H(x, y) =
Pn (ω(x))− Pn (ω(X+(y)))

K(x, y)
, (1.49)

with the Pn being polynomials of degree n (see [86, Thm. 2]). This leads to a basis (Hn
1 )

∞
n=1

of the space of all harmonic functions. In order to compute discrete polyharmonic functions, a
similar approach was suggested in [36], making use of the very similar functional equation

K(x, y)H(x, y) = xy△H(x, y) +K(0, 0)H(0, 0)−K(x, 0)H(x, 0)−K(0, y)H(0, y). (1.50)

Here, if H(x, y) is the generating function of h(i, j), then △H(x, y) denotes the generating
function of △h(i, j) (i.e. it is the natural extension of the Laplacian on the space of gen-
erating functions). The idea is to iteratively solve this functional equation; solving it for
△H(x, y) = Hk

1 (x, y), with Hk
1 (x, y) some harmonic base function, then one will eventually

find all biharmonic functions, and so on. When trying to solve (1.50) in a similar fashion as
(1.46), then one obtains

K(X+(y), 0)H(X+, 0)−K(X−(y), 0)H(X−(y), 0) = R(X+(y), X−(y), y) (1.51)

for some function R. Annoyingly, this right-hand side does not only depend on X±(y), but
also on y directly, so we cannot directly bring this equation into the form (1.48). In order
to compute discrete polyharmonic functions, there are now different ways to proceed. In the
following, we will always consider non-degenerate models with small steps in the quarter plane
(see Chapter 2).

Direct approach

Going back to (1.50), it turns out that one can argue that a solution can be found with the
additional property that K(x, 0)H(x, 0) = 0. This immediately simplifies (1.50) sufficiently so
we can proceed to recursively construct discrete polyharmonic functions, leading to

Theorem (see Thm. 3.7). Given a model with small steps and zero drift, let (Hn
1 )n≥1 be the

basis of harmonic functions mentioned above. Then we can inductively construct bivariate power
series Hk

m(x, y) via

Hk
m+1(x, y) :=

X+yH
k
m(X+(y), y)− xyHk

m(x, y)

K(x, y)
if K(0, 0) = 0, (1.52)

Hk
m+1(x, y) :=

xyHk
m(x, y)

K(x, y)
if K(0, 0) ̸= 0. (1.53)
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Each Hk
m is m-polyharmonic, and we have △Hk

m+1 = Hk
m. The set Hk

m forms a basis of the
space of all discrete polyharmonic functions.

While it might seem at first that this completely solves the question of constructing discrete
polyharmonic functions, this construction turns out not to be ideal: we will see in Sec. 3.3
that these functions do not have proper behaviour in terms of their scaling limit, and are thus
unlikely to appear in the asymptotics of enumeration problems.

Decoupling approach

In [36], the authors proposed utilizing so-called decoupling functions. The latter were first
utilized by Tutte in [131], in order to treat functional equations arising when counting planar
maps, and were discussed in the context of problems related to lattice paths (in particular,
determining algebraic properties of path counting functions) by Bernardi, Bousquet-Mélou and
Raschel in [12]. Roughly speaking, the idea of a decoupling function is as follows: suppose we
have a rational function R(x, y). If, given a kernel K(x, y), we can write

R(x, y) = A(x) + B(y) mod K(x, y), (1.54)

for rational functions A,B, which is to say that we can, modulo the kernel, decouple the
dependence on x and y, then this immediately implies that

R(X+(y), y)−R(X−(y), y) = A(X+(y))− A(X−(y)). (1.55)

This means that, if we find a suitable decoupling function for the function R appearing in
(1.51), then we can once again obtain a boundary value problem of the same form as (1.48),
which we already know how to solve.

In [36], decoupling functions were found for some models using an ansatz making use of a
parametrization of the kernel curve, which is in fact very reasonable in that one can show that
if a (sufficiently nice) decoupling function exists, then it must be of a similar shape. This can
be used to show that no algebraic decoupling function exists for certain models, as will be done
in Section 3.4.1. However, it is very hard to show existence of decoupling functions for a class
of models using this decoupling approach. This is due to some loss of information about the
group properties when using the parametrization, as will also be explained in Section 3.5.

Instead, in Section 3.4.1 we will show directly that, for models with finite group, decoupling
functions for polyharmonic functions can always be found (and given explicitly). If, in partic-
ular, a certain angle θ satisfies π/θ ∈ Z, then the resulting polyharmonic functions even have
a particular nice shape. We will arrive at

Theorem (see Thm. 3.15). Suppose our step set has finite group and π/θ ∈ Z. Let Hk
1 (x, y)

be the usual basis of harmonic functions. We can then define inductively

Hk
n(x, y) =

xyHk
n−1(x, y)− F k

n−1(x)− X+yH
k
n−1(X+, y)− F k

n−1(X+, y)

K(x, y)
, (1.56)

where F k
n (x) is a suitable decoupling function of xyHk

n(x, y), which in particular exists. Then,
Hk

n(x, y) a rational function, and it is discrete polyharmonic of degree n for all n, k, and satisfies
△Hk

n+1 = Hk
n. For each n, k we can write

Hk
n(x, y) =

pn,k(x, y)

(1− x)α(1− y)α
, (1.57)

where pn,k(x, y) is a polynomial and α ∈ N with α ≤ kπ/θ + 2(n− 1).
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Let us again emphasize that the decoupling functions can be computed explicitly, see (3.76).
Also, note that this gives us not only a basis of polyharmonic functions, but one of a particularly
nice shape; namely rational functions with nicely behaved poles. Contrary to before, these
polyharmonic functions now show good limiting behaviour: we will show in Thm. 3.19 that
their scaling limits are indeed continuous polyharmonic functions (which can be constructed
via a functional equation approach in a completely analogous fashion). Lastly, we will see
that these discrete polyharmonic functions do in fact appear in asymptotics of lattice path
enumerations, i.e. they are indeed combinatorially reasonable.

Approach via a boundary value problem

Given models with infinite group, it appears that a decoupling approach as above does not
work (there is to the author’s knowledge no counter-example, but neither is there a formal
proof of this). Therefore, going back to (1.51), one can once again make use of standard theory
and try to directly solve the inhomogeneous boundary value problem. This is possible, and
done explicitly for models with infinite group and π/θ = 2 in Section 3.6. It turns out that the
resulting decoupling function (and biharmonic function) is given in terms of a contour integral,
and is, unlike in previously considered cases, no longer algebraic.

Direct approach using a single generating function

Another possible approach would be to, instead of a generating function Hk(x, y) for each
discrete polyharmonic function of order k, use a single generating function H(x, y, z) defined
by

H(x, y, z) =
k≥0

Hk(x, y)z
k.

Assuming that the functions Hk(x, y) satisfy △Hk+1(x, y) = Hk(x, y) (which in particular
implies that H0(x, y) = 0), then one could hope that the structure of the functional equation
is as simple as, or maybe even easier than that of (1.50). And indeed, iterative application
of (1.50) gives us

[K(x, y)− xyz]

:=L(x,y,z)

H(x, y, z) = K(0, 0)H(0, 0, z)−K(x, 0)H(x, 0, z)−K(0, y)H(0, y, z). (1.58)

Noticing that K(x, 0) = L(x, 0, z), K(0, y) = L(0, y, z) and K(0, 0) = L(0, 0, z) and then letting
L(x, y, z)H(x, y, z) := M(x, y, z), this equation takes the very simple form

M(x, y, z) = M(0, 0, z)−M(x, 0, z)−M(0, y, z). (1.59)

By looking at the right hand side and noting that all mixed products of x and y need to be 0,
one sees that a power series M(x, y, z) ∈ C[[x, y, z]] solves (1.59) precisely if it can be written as
a sum of power series as M(x, y, z) = P1(x, z)+P2(y, z)+P3(z). The problem here is, however,
finding appropriate power series P1,2,3 such that at the end we can divide by L(x, y, z) and
obtain a proper trivariate power series H(x, y, z). While it is possible that this could be done
in general and lead to a nice structure of solutions, at this point it appears that the easiest
way to do so is to consider each k consecutively, which in essence boils down to iteratively
computing the Hk(x, y) as outlined above and detailed in Chapter 3.

To see what this looks like in a concrete example, consider the simple walk with steps
{↑,→, ↓,←} with weights 1

4
each. We will see later on (see Thm. 3.26) that one can find a

sequence of discrete polyharmonic functions for the simple walk

Hk(x, y) =
8

(1− x)2(1− y)2
4

(1− y)2

k−1

.
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This enables us to write

H(x, y, z) =
k≥1

zkHk(x, y)

=
8

(1− x)2(1− y)2
k≥1

zk
4

(1− y)2

k−1

=
8z

(1− x)2(1− y)2
1

1− 4z
(1−y)2

.

Here, the computation was largely aided by the fact that we have an explicit formula for the
Hk(x, y), and that they are of a very simple structure (in particular, they form a geometric
sequence). In general, this is not the case, and it is not obvious how one could find an expression
for H(x, y, z) given only a recursive relation for the Hk(x, y) as for example in Thm. 3.15.
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Chapter 2

Preliminaries

Everyone knows what a curve is, until he has studied enough
mathematics to become confused through the countless number of
possible exceptions

Felix Klein

2.1 Walks in the Quarter Plane

2.1.1 A functional equation

In order to count lattice paths in the quarter plane, first of all we need to fix a model; which
is to say a set S ⊆ Z2 of permissible steps, together with a family of positive weights (ωs)s∈S .
A lattice path of length n is then a sequence of points (x0, . . . , xn) ⊆ Qn, with Q := Z≥0 ×Z≥0

being the quarter plane, such that xk − xk−1 ∈ S for all k ∈ {1, . . . , n}. We will count such
a path by its weight, that is, the product n

k=1 ωxk−xk−1
. Similarly, we will denote by |S| the

total weight s∈S ωs of the steps in a model.
We will in the following assume that:

1. our step set consists of small steps only, i.e. S ⊆ {−1, 0, 1}2 \ {(0, 0)},
2. our step set is non-degenerate, i.e. there is no (possibly rotated) half-plane containing all

allowed steps.

In order to keep the notation short, we will in the following sometimes denote by S not only
the set of allowed steps, but also the associated weights (ωs)s∈S .
Let q((u, v), (k, l);n) be the (weighted) number of paths of length n from (u, v) to the endpoint
(k, l). It can then be shown (see e.g. [31, Lemma 4]) that the generating function

Qu,v(x, y; t) =
n≥0

tn

k,l∈N
xkylq((u, v), (k, l);n) (2.1)

satisfies the functional equation

K(x, y; t)Qu,v(x, y; t)

= xu+1yv+1 −K(x, 0; t)Qu,v(x, 0; t)

=:A(x;t)

−K(0, y; t)Qu,v(0, y; t)

=:B(y;t)

+K(0, 0; t)Qu,v(0, 0; t)

=:C(t)

, (2.2)

where

K(x, y) = xy [1− tS(x, y)] , (2.3)
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and S(x, y) is the step-counting Laurent polynomial

S(x, y) =
(i,j)∈S

ωi,jx
iyj. (2.4)

For ease of notation, if (u, v) = (0, 0), then we will just write q(k, l;n) and Q(x, y; t).
Given that we consider paths in the quarter plane only, we see that the series Qu,v(x, y; t) are
indeed power series in x, y and t (meaning there are no negative powers appearing anywhere);
in particular, since we are working with finite step sets only, they are power series in t with
polynomial coefficients in x, y. In the following, seeing as we will often treat the variable t as
a parameter, we will often write K(x, y) and Q(x, y), leaving out the last variable.

2.1.2 The kernel, its curve, and a conformal mapping

Seeing as we allow small steps only and our step set is non-degenerate, we can write the kernel
K(x, y) as

K(x, y) = a(x)y2 + b(x)y + c(x) (2.5)

= ã(y)x2 + b̃(y)x+ c̃(y), (2.6)

with a(x), b(x), c(x), ã(y), b̃(y), c̃(y) all being non-zero. Note that, as previously mentioned, all
of the above functions depend on the parameter t. We can use the quadratic formula to find
solutions of K(·, y) = 0 and K(x, ·) = 0, which are given by

X±(y) =
−b̃(y)± b̃(y)2 − 4ã(y)c̃(y)

2ã(y)
, Y±(x) =

−b(x)± b(x)2 − 4a(x)c(x)

2a(x)
. (2.7)

Letting D(x) := b(x)2 − 4a(x)c(x), then one can show (see [125, 2.5], [70, 2.3.2]) that given a
non-degenerate walk and letting t ∈ (0, |S|), then D(x) = 0 has pairwise different solutions x1

to x4 with |x1|≤ x2 < 1 < x3 ≤ |x4|, where we let x4 = ∞ if D(x) is of degree 3. For t = |S|,
we have x2 = x3 = 1 precisely if the model has zero drift, i.e. if

s∈S
iωi,j =

s∈S
jωi,j = 0.

If the drift in only one direction is 0, then only either x2 or x3 will be equal to 1, see [70,
Lemma 2.3.9].

A standard approach in trying to solve the functional equation (2.2) is to restrict it to the
so-called kernel curve C. This curve, which also depends on t, is defined as

C := {(x, y) ∈ C2
: K(x, y) = 0}. (2.8)

Here, C is the projective closure of C. The motivation to do so is that for (x, y) ∈ C, the most
complicated term K(x, y)Q(x, y) vanishes. To proceed from there it is essential to know the
algebraic structure of this curve, which can be either of genus 0 or 1. By (2.7), we see that we
can consider this curve as a two-fold cover of C with branch cuts depending on the number of
zeros of D(x); if x1, x2, x3, x4 are all distinct, then C (or, more formally, its compactification,
for details see [56, 2.4.1], or, using this same kernel, [82, 55]) will be of genus 1; else it will be of
genus 0. For t < |S| this means in particular that for any non-degenerate model, we will have
a curve of genus 1.
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(a) The simple walk: S = {→, ↓,←, ↑}
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(b) The tandem walk: S = {↖,→, ↓}
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(c) The Gouyou-Beauchamps walk:
S = {←,→,↖,↘}

Figure 2.1: The shape of the domain G for different (unweighted) models. The angle θ can be
defined as the angle at which its boundary intersects the real axis at the point (1, 1).

In the following, suppose that our model has zero drift, and let |S|= t = 1, as will be
the case in Chapter 31. Then by the above, one can see that the discriminant is negative for
y ∈ [y1, 1], and therefore in this range we have X+(y) = X−(y). Analogous results hold for
D̃(y) := b̃(y)2−4ã(y)c̃(y). This is in particular used in the computation of harmonic functions,
as in [125, 86] and will be used in Section 3.2. The idea is to define the domain G as the area
bounded by the curve X± ([y1, 1]), and notice that the functional equation (2.2) will lead to a
boundary value problem of the form

f(x)− f(x) = 0 (2.9)

on ∂G \{1}, for a function f(x) which is analytic in the interior of G and continuous on G \{1}
(cf. [36, 125]). A few examples of what G can look like is given in Fig. 2.1; in particular the
case where G is the unit disk will be examined in 3.6.

In order to solve the above boundary value problem, one can construct a mapping ω : C → C̄
which is a fundamental solution in the sense that any other solution can be written as some
entire function applied to ω. An explicit formula for ω as well as some additional information
are given in [125]. This ω satisfies

ω(0) = 0, ω(X+(y)) = ω(X−(y)) ∀y ∈ [y1, 1],
∂ω

∂x
(x) ̸= 0 ∀x ∈ G◦. (2.10)

In particular, ω is a conformal mapping of the domain G. Furthermore, it has a pole-like
singularity of order π/θ at x = 1, where θ is the inner angle at which ∂G intersects the x-axis.
This angle is the arctangent of the so-called correlation coefficient of the model, see [69,
125]. It can be computed directly via

θ = arccos − ijωi,j

i2ωi,j j2ωi,j

. (2.11)

1If it is not, then we can apply the Cramér transform to obtain an equivalent model with these properties,
see Section 2.2.4
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The angle θ happens to be closely related to the so-called group of the walk, which will be
defined in Section 2.1.2 below: it turns out that its restriction to the kernel is finite if and only
if π/θ ∈ Q) (see [70]). Additionally, in [123], [86], it is shown that π/θ determines the growth
rate of the positive harmonic function. Given a model with non-zero drift, we can first apply a
Cramér-transform (see 2.2.4) to get rid of the drift, and then define θ as above.

In the same manner as we have constructed the region G and the conformal mapping ω
above, one can obtain an equivalent region G ′ by swapping the roles of x and y. While it is
possible to construct a second conformal mapping ω̂ for G ′ in the same fashion as ω, one can
also see that ω ◦X+ is a conformal mapping by [70, Cor. 5.3.5], and it has the same behaviour
around 1 as ω. Finally, we note that due to (2.10), ω is an invariant in the sense of [12, Def. 4.3].

2.1.3 The group of a model and orbit summation

Consider now the two birational transformations

Φ :
x → x,

y → y−1 c(x)
a(x)

,
(2.12)

Ψ :
x → x−1 c̃(y)

ã(y)
,

y → y.
(2.13)

These two transformations, which clearly depend on our step set S as well as the parameter t,
generate the so-called group of a model, denoted by G. If G is finite, then, as both Φ,Ψ are
involutions, any element g ∈ G can be written as either (Φ ◦Ψ)k, or as Ψ ◦ (Φ ◦Ψ)k for some
k. We define sgn(g) = 1 in the first, and sgn(g) = −1 in the second case. This group has been
central to many results in the study of lattice walks in the quarter plane, see e.g. [31, 82, 55,
69]. The main reason for this is that if we let

k(x, y) :=
K(x, y)

xy
= 1− tS(x, y), (2.14)

then it follows that k(x, y) is invariant under G. In particular, given (x, y) such that K(x, y) = 0,
then we know that (K ◦ g)(x, y) = 0 for all g ∈ G. On the kernel curve, the group therefore
behaves like the so-called QRT-map in [56], consisting of horizontal and vertical switches on a
biquadratic curve, see Fig. 2.2.

The invariance of k(x, y) under G is the starting point for orbit summation methods as
in [31]: we rewrite (2.2) as

xyk(x, y)Q(x, y) = xy − A(x)− B(y) + C. (2.15)

Assuming now that the group is finite, and picking any g ∈ G, we obtain

g(xy)k(x, y)Q(g(x), g(y)) = g(xy)− A(g(x))− B(g(y))− C. (2.16)

Multiplying (2.16) with sgn(g) and taking the sum over all elements g ∈ G, all terms A(g(x))
and B(g(y)) cancel (note that both Ψ,Φ change only one variable each, while sgn switches
sign), we obtain (see [31, Prop. 5])

g∈G
sgn(g)g(xy)Q(g(x), g(y)) =

1

k(x, y)
g∈G

sgn(g)g(xy). (2.17)
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Figure 2.2: An illustration of the action of the group G on the kernel curve. The mappings
Φ,Ψ represent switching vertically to the opposite points. Correspondingly, starting from P1,
we have P2 = Φ(P1), P3 = Ψ(P2) and so on.

Depending on the exact shape of G, often the terms of the form Q(g(x), g(y)) will not contribute
positive powers of both x and y except for g = Id. In this case, we say that the model is orbit-
summable, and we can write

xyQ(x, y; t) = [x>] [y>]
g∈G sgn(g)g(xy)

k(x, y; t)
. (2.18)

By [31, Lemma 2], we know that if a model S (consisting of both steps and weights ωs)
has a finite group, then the model with reversed steps S̃ := −S has a finite group as well.
Furthermore, by essentially the same argument, one can see that orbit-summability is retained
when reversing the steps as well:

Lemma 2.1. Given an orbit-summable model S, the reversed model S̃ is also orbit-summable.

Proof. We note as in [31, Lemma 2] that if Φ,Ψ are the generators of the group of S, then the
generators of the group of S̃ are given by ι◦Ψ◦ ι, ι◦Φ◦ ι, where ι(x, y) = (x−1, y−1). Given any
element g in the group G of S, denote by g̃ the corresponding element of the group G̃ of S̃. As ι
is an involution, we see that g̃ = ι◦g◦ι for any such g, and in particular that g̃(xy) = ι◦g◦ι(xy).
Noticing that g(xy) ∈ C(x, y) we can deduce that g̃(xy) = g(xy). From there, we obtain an
equivalent equation to (2.18) by the very same combinatorial arguments.

Remark: In the literature, the group being finite is sometimes used ambiguously: in this
thesis, as well as for example in [30, 31], the group being finite means it is finite as a group
generated by the two birational transformations Φ,Ψ. Some other times (e.g. in [70, 82]),
the group is understood as the restriction of these transformations to the kernel curve, the
finiteness of which is a weaker statement (and equivalent to the fact that π/θ ∈ Q, where θ is
the arctangent of the correlation coefficient as defined above [70, 7.1]). These two notions are
indeed different, as can be seen e.g. in Example 3.6.4.

2.1.4 Saddle points

In Chapter 4 we will make use the saddle point method as described for instance in [73, VIII].
In particular, we will be interested in saddle points of S(x, y), which is a Laurent polynomial
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with only positive coefficients. We call a point (x0, y0) a dominant saddle point if:

1. (x0, y0) is a local minimizer of S(x, y),

2. x0, y0 ∈ R+.

The fact that S(x0, y0) ̸= 0 follows from the positivity of coefficients. The existence is a
consequence of the fact that our model is non-degenerate; which implies that S(x, y) is coercive
(it goes to infinity wherever we approach the boundary; see also [51, 1.5]). By definition, we
know that ∂S

∂x
(x0, y0) =

∂S
∂y
(x0, y0) = 0.

By a short computation, one can check that

Lemma 2.2. The dominant saddle point s0 = (x0, y0) is equal to (1, 1) if and only if the drift
of the model is 0.

Now take any other point (x1, y1) on the torus |x1|= x0, |y1|= y0. By the positivity of the
coefficients of S(x, y), we know that |S(x1, y1)|< S(x0, y0), unless there is a ζ ∈ C, |ζ|= 1,
such that each monomial term of S(x1, y1) differs from the corresponding term in S(x0, y0) by
the same factor of ζ. Choosing α, β such that (x1, y1) = (αx0, βy0), we must therefore have
αiβj = ζ for all (i, j) such that ωi,j ̸= 0. From here, it is not difficult to see that α, β and ζ
must be roots of unity. It is also clear that there can only be finitely many such ζ, in a one-
to-one correspondence with finitely many pairs (xi, yi), 0 ≤ i ≤ l (the maximum l appearing
for the 19 unweighted orbit-summable models is 3, see App. D). We will call such a point
(xi, yi) = (αix0, βiy0) and |S(xi, yi)|= S(x0, y0) a saddle point associated with (x0, y0).
One can check directly that the (xi, yi) are indeed saddle points of S(x, y) as well, moreover,
as we will see in Lemma 4.2, the local behaviour of S(x0, y0) and S(xi, yi) is the same up to
the factor ζ. By the same reasoning as in [73, VIII], it turns out that when computing the
asymptotics of the coefficients via the Cauchy formula, the main contributions to the contour
integral come from the points (xi, yi), as the modulus of S(x, y) will be smaller elsewhere,
leading to exponentially smaller terms.
Note that while this article considers mainly the 2-dimensional case, all the definitions above
extend to more dimensions in a natural manner; only the structure of the group becomes more
complicated as we will have more than two transformations, see e.g. [23].

2.1.5 The Jacobi ϑ-function

As discussed in Section 2.1.2, for small t we know that (seeing as we always assume our models
to be non-singular) the kernel curve C is elliptic. In order to find a suitable parametrization in
Chapter 5, we will make use of Jacobi’s ϑ-function (of the first kind). This function is defined
by

ϑ(z, q) := 2q1/4
∞

n=0

qn(n+1) sin [(2n+ 1)z] . (2.19)

Alternatively, one often finds it written in terms of τ , where eiπτ = q, leading to

ϑ(z | τ) := 2
∞

n=0

eiπτ(n+1)2/2 sin [(2n+ 1)z] . (2.20)

It is easy to check that ϑ(z, q) converges for |q|< 1 or, equivalently, for τ with positive imaginary
part. It is also easy to check the elementary properties

ϑ(π − z) = ϑ(z), ϑ(−z) = −ϑ(z) and ϑ(z + πτ) = −e−iπτ−2izϑ(z). (2.21)

35



A parametrization of the kernel curve could also be done (and would in principle be equally
useful) by Weierstraß’ ℘-functions, as e.g. in [97]. An advantage of ϑ-functions, however, is
that one has somewhat more direct control of zeros and poles, which will be useful for us [1].

Given a series representation around 0, in order to extract asymptotics we will need a
series expansion around the critical point. To do so, we will make use of the so-called Jacobi-
transformation. Given q and q̂ with

log(q) log(q̂) = π2, (2.22)

then we have

ϑ(z, q) = − log(q̂)

π
exp

log(q̂)z2

π2
ϑ

i

π
log(q̂)z, q̂ . (2.23)

As mentioned in the introduction, this transformation corresponds to shifting a series expansion
from the origin (q = 0) to the critical point (q = 1), see e.g. [96].

2.2 Polyharmonic Functions

2.2.1 Discrete polyharmonic functions

Given a step set S and a discrete function f defined on the quarter plane Q, we can define the
Markov operator

Pf(x) :=
s∈S

ωsf(x− s). (2.24)

If we take the discrete random walk (Xn) with the transition probabilities given by the reverse
of S, and the induced Markov chain Mn := f(Xn), then we can interpret the operator P as
the expectation E [Mn+1 | Mn]. One can then proceed to look at the expected change during a
time step, weighted by a parameter t, which is given by

△f(x) := (P − t Id) f(x). (2.25)

As outlined in Section 1.3, the operator △ can be viewed as the discrete equivalent of a Laplace-
Beltrami operator. We call a function (discrete) t–harmonic if

1. △f(x) = 0 for all x ∈ Q,

2. f(x) = 0 for all x ∈ Qc,

where Qc is the complement of Q. Similarly, we call a function (discrete) t–polyharmonic
of degree p if

1. △pf(x) = 0 for all x ∈ Q,

2. f(x) = 0 for all x ∈ Qc.

Instead of a (poly-)harmonic function h(i, j), we will in the following consider its generating
function

H(x, y) :=
i,j≥0

h(i, j)xi+1yj+1.

It turns out that this generating function then satisfies the functional equation

K(x, y)H(x, y) = xy [△H] (x, y) +K(0, 0)H(0, 0)−K(x, 0)H(x, 0)−K(0, y)H(0, y), (2.26)
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where K(x, y) is the same kernel as defined in Section 2.1.2, but with all steps in S reversed,
similar as in (2.24), and △H is the generating function of △h(i, j). Correspondingly, we have
△H(x, y) = 0 for harmonic functions h(i, j).

Given a model S, we can also define a discrete Laplacian △̃ for the model with directions
reversed S̃. Seeing as △̃ is the adjoint operator to △ on the space L2 (Z2), we will call it
the adjoint Laplacian. In Section 4.2.1, we will encounter functions of the form f(x, y), for
x, y ∈ Z2, which are polyharmonic in x and adjoint polyharmonic in y. We will call such a
function f(x, y) multivariate polyharmonic of order p if

△k △̃p−kf = 0

for all 0 ≤ k ≤ p. Note that in this case, the ordering of the Laplacians does not matter as by
linearity they commute, i.e. we have

△ △̃f(x, y) = △̃ △f(x, y) . (2.27)

2.2.2 A basis of discrete harmonic functions

In order to compute discrete harmonic functions, the approach in [125, 86, 85] makes direct
use of the functional equation (2.26). Substituting x → X±(y) as in Section 2.1.2 leads to the
boundary value problem

K(x, 0)H(x, 0)−K(x̄, 0)H(x̄, 0) = 0 (2.28)

on the domain G (where X+(y) = X−(y), as discussed in Section 2.1.2. It follows (for details see
aforementioned references [125, 86, 85]) that we can construct discrete (1-)harmonic functions
via letting

K(x, y)H(x, y) = P (ω(x))− P (ω (X+(y))) , (2.29)

where P is an entire function and ω is the conformal mapping introduced in Section 2.1.2. As
will be shown in Lemma 3.3, the functions defined by

Hm
1 (x, y) :=

Pm(ω(x))− Pm(ω(X+))

K(x, y)
, (2.30)

where

Pm(z) := zm if K(0, 0) = 0, (2.31)

P2m(z) := zm(z − d0)
m

P2m+1(z) := zm+1(z − d0)
m if K(0, 0) ̸= 0, (2.32)

and d0 = ω(X+(0)), as in the proof of Thm. 3.3, form a Schauder basis2 of the space H1 of all
discrete harmonic functions. This implies in particular that we have

H1
∼= C[[z]],

and we will see later on that for the spaces Hn of discrete polyharmonic functions of degree n
we have

Hn
∼= (H1)

n ∼= C[[z]]n.
2That is, we can express any element uniquely not necessarily via finite, but via countable sums.
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2.2.3 Continuous polyharmonic functions

The scaling limit of a random walk in the quarter plane is a Brownian motion in W := R≥0×R≥0

with (positive semidefinite) covariance matrix

Σ =
σ11 σ12

σ12 σ22
,

whose infinitesimal generator is Laplace-Beltrami operator

△ =
1

2
σ11

∂2

∂x2
+ 2σ12

∂2

∂x∂y
+ σ22

∂2

∂y2
.

The coefficients σ11, σ12, σ22 can be directly computed via EX2 = σ11,EXY = σ12,EY 2 = σ22

[100]. As in the discrete setting, we call a function f (continuous) polyharmonic of degree
k, if

△kf(x) = 0 ∀x ∈ W ,

f(x) = 0 ∀x ∈ ∂W ,

where △ is the Laplace-Beltrami operator defined above. Note that this definition is exactly
the same as for discrete polyharmonic functions, except for the different Laplacian. Note as well
that, as previously, we always impose a Dirichlet condition, which is due to the combinatorial
background of the functions considered here. Also, while in the following there might be
technically an ambiguity due to the same symbol △ used for both the continuous and discrete
Laplacian, it should always be clear from the context which one is to be used.

In [125, App. A], it was shown that a continuous polyharmonic function satisfies the func-
tional equation

γ(x, y)L(f)(x, y) = 1

2
[σ11L1(f)(y) + σ22L2(f)(x)] + L(△f)(x, y), (2.33)

where we have

γ(x, y) =
1

2
σ11x

2 + 2σ12xy + σ22y
2 , L(f)(x, y) =

∞

0

∞

0
e−ux−vyf(u, v)dudv, (2.34)

L1(f)(y) =
∞

0

∂f

∂x
(0, v)e−vydv, L2(f)(x) =

∞

0

∂f

∂y
(u, 0)e−uxdu, (2.35)

see also [36, 2.2].

2.2.4 The Cramér-transform

In the following it will often be convenient to only consider models with zero drift, that is,
where

(i,j)∈S
iωi,j =

(i,j)∈S
jωi,j = 0.

If this is not the case, then we can utilize the Cramér-transformation3: we multiply each
weight ωi,j by a factor of αiβj, where we choose α, β such that the drift will be 0 (for some
information about this kind of transformation in a more general, not necessarily discrete context,
see for instance [44, 8]). The existence of such an α, β is ensured for non-singular models, see

3named after H. Cramér, 1893-1985.
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e.g. [51, 1.5]. The reason why this substitution is very convenient combinatorially is fairly
simple; given the number q((i, j), (k, l);n) of paths from (i, j) to (k, l) with n steps weighted
by old weights ωi,j, then for the equivalent q̂ using the new weights we have

q̂((i, j), (k, l);n) = αk−iβl−jq((i, j), (k, l);n). (2.36)

Additionally, it turns out that the group of the model is, in a certain sense, invariant under
this transformation, and in particular orbit-summability is preserved.

Lemma 2.3. Let S be a model and Ŝ be a Cramér-transform of S, with weights α, β. Let
G, Ĝ be the respective groups with generators Φ,Ψ and Φ̂, Ψ̂. Lastly, let ι be the mapping
(x, y) → (αx, βy). Then we have:

1. Φ̂(x, y) = ι−1 ◦ Φ ◦ ι, Ψ̂(x, y) = ι−1 ◦Ψ ◦ ι; in particular G and Ĝ are isomorphic,

2. Ŝ is orbit-summable if and only if S is orbit-summable.

Proof. We show the first part for Φ only, the statement for Ψ will then follow by symmetry.
We can define ĉ(x) and â(x) as in (2.5). One finds that, by definition of Ŝ, we will have
â(x) = βa(αx) and ĉ(x) = β−1c(αx). From this it follows that

ι−1 ◦ Φ ◦ ι(x, y) = ι−1 ◦ Φ(αx, βy) = ι−1 αx, (βy)−1 c(αx)

a(αx)
(2.37)

= ι−1 αx, βy−1 ĉ(x)

â(x)
= x, y−1 ĉ(x)

â(x)
= Φ̂(x, y). (2.38)

The isomorphism of G and Ĝ follows immediately and is given by g → ι−1 ◦ g ◦ ι ∈ Ĝ. By this
isomorphism, we also see immediately that positive and negative powers of x, y are preserved,
which is in turn all that matters for orbit-summability, hence we are done.

Lastly, discrete polyharmonic functions behave well with respect to Cramér transformations:
via a short computation, one can show

Lemma 2.4. Let Ŝ be a Cramér-transform of S, with ω̂i,j = αiβjωi,j. Let △̂,△ be the associated
Laplacians. We then have

△̂ α−kβ−lf(k, l) = α−kβ−l△ [f(k, l)] . (2.39)

This directly implies that we have a bijection between the polyharmonic functions w.r.t. △ and
those w.r.t. △̂, given by adding a factor of α−kβ−l.

39



Chapter 3

Construction of discrete polyharmonic
functions in the quarter plane

The purpose of computing is insight, not numbers.

Richard Hamming

The goal of this chapter is to give an overview of the structure of the space of discrete poly-
harmonic functions in the quarter plane for non-singular small-step models and an algorithm
to compute them. To illustrate the functional equation approach, we will first treat the (much
simpler) case of polyharmonic functions in the half-line.

There will be two main approaches discussed, one of them purely algebraic and more general,
but leading to a basis of functions which might not be combinatorially relevant due to their
bad behaviour with respect to a scaling limit. The other approach works for models with a
finite group, where one can expand on the idea in [36] and use decoupling functions, resulting in
many cases in a particularly nice basis consisting of rational functions of a fairly simple shape.
In this case, one also obtains a direct link to continuous polyharmonic functions.
The structure of this chapter will be roughly as follows:

• in Section 3.1, the one-dimensional case will be treated. In particular, a way to construct
of discrete polyharmonic functions on the half-line for step sets with finitely many positive
steps will be derived in Prop. 3.1.

• Starting from Section 3.2, the rest of this chapter will concern models with small steps and
zero drift in the quarter plane. In Section 3.2, we will give some properties of the vector
spaces of discrete polyharmonic functions in the quarter plane, show that the discrete
harmonic functions as constructed in Section 2.2 form a basis, and give a criterion for a
set of discrete polyharmonic functions to be a basis.

• In Section 3.3, a general algorithm to construct discrete polyharmonic functions in the
quarter plane is presented (Thm. 3.7), and it is shown that all possible discrete poly-
harmonic functions can be constructed in this manner (Thm. 3.8). An analogue of this
method in the continuous case is presented in Section 3.3.2, and the relation between the
discrete and continuous functional equations as well as convergence in terms of generating
functions and Laplace transforms are discussed.

• In Section 3.4, an alternative construction utilizing decoupling functions is presented,
which is applicable to models with finite group only (Thm. 3.15). This method leads,
provided a certain parameter is integer, to a (Schauder) basis consisting of rational func-
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tions. This construction is then translated to the continuous setting, and convergence
properties are shown (Thm. 3.19).

• In Section 3.5, the guessing approach mentioned (but not detailed) in [36] is discussed, in
which one uses an ansatz to try and find suitable decoupling functions. In particular, we
deduce that the guessing approach works to decide if there is a decoupling function of a
particular shape.

• In Section 3.6, a special case is examined in more detail, to show the relation between the
two approaches and in particular why it does not appear promising to extend the notion
of decoupling to the infinite group case.

Throughout this chapter, we will assume that we have a zero drift model where the weights
sum up to 1. The construction of discrete polyharmonic functions for any other model can be
reduced to this case via the Cramer transform outlined in Section 2.2.4. Also, in order to keep
things more concise, the term ‘polyharmonic function’ will be used for such a function itself as
well as for its generating function. If it is not clear from the context which is meant, it will be
specified.

This chapter is largely based on the author’s article [114].

3.1 Constructing discrete polyharmonic functions on the
half-line

In this section, the (much easier) example of polyharmonic functions on the half-line is treated.
Unlike in the quarter plane case, the only assumption we need is for the step set S to have
finitely many steps in the positive direction.

Fundamentally, the approach we utilize in this case is the same as in the quarter plane: we
deduce a functional equation which any generating function of a polyharmonic function has to
satisfy, which we can then solve. So suppose that we are given a function g : Z≥0 → C, and a
function f : Z → C which satisfies

△f(n) =g(n) ∀n ≥ 0 (3.1)
f(n) =0 ∀n < 0. (3.2)

Let H(x), G(x) be their respective generating functions. We can then write

i∈S
ωih(n+ i)− h(n) = g(n) ∀n ≥ 0 ⇒ (3.3)

n≥0 i∈S
x−iωix

i+nh(i+ n)−H(x) = G(x) ⇔ (3.4)

i∈S
x−iωi

n≥0

xi+nh(i+ n) = G(x) +H(x). (3.5)

Looking at the left-hand side of (3.5), since h(n) = 0 for n < 0 we can see that for any i < 0,
the second sum will simply be H(x). For i > 0, however, in the latter sum we are missing the
first i terms in comparison. In order to write down a more concise formula of (3.5), we want
to define a one-dimensional kernel analogously to the ‘standard’ one as in Section 2.1.2. As we
want our kernel to be a polynomial, let d := max (i ∈ S). As we assumed our step set to have
only finitely many positive steps, we know that d is finite. We then let

K(x) = xd 1−
i∈S

x−iωi .
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Furthermore, let Hk(x) := x<k H(x), i.e. H1(x) = h(0), H2(x) = h(0) + xh(1), and so on. As
n≥0 x

i+nh(i+ n) = H(x)−Hi(x), we can rewrite (3.5) and thus obtain:

Proposition 3.1. Let S ⊂ Z be a step set with associated weights ωi and the additional con-
dition that max(s : s ∈ S) = d < ∞. Let g : Z≥0 → C, and let G(x) be its generating function
Using the definition for the kernel K(x) and the Hi(x) as above, we can construct all solutions
of (3.1)–(3.2) via

K(x)H(x) = −xdG(x)− xd

0<i,i∈S
ωi
Hi(x)

xi
, (3.6)

where H(x) is the generating function of h.

Remarks:

• Iterative application of Prop. 3.1 allows us to construct discrete polyharmonic functions
of arbitrarily high order.

• By the definition of d, the sum on the right-hand side of (3.6) is a polynomial. As
K(0) ̸= 0 by definition, we therefore obtain proper power series solutions for H(x).

• The right-hand side of (3.6) depends on the values of h(0), . . . , h(d). These are parameters
which we can choose freely, therefore the space of harmonic functions will be d-dimensional
(as a vector space over C). For polyharmonic functions of degree k the solution space will
be d × k-dimensional (we utilize Prop. 3.1 k times, where we can choose d parameters
each time).

Proof. The fact that any solution of (3.1)–(3.2) has the form as in Prop. 3.1 is a direct con-
sequence of the above computation. The fact that the inverse holds, i.e. that each solution
of (3.6) also solves (3.1)–(3.2) can be checked directly.

While the derivation of this functional equation is essentially the same as that of 2.2, seeing
as we only have a single boundary term there is no need to bother with the zero set of the
kernel curve since we can just solve it directly. The appearance of multiple boundary terms
is what makes the solution so much more involved in the quarter plane (or generally in the
higher-dimensional) case.

An example with small steps

First, we will look at the model with step set S = {−1, 1}. We have

K = x 1− xω−1 − ω1

x
.

As d = 1, we have, up to multiples, only one harmonic function H1(x). So let us compute it.
For a harmonic function, we have G(x) = 0 in 3.6, so it takes the form

K(x)H1(x) = −ω1h(0).

This immediately leads to

H1(x) =
−ω1h(0)

K(x)
.

Choosing the harmonic function with h1(0) = 1, we obtain

H1(x) =
−ω1

K(x)
=

1

1− x 1
ω1

+ x2 ω−1

ω1

,
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with coefficients
1,

1

ω1

,
ω1ω−1 − 1

ω2
1

,
1− 2ω1ω−1

ω3
1

, . . .

Wanting to compute a biharmonic function H2(x), we only need to substitute G(x) = H1(x)
in (3.6), giving us

H2(x) = −xH1(x)− ω1h2(0)

K(x)

Choosing once again h2(1) = 1, we now find

H2(x) =
ω1(ω1 + ω−1x

2)

ω1 + x(ω−1x− 1))2
,

leading to the coefficients

1,
2

ω1

,
3− ω−1ω1

ω2
1

,
4− ω1ω−1

ω3
1

, . . .

An example with larger steps

Consider now the model with step set S = {−1, 1, 2}. In this case we have

K(x) = x2 1− ω−1x− ω1

x
− ω2

x2
,

and (3.6) for a harmonic function H1(x) reads

K(x)H1(x) = −x2 ω1
h1(0)

x
+ ω2

h1(0) + xh1(1)

x2
.

We see now that depending on the choice of h1(0) and h1(1), we can find different harmonic
functions. Letting h1(0) = 1, h1(1) = 0, for example, we have

H1(x) =
ω2 + ω1x

ω2 + ω1x− x2 + ω−1x3
.

This leads to the coefficients

1, 0,
1

ω2

,−ω1 + ω2ω−1

ω2
2

,
ω2
1 + ω2 + ω1ω2ω−1

ω3
2

. . .

Choosing h1(0) = 0, h1(1) = 1, on the other hand, we obtain

H1(x) =
ω2x

ω2 + (ω1 − 1)x+ ω−1x2
,

with coefficients
0, 1,−ω1

ω2

,
ω2
1 + ω2

ω2
2

,−ω3
1 − 2ω1ω2 − ω2

2ω−1

ω3
2

, . . .

In order to compute higher order polyharmonic functions, one can proceed just as in the previous
example by iteratively utilizing (3.6).

3.2 General observations about a basis
From now on, we will always consider the setting of the quarter plane as in Chapter 2. The goal
of this section is twofold: firstly in Lemma 3.3 we show that the discrete harmonic functions
constructed as in [125, 85, 86] and defined in Section 2.2 are indeed a basis of the space of
discrete harmonic functions. Secondly, we give a criterion for a set of discrete polyharmonic
functions to be a basis in Lemma 3.4.
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3.2.1 Constructing a basis of discrete harmonic functions

Denote in the following as in Section 2.2 by Hn the vector space of discrete n-polyharmonic
functions, and by H := n∈N Hn the vector space of all discrete polyharmonic functions. Given
any Ĥn ∈ Hn, we can identify it with the sequence Ĥn, Ĥn−1, . . . , Ĥ1 , where △Ĥk+1 = Ĥk,

and △Ĥ1 = 0. It is clear that any such sequence is uniquely defined by the corresponding
Ĥn. Now suppose that we have Ĥn, Ĥ

′
n ∈ Hn, such that, with their sequence representation as

above, Ĥ1 = Ĥ ′
1. In this case, we have

△n−1 Ĥn − Ĥ ′
n = Ĥ1 − Ĥ ′

1 = 0, (3.7)

thus Ĥn− Ĥ ′
n ∈ Hn−1. Therefore, provided that for each Ĥn ∈ Hn we can find a corresponding

Ĥn+1 ∈ Hn+1, which will be shown below in Lemmas 3.3 and 3.8, one can prove the following
lemma:

Lemma 3.2. Let Hn be the space of real-valued, discrete n-polyharmonic functions in the
quarter plane. Then we have an isomorphy of vector spaces

Hn
∼= (H1)

n . (3.8)

Proof. Suppose the statement holds for k = 1, . . . , n and we have Hn+1, H
′
n+1 ∈ Hn+1 such that

Hn = H ′
n. Then we have

△ Hn+1 −H ′
n+1 = Hn −H ′

n = 0, (3.9)

thus Hn+1 −H ′
n+1 ∈ H1. Therefore (and utilizing in advance Thm. 3.7), we can construct an

isomorphism Hn+1 H1
→ Hn, and the proof is complete.

In particular, if we are given any Ĥn ∈ Hn, and we want to find all Ĥn+1 ∈ Hn+1 with
△Ĥn+1 = Ĥn, then this means that it suffices to find a single Ĥn+1 with this property as well
as all harmonic functions, because any other such Ĥ ′

n+1 can be written as Ĥn+1 + Ĝ1, for some
Ĝ1 ∈ H1.

In Section 2.2, it was already mentioned how one can construct a set of discrete harmonic
functions via a boundary value problem. In the following lemma, we will show that this set
already forms a basis.

Lemma 3.3. Let

Hm
1 (x, y) :=

Pm(ω(x))− Pm(ω(X+))

K(x, y)
, (3.10)

where

Pm(z) := zm if K(0, 0) = 0, (3.11)

P2m(z) := zm(z − d0)
m

P2m+1(z) := zm+1(z − d0)
m if K(0, 0) ̸= 0, (3.12)

where ω is the conformal mapping defined in Section 2.1.2, and d0 = ω(X+(0)). Then the
functions Hm

1 (x, y) form a Schauder basis1 of the space of discrete harmonic functions H1.
1That is, we can express any function not necessarily via finite, but via countable sums.

44



Proof (outline). The arguments are mostly the same as in [86, Thm. 2]. From (2.26), it
follows that K(x, y)H(x, y) is already uniquely defined by the (univariate) boundary terms
K(x, 0)H(x, 0) and K(0, y)H(0, y). The idea is to construct, using appropriate power series
Pm(x) in (3.10), a harmonic function for any given possible boundary condition. If K(0, 0) = 0,
which is the same as saying that our model does not include a North-East step, then we cannot
write 1/K(x, y) as a power series, but we can instead choose X+(0) such that X+(0) = 0, i.e.
we can substitute X+ into another power series. Therefore, we will consider two cases:

1. K(0, 0) = 0:
In this case, substituting X+ for x in (2.26) gives

0 = K(X+, 0)H(X+, 0) +K(0, y)H(0, y). (3.13)

Utilizing this to substitute for K(0, y)H(0, y) in (2.26), we obtain

K(x, y)H(x, y) = K(x, 0)H(x, 0)

=:P (x)

−K(X+, 0)H(X+, 0)

=:P (X+)

. (3.14)

Setting

Hm
1 (x, y) =

ω(x)m − ω(X+)
m

K(x, y)
, (3.15)

and utilizing that around 0 we have (after scaling and potentially switching x, y) ω(x) =
x(1+p(x))

(1−x)π/θ (see [70, 5.3]; use that our walk is not singular), we can iteratively compute
coefficients ak such that ajω(x)

k = P (x). To see that at the end we indeed obtain a
power series, one can apply the Weierstraß preparation theorem.

2. K(0, 0) ̸= 0:
In this case, the previous approach does not work anymore since substitution of X+ into
an arbitrary power series fails. Instead, let now ω(x) = xncn, ω (X+) = yndn. We
know that c1, d1 ̸= 0, c0 = 0 (see [70, 5.3], and notice that p−1,−1 ̸= 0).
We can now proceed by defining

P2m(z) = zm(z − d0)
m, (3.16)

P2m+1(z) = zm+1(z − d0)
m. (3.17)

Letting

Hm
1 (x, y) :=

Pm (ω(x))− Pm (ω(X+))

K(x, y)
, (3.18)

one can check that the monomial with non-zero coefficient with minimal degree in the
series representation of Hm

1 (x, y) around 0 occurs for k = l = m for m even, and k =
l + 1 = m otherwise. Note here that ω(x), ω(X0) have non-vanishing derivatives at 0 as
0 ∈ G◦, see [36, 5.3]. From there, given arbitrary power series Q(x), R(y) with Q(0) =
R(0), one can again iteratively build coefficients an such that anPn(ω(x)) = Q(x),

bnPn (ω(X+)) = R(y). We have thus constructed a harmonic function with boundary
terms Q(x), R(y); since these were arbitrary we are done. Note that as K(0, 0) ̸= 0, the
division by K(x, y) is not an issue here.

As a corollary, we immediately obtain

Corollary 3.3.1. We have
H1

∼= C[[z]].
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3.2.2 A basis criterion for polyharmonic functions

Lemma 3.3 combined with the idea from Lemma 3.2, gives us a criterion for a family of poly-
harmonic functions to be a Schauder basis of H, the space of all polyharmonic functions.

Lemma 3.4. Let Hk
n n,k∈N be a family of discrete polyharmonic functions, such that

1. Hk
1 (x, y) =

Pk(ω(x))−Pk(ω(X+))
K(x,y)

as in (3.10),

2. △Hk
n+1 = Hk

n,

Then, the (Hk
n), 1 ≤ k, 1 ≤ n ≤ m form a Schauder basis of Hm, that is, given any Hm ∈ Hm

there are unique an,k, 1 ≤ k, 1 ≤ n ≤ m ∈ N such that

Hm =
m

n=1

∞

k=1

an,kH
k
n. (3.19)

Proof. We do not a priori assume that sums of the form n≥0 H
k
n converge as formal power

series. Therefore, we will first modify our family (Hk
n), forcing this type of convergence. The

main issue here is that we do not have any handle on the order of Hk
n at 0, written in the

following as deg0 H
k
n := min{u+ v | the term xuyv has non-zero coefficient }. However, (2.26)

implies that if Hk
n+1 has vanishing boundary terms up to a sufficiently high order – which we

can force by adding a suitable harmonic function, as in the proof of Lemma 3.3 –, then we have
deg0 H

k
n+1 > deg0 H

k
n. We will utilize this in order to construct a family (Ĥk

n) such that, for
each n, we have

1. Ĥk
1 = Hk

1 ,

2. △Ĥk
n+1 = Ĥk

n,

3. each Ĥk
m can be written as a countable sum of the Hk

n for n ≤ m,

4. deg0 Ĥ
k
n+1 is at least deg0 Ĥ

k
n + 1 ≥ k

2
+ n− 1,

5. the Ĥk
n with n ≤ m form a Schauder basis of Hm.

From this, the statement follows immediately.
We proceed by induction. For m = 1, we know that all the conditions are satisfied due to
Lemma 3.3 (the part about the order at 0 is follows from the construction of the Hk

1 ). Now
suppose we have found a suitable family (Ĥk

n) for k ∈ Z+, n = 1, . . . ,m, and pick any k. We
want to construct a suitable Ĥk

m+1. As Hk
1 = Ĥk

1 , we know that

△n−1Hk
n = △n−1Ĥk

n, (3.20)

that is, Gk
m−1 := Hk

m − Ĥk
m ∈ Hm−1. By the induction hypothesis, we can therefore write

Gk
m−1 as some countable sum of the Ĥ l

n, n ≤ m − 1, l ∈ Z+, for which we can then find a
pre-image Gk

m under △ by substituting n for n−1 in that sum representation. Note that, again
by the induction hypothesis, in this representation we do not have any convergence issues. By
definition of Gk

m, we have

△ Hk
m+1 −Gk

m = Hk
m − Hk

m − Ĥk
m = Ĥk

m. (3.21)

The idea in order to get the bound on deg0 Ĥ
k
m+1 is to utilize the functional equation (2.26),

which essentially tells us that, if the boundary terms are well enough behaved, then the degree at
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0 of discrete polyharmonic functions will increase with their order (note that the deg0 K(x, y) ≤
1 because the model is non-singular). But due to the proof of Lemma 3.3 we already know that
we can find harmonic functions where we can freely choose the boundary terms, so all we need
to do is to select a suitable harmonic function Jm,k killing the boundary terms up to sufficiently
high order, and then, letting

Ĥk
n+1 := Hk

n+1 −Gk
n − Jn,k (3.22)

we see that the first four conditions are satisfied. All that remains to show is therefore that the
Ĥk

n with 1 ≤ n ≤ m + 1, k ≥ 1 form a Schauder basis of Hm+1. First, we will show that this
family generates Hm+1. To see this, pick any element H ′

m+1 ∈ Hm+1. By induction, we know
that we can write

△H ′
m+1 =

m

n=1 k≥1

an,kH
k
n. (3.23)

However, letting Hm+1 :=
m
n=1 k≥1 an,kH

k
n+1, we have

△ H ′
m+1 −Hm+1 = 0, (3.24)

thus H ′
m+1 − Hm+1 ∈ H1. Hence, up to addition of a harmonic function (remember that by

Lemma 3.3 they can all be written as countable sum of the Hk
1 ), we know that our chosen H ′

m+1

can already be written as countable sum of the Ĥk
n, and we are done.

To show uniqueness of the coefficients, suppose we have two representations

Hm+1 =
m+1

n=1

∞

k=1

an,kĤ
k
n =

m+1

n=1

∞

k=1

bn,kĤ
k
n. (3.25)

As

0 = △m [Hm+1 −Hm+1] =
∞

k=1

(am+1,k − bm+1,k)H
k
1 = 0, (3.26)

we know by the basis property for H1 that am+1,k = bm+1,k for all k. For n ≤ m the equality
then follows from the induction hypothesis, and we thus obtain am,k = bm,k for all 1 ≤ m ≤
n+ 1, k ≥ 1.

Remarks:

• If instead of defining the Hk
1 as in Lemma 3.3 one allows for any Schauder basis of H1,

then via Lemma 3.4 one obtains not only a sufficient, but also a necessary condition for
a family of polyharmonic functions to form a Schauder basis.

• In the constructions of polyharmonic functions given below, it will often be the case that it
is clear from construction that for any given n, any sum of the form k≥1 akH

k
n converges

as power series. In this case, we can let Ĥk
n := Hk

n, and the proof boils down to the very
last step.

• In Sections 3.2 and 3.4, different bases will be constructed, and it is not obvious how
to switch between them. Combinatorially it is odd to construct polyharmonic functions
eliminating the boundary terms, which are also generally not easy to write down explicitly.
One could argue that the basis constructed in Section 3.4 is therefore in some sense a
canonical one, seeing as it has a particularly nice shape, but it is not clear whether
something comparable exists in the infinite group case.
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If we compare the functional equation (2.26) for harmonic and polyharmonic functions, then
the only difference lies in the additional term of xyHn(x, y) on the right-hand side not vanishing
for the latter. In terms of the boundary value problem, this means that we now want to solve

K (X+, 0)Hn (X+, 0)−K (X−, 0)Hn (X−, 0) = X+yHn−1(X+, y)−X−yHn−1(X−, y). (3.27)

In an ideal world, the right-hand side of the latter equation would be 0 as in the harmonic case,
and this is indeed what happens for the simple walk (and, more generally, if ever π/θ = 2 and
the group is finite, as will be discussed in Section 3.6). In this case, we can proceed as before,
and obtain an explicit formula for polyharmonic functions, see Thm. 3.26.

Example: the simple walk

The simple walk has the step set S = {↑,→, ↓,←}, each with probability 1
4
. We have

K(x, y) = xy − xy

4
x+ y + x−1 + y−1 , ω(x) =

−2x

(1− x)2
, ω (X+) = −ω(y). (3.28)

It turns out that the right-hand side of (3.27) keeps vanishing, and thus one can iteratively
construct polyharmonic functions via Hn+1(x, y) := xyHn(x,y)−X+yHn(X+,y)

K(x,y)
. This allows us to

find an explicit expression for all resulting polyharmonic functions. This property is directly
tied to the fact that π/θ = 2, where θ is given by (2.11), which will be discussed in more detail
in Section 3.6.
We therefore obtain a basis of all polyharmonic functions by letting

Hk
n+1(x, y) =

xyHk
n(x, y)−X+yH

k
n(X+, y)

K(x, y)
. (3.29)

For an explicit formula as well as a proof, see Thm. 3.26. We can for instance compute H1
1 =

8
(1−x)2(1−y)2

, H2
1 = 32y

(x−1)2(y−1)4
, H3

1 = 128y2

(x−1)2(y−1)6
. One can show by induction that we have

Hk
1 = 2·22k

(x−1)2(y−1)2k
.

3.3 A first way to construct polyharmonic functions
The goal of this section is to give a first method of computing a basis of discrete polyharmonic
functions directly via manipulation of the functional equation (2.26), which will be done in
Section 3.3.1. After looking at the examples of the tandem and the king’s walk, we will then
discuss in Section 3.3.2 why this method might not be ideal from a combinatorial perspective,
which one can see by comparison with continuous polyharmonic functions and taking the scaling
limit. This is then illustrated by the example of the tandem walk.

3.3.1 Construction of polyharmonic functions

While the computation for the simple walk turned out to be fairly simple, this was mainly due
to the right-hand side of (3.27) consistently vanishing. This does not happen in general. For
the tandem walk, for instance, we arrive at

K(X+, 0)H
1
1 (X+, 0)−K(X−, 0)H1

1 (X+, 0) =
y3
√
1− 4y

(y − 1)5
. (3.30)

The direct approach using a boundary value problem like in the harmonic case does not gen-
erally yield an explicit solution as easily as before. One could modify the structure in order
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to obtain a similar boundary value problem as before, using a decoupling function, which is
the approach which works with finite group models and will be discussed in Section 3.4. How-
ever, we will first construct polyharmonic functions directly utilizing the functional equation
(2.26), independently of whether or not the group is finite. The main idea again utilizes that in
Lemma 3.3, we showed that given any power series P (x) ∈ C[[x]], we can construct a harmonic
function H(x, y) such that K(x, 0)H(x, 0) = P (x). Now suppose that for one of the Hk

1 con-
structed in the aforementioned theorem, there is a Hk

2 such that △Hk
2 = Hk

1 . Then, subtracting
a harmonic function with the same values on the boundary, we know that there is also a Ĥk

2 ,
such that △Ĥk

2 = Hk
1 and K(x, 0)Ĥk

2 (x, 0) = 0. By Lemma 3.4, if we know this Ĥk
2 then we can

reconstruct Hk
2 (or indeed any other biharmonic function with image Hk

1 under △). Therefore,
our strategy will be to utilize (2.26) in order to find this particular Ĥk

2 , where the assumption
that K(x, 0)Ĥk

2 (x, 0) = 0 simplifies the equation immensely. While the construction itself is
not very complicated, we will need a small technical lemma to make sure we will indeed end
up with bivariate power series.

Lemma 3.5. Suppose we have a model such that K(0, 0) = 0, ∂
∂x
K

x=y=0
̸= 0, and select

X+(y) such that 0 = X+(0). Furthermore, let F (x, y) be a bivariate power series, such that
F (X+(y), y) = 0 and that F (x, 0) ̸= 0. Then,

F (x, y)

K(x, y)
(3.31)

is a bivariate power series in x, y.

Proof. By the Weierstraß preparation theorem, we can write

K(x, y) = e(x, y)(x− g(y)), (3.32)

with e being an invertible bivariate power series, and f2(y) ∈ C[[y]], with f2(0) = 0.
We can also rewrite

F (x, y) = f(x, y)(xk + xk−1fk−1(y) + · · ·+ f0(y)) =: f(x, y)P (x, y), (3.33)

where again f is an invertible bivariate power series, the fi(y) ∈ C[[y]] satisfy fi(0) = 0, and
P (x, y) ∈ C[[y]][x] is a polynomial in x over the ring C[[y]]. Consequently, we have

F (x, y)

K(x, y)
=

f(x, y)

e(x, y)
· P (x, y)

x− g(y)
. (3.34)

Since e(x, y) is invertible, it remains to show that the second factor is a power series in x, y.
To do so, all we need to do is to show that g(y) is a zero of the polynomial P (x, y), i.e. that
P (g(y), y) = 0.
By (3.33), we know that P (X+(y), y) = 0 locally around 0, and by (3.32) we see that we also
have X+(y) = g(y). The statement follows.

Remark: In case K(0, 0) ̸= 0 (which is equivalent to our model having a North-East step) we
do not need any additional tools, as in this case 1/K(x, y) is a power series anyway, so division
by the kernel does not pose any problem. Also note that we must have either K(0, 0) ̸= 0,
∂
∂x
K

x=y=0
̸= 0 or ∂

∂y
K

x=y=0
̸= 0, because otherwise our model could have no North, North-

East or East steps and would therefore be singular.

Lemma 3.6. Suppose we have an arbitrary non-singular model with small steps and zero drift
such that either K(0, 0) ̸= 0 or ∂

∂x
K(x, y) |x=y=0 ̸= 0. Given any bivariate power series G(x, y)

which is analytic around (0, 0), we can then construct a power series H(x, y) such that
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1. H(x, y) is analytic around (0, 0),

2. △H(x, y) = G(x, y), and

3. K(x, 0)H(x, 0) = 0

by letting

H(x, y) :=
X+yG(X+, y)− xyG(x, y)

K(x, y)
if K(0, 0) = 0, (3.35)

H(x, y) :=
xyG(x, y)

K(x, y)
if K(0, 0) ̸= 0, (3.36)

where we select X+(y) such that X+(0) = 0.

Proof. The property △H = G can be written in terms of the functional equation (2.26):

K(x, y)H(x, y) = K(x, 0)H(x, 0) +K(0, y)H(0, y)−K(0, 0)H(0, 0)− xyG(x, y). (3.37)

The case K(0, 0) ̸= 0 is easy, because then 1/K(x, y) is a power series around (0, 0) and one
can directly check that (2.26) is satisfied. Consider now the case K(0, 0) = 0, and define
K(x, y)H(x, y) via (3.35). The substitution G(X+, y) is valid because X+(0) = 0. One can
check immediately that K(x, 0)H(x, 0) = 0, and that (2.26) is satisfied.
All that therefore remains to do is to show that we can divide the thusly obtained power series
K(x, y)H(x, y) by K(x, y). To do so, we can utilize Lemma 3.5. To check the conditions to
apply this lemma, note that K(X+, y)H(X+, y) = 0 by construction. In order to satisfy the
second condition, let H ′(x, y) be a harmonic function such that K(x, 0)H ′(x, 0) ̸= 0. We then
have

1. K(X+, y)H(X+, y)+K(X+, y)H
′(X+, y) = 0, as is clear for the first summand from (3.35)

and for the second due to the fact that K(X+, y) = 0,

2. K(x, 0)H(x, 0) +K(x, 0)H ′(x, 0) ̸= 0.

We can therefore apply Lemma 3.5 to the function K(x, y)H(x, y)+K(x, y)H ′(x, y). This tells
us that the expression

K(x, y)H(x, y) +K(x, y)H ′(x, y)
K(x, y)

=
K(x, y)H(x, y)

K(x, y)
+

K(x, y)H ′(x, y)
K(x, y)

(3.38)

=H(x, y) +H ′(x, y) (3.39)

is a power series in x, y around (x, y) = (0, 0). As we already know that H ′(x, y) is a power
series, by consequence so is H(x, y). Hence, we are done.

As previously remarked, after potentially swapping x and y such that ∂
∂x
K

x=y=0
̸= 0, this

covers all non-singular models with small steps and zero drift. Therefore, in the following we
can assume without loss of generality that if K(0, 0) = 0, then ∂

∂x
K(x, y) |x=y=0 ̸= 0. Utilizing

Lemma 3.6, it is now easy to construct a Schauder basis of all polyharmonic functions.

Theorem 3.7. Given a model with small steps and zero drift, and let

Hk
1 (x, y) :=

Pk(ω(x))− Pk (ω(X+))

K(x, y)
, (3.40)

50



where the polynomials Pk are defined as in the proof of Lemma 3.3. Then we can inductively
construct bivariate power series Hk

n via

Hk
n+1(x, y) :=

X+yH
k
n(X+, y)− xyHk

n(x, y)

K(x, y)
if K(0, 0) = 0, (3.41)

Hk
n+1(x, y) :=

xyHk
n

K(x, y)
if K(0, 0) ̸= 0. (3.42)

Each Hk
n is n-polyharmonic, and we have △Hk

n+1 = Hk
n.

Proof. By iterative application of Lemma 3.6, one sees that the resulting expressions are power
series in x, y. One can then easily check that the functional equation (2.26) is satisfied.

Remark: instead of using the two different definitions (3.41), (3.42) depending on whether or
not K(0, 0) = 0, one could just use (3.41) in any case. The disadvantage of that would be,
however, fairly obvious: the resulting expressions are a bit more unwieldy, and we lose a bit
of niceness (i.e. if H1

1 (x, y) is rational, we would normally end up with an algebraic H1
2 (x, y)).

Also, to make things work out formally one would still have to argue why all substitutions are
valid.

Theorem 3.8. The polyharmonic functions (Hk
m)m,k∈N constructed in Thm. 3.7 form a basis

of the space H of all polyharmonic functions.

Proof. By Lemma 3.4.

Example: the tandem walk

The tandem walk is the model with step set S = {↖,→, ↓}, each with weight 1
3
. We find

K(x, y) = xy − x2 + y + xy2

3
, H1

1 (x, y) =
81(1− xy)

4(x− 1)3(y − 1)3
, (3.43)

leading to the harmonic function h(i, j) = (i + 1)(j + 1)(i + j + 2). We now want to find a
biharmonic function H1

2 such that △H1
2 = H1

1 . To do so, we apply the procedure from Thm. 3.8.
First, we notice that K(0, 0) = 0, and that ∂K

∂x x=y=0
= 0, while on the other hand we have

∂K
∂y

x=y=0
= −1

3
̸= 0. This is due to the fact that our model has no West, but a South step.

Therefore, we need to swap the roles of x and y in (3.35). We pick our Y+ such that Y+(0) = 0;
which gives us

Y+(x) =
3x− 1 + (1− x)

√
1− 4x

2x
, (3.44)

and obtain

H1
2 (x, y) =

243x(3x2 + ax2 + 2y − 4xy − 7x2y − 3ax2y − 2xy2 + 13x2y2 + 3ax2y2 − 2x3y2 − 3x2y3 − ax2y3

8(1− x)5(1− y)3(x2 + y + xy2 − 3xy)
, (3.45)

where a :=
√
1− 4x. One can check that this expression is indeed a power series which satisfies

△H1
2 (x, y) = H1

1 (x, y), and that H1
2 (0, y) = 0. In particular, we have

H1
2 (x, y) =

243

4
x+

729

4
xy +

729

2
x2 +

729

2
xy2 + 972x2y + . . . (3.46)

As we already know, H1
2 (x, y) is unique with the property △H1

2 = H1
1 only up to harmonic

functions. And indeed, we will see in Section 3.4 that instead of this algebraic function, there
is a much nicer rational biharmonic function Ĥ1

2 with △Ĥ1
2 = Ĥ1

1 .
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Example: the king’s walk

The king’s walk is the model with step set S = {↑,↗,→,↘, ↓,↙,←,↖}, each with probability
1
8
. We find

K(x, y) = xy − 1 + x+ y + x2 + y2 + x2y + xy2 + x2y2

8
, (3.47)

H1
1 (x, y) =

1

16(x− 1)2(y − 1)2
. (3.48)

As K(0, 0) ̸= 0, we can utilize (3.36) and have

H1
2 (x, y) =

128xy

(x− 1)2(y − 1)2 [8xy − (1 + x+ y + x2 + y2 + x2y + xy2 + x2y2)]
. (3.49)

3.3.2 Relations between discrete and continuous cases

For harmonic functions, since the last term of (2.33) vanishes, everything works as in the
discrete case, except the calculations turn out to be a lot simpler. We can define continuous
versions x± of X±, which satisfy γ(x±(y), y) = 0. It turns out that we have

x±(y) = c±y, (3.50)
c± = ce±iθ, (3.51)

ω̂(x) =
1

xπ/θ
, (3.52)

where θ is the arctangent of the correlation coefficient as introduced in Section 2.1.2 and c ∈ R+.
We can then construct (continuous) harmonic functions via

L(hn
1 )(x, y) :=

ω(x)n − ω(x+(y))
n

γ(x, y)
, (3.53)

see also [36, Thm. 2.4]. Not very surprisingly, there is a relation between the discrete and
continuous polyharmonic functions constructed in this manner. For the computations here as
well as in later sections, the following lemma will be useful:

Lemma 3.9. We have

lim
µ→0

K (e−µx, e−µy)

µ2
= γ(x, y), (3.54)

lim
µ→0

X± e−µy = 1 + c±y +O(y2). (3.55)

Proof. Both of the results follow by a direct computation, which however in the second case is
somewhat tedious. The main idea there is to write

X+(e
−z)X−(e−z) =

c̃(e−z)

ã(e−z)
, (3.56)

X+(e
−z)X−(e−z) = − b̃(e−z)

ã(e−z)
, (3.57)

with X±(y) the solutions of K(·, y) = 0 as defined in Section 2.1.2, and then use the fact that
X+(1) = X−(1) = 1 in order to obtain defining equations for the first coefficients in a series
expansion of X±(e−z).
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Remark: While for (3.54) it can be seen that this is a direct consequence of the drift being
zero, it would be interesting to know if there is a more intuitive, or geometric way to obtain
(3.55) as well.

Comparing the discrete and continuous constructions of harmonic functions (3.10) and (3.53),
it is not very surprising that there is a clear relation between them.

Theorem 3.10. We have

lim
µ→0

µkπ/θ−2Hk
1 e−µx, e−µy = αL(hk

1)(x, y) (3.58)

for some non-zero constant α.

Proof. Using Lemma 3.9, all we need to show is that

lim
µ→0

µkπ/θ [Pk(ω(x))− Pk(ω(X+))] = ω̂(x)k − ω̂(x+)
k. (3.59)

But this follows immediately from the fact that ω(x) = α+o(1)

(1−x)π/θ in a neighbourhood of x = 1 [67,
2.2] and the fact that [zk]Pk(z) = 1 (see the construction of Pk(z) in the proof of Lemma 3.3),
as well as for the second term once again Lemma 3.9.

Knowing that, in the sense of a scaling limit as in Thm. 3.10, we know that the discrete kernel
K corresponds to the continuous kernel γ, and that the Laplace transform can be understood
as the continuous analogue of a generating function, it would be reasonable to expect that the
boundary term K(x, 0)H(x, 0) corresponds in the same fashion to σ22

2
L2(h)(x). In the following,

we will see that this is indeed the case.

Lemma 3.11. Suppose h(u, v) and its derivatives up to order 2 are of exponential order, i.e.
their absolute value is asymptotically bounded by ec(x+y) for some constant c, with h(u, 0) =
h(0, v) = 0. Then we have

L2(h)(x) = lim
y→∞

y2L(h)(x, y), (3.60)

L1(h)(y) = lim
x→∞

x2L(h)(x, y). (3.61)

Proof. We will only show the first equality, the second follows by symmetry. From the compu-
tation in [125, App. A], we see that

L(h)(x, y) = 1

y2
L ∂2h

∂v2
(x, y) + L2(h)(x) ⇔ (3.62)

y2L(h)(x, y) = L ∂2h

∂v2
(x, y) + L2(h)(x). (3.63)

Therefore, all that remains to show is that limy→∞ L ∂2h
∂y2

= 0. But this follows by monotone

convergence using the growth assumption on ∂2h
∂v2

.

Remark: The condition that h(u, v) and its derivatives are of exponential order will hold
true for those polyharmonic functions which have their origins in asymptotics of exit times of
Brownian motions, see e.g. [11, 36].
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Lemma 3.12. Let α ∈ R, and H(x, y),L(h)(x, y) be polyharmonic such that

lim
µ→0

µα+2H e−µx, e−µy = L(h)(x, y). (3.64)

Assume furthermore that H(x, y) is algebraic, and that the restrictions of H(x, y) at x = 0 and
y = 0 are well-defined. Then we have

lim
µ→0

µαK(e−µx, 0)H(e−µx, 0) =
σ22

2
L2(h)(x), (3.65)

lim
µ→0

µαK(0, e−µy)H(0, e−µy) =
σ11

2
L1(h)(y). (3.66)

Proof. Using Lemma 3.11, we have

lim
µ→0

µαKH(e−µx, 0) = lim
µ→0

lim
y→∞

µαKH(e−µx, e−µy), (3.67)

σ22

2
L2(h)(x) = lim

y→∞
γ(x, y)L(h)(x, y) (3.68)

= lim
y→∞

lim
µ→0

µαKH(e−µx, e−µy). (3.69)

Thus, all we need to show is that we can exchange the order of the two limits. But this follows
by the algebraicity of H(x, y).

Remark: There is a marked difference between the discrete and continuous cases in terms
of the value of formal solutions. In the discrete case we work with formal power series, i.e.
every formal solution of the functional equation (2.26) leads to an actual solution since we
can just extract coefficients. In the continuous case, however, this is not so simple: there are
formal solutions of (2.33) which turn out not to have an inverse Laplace transform. It is always
possible to utilize the method given in Section 3.3 to obtain continuous (formal) solutions, by
simply defining L(hk

n) as the scaling limit – with an appropriate scaling factor – of the discrete
polyharmonic function Hk

n, and then by some computations using Lemmas 3.11 and 3.12 one
can check that (2.33) is indeed satisfied. But the resulting solutions do generally not allow for
an inverse Laplace transform: due to the shape of the kernel, which we repeatedly divide by,
we cannot usually find a region of the form {ℜ(x) ≥ u,ℜ(y) ≥ v} where L(hk

i )(x, y) is finite.
By [121], this implies that L(hk

i )(x, y) is not the Laplace transform of any function, nor of any
distribution. This will be different for the method presented in Section 3.4.

Example: the scaling limit of the tandem walk

For the scaling limit of the tandem walk (see Example 3.3.1), we have

γ(x, y) =
1

3
x2 − xy + y2 , c± =

1± i
√
3

2
, ω̂(x) =

1

x3
. (3.70)

We obtain L(h1
1)(x, y) =

ω̂(x)−ω̂(c+y)
γ(x,y)

= 3(x+y)
x3y3

, and one can check immediately that

lim
µ→0

µ5H1
1 e−µx, e−µy = L(h1

1)(x, y) (3.71)

for H1
1 computed in Section 3.3.1. We can then proceed to the scaling limit of H1

2 , which gives
us the formal solution of (2.33)

L(h1
2)(x, y) =

3x3 + 2xy2 + 2y3

x3y5(x2 − xy + y2)
, (3.72)

of which one can check directly that there is no inverse Laplace transform. We will see in Sec-
tion 3.4.2 that an advantage of the construction done in Section 3.4 using decoupling functions
is that the scaling limit of the resulting discrete polyharmonic functions will always be the
Laplace transform of a continuous polyharmonic function.
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3.4 A second way to construct polyharmonic functions
While the method given in Section 3.3 gives us a Schauder basis of all polyharmonic functions,
the resulting basis is not ideal in two senses:

1. They do not have a continuous analogue, as discussed at the end of Section 3.3.2;

2. They are often more complicated than necessary; for the king’s walk we obtained a rational
function which is singular on some not so easily described curve in Section 3.3.1, and for
the tandem walk the functions constructed in Section 3.3.1 were not even rational. We
will see that both of these models have a basis which is a lot nicer to work with.

The goal of this section is to present an alternative method to construct discrete polyharmonic
functions using a decoupling approach, similar as in [12, 36, 131]. This will allow us to give
a basis of polyharmonic functions for all models which finite group such that π/θ ∈ Z in
Thm. 3.15 in Section 3.4.1. We will see in Section 3.4.2 that an analogous method works for
continuous models. Lastly, in Section 3.4.3 it will be shown that the discrete polyharmonic
functions obtained via the decoupling approach behave nicely with respect to the scaling limit.

3.4.1 An approach via decoupling functions

Remember that the main issue why computing polyharmonic functions is not as easy as com-
puting harmonic functions is that the right-hand side of (3.27) does not usually vanish, and
therefore the boundary value problem approach does not immediately work. But in some
cases, one can circumvent this problem by utilizing what is called a decoupling function in [12,
Def. 4.7].

Definition 6. Let M(x, y) be an rational function in x, y. If we can find F (x), G(y) such that

F (x) +G(y) ≡ M(x, y) modK(x, y), (3.73)

then we say that F is a decoupling function of M .

Here, we say that A(x) ≡ B(x)modK(x, y) if there are polynomials N(x, y), D(x, y) such that
D(x, y) is not divisible by K(x, y) and A(x)− B(y) = N(x,y)

D(x,y)
K(x, y).

These decoupling functions are closely related to the concept of invariants as in [12, Def. 4.3].
An example of a decoupling function will for instance be given in Section 3.4.1. The reason
why finding such decoupling functions are useful can be seen directly from (3.27): if F (x) is a
decoupling function of xy△H(x, y), then we have

K(X+, 0)H(X+, 0)− F (X+)− [K(X−, 0)H(X−, 0)− F (X−)] = 0. (3.74)

In other words, if one knows how to compute a decoupling function of xy△H(x, y), then one
can proceed by the same arguments as for the boundary value problem outlined in Section 3.2,
and it turns out that by setting K(x, 0)H(x, 0) − F (x) = P (ω) for some entire function Pone
will eventually arrive at a solution for H(x, y). In [36, App. C], a decoupling function is guessed
using an ansatz (as illustrated in Section 3.5) in order to compute a biharmonic function for
the tandem walk. It turns out, however, that such a decoupling function can be explicitly
computed for any model as long as the group of the model (see Section 2.1.3) is finite.
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Theorem 3.13 (see [12, Thm. 4.11]). Suppose our step set has a finite group of order 2n, and
M(x, y) is rational such that

γ∈G
sgn(γ)γ (M(x, y)) = 0. (3.75)

Then a rational decoupling function of M(x, y) is given by

F (x) = − 1

n

n−1

i=1

Θi [M(x, Y+) +M(x, Y−)] . (3.76)

In the following, we will show that xyHn(x, y) will turn out to have an orbit sum of 0 for any
polyharmonic Hn. This is in particular independent of whether or not the given model has a
vanishing orbit sum as in [12].

Corollary 3.13.1. Suppose the group of the step set is finite and has a series representation
around (0, 0). Then any algebraic function M(x, y) of the form

M(x, y) = xy
u(x) + v(y)

K(x, y)
(3.77)

allows for a decoupling function via (3.76).

Proof. For any point (x, y) such that K(x, y) ̸= 0, (3.75) is satisfied, seeing as the denominator
1
xy
K(x, y) is invariant under G, and alternating orbit summation over the numerator leads to

a telescopic sum. As the set {(x, y) : K(x, y) ̸= 0} is dense in C2 and M(x, y) is algebraic,
this implies that (3.75) is satisfied everywhere. By Thm. 3.13, we can therefore construct a
decoupling function via (3.76).

If a model has a finite group, then it can be shown that π/θ ∈ Q (cf [70, 7.1]). The main
difference between π/θ being integer or not is that in the former case, the conformal mapping
ω(x) will be rational, and thus we can construct a basis consisting of rational functions.
To make things work out nicely in this case, we need to start wich a small technical lemma.

Lemma 3.14. Let N(x, y) be a polynomial such that N(X+, y) = N(X−, y) = 0. Then,
K(x, y)|N(x, y).

Proof. First we note that N(X+, y) = N(X−, y) = 0 implies that also N(x, Y+) = N(x, Y−) = 0
via the substitution x → X±(y). Using the notation of Section 2.2.3 of σ11 = E(X2), σ22 =
E(Y 2), we can therefore assume that σ11 ≥ σ22, else we switch the roles of x and y in the
following.
We write K(x, y) = (x − X+)(x − X−)ã(y). As N(X+, y) = N(X−, y) = 0 for any y, we
know that N(x, y) contains a factor (x − X+)(x − X−) = x2 − (X− + X+)x + X−X+ =

x2+ b̃(y)
ã(y)

x+ c̃(y)
ã(y)

∈ C(y)[x]. By assumption, N(x, y) is a polynomial; thus it must also contain a
factor ã(y)

gcd(ã(y),b̃(y),c̃(y))
. Therefore, it suffices to show that ã(y), b̃(y), c̃(y) have no common zero.

We have

ã(y) = p1,1y
2 + p1,0y + p1,−1, (3.78)

b̃(y) = p0,1y
2 − y + p0,−1, (3.79)

c̃(y) = p−1,1y
2 + p−1,0y + p−1,−1. (3.80)
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Now suppose there is an u such that ã(u) = b̃(u) = c̃(u) = 0. Adding the three previous
equations yields

0 = u2 [p1,1 + p0,1 + p−1,1]− u [1− p1,0 − p−1,0] + [p1,−1 + p0,−1 + p−1,−1] . (3.81)

As the drift is 0, we know that the coefficient of u2 is the same as the constant, namely 1
2
σ11,

and the coefficient of u is σ22. Since our model is non-singular, we have σ11, σ22 > 0. We can
therefore rewrite (3.81) as

σ11u
2 − 2σ22u+ σ11 = 0. (3.82)

Using the quadratic formula, we obtain

u =
σ22

σ11

± σ22

σ11

2

− 1. (3.83)

If σ11 = σ22, then u = 1, but we see that b̃(1) < 0 ≤ ã(1), b̃(1).
Therefore we must have σ11 > σ22, so we have two complex conjugate solutions for u. However,
as b̃(0) > 0 and b̃(1) < 0, we know that b̃(y) can only have real solutions (note in particular
that this does not change if p0,1 = 0, in which case b̃(y) is linear), so b̃(u) = 0 cannot hold.
Hence, ã(y), b̃(y), c̃(y) cannot have a common factor, and the statement follows.

Using the above lemma, we can now use decoupling functions to construct, in the case of a finite
group with π/θ ∈ Z, rational discrete polyharmonic functions of a particularly nice shape.

Theorem 3.15. Suppose our step set has finite group and π/θ ∈ Z. Let Hk
1 (x, y) be defined by

(3.40). We can then define inductively

Hk
n(x, y) =

xyHk
n−1(x, y)− F k

n−1(x)− X+yH
k
n−1(X+, y)− F k

n−1(X+, y)

K(x, y)
, (3.84)

where F k
n (x) is the decoupling function of xyHk

n(x, y) defined by (3.76), which in particular
exists. Then, Hk

n(x, y) is a rational function in Hn for all n, k, which satisfies △Hk
n+1 = Hk

n.
For each n, k we can write

Hk
n(x, y) =

pn,k(x, y)

(1− x)α(1− y)α
, (3.85)

where pn,k(x, y) is a polynomial and α ∈ N.

Remarks:

• In Thm. 3.19 we will see that α ≤ kπ/θ + 2(n− 1).

• Defining decoupling functions and utilizing them in order to compute polyharmonic func-
tions works, as long as the group is finite, for any π/θ (which must then automatically be
rational). In particular, one can check that an analogous version of (3.76) holds. However,
in the non-integer case we do not obtain polynomial functions anymore, and in particular
we will not have a representation like (3.85); the main reason being that an equivalent
of Lemma 3.14 does not hold. Therefore we lose information about the positioning of
singularities, which will generally not only be where x = 1 or y = 1. The rest one can
prove in the same manner as the corresponding points in the proof of Thm. 3.15.

Proof. We proceed by induction. In each step, we will show that:
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• Hk
n(x, y) is rational,

• Hk
n(x, y) has its only poles at x = 1 or y = 1,

• xyHk
n(x, y) does not have a pole at x = ∞ or y = ∞,

• xyHk
n(x, y) has orbit sum 0 and thus admits a decoupling function F k

n (x),

• F k
n (x) has its only pole at x = 1.

To see that △Hk
n+1(x, y) = Hk

n(x, y), one can simply plug (3.84) into the functional equation
(2.26).
So consider first the case n = 1. Hk

1 (x, y) being rational follows immediately from π/θ ∈ Z,
and thus ω being rational (see [125, (3.12)]). As by construction the numerator Nk

1 (x, y) of
xyHk

1 (x, y) as defined in (3.84) satisfies Nk
1 (X±) = 0, it must according to Lemma 3.14 be a

multiple of K(x, y), thus the only poles of Hk
1 (x, y) can be those coming from ω(x), ω(X+).

Since ω(x) has its only pole at x = 1 and X+(y) = 1 only if y = 1, Hk
1 (x, y) can only have poles

at x = 1, y = 1. Similarly, we check by a direct computation that xyHk
1 (x, y) does not have a

pole at x = ∞, y = ∞. The existence of a decoupling function F k
1 (x) follows immediately from

Prop. 3.13.1. Finally, we can deduce from (3.76), utilizing that xyHk
1 (x, y) does not have poles

at infinity and noting that (1, 1) is a fixed point under the group, that F k
n (x) has its only pole

at x = 1, thus the case n = 1 is done.
Now let n ≥ 2 and assume the theorem is already shown up to n− 1. We then formally define
as in (3.84)

Hk
n(x, y) :=

xyHk
n−1(x, y)− F k

n−1(x)− X+yH
k
n−1(X+, y)− F k

n−1(X+, y)

K(x, y)
. (3.86)

First, we need to argue that Hk
n(x, y) is rational. By assumption, we know that Hk

n−1(x, y) is
rational. To see that the remaining part of the numerator, that is, X+yH

k
n−1(X+, y)−F k

n−1(X+),
is rational, we use the defining property (3.73) of the decoupling function F k

n , rewriting

G(y) = X+yH
k
n−1(X+, y)− F k

n−1(X+) ⇒ (3.87)
xyHk

n−1(x, y) ≡ F k
n−1(x) +X+yH

k
n−1(X+, y)− F k

n−1(X+) mod K(x, y), (3.88)

and since xyHk
n−1(x, y), F k

n−1(x) as well as K(x, y) are rational, so is X+yH
k
n−1(X+, y) −

F k
n−1(X+). Next, we consider the poles of Hk

n(x, y). Again, by construction we have that
the numerator Nk

n(X±, y) = 0, and thus by Lemma 3.14 the K(x, y) in the denominator can-
cels. As we know by assumption that F k

n−1(x) has its only pole at x = 1, and as X+(y) = 1 if
and only if y = 1, there will be no new poles coming from the F k

n−1-parts. The same goes for
Hk

n−1(x, y) and Hk
n−1(X+, y), and therefore the only poles of Hk

n(x, y) can be at x = 1, y = 1.
To check that xyHk

n(x, y) does not have a pole at infinity, we utilize (2.26):

K(x, y)Hk
n(x, y) = K(x, 0)Hk

n(x, y) +K(0, y)Hk
n(0, y)− xyHk

n−1(x, y).

If xyHk
n(x, y) had a pole at infinity, then so would K(x, y)Hk

n(x, y). But as by the induction
hypothesis, xyHk

n−1(x, y) does not have a pole at infinity; so the pole for, say, x → ∞ of the
left-hand side would need to cancel with K(x, 0)Hk

n(x, 0) on the right-hand side. But the left-
hand side depends on y while the K(x, 0)Hk

n(x, 0) doesn’t, so the poles cannot cancel for all
values of y; a contradiction.
To see that a decoupling function of xyHk

n(x, y) exists, we split xyHk
n(x, y) in two parts. First,

we notice that

xy
xyHk

n−1(x, y)

K(x, y)
=

xy

K(x, y)
xyHk

n−1(x, y), (3.89)
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and since xy
K(x,y)

is invariant under the group and we already know that xyHk
n−1(x, y) has a

decoupling function (and thus its orbit sum is 0), we deduce that this part as well has orbit
sum 0, and thus it can be decoupled by Thm. 3.13. For the rest, we notice that

xy
−F k

n−1(x)− X+yH
k
n−1(X+, y)− F k

n−1(X+, y)

K(x, y)
(3.90)

has the form xyA(x)+B(y)
K(x,y)

(note that X+(y) does in fact not depend on x), and thus its orbit sum
is 0 by Cor. 3.13.1. Therefore, Thm. 3.13 gives us a decoupling function F k

n (x) of xyHk
n(x, y)

via (3.76). As each summand has its poles at x = 1 only, and Θ leaves the point (1, 1) invariant,
we know that F k

n has its only pole at x = 1.
It remains to show that the order of the poles at x, y = 1 is at most k ·π/θ+2(n−1). For n = 1
this can again be verified directly; afterwards it follows by induction: by a short computation
one can see that the order of the pole of F (x) compared to the one at x = 1 of xyH(x, y)
increases at most by 2, and by a similar argument for the G(y) in (3.73) (see [12, Thm. 4.11] for
an explicit formula) one can show the same for X+yH(X+, y) − F (X+) = G(y). Using (3.84)
finally yields the statement.

By Lemma 3.4, it therefore follows that the thusly constructed polyharmonic functions form a
Schauder basis of the space of all polyharmonic functions.

Example: the tandem walk revisited

To illustrate the results from Section 3.4, consider once again the tandem walk, which has the
step set S = {→, ↓,↖}, with weights 1

3
each. As in Example 3.3.1, we have

K(x, y) = xy − xy

3
x−1 + y + xy−1 , H1

1 (x, y) =
81(1− xy)

4(x− 1)3(y − 1)3
. (3.91)

Coefficient extraction then led us to recover the original harmonic function from the generating
series, giving us h1

1(i, j) = (i + 1)(j + 1)(i + j + 2). In Section 3.4 we computed a biharmonic
function for H1

1 , which was however not rational. Using the method presented in this section,
however, we will find that there is, in fact, a rational one.
First, one can check that the group is finite and of order 6; we have

(x, y)
Ψ→ x,

x

y

Φ→ 1

y
,
x

y

Ψ→ 1

y
,
1

x

Φ→ y

x
,
1

x

Ψ→ y

x
, y

Φ→ (x, y). (3.92)

Now using (3.76), we obtain the decoupling function F1(x) = − 81x3

4(1−x)5
. Note that this decou-

pling function is not the same one as is given in [36, App. C], where instead (after scaling)
F ′
1 =

−81x3

4(1−x)6
is given. This goes to show that the choice of a decoupling function is, due to the

invariance property in (2.10), unique only up to functions of ω; in this particular case we have
(up to a multiplicative constant) F ′

1(x) − F1(x) = ω(x)2. The way in which this alternative
decoupling function was found is described in Section 3.5.
We can now utilize this F1 in order to compute a biharmonic function; (3.84) directly gives us

H1
2 =

243(xy − 1)(x+ y + xy(x+ y − 4))

(x− 1)5(y − 1)5
, (3.93)

which after extracting coefficients corresponds to

h1
2(i, j) = (i+ 1)(j + 1)(−36i− 30i2 − 6i3 − 36j − 44ij − 14i2j − 2i3j − 30j2

− 14ij2 + i2j2 + i3j2 − 6j3 − 2ij3 + i2j3 + i3j3) (3.94)
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We can now use (3.76) again to obtain the next decoupling function F2(x) = −81x4(1+2x)
4(1−x)7

, which
we can then use to compute

H1
3 =

p(x, y)

(x− 1)7(y − 1)7
, (3.95)

where p(x, y) is a somewhat unwieldy polynomial of bidegree 9.

Example: the king’s walk revisited

Consider now once again the king’s walk with the step set S = {↑,↗,→,↘, ↓,↙,←,↖}, each
with probability 1

8
. We have, as in Section 3.3.1,

K(x, y) = xy − 1 + x+ y + x2 + y2 + x2y + xy2 + x2y2

8
, (3.96)

H1
1 (x, y) =

1

16(x− 1)2(y − 1)2
. (3.97)

After coefficient extraction, we find that h1
1(i, j) = (i + 1)(j + 1). While the biharmonic

function we obtained in Section 3.3.1 was rational, it did not have a shape which made it very
easy to describe its singularities, or to extract coefficients. This will once again be very different
applying the decoupling method.
The king’s walk has a finite group of order 4, namely

(x, y)
Ψ→ x,

1

x

Φ→ 1

x
,
1

y

Ψ→ 1

x
, y

Φ→ (x, y). (3.98)

It turns out that in this case, we can pick 0 as a decoupling function, as the right-hand side
of (3.27) vanishes. Therefore, (3.84) gives us Ĥ1

2 (x, y) =
128y

3(x−1)2(y−1)4
, which is essentially the

same result as we obtained for the simple walk in Section 3.2.2. This is not a coincidence but
rather due to the fact that we have π/θ = 2 and a finite group. This case will be discussed in
more depth in Section 3.6.2. There we will also prove Thm. 3.26, from which it follows that
indeed these two models have the same discrete polyharmonic functions.

3.4.2 Continuous decoupling

The idea of decoupling in the continuous setting, as suggested in [125, 36], is very much the
same as in Section 3.4. The continuous version of the boundary value problem for polyharmonic
functions now reads

σ22L2(hn)(c+y)− σ22L2(hn)(c−y) = L(hn−1(c+y, y))− L(hn−1(c−y, y)). (3.99)

Our goal will now be to construct a decoupling function fn−1(x), such that

fn−1(c+y)− fn−1(c−y) = L(hn−1)(c+y, y)− L(hn−1)(c−y, y). (3.100)

One key point to note here is that all expressions appearing in (3.99) are homogeneous2, which
follows for L(hk

1) by construction, and can be checked for the others by induction. In particular,
this means that the right-hand side of (3.100) is homogeneous as well; and as it depends only

2That is, there is some m ∈ R such that they satisfy T (λx, λy) = λmT (x, y) for all x, y; we call this m the
degree of T and (written as deg T ).
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on y it must therefore be of the form αym for some α, and m = degL(hn+1). Consequently, we
choose the ansatz fn = βym, with m = degL(hn). The equation we wish to solve thus reads

β [(c+y)
m − (c−y)m] = αym ⇔ α

(c+)m − (c−)m
= β. (3.101)

Remembering that c± = ce±iπ/θ, we see that this is solvable in general only if m is not an integer
multiple of π/θ, as then we would have (c+)

m − (c−)m = 0. It turns out that this constraint
does in fact not matter: whenever we would run into this issue, it just so happens that α is
already 0, i.e. we do not need a decoupling function (see Example 3.4.2). At this stage, no
direct proof of this is known, and it would be very interesting to find a way to see this directly.
But one can use the convergence properties of discrete polyharmonic functions to show that
the decoupling function will be 0 in all suitable cases to circumvent this problem. Since this is
essential in order to continue the procedure but we will use convergence properties which will
be introduced later, this will be stated here and be proven in Section 3.4.3. An illustration of
this is given in Example 3.4.2.

Lemma 3.16. In the setting of Thm. 3.17 below, if (c+)m − (c−)m = 0, then the right-hand
side of (3.100) vanishes. In particular, we can always find a decoupling function of the form
fk
n(x) = αxm, with m = degLhk

n(c+x, x) (where α = 0 if (c+)m = (c−)m).

Utilizing the above lemma, it is now easy to prove the continuous analogue of Thm. 3.15.

Theorem 3.17. Suppose we have a non-singular model with zero drift, small steps and such
that π/θ ∈ Z. Let L(hk

1)(x, y) be defined by (3.53). We can then define inductively

L(hk
n)(x, y) =

L(hn−1)(x, y)− fn−1(x)− [L(hn−1)(c+y, y)− fn−1(c+y)]

γ(x, y)
, (3.102)

where fn(x) is a decoupling function as in (3.100). Then, L(hk
n)(x, y) is the Laplace transform

of an n-harmonic function, such that Lhk
n = hk

n−1. For each n, k we can write

L(hk
n)(x, y) =

qn,k(x, y)

xαyα
, (3.103)

for α ∈ N and qn,k(x, y) a homogeneous polynomial.

Remark: We will see in Thm. 3.19 that α ≤ kπ/θ + 2(n− 1).

Proof. For n = 1, the statement can be checked directly. Now suppose the statement holds
for n, thus we know that L(hk

n)(x, y) =
qn,k(x,y)

xαyα
. By Lemma 3.16 (which will be proven in

Section 3.4.3), we know that we can find a decoupling function, which must either be 0 or
have the same degree as L(hk

n)(c+y, y), and we can therefore formally define L(hk
n+1)(x, y) via

(3.102). One can check that each summand is homogeneous of the same degree; hence so is their
sum. By construction, the numerator of (3.102) is 0 for x = c±y; it must therefore contain a
factor γ(x, y) = σ11(x− c+y)(x− c−y), so the denominator cancels. The fact that L(hk

n+1)(x, y)
is the Laplace transform of a continuous polyharmonic function such that △hk

n+1(s, t) = hk
n(s, t)

follows from checking that the functional equation (2.33) is satisfied, and noticing that we can
perform an inverse transform on monomials of the form xuyv for u, v ∈ R.

Remark: while the construction of discrete polyharmonic functions via decoupling functions
is only possible if the group is finite, there are no such restrictions in the continuous setting.
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Example: the scaling limit of the tandem walk revisited

For the scaling limit of the tandem walk, we have

γ(x, y) =
1

3
x2 − xy + y2 , c± =

1± i
√
3

2
, ω̂(x) =

1

x3
. (3.104)

As before, we have L(h1
1)(x, y) =

3(x+y)
x3y3

, and thus (3.100) takes the form

f 1
1 (c+y)− f 1

1 (c−y) = L(h1
1)(c+y, y)− L(h1

1)(c+y, y) =
3i
√
3

y5
. (3.105)

By a quick computation, one obtains f1(x) =
−3
x5 and a biharmonic function

L(h1
2)(x, y) =

L(h1
1)(x, y)− f1(x)− [L(h1

1)(c+y, y)− f 1
1 (c+y)]

γ(x, y)
(3.106)

=
9(x+ y)(x2 + y2)

x5y5
. (3.107)

Performing the inverse Laplace transform, this gives us

h1
2(s, t) = −81

8
st(s+ t)(s2 + st+ t2). (3.108)

For computing a triharmonic function, our decoupling function must now satisfy

f 1
2 (c+y)− f 1

2 (c−y) = L(h1
2)(c+y, y)− L(h1

2(c−y, y) =
243i

√
3

4y7
, (3.109)

which leads to f 1
2 (x) = −243

x7 and

L(h1
3)(x, y) =

729(x+ y)(x2 − xy + y2)(x2 + xy + y2)

4x7y7
, (3.110)

and

h1
3(s, t) = − 81

320
st(s+ t)(s2 + st+ t2)2. (3.111)

When trying to compute a decoupling function f 1
3 (x) as in (3.105) and (3.109), seeing that the

degree of the denominator will always increase by 2, this is where one might expect things to
go wrong, as (c+)

9 = (c−)9 and thus an ansatz as above might not work. However, doing the
computation one finds that

f3(c+y)− f3(c−y) = L(h1
3)(c+y, y)− L(h1

3)(c−y, y) = 0, (3.112)

thus we can pick f3(x) = 0 and directly obtain a 4-harmonic function

L(h1
4)(x, y) =

2187(x3 + 2x2y + 2xy2 + y3)

4x7y7
, (3.113)

which leads to

h1
4(s, t) =

81

640
s3t3(s+ t)3. (3.114)

The fact that the right-hand side of (3.112) turns out to be 0 is a consequence of the convergence
of discrete to continuous polyharmonic and decoupling functions, and will be shown in the next
section in Thm. 3.19.
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3.4.3 The scaling limit

Using Lemma 3.9, the strategy to show a general convergence of the polyharmonic functions
obtained by decoupling is quite simple: we use the fact that the recursive definitions (3.84) and
(3.102) have the same structure, and take the limit of each term separately. All that remains
to consider are the decoupling functions. However, using once again Lemma 3.9, this turns out
to be rather straightforward, too.

Lemma 3.18. Suppose we have are given discrete and continuous polyharmonic function
H(x, y) and L(h)(x, y) respectively, and a constant α such that

lim
µ→0

µαH e−µx, e−µy = L(h)(x, y). (3.115)

Then, if we can construct a decoupling function F (x) of xyH(x, y) via (3.76), the limit

f(x) := lim
µ→0

µαF e−µx (3.116)

exists and is a decoupling function of L(h)(x, y).
Remark: In the context of the construction in Thm. 3.15, we know that F k

n (x) is rational with
its only pole at x = 1. From this, we can conclude immediately that f(x) will have the form
f(x) = β

xα , where β may or may not be 0. This, as we will see, is essentially the idea of the
proof of Lemma 3.16.

Proof. To see that the limit exists, we note that α must be the order of the pole at x = y = 1 of
H(x, y), and thus also the order of the pole of xY±H(x, Y±). Noticing that, due to (3.76), F (x)
consists of such summands with powers of Θ applied to them, provided that Θ′(x, Y±) ̸= 0, we
know that the maximum possible order of the pole of F (x) at x = 1 is α. The condition about
the derivative, however, is guaranteed by the parametrization of the kernel curve we will use in
Section 3.5.1, which tells us that we have Θ(x(s)) = s/q, and therefore the derivative wrt x can
never be 0. Thus, the limit exists, and the statement follows by taking the limit of (3.74).

We can now formulate and prove the following theorem, which shows convergence between the
Hk

n and the L(hk
n) defined in Sections 3.4 and 3.4.2 respectively. In doing so, we will also prove

Lemma 3.16. Since we will be using Thm. 3.17 to do so, which in turn utilizes the former, it
is worth taking a moment to make sure that in each induction step in the proof of Thm. 3.19
for some fixed n + 1, we use the statement of Thm. 3.17 for n, and then proceed to prove
Lemma 3.16 for n+ 1. We therefore do not enter any circular reasoning.

Theorem 3.19. Let π/θ ∈ Z and Hk
n, L(hk

n) be defined by (3.84), (3.102) respectively. Then

lim
µ→0

µkπ/θ+2nHk
n e−µx, e−µy = αn,kL hk

n (x, y) (3.117)

for some constants αn,k ̸= 0.
Furthermore, we can write

Hk
n(x, y) =

pkn(x, y)

(1− x)u(1− y)v
, L(hk

n)(x, y) =
qkn(x, y)

xαyα
, (3.118)

where u, v, α ∈ Z with u, v ≤ α = kπ/θ + 2(n − 1), pkn(x, y) a polynomial and qkn(x, y) a
homogeneous polynomial of degree π/θ + 2(n− 1).
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Proof of Thm. 3.19 and Lemma 3.16. We prove the theorem and the lemma simultaneously
by induction. For n = 1 everything can be checked by a direct computation. Now suppose
everything is shown up to some n. By Lemma 3.18, we know that we can define a continuous
decoupling function fk

n(x) of L(hk
n)(x, y) via a the scaling limit fk

n(x) := limµ→0 µ
kπ/θF k

n (e
−µx),

and we also know that it is of the form f(x) = βx−kπ/θ−2n, so in particular Lemma 3.16 holds
for n + 1 as well. Having now completely proven Thm. 3.17 for n + 1 (where we utilized
Lemma 3.16), we can take the piecewise limit of (3.84). Using in particular Lemma 3.9, and
the definition (3.102) of L(hk

n+1)(x, y), we have for α = kπ/θ+2n and (to save space) ex = e−µx,
ey := e−µy,

lim
µ→0

µα+2Hk
n (ex, ey)

= lim
µ→0

µα exeyK(ex, ey)− F k
n (ex)− X+(ey)eyH

k
n (X+(ey), ey)− F k

n (X+(ey))

µ−2K(e−µx, e−µy)

=
L(hk

n)(x, y)− fk
n(x)− L(hk

n)(c+y, y)− fk
n(c+y)

γ(x, y)

=L(hk
n+1)(x, y).

The degree of qkn(x, y) and the value of α in (3.118) can be checked by a direct computation
(note that it is allowed that qkn(x, y) be divisible by some power of x or y). From there it follows
immediately that α = kπ/θ + 2n is an upper bound of u, v using (3.117).

3.5 A guessing approach
In [36], the authors used an entirely different approach to find biharmonic functions, which may
not be as easy to generalize as the method above, but is in many ways a more elementary and
intuitive approach. As we will see, their guessing method using an ansatz can be shown to be
effective for computation of biharmonic functions whenever decoupling is possible. Unlike the
constructive approach above, this ansatz allows to rule out the existence of decoupling functions
of a sufficiently nice shape. The main goal of this section is to detail this approach, which was
only roughly outlined in [36], and show in Prop. 3.21 that if a sufficiently nice decoupling
function exists, it can always be found using this ansatz.

3.5.1 A parametrization of the kernel curve

If we substitute x → X±(y) into (2.26), then we obtain (see [36, (30)])

K(X+, 0)H2(X+, 0)−K(X−, 0)H2(X−, 0) = y [X+H1(X+, y)−X−H1(X−, y)] . (3.119)

Our goal is to rewrite the right-hand side of (3.119) for H1(x, y) =
P (ω(x))−P (ω(X+))

K(x,y)
. Seeing as

we substitute x → X±, where the denominator is 0, we need to utilize L’Hôpital’s rule, which
gives us (note that K(x, y) = ã(y) (x−X+(y)) (x−X−(y))

X+yH1(X+, y) =
yX+(y)ω

′(X+)

ã(y) (X+ −X−)
P ′(ω(X+)), (3.120)

X−yH1(X−, y) =
yX−ω′(X−)

ã(y) (X− −X+)
P ′(ω(X−)). (3.121)

Noting that P ′(ω(X+)) = P ′(ω(X−)) due to the invariance property of ω, in order to find a
decoupling function F (x) it would be enough to find an F such that

F (X+)− F (X−) =
yX+(y)ω

′(X+)

ã(y) (X+ −X−)
− yX−ω′(X−)

ã(y) (X− −X+)
. (3.122)
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To do so, we utilize the fact that the kernel curve C := {(x, y) ∈ C̄2 : K(x, y) = 0} as defined
in Section 2.1.2 permits a parametrization of the form

x(s) =
(s− s1)(s− 1/s1)

(s− s0)(s− 1/s0)
, (3.123)

y(s) =
(ρs− s3)(ρs− 1/s3)

ρs− s2)(ρs− 1/s2)
, (3.124)

where ρ = e−iθ,

s0 =
2− (x1 + x4)− 2 (1− x1)(1− x4)

x4 − x1

, (3.125)

s1 =
x1 + x4 − 2x1x4 − 2 x1x4(1− x1)(1− x4)

x4 − x1

, (3.126)

with similar definitions for s2 and s3 using y1, y4 instead of x1, x4, where the xi and yi are defined
by the zeros of the discriminant of the kernel as in Section 2.1.2 (see [70, 31] for details). Using
this parametrization, we have [67, 2.3]

x
1

s
= x(s), y

q

s
= y(s), (3.127)

with q := e2iθ = 1/ρ2. One can deduce that the mappings s → 1
s
, s → q

s
correspond to the

restriction of the group to C, and due to the invariance properties of x(s), y(s) and ω(x), we
see that ω(x(s)) = sπ/θ + s−π/θ + c, for c some some constant. In the following, seeing as with
ω(x), we know that ω(x) − c will also be a suitable conformal mapping for our purposes, we
will assume that ω(x(s)) = sπ/θ − s−π/θ.
Using these parametrizations, one eventually finds that the right-hand side of (3.119) written
in terms of s takes the form

c sπ/θ − s−π/θ Q(s)

s2(s− 1)(s+ 1)(s− q)(s+ q)
=: B(s), (3.128)

where c ∈ C is a constant and Q(s) is a polynomial of degree 8. Noticing that the mapping
s → s

q
maps X+ to X−, we want to find a function F such that

f(s)− f(s/q) = B(s). (3.129)

Then, one would only need to find a way to write f(s) – which must inherit the invariance
property f(s) = f(1/s) from x(s) – to a function of the form F (x(s)), and we would have our
decoupling function.

Rewriting the boundary value problem

The following computations were originally done in [122]. Writing
H(x, y) = P (ω(x))−P (ω(X+))

K(x,y)
we have, using L’Hôpital’s rule,

X+yH(X+, y)−X−yH(X−, y)

=
yX+(y)ω

′(y)
ã(y) [X+(y)−X−(y)]

P ′(ω(X+(y)))− yX−(y)ω′(y)
ã(y) [X−(y)−X+(y)]

P ′(ω−(y))), (3.130)
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where ã(y) is defined as in Section 2.1.2. As ω(X+(y)) = ω(X−(y)), it therefore suffices to find
a decoupling function F (x) such that

F (X+)− F (X−) =
yX+(y)ω

′(X+(y))

ã(y) [X+(y)−X−(y)]
− yX−(y)ω′(X−(y))

ã(y) [X−(y)−X+(y)]
. (3.131)

Using the parametrization, we have X+(y) = x(s), X−(y) = x(q/s). (3.131) thus becomes

f(x(s))− f(x(q/s)) =
y(s)x(s)ω′(x(s))

ã(y(s)) [x(s)− x(q/s)]
− y(s)x(s)ω′(x(q/s))

ã(y(s)) [x(q/s)− x(s)]
. (3.132)

In order to simplify the right-hand side of (3.132), the main idea is to utilize the fact that
ω(x(s)) = sπ/θ + s−π/θ, thus

ω′(x(s))x′(s) =
π

θ

1

s
sπ/θ − s−π/θ . (3.133)

We therefore rewrite

y(s)x(s)ω′(x(s))
ã(y(s)) [x(s)− x(q/s)]

=
y(s)

ã(y(s)) [x(s)− x(q/s)]

:=T1(s)

x(s)

x′(s)

:=T2(s)

ω′(x(s))x′(s)

:=T3(s)

. (3.134)

By utilizing the fact that

T1(s) =
y(s)

ã(y(s)) [x(s)− x(q/s)]
=

y(s)

D̃(y(s))
, (3.135)

with D̃ the determinant from Section 2.1.2, after some computations one obtains that, for some
constant c1,

T1(s) = c1
(ρs3s− 1)(ρs− s3)(ρs2s− 1)(ρs− s2)

s(ρs− 1)(ρs+ 1)
. (3.136)

Similarly, we have

T2(s) = c2
(s0s− 1)(s− s0)(s1s− 1)(s− s1)

(s+ 1)(s− 1)
(3.137)

for some constant c3
3. We can therefore, after again some short computations, rewrite

y(s)x(s)ω′(x(s))
ã(y(s)) [x(s)− x(q/s)]

− y(s)x(s)ω′(x(q/s))
ã(y(s)) [x(q/s)− x(s)]

=
y(s)

ã(y(s)) [x(s)− x(q/s)]

π

θ

1

s
sπ/θ − s−π/θ x(s)

x′(s)
− s2

q

x(q/s)

x′(q/s)
. (3.138)

After simplifying the last factor, we end up with

y(s)x(s)ω′(x(s))
ã(y(s)) [x(s)− x(q/s)]

− y(s)x(s)ω′(x(q/s))
ã(y(s)) [x(q/s)− x(s)]

= c sπ/θ − s−π/θ (ρs3s− 1)(ρs− s3)(ρs2s− 1)(ρs− s2)(s− s4)(s− q/s4)(s− s5)(s− q/s5)

s2(s+ 1)(s− 1)(s− q)(s+ q)
, (3.139)

where c, s4, s5 are constants.
3This is the only part where our assumption y4 ̸= ∞ comes into play; if y4 = ∞ we find that the denominator

of T1(s) stays the same while the numerator is quadratic.
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3.5.2 The ansatz

The guessing method used by the authors of [36] is to search for a f(s) of the form

f(s) = c sπ/θ − s−π/θ spR(s)

s− s−1
, (3.140)

where p is some constant and R(s) rational. Utilizing (3.139) and the fact that (due to the
invariance property of x(s)) we must have f(s) = f (1/s), it turns out that this already implies
p = −3, and that R(s) must be a reciprocal polynomial of degree 64. From here, one can simply
write R(s) = (s− z1)(s− 1

z1
) . . . (s− 1

z3
), and check to see if it is possible to find z1, z2, z3 such

that (3.129) holds. After some more calculations one finds that we want to solve

(s− q)(s+ q)R(s)− s6q−2(s− 1)(s+ 1)R (q/s) =

c(ρs3s− 1)(ρs− s3)(ρs2s− 1)(ρs− s2)(s− s4)(s− q/s4)(s− s5)(s− q/s5) (3.141)

for some constant c. In (3.128), everything except for s±π/θ is rational in s, and sπ/θ is invariant
under s → s/q (by definition, we have qπ/θ = e2iθ·π/θ = 1). Therefore it is not very surprising
that we can, in a sense, leave the invariant factor sπ/θ − s−π/θ alone and find a decoupling
function for the remaining part only. This is formalized by the following lemma.

Lemma 3.20. Let t := sπ/θ, and let f1 ∈ C(s, t) such that f1 ∈ C(s, t) is a decoupling function
of b(s) = R(s)h(t). Then we can find f ∈ C(s) such that f is a decoupling function of R(s).

Proof. Let τ be the automorphism s → s/q, which by definition of q leaves t invariant. We
have two cases here, depending on whether or not π/θ is rational or not, i.e. if there is some
algebraic relation between s and t.

1. π/θ /∈ Q:
In this case, as we are always working with rational functions, we can utilize the fact that
s and t are algebraically independent. By invariance of t under τ , we can thus write

f1(τs, t)

h(t)
− f1(s, t)

h(t)
= R(s). (3.142)

Due to the independence of s and t we can treat the right-hand side, viewed as a rational
function coefficients in C(s), like a constant function in t.
Now let f2(s, t) := f1(s,t)

h(t)
= u(s,t)

v(s,t)
, with u, v ∈ C(s)[t]. We factor u, v into their irreducible

components (ui), (vi) over C(s). Any ui, vi which lies in C[t] must cancel, because else it
would be a factor of the entire left-hand side and thus of R(s), a contradiction. Thus we
can assume that all ui, vi lie in C(s)[t] \ C[t].
Suppose there is an i, which we can assume to be 1, such that degt(vi) > 0. Then,
as the resulting pole must cancel, we know there is a j, let us say j = 2, such that
v2(s, t) = v1(τ(s), t). Proceeding inductively, we can construct a sequence (vi) such that
v1(τ

n−1(s), t) = vn(s, t). But as τn ̸= id for all n ∈ N since q /∈ Q, this procedure will
never stop, i.e. we would need to have an infinite number of factors vi, which is impossible.
Therefore, we know that v(s, t) = v(s) ∈ C(s); and by looking at the degree of the left-
hand side of (3.142), therefore u(s, t) = u(s) ∈ C(s) as well. Hence, f2 = f1

h
∈ C(s), and

therefore it is a valid decoupling function of R(s).

2. π/θ ∈ Q:
Let π/θ = m

n
, with m,n ∈ N, (m,n) = 1. While before we could simply consider the

4In the case y4 = ∞, one finds p = −1 and R(s) of degree 2.
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irreducible factors of numerator and denominator of f2, this is not now so simple anymore,
as the algebraic structure of F := Quot C[s, t] ⟨sm − tn⟩ is not as obvious. It would,
for instance, not immediately make sense to talk about the degree of an expression.
Therefore, we need to work around this issue. We know that gcd(m,n) = 1, and thus
there are a, b such that am+ bn = 1. Now consider the mapping5

ϕ : C(T ) → F : T → sbta. (3.143)

One can check that an inverse map ϕ−1 is given by (s, t) → (T n, Tm), and that ϕ is in fact
an isomorphism. Our automorphism τ can now be carried over to C(T ) thus we obtain
an automorphism σ := ϕ−1 ◦ τ . As τ and ϕ both fix C, so does σ. Therefore, we know
that σ is of the form

σ : T → c1T + c2
d2T + d2

(3.144)

for some c1, c2, d1, d2. From this, one obtains that σ(T ) = ζT , where ζn = q, ζm = 1,
which means ζ = exp 2iπ 1

m
.

Translating the decoupling property (3.142) to T , we now have, with f3 = ϕ−1 ◦ f2
f3(σT )− f3(T ) = R1(T ). (3.145)

By Hilbert’s Thm. 90 [70, 4.6.5] such a f3 can exist if and only if Trσ R1 = 0, that is, if
m

k=1

R1(ζ
kT ) = 0. (3.146)

But using that R1(T ) := ϕ−1 (R(s)) = R(T n) and that ζn = q, we have

Trσ R1 =
m

k=1

R ζknT n =
m

k=1

R ϕ−1(qks) = ϕ−1

m

k=1

R(qks) = ϕ−1 (Trτ R) . (3.147)

As ϕ leaves C fixed, we therefore know that Trσ R1 = 0 ⇔ Trτ R = 0, and thus a
decoupling of R1(T ) is possible if and only if a decoupling of R(s) is possible.

Proposition 3.21. If the function f(x(s)) as in (3.132) has a decoupling function in C s, sπ/θ ,
then we can find it using an ansatz as in (3.140).

Proof. Using the computations from the previous section, in particular (3.133), we see that we
can write b(s) := f(x(s)) in the form R(s)h(t), with t := sπ/θ as in Lemma 3.20. Assuming that
b(s) has a decoupling function in C s, sπ/θ , it follows by the same lemma that we can then
find a decoupling function of R(s) in C(s). But finding such a decoupling function is, after our
previous computations, equivalent to solving (3.141), i.e. to the ansatz working out.

Remarks:

• The above allows to show for concrete models with infinite group that a decoupling
function in C (x, y, ω(x), ω(y)) cannot exist. However, it is not obvious how to show that
an infinite group implies that there is no decoupling function. In particular, it is not at
all clear how the group (as defined in Section 3.4, i.e. the birational transformations)
being finite can be grasped in terms of the parametrization, where all that is left is the
restriction of the group to the curve C. Section 3.6 will contain some examples where the
restriction of the group, but not the group itself is finite.

5This is merely a formalisation of the basic idea of adjoining a simple element T such that Tn = s, Tm = t,
which serves the role of an n-th root of s.
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• While it would be natural to assume that any decoupling function would be in C s, sπ/θ ,
this is not always the case. We will see an example for this in Example 3.6.4, where
the ansatz will not work but we will construct a (non-algebraic) decoupling function.
This might also be tied to the appearance of logarithms in the asymptotics of models
with infinite group, as in Chapter 5 later. In the setting of Section 3.4, however, one
checks immediately by (3.76) that if ever the group is finite, then the resulting decoupling
functions will be rational in s and sπ/θ.

• While this kind of ansatz seems useful to either compute decoupling functions in concrete
examples or show that they don’t exist, it may be difficult to use it to obtain a general
criterion for models which allow for such a function: though this is not formally proven, it
appears that such a function exists precisely for the models with finite group (in particular,
the existence is shown in Thm. 3.15). When utilizing the parametrization, however, one
loses information about the group: one knows only if the group is finite on the kernel curve,
which is not equivalent to it being finite in general and not sufficient for a decoupling
function to exist. For an example of this, see Sec. 3.6.

Example: a decoupling function for the tandem walk using the ansatz

Recall that the tandem walk was defined by the step set S = {↖,→, ↓} with weight 1
3

each.
We had K(x, y) = xy − 1

3
(x2 + y + xy2), from which we obtain x1 = 0, x4 = 4, y0 =

1
4
, y4 = ∞,

and thus s0 = −1
2
(1 + i

√
3), s1 = 1, s2 = −1, s3 =

1
2
(1− i

√
3). Furthermore, we have π/θ = 3,

and thus q := e2iθ = −1
2
(1− i

√
3) as well as ρ := e−iθ = 1

2
(1−√

3) = −q. This leads to

x(s) =
(s− 1)2

1 + s+ s2
, y(s) =

−1
2
(1− i

√
3)s2 − 1

2
(1 + i

√
3)s+ 1

s+ 1
2
(1 + i

√
3

2 . (3.148)

After some computations, we see that the right-hand side of (3.141) takes the form

1/6i(s− 1)3(2
√
3 + (

√
3 + 3i)s)(1 + s+ s2)2. (3.149)

Letting R(s) = (1 − z1)(1 − z2)(1 − z3)(1 − 1/z1)(1 − 1/z2)(1 − 1/z3) and solving (3.141) for
z1, z2, z3 yields multiple solutions, for instance c = −1

3
, z1 = 1, z2 = i, z3 = −1

2
(1 + i

√
3). This

particular one leads to

f(s) := c s3 − s−3 R(s)

s4 − s2

=
1− s+ 2s2 − 3s3 + 3s4 − 4s5 + 3s6 − 3s7 + 2s8 − s9 + s10

3s5
. (3.150)

To transform this back into a function of x, we utilize the fact that

1

1− x(s)
=

1 + s+ s2

3s
. (3.151)

Making an ansatz of f(s) = a0 + a1
1

1−x(s)
+ · · · + a5

1
(1−x(s))5

gives a0 = a1 = 0, a2 = −18, a3 =
99, a4 = −162, a5 = 81. Putting this together, we finally obtain the decoupling function

f(x) =
9x(2 + 5x+ 2x2)

(1− x)5
. (3.152)

Note that this decoupling function is different from the one computed in Example 3.4.1, where
we obtained F (x) = − 81x3

4(1−x)5
, as already mentioned in Example 3.4.1.
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Example: trying to decouple a model with infinite group

Consider the model with the step set

p1,0 = p0,1 = 0, (3.153)
p1,1 = 1/4, (3.154)

p1,−1 = p0,−1 = p−1,0 = p−1,1 = 1/6, (3.155)
p−1,−1 = 1/12. (3.156)

This model has an infinite group, as can be seen by Thm. 3.24. We have K(x, y) = xy− 1
12
(1+

2x+2y+2x2+2y2+3x2y2), and can compute x1,4 = y1,4 =
1
6
(±5

√
3−9). As π/θ = 2, we have

q = −1, ρ = i. After some calculations, one finds that the right-hand side of (3.141) takes, up
to a multiplicative constant, the form

s(
√
2−

√
3 + is)(

√
3 + is)(

√
3 + 3is)(1 + i(

√
2−

√
3)s)(−1 + s2). (3.157)

We can check that solving (3.141) does not give any solutions for z1, z2, z3, thus we cannot find
a decoupling function using the ansatz. In particular, in light of Lemma 3.20 this implies that
there is no rational (in s) decoupling function. We will, however, see how one can construct a
non-algebraic decoupling function for this model using a contour integral in Example 3.6.4.

3.6 The special case π/θ = 2

In this section we will consider the special case where θ = π/2 (θ is the angle defined in
Section 2.1.2, and can be computed by (2.11)). This is done for two different reasons: firstly, we
will see that in this setting we gain a number of nice properties; in particular an explicit criterion
for the group to be finite (Thm. 3.24 in Section 3.6.1), in which case we the polyharmonic
functions can be explicitly computed (Thm. 3.26 in Section 3.6.2). On the other hand, this
setting allows us to explicitly compute decoupling functions in the case of an infinite group with
comparably little effort, which are – albeit not rational – still guaranteed to exist by general
theory about complex boundary value problems, see for example [75, §4],[70, 5.]. This will be
done starting from Section 3.6.3. In particular, we will see that the resulting functions are not
even algebraic anymore (though still D-finite).
The case π/θ = 2 includes a number of standard models, such as the simple walk, the king’s
walk or the diagonal walk. It is characterized by the property

p1,1 + p−1,−1 = p1,−1 + p−1,1, (3.158)

that is, the sums of the weights of the two diagonals are the same. This is a direct consequence
of (2.11). Also note that that the function f(i, j) = (i+ 1)(j + 1) satisfies △f(i, j) = 0 in this
case, which corresponds to the fact that, up to a multiplicative constant, H1

1 (x, y) =
1

(1−x)2(1−y)2
.

This can be checked directly using the definition of the discrete Laplacian (2.2).

3.6.1 A criterion for the group to be finite

Deciding if the group of a given model is finite is in general not an easy problem, as can be
seen for example by the very computationally heavy approach in [93], or by the approach in
[31] where it was done for unweighted small-step models using a combination of eigenvalue
properties and valuations. While for the standard models with π/θ = 2 like the simple walk,
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the diagonal walk or the king’s walk the group is finite, this is not always the case6. Take for
example the model with probabilities

p1,0 = p0,1 = 0, (3.159)
p1,1 = 1/4, (3.160)

p1,−1 = p0,−1 = p0,−1 = p−1,1 = 1/6, (3.161)
p−1,−1 = 1/12. (3.162)

One can check immediately that while we have π/θ = 2 and the restriction of the group has
order 4, the group itself is infinite.
In the case of π/θ = 2 we will show in this section that there is a very intuitive way to classify
the behaviour of the group of a given model: it is finite of order 4 if the model has either a
North-South or an East-West symmetry, else it is infinite. To do so, we will first show that the
group is of order four precisely if one of these symmetries holds; and then afterwards show that
the group being finite leads directly back to this case. We will start with a technical lemma in
order to shorten later computations.

Lemma 3.22. Suppose we have a non-degenerate model with small steps, zero drift and π/θ =
2. If there is an i ∈ {−1, 0, 1} such that p1,i = p−1,i, then we have p1,j = p−1,j for j ∈ {−1, 0, 1}.
Similarly, if there is an i ∈ {−1, 0, 1} such that pi,1 = pi,−1, then we have pj,1 = pj,−1 for
j ∈ {−1, 0, 1}.
Proof. By a direct computation, using (3.158).

This lemma tells us that we have a North-South symmetry in only one of the three possible
ways, then our step set as a whole already has a North-South symmetry. We can now utilize
this in the following

Lemma 3.23. Suppose we have a non-degenerate model with small steps, zero drift and π/θ =
2. Then, the group is finite of order 4 precisely if the model has either a North-South, or an
East-West symmetry.

Proof. We know from [123, Prop. 4] that the order of the group is four if and only if the
determinant  p−1,1 p0,1 p1,1

p−1,0 −1
t

p1,0
p−1,−1 p0,−1 p1,−1

 = 0. (3.163)

This determinant can be explicitly computed to be

−p1,0p−1,1p0,−1 + p1,0p0,1p−1,−1 + p1,1p0,−1p−1,0 − p0,1p1,−1p−1,0 − p−1,1p1,−1 + p1,1p−1,−1

t
.

Utilizing the fact that our walk has drift 0, small steps, and (3.158), this can be simplified to

t− 1

t
[(p−1,1 − p−1,−1)(p−1,−1 − p1,−1)] . (3.164)

By Lemma 3.22, the last expression is 0 precisely if our model has either a North-South, or an
East-West symmetry.

6The fact that π/θ = 2 ∈ Z guarantees that the restriction of the group on C is finite, see e.g. [67], but not
that it is finite on all of C2.
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Theorem 3.24. Suppose we have a non-degenerate model with small steps, zero drift and
π/θ = 2. Then the group is finite of order 4 if the model has a North-South or an East-West
symmetry, and it is infinite otherwise.

Proof. Utilizing Lemma 3.23, all that remains to show is that in our setting any group that is
finite must be of order 4. To see this, define δ̃, ε̃, δ, ε ∈ R̄ such that

c(x)

a(x)

x→∞→ δ,
c(x)

a(x)

x→0→ ε, (3.165)

c̃(y)

ã(y)

y→∞→ δ̃,
c̃(y)

ã(y)

y→0→ ε̃, (3.166)

where a(x), c(x), ã(y), c̃(y) are defined as in Section 2.1.2. Notice that if δ = ε = 0, then this
would imply p1,1 = p−1,1 = 0, in which case by Lemmas 3.22 and 3.23 we already know the
group to be finite of order 4. In the same fashion, one sees that if δ = ε = ∞, δ̃ = ε̃ ∈ {0,∞}
then we have a finite group of order 4. In all other cases, we find that, for sufficiently large
values of (x, y), the group behaves like

(x, y) → (δx̄, y) → (δx̄, ε̃ȳ) → ε

δ
x, ε̃ȳ → ε

δ
x,

δ̃

ε̃
, y → . . . (3.167)

Consequently, for the group to be finite, both ε
δ
, δ̃
ε̃

must be roots of unity. As they are non-
negative reals, they must therefore be 1. This condition can then be checked to simplify to
p1,1p−1,−1 = p1,−1p−1,1.
We write

0 = p1,1p−1,−1 − p1,−1p−1,1 = p1,1p−1,−1 − p1,−1(p1,1 + p−1,−1 − p1,−1) (3.168)
= (p1,1 − p1,−1)(p−1,−1 − p1,−1), (3.169)

where in (3.168) we made use of (3.158). One can check by a short computation that the
first condition implies a North-South and the second one an East-West symmetry; thus by
Lemma 3.23 we already know that our group is of order 4.

3.6.2 The finite group case

We use the same parametrization of the curve C := {(x, y) ∈ C2
: K(x, y) = 0} as in Sec-

tion 3.5.1,

x(s) =
(s− s1)(s− 1/s1)

(s− s0)(s− 1/s0)
, (3.170)

y(s) =
(ρs− s3)(ρs− 1/s3)

(ρs− s2)(ρs− 1/s2)
, (3.171)

with s0, s1, s2, s3 given by (3.125)–(3.126). Remember the invariance properties x(s) = x (1/s)
and y(s) = (q/s) with q := e2iθ = 1/ρ2, and that the mappings s → 1

s
, s → q

s
correspond to the

restriction of the group to C, and that we have ω(x(s)) = sπ/θ + s−π/θ.
In the case π/θ = 2, the above immediately simplifies to ρ = −i, q = −1. By Thm. 3.24, we
also know that in this case we have a North-South, or an East-West symmetry. This gives
us some particularly nice properties of these models, and allows us to compute polyharmonic
functions without the use of decoupling functions.
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Lemma 3.25. Suppose we have a non-degenerate model with small steps, zero drift, π/θ = 2
and finite group. If we have an East-West symmetry, then there is a constant c such that we
can write

ω(x) = c
x

(1− x)2
, (3.172)

and the contour G given by X± ([y1, y4]) is the unit circle.
In case of a North-South symmetry, a corresponding statement holds true for y and the corre-
sponding conformal mapping ω̂ instead.

Proof. (3.172) follows from the parametrization, computing

x(s)

(1− x(s))2
=

a0s
4 + a1s

3 + a2s
2 + a1s+ a0

s2
. (3.173)

It turns out that we have a1 = 0 if s0s1 = 0, which we can check to be true if and only if we
have a North-South symmetry. In this case we can then see that the right-hand side of (3.173)
is a0 (s2 + s−2) + a2. As we already know that, up to an additive constant, ω(x(s)) = s2 + s−2,
we thus have ω(x) = 1

a0
x

(1−x)2
− a2, and seeing as we pick ω(x) such that ω(0) = 0, (3.172)

follows.
For the statement about the contour, [70, Thm. 5.3.3] tells us that it is a circle if π/θ = 2 (in
their notation, r = 0). However, considering that ω(x) must take the same values on the upper
and lower half of the contour G by the invariance property ω(X+(y)) = ω(X−(y)) and given
(3.172), it follows that this circle must be the unit circle.

Theorem 3.26. For any non-degenerate model with small steps, zero drift, π/θ = 2, finite
group, and East-West symmetry, an explicit basis of polyharmonic functions is given by

Hk
n(x, y) = βn−1ω(y)n−1 yn−1

(1− x)2(1− y)2n

k−1

j=0

sn(j)ω (X+)
j ω(x)k−j−1 , (3.174)

for some constant β, where sl : N → N is defined inductively via s1(j) = 1, sl+1(j) =
j+1
i=1 sl(j).

In particular, this basis has the form

Hk
n(x, y) =

pm,k

(1− x)2k(1− y)2(m+k−1)
, (3.175)

for pm,k some polynomial of degree at most 2k + n− 3.
In case of a North-South symmetry, the statement holds with x and y reversed.

Proof. To illustrate the idea, let us start computing H1
n(x, y). We know that, for some constant

α, we have

H1
1 (x, y) = α

1

(1− x)2(1− y)2
. (3.176)

Since the group is finite, we can without loss of generality assume that we have an East-West
symmetry; otherwise we exchange the roles of x, y in the following. In this case, by Lemma 3.25,
we can rewrite

xyH1
1 (x, y) = xy

ω(x)− ω(X+)

K(x, y)
= βω(x)ω(y), (3.177)
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where again β is some constant. As ω(X+) = ω(X−), we see immediately that we do not need
a decoupling function, and instead we can continue via

H1
2 (x, y) =

xyH1
1 (x, y)−X+yH

1
1 (X+, y)

K(x, y)
(3.178)

=
β

K(x, y)
[ω(x)ω(y)− ω(X+)ω(y)] (3.179)

= βω(y)
ω(x)− ω(X+)

K(x, y)

=H1
1 (x,y)

. (3.180)

We can continue inductively, noticing that in each step we only gain a factor of βω(y), and
thus obtain

H1
n(x, y) = βn−1ω(y)n−1H1

1 (x, y) (3.181)

=
αβ̃nyn−1

(1− x)2(1− y)2n
. (3.182)

If now k ≥ 2, then we can compute

Hk
1 =

ω(x)n − ω(X+)
n

K(x, y)
(3.183)

=
ω(x)− ω(X+)

K(x, y)

=H1
1 (x,y)

ω(x)n−1 + · · ·+ ω(X+)
n−1 . (3.184)

The computation now continues in exactly the same fashion as for k = 1, except one needs to
carry along more terms of the form ω(x)aω(y)b, with their coefficients, which is where (3.174)
comes from. We have

xyHk
n(x, y)−X+yH

k
n(X+, y)

= βmω(y)m
k−1

j=0

ω(x)k−1ω(X+)
j − ω(X+)

k

k−1

j=0

sm(j) . (3.185)

Using the algebraic identity

a

k−1

j=0

cja
k−j−1bj − bn

k−1

j=0

cj = (a− b)
k−1

j=0

j+1

i=1

ci ak−j−1bj (3.186)

for a = ω(x) and b = ω (X+) then yields the statement.

3.6.3 The infinite group case

In the case of an infinite group, the approach as in the previous section clearly does not
work, as it was dependent on the fact that we could write, up to multiplicative constants,
xyH1

1 (x, y) =
xy

(1−x)2(1−y)2
= ω(x)ω(y). For this, in the finite group case we utilized the special

shape of ω given by Lemma 3.25, which is now unavailable. Neither can we use (3.76) to find
a decoupling function and simplify our boundary value problem. However, general theory of
these boundary value problems as in [75] still tells us that a decoupling function should exist,
and there are methods to find them. It is therefore only natural to try and see what happens
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if we want to apply them here. Unfortunately, it will turn out that even in this simple case
π/θ = 2, the resulting functions are rather unwieldy, and will in general not even be algebraic
anymore.

Suppose from now on that we have an arbitrary non-singular model with small steps, zero drift
and π/θ = 2. We already know that H1

1 (x, y) = 1
(x−1)2(y−1)2

is a harmonic function for such
model, and what we want to do is to compute a biharmonic function of H1

1 (x, y).
Now let

Y±(x) =
−b(x)∓ b(x)2 − 4a(x)c(x)

2a(x)
, (3.187)

as in Section 2.1.2, and consider the contour Γ given by X±[y1, 1]. By [70, Lemma 6.5.1], we
know that Γ is a circle, symmetric with respect to the real axis, which it intersects at 1 and
at some point −1 < p. We let c, d be the center and radius of Γ respectively. Let, again as in
Section 2.1.2, G be the (finite) domain bounded by Γ. Via

r : C → C̄ : z → d2

z − c
+ c, (3.188)

we can define a rational mapping r such that

1. r is an involution,

2. r maps the interior G◦ to the exterior Gc and vice versa,

3. r corresponds to complex conjugation on Γ itself.

The existence of this rational mapping is the main reason why the following computation turns
out to be comparatively simple; if π/θ were not 2, then Γ would not be a circle and things
would end up being more complicated.
Now define

L(x) := xY+(x)H1(x, Y+(x))− r(x)Y+(x)H1(r(x), Y+(x)). (3.189)

L(x) describes the value of xyH1
1 (x, y)−X+yH

1
1 (X+, y) on Γ: we substitute Y+(x) for y to be

on Γ in the first place, and complex conjugation corresponds to switching from one solution of
K(x, Y+(x)) = 0 to the other, thus we have K(x, Y+(x)) = K(r(x), Y+(x)) = 0. It is also the
expression we want to find a decoupling function of; our goal is to find a Υ, which is analytic
inside G \ {1}, such that

Υ(x)−Υ(r(x)) = L(x), ∀x ∈ Γ. (3.190)

Lemma 3.27. We have

αL(x) =
[(−1 + 2d+ x)] p2(x) + b(x)2 − 4a(x)c(x)

(x− 1)3
(3.191)

for some non-zero constant α and a polynomial p2(x) of degree at most 2.
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Proof. We make use of the expression for H1(x, y), and rewrite (3.189) as

βL(x) =
x

(x− 1)2
− r(x)

(r(x)− 1)2
Y+

(Y+ − 1)2
(3.192)

=
(d− 1)(−1 + 2d+ x)

d2(x− 1)

Y+

(Y+ − 1)2
, (3.193)

where β is some non-zero multiplicative constant we can ignore in the following. Note here
that the factor (−1 + 2d + x) has a zero at x = 1 − 2d = p (where p was defined to be
the second intersection, other than 1, of G with the real axis), which will be important later
on. In order to simplify Y+

(Y+−1)2
, seeing as a(x) + b(x) + c(x) = K(x, 1) = ρ1(x − 1)2 and

b(x)2 − 4a(x)c(x) = (x − 1)2p̃(x) for a constant ρ1 and a quadratic polynomial p̃(x), we can
check that the following identities hold, which will be useful to us:

a(1) = c(1) (3.194)
a(1) + b(1) + c(1) = K(1, 1) = 0, (3.195)

a′(1) + b′(1) + c′(1) =
∂

∂x
K(x, 1)

x=1

, (3.196)

∂

∂x
b(x)2 − 4a(x)c(x)

x=1

=
∂

∂x
△(x)

x=1

= 0. (3.197)

A direct simplification yields

Y+

(Y+ − 1)2
=

−b(x) + b(x)2 − 4a(x)c(x) 2a(x) + b(x) + b(x)2 − 4a(x)c(x)
2

8 [a(x) + b(x) + c(x)]2
(3.198)

=
−b(x) + b(x)2 − 4a(x)c(x) 2a(x) + b(x) + b(x)2 − 4a(x)c(x)

2

8ρ21a(x)(x− 1)4
. (3.199)

In order to simplify the numerator, we write

−b(x) + b(x)2 − 4a(x)c(x) 2a(x) + b(x) + b(x)2 − 4a(x)c(x)
2

(3.200)

=− 4a(x) [a(x)b(x) + 4a(x)c(x) + b(x)c(x)] + a(x)(a(x)− c(x)) b(x)2 − 4a(x)c(x). (3.201)

Note that the factor a(x)− c(x) in front of the square root vanishes if and only if our walk has
a North-South symmetry7, which is why everything stays rational in the finite group case.
We want to show that the first summand contains a factor of (x− 1)2. To do so, we notice that
for s1 := a(x)b(x) + 4a(x)c(x) + a(x)b(x), we have

s1(1) =a(1)b(1) + 4a(1)c(1) + b(1)c(1) (3.202)
(3.194)
= 2a(1) [a(1) + b(1) + c(1)] (3.203)

(3.195)
= 0, (3.204)

as well as

s′1(1) = a′(1)b(1) + b′(1)a(1) + 4a′(1)c(1) + 4a(1)c′(1) + b′(1)c(1) + b(1)c′(1) (3.205)
= b(1) [a′(1) + c′(1)] + b′(1) [a(1) + c(1)] + 4 [a′(1)c(1) + a(1)c′(1)] (3.206)
(3.196)
= −b(1)b′(1)− b′(1)b(1) + 4 [a′(1)c(1) + a(1)c′(1)] (3.207)

(3.197)
= 0. (3.208)

7In particular, had we picked a model with East-West, but no North-South symmetry here, then the compu-
tation here is much more complicated than necessary – we could just have swapped the roles of x and y, done
the same calculations and at this point ended up with a purely rational expression.
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Thus, −4s1(x) = (x− 1)2p1(x) for some polynomial p1(x) of degree at most 2. Next,in order to
treat the second summand of (3.201), we want to show that a(x)− c(x) = ρ(x− 1)2 for some
constant ρ. We already know due to (3.194)) that a(1)− c(1) = 0. To see that a′(1)− c′(1) = 0
as well, let a(x) = a0 + a1x + a2x

2, c(x) = c0 + c1x + c2x
2 (that is, a0/1/2 = p−1/0/1,1, c0/1/2 =

p−1/0/1,−1). The expression a′(1) − c′(1) thus simplifies to 2a2 + a1 − 2c2 − c1. Utilizing that,
as π/θ = 2, we have a2 + c0 = c2 + a0, we can write the latter as 2(a2 − c2) + a1 − c1 =
a2 − c2 + a0 − c0 + a1 − c1 = (a2 + a1 + a0) − (c2 + c1 + c0) = 0, since we have zero drift.
Therefore, we know that a(1)− c(1) = a′(1)− c′(1) = 0, and therefore a(x)− c(x) = ρ(x− 1)2

(note that a(x)− c(x) is quadratic in x). Thus we obtain

Y+

(Y+ − 1)2
=

−b(x) + b(x)2 − 4a(x)c(x) 2a(x) + b(x) + b(x)2 − 4a(x)c(x)
2

8ρ21(x− 1)4
(3.209)

=
p2(x)(x− 1)2 + (x− 1)2 b(x)2 − 4a(x)c(x)

ρ3(x− 1)4
(3.210)

=
p2(x) + b(x)2 − 4a(x)c(x)

ρ3(x− 1)2
. (3.211)

Substituting this into (3.193) yields the statement.

We now define

L1(x) :=
(−1 + 2d+ x)p2(x)

(x− 1)3
, (3.212)

L2(x) :=
(−1 + 2d+ x) b(x)2 − 4a(x)c(x)

(x− 1)3
=

(−1 + 2d+ x) −(x− x1)(x− x4)

(x− 1)2
. (3.213)

By construction, we have [L1(x) + L2(x)] = αL(x).
We would now like to proceed by computing decoupling functions of L1, L2 separately. For
decoupling functions of L1,2(x) to exist, we must have L1,2(x) + L1,2(r(x)) = 0 for x ∈ Γ, due
to (3.190). Note that L(x) satisfies this condition by construction.
The first question to ask here is in which way we define the square root. This depends on the
sign of (x−x1)(x−x4); in order to utilize our methods later we will want the expression L2(x)
to be continuous on the contour Γ. Due to [70, Thm. 5.3.3], we know that x1 ∈ G, x4 ∈ Gc.
We select the branch cut such that the root singularity on Γ is canceled out by the factor
(−1+ 2d+ x) = (x− p), for p the left intersection of Γ with the real axis, i.e. we need to select
the branch cut along the axis with the sign of −(p− x1)(p− x4).
In both cases, there is a section of the contour Γ which lies on the side of the branch cut.
Therefore, on this section Γ′ of the contour we have

−(x̄− x1)(x̄− x4) = − −(x− x1)(x− x4).

This implies that, on Γ′,

L(x) + L(r(x)) = L1(x) + L1(x) + L2(x) + L2(x) = L1(x) + L1(x)

∈R

+L2(x)− L2(x)

∈C

= 0.

(3.214)

Consequently, we know that L1(x) + L1(r(x)) must be 0 on Γ′, and as it is a rational function
it must thus be 0 everywhere. The same goes for L2(x) + L2(r(x)). This means that finding a
decoupling function of L(x) can be done in two parts:

1. We find a decoupling function of the rational function L1(x),

2. We find a decoupling function of the non-rational function L2(x).
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Decoupling of the (rational) L1

As we already know that L1(x) +L1(r(x)) = 0, this turns out to be rather straightforward: we
have

L1(x) =
1

2
[L1(x)− L1(r(x))] , (3.215)

which already gives us a rational decoupling function. One arguably gets a somewhat nicer
form by utilizing an ansatz of the form

L1(x) = α3
1

(x− 1)3
− 1

(r(x)− 1)3
+ α1

1

x− 1
− 1

r(x)− 1
, (3.216)

as will be done for Example 3.6.4.

Decoupling of the (irrational) L2

Note that the previous approach is problematic here, as the resulting function would have
singularities at x = x1 and x = x4, which might be inside of G. Thus we compute a decoupling
function via a contour integral, which is also the standard approach given the theory of complex
boundary value problems. To utilize the theory as in e.g. [75], we need a function which is
continuous on Γ. This is not the case for L2, due to its pole at x = 1. However, this can easily
be remedied by considering instead of L2 the function

L3(x) := (x− 1)(r(x)− 1)L2(x) = −d
(−1 + 2d+ x) −(x− x1)(x− x4)

x− (1− d)
. (3.217)

If we find a decoupling function Υ3(x) of L3, then Υ2(x) :=
Υ(x)3

(x−1)(r(x)−1)
will be a decoupling

function of L2, as the denominator is invariant under x → r(x). However, due to [75] we
already know that such a Υ3 exists, seeing as L3(x) is continuous and bounded on Γ (though
not analytic near x = p, but this does not matter for us).
Since general theory guarantees us the existence of a Υ3, analytic in G◦, which decouples L3,
we can utilise the same trick as in [67]: we write the decoupling property, select a t ∈ G◦, divide
by (x− t) and integrate over Γ with respect to x. The resulting equation then reads

Γ

Υ3(x)

x− t
dx−

Γ

Υ3(r(x))

x− t
dx =

Γ

L3(x)

x− t
dx. (3.218)

The leftmost term is, by Cauchy’s integral formula, nothing but 2πiΥ3(t), and the rightmost
term can be computed. The question is what to do with the middle term. We notice that r(x)
is an involution, sending Γ to itself (only changing the direction along which Γ is traversed),
and that r′(x) = − d2

(x−c)2
. Letting now x = r(y), this integral can be written as

Γ

Υ3(r(x))

x− t
dx = d2

Γ

Υ3(y)

r(y)− t

1

(y − c)2
dy (3.219)

= d2

Γ

Υ3(y)

(r(y)− t)(y − c)

1

y − c
dy (3.220)

= d2

Γ

Υ3(y)

d2 + (c− t)(y − c)

1

y − c
dy. (3.221)

From (3.219), we see that the only possible pole of the integrand is at y = c (since t ∈ G◦), and
from (3.221) it follows that this is a simple pole. We can therefore, again by Cauchy, write

Γ

Υ3(r(x))

x− t
dx = 2πiΥ(c). (3.222)
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Overall, we therefore get

Υ3(t)−Υ3(c) =
1

2πi Γ

L3(x)

x− t
dx. (3.223)

Noticing that with Υ3 any translation Υ3 + const is also a solution for any constant, we can
without loss of generality assume that Υ3(c) = 0, and obtain

Υ3(t) =
1

2πi Γ

L3(x)

x− t
dx. (3.224)

Remark: We can, unfortunately, not apply calculus of residues to the integral on the right-
hand side of (3.218), since it is not analytic on the branch cut. We will take a closer look at
this integral in the following section.

Asymptotics of Υ3(t)

The goal of this section is to compute the asymptotics of [tn] Υ3(t)
8, which will serve to show

that Υ3(t) cannot be an algebraic function. To do so, by standard methods about power series
as presented for example in [73], we need to know the location of the singularity of Υ3(t) closest
to the origin.
Remember that the contour Γ is a circle in C, going through Γ and intersecting the real axis at
a second point p. For the asymptotics, we need a bit more information about the exact location
of p.

Lemma 3.28. Let p be the left intersection of the circle X [y1, 1] with the real axis. We have

|p|> 1 if p1,1 > p1,−1,
|p|< 1 if p1,1 < p1,−1,
|p|= 1 if p1,1 = p1,−1.

Proof. Let us parametrize the contour and consider the absolute value of X+(t)X−(t), t close
to 1. Note again that we have

f(t) := |X0(t)|2 = X0(t)X1(t) = 2
c(t)

a(t)
. (3.225)

As we have zero drift and thus X0(1) = X1(1) = 0, we see that f ′(1) = 0. Now all that remains
to do is to check whether at this point we have a local minimum or maximum; i.e. whether we
have f ′′(1) > 0 or f ′′(1) < 0 respectively. Therefore, we can use the explicit forms of a(x), b(x),
and in the end we obtain (using, again, that r = 0)

f ′′(1) = −4
p1,−1 − p−1,−1

p−1,1 + p−1,0 + p−1,−1

. (3.226)

Since the denominator is certainly > 0, and since (again, due to the drift being zero) we have
p1,−1 − p−1,−1 = p1,1 − p−1,1, the statement follows.
Note lastly that if we have equality, i.e. p1,1 = p−1,1, then we already know that we have an
East-West symmetry, and that in this case the contour will be the unit circle.

8Here, [tn] is the linear operator extracting the n-th coefficient of a power series around 0.
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In the case |p|= 1, there is no need for all these computations, as the group is finite by
Lemma 3.22 and Thm. 3.24, and we can directly compute all polyharmonic functions. If
|p|> 1, the singularity of Υ3 closest to 0 (and thus the one determining asymptotic behaviour)
is at x = 1. In the case |p|< 1, however, Υ will have exponential growth with base 1

p
. We will

now compute the exact shape of the resulting terms in this case.

Lemma 3.29. Let d be the radius of the circle X[y1, 1], c its center and p its left intersection
with the real axis. We then have

d =
(1− x1)(1− x4)

2− x1 − x4

, (3.227)

or, equivalently,

p− c(x1 + x4) + x1x4 = 0. (3.228)

Proof. One can check that, if π/θ = 2 and we have zero drift, then

p = X(y4) = X(y1) = − b̃(y1)

2ã(y1)
=

−1 + 2p−1,0

1 + 4p1,−1 − 4p−1,−1 − 2p−1,0

. (3.229)

Similarly, one sees that

x1x4 =
4p−1,1p−1,−1 − p2−1,0

4p−1,1p1,−1 + 4p1,−1(p−1,−1 + p−1,0)− (2p−1,−1 + p−1,0)2
, (3.230)

x1 + x4 =
2((−1 + p−1,0)p−1,0 + p−1,−1(−1 + 2p−1,0) + p−1,1(−1 + 4p−1,−1 + 2p−1,0))

4p−1,1p1,−1 + 4p1,−1(p1,−1 + p−1,0)− (2p−1,−1 + p−1,0)2
. (3.231)

Putting the above together, (3.227) follows immediately.

The above Lemma 3.29 now turns to be very useful for us: the term L3(x), which we want to
integrate, contains a root of the form −(x− x1)(x− x4). We integrate along the contour Γ,
thus we substitute x → c+ deiu. It turns out that we now have, for any two constants a, b,

−x2 − ax− b = −1− b+ a(−1 + d) + 2d− deiu(2 + a− 2d+ 2d cosu). (3.232)

However, for a = −(x1+x4) and b = x1x4, Lemma 3.29 tells us that the constant term vanishes,
i.e. we have

−(x− x1)(x− x4) = −deiu(2− x1 − x4 − 2d+ 2d cosu). (3.233)

This will allow us to rewrite the square root, since the second factor is strictly real.
There are now two cases to consider: x4 < p and x4 > p. As the computations are very similar,
we will now only look at the former.
If x4 < p, then we have −(p − x1)(p − x4) > 0, which means that we select the branch cut of
the root to be along the positive real axis. Next, we will determine the sign of the real factor
under the root.

Lemma 3.30. If x4 < p, then we have for any u ∈ [0, 2π]

2− x1 − x4 + 2d(−1 + cos u) ≥ 0. (3.234)
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Proof. First, notice that

2− x1 − x4 + 2d(−1 + cos u) ≥ (1− x1) + (1− x4)− 4d. (3.235)

Due to Lemma 3.29, we know that

d =
(1− x1)(1− x4)

(1− x1) + (1− x4)
. (3.236)

The right side of (3.235) can therefore be written as

a+ b− 4
ab

a+ b
, (3.237)

for a = 1−x1, b = 1−x4. Since x4 < −1 < x1, we know that a > b > 0, utilizing homogeneicity
it therefore suffices to study the function

f(a) = 1 + a− 4
a

1 + a
=

(1− a)2

1 + a
. (3.238)

As f(a) does not have any zeros for a > 1, (3.234) holds.

Due to our choice of branch cut, we have

−(x− x1)(x− x4) = −deiu(2− x1 − x4 − 2d+ 2d cosu) (3.239)

= d(2− x1 − x4 − 2d+ 2d cosu) ei(u+π) (3.240)

=

 d(2− x1 − x4 − 2d+ 2d cosu) · ei(u+π)/2, if u ∈ [0, π),

d(2− x1 − x4 − 2d+ 2d cosu) · ei(u−π)/2, if u ∈ [π, 2π).
(3.241)

If we now rewrite the integral

Γ

L3(x)

x− t
dx = d

2π

0

L3(c+ deiu)eiu

c+ deiu − t
du (3.242)

using (3.241), it turns out that the only term generating arbitrarily high powers of t is
√
2b(−1 + 2c− t) (a− b)(2a(−1 + c)(c− t) + b(1 + 2(−1 + c)c− 2ct+ t2))

× arctan

√
a− b(−1 + t)

4a(−1 + c)(c− t) + 2b(1 + 2(−1 + c)c− 2ct+ t2)
, (3.243)

where a = d(2− x1 − x4 + 2d), b = 2d2. Up to a multiplicative constant, we can write this as

T (t) := (−1 + 2c− t) (t− x1)(t− x4) arctan
d(2− x1 − x4 − 4d)(t− 1)

2d (t− x1)(t− x4)
. (3.244)

From here on, it remains to do a standard computation, using the theory developed e.g. in [73].
We know that arctan x has its singularities at x = ±i; one can check that this is the case for
t = −p. The singularities due to the (t− x1)(t− x4) cancel, since the series representation
of x arctan x contains only even powers of x. Therefore, all we need to do is to consider the
behaviour of the right-hand side of (3.244) near t = −p.
One can check that, after considering T̃ (t) := T (pt) in order to shift the pole to t = 1, we have
an asymptotic expansion of the form

T (t) = c1 + c2 log |1− t|+O(1− t) (3.245)
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for some constants c1, c2, and thus, according to e.g. [73, Thm. VI.3], we have

[tn]T (t) = O 1

pn
log n

n
. (3.246)

In particular, considering the log-terms, we know that T (t), and hence also Υ(x) and the
resulting decoupling function, cannot be algebraic.

3.6.4 An example with infinite group

We will now look at how the computations above work in a concrete example with zero drift,
π/θ = 2 and infinite group. As there are no models as famous as say the simple walk or the
tandem walk which belong to this group, we pick the same model as in Example 3.5.2, which
was defined by

p1,0 = p0,1 = 0,

p1,1 = 1/4,

p1,−1 = p0,−1 = p−1,0 = p−1,1 = 1/6,

p−1,−1 = 1/12.

Here, Γ is the circle defined by |z − 1/6|2= 5
6

2, and therefore complex conjugation on Γ

corresponds to the Möbius transform r : z → 5
6

2 1
z−1/6

+ 1
6
. After some computation, one

checks that L1(x) and L2(x) as defined in (3.212) and (3.213) now take the form

L1(x) =
8(2 + 3x)(7 + 6x(1 + 2x))

125(1− x)3
(3.247)

L2(x) =
8(2 + 3x)(x− 1) (6x− 1)(3 + x)

125(1− x)3
. (3.248)

For a decoupling function of L1(x), one obtains

Υ1(x) =
4

(x− 1)3
+

96

25(x− 1)
. (3.249)

For a decoupling function Υ2(x) of L2(x), we proceed as in Section 3.6.3. We start by letting
L3(x) =

−8(2+3x)
√−1−18x−6x2

25(1−6x)
, and compute in a first step a decoupling function Υ3(x) of L3(x).

Using the same integration trick as above, we finally arrive at

2πiΥ3(t) + 2πiΥ3 (1/6) =
Γ

L3(x)

x− t
dx. (3.250)

We remember that we can always add a constant to a decoupling function without changing
the decoupling property, so we can assume that Υ3(1/6) = 0 and thus have

Υ3(t) =
1

2πi Γ

L3(x)

x− t
dx. (3.251)

Combining everything until now, we have

Υ(x) =
1

2πi Γ
L3(t)
t−x

dt

(x− 1)(r(x)− 1)
+

4

(x− 1)3
− 96

25(x− 1)
. (3.252)
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Here, the interesting part is clearly the contour integral. Thus, we want to know the asymptotics
of the coefficients of

Υ3(t) =
1

2πi Γ

(x+ 2/3) −(1 + 18x+ 6x2)

(x− 1/6)(x− t)
. (3.253)

By some computation, one finds that

[tn] Υ3(t) ∼ [tn] (2 + 3t) 1/3 + 6t+ 2t2 arctan
t− 1

1/3 + 6t+ 2t2
. (3.254)

The singularity closest to 0 here is at −2
3
, and utilizing that Υ3 −2

3
z = O log 1

1−z
, we can

apply [73, Thm. VI.3] and have

[zn] Υ3(z) = −3

2

n

[zn] Υ3 −2

3
z = O −3

2

n
log n

n
. (3.255)

As mentioned, we can therefore deduce that Υ3(t), and therefore also Υ(t), is not algebraic.

Accordingly, in case of an infinite group, the existence of a decoupling function as postulated
by general theory about boundary value problems does not appear to be very useful in terms
of actual computations. If one were to drop the condition that π/θ = 2 on top of this, then the
calculations would yet again get much more complicated, as we were heavily relying on the fact
that we can describe complex conjugation on the contour Γ via a simple rational transformation,
which is only due to the fact that Γ is a circle.
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Chapter 4

Asymptotic expansion of orbit-summable
quadrant walks and polyharmonic
functions

One starts out in life trying to do mathematics, and winds up doing
combinatorics.

Ian Macdonald

This chapter will be structured as follows:

1. In Section 4.1, Thm. 4.1, we will compute a complete asymptotic expansion for models
with finite group allowing for orbit summation (see [31]). We will see that this expansions
features features inverse powers of n (the length of the paths) and a dependency on the
endpoint in terms of polyharmonic functions. The example of the Gouyou-Beauchamps
model will be worked out explicitly in Section 4.1.2, whereas in Section 4.1.3 the influence
of periodicity of a model will be discussed.

2. In Section 4.2, we will consider the same problem where instead of (0, 0), we start our
paths at an arbitrary point (u, v). It turns out, maybe not surprisingly, that due to the
symmetry of the problem the resulting solution is similar to that obtained in Section 4.1,
leading to Thm. 4.5. Continuing from there, we can then find a decomposition of the
polyharmonic functions in Thm. 4.7. This decomposition is given for the example of
the simple walk in Section 4.2.2, using the basis of polyharmonic functions constructed
previously in Chapter 3.

As an addition, examples of the method applied to a model with large steps and a three-
dimensional model are given in App. B.1 and App. B.2. A decomposition of the polyharmonic
coefficients as in Section 4.2.2 will be done for the Gouyou-Beauchamps model and the tandem
walk. Lastly, the first three terms of the asymptotics for all the 19 unweighted, orbit-summable
models are given in App. D.
This chapter is largely based on the author’s article [113].

4.1 Quadrant walks starting at the origin

4.1.1 Full asymptotic expansion

The goal of this section is to compute the asymptotics of orbit-summable lattice walks from
the origin to an arbitrary but fixed point in the quarter plane, and in particular to show the
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following:

Theorem 4.1. Let S be a step set satisfying

1. our step set consists of small steps only, i.e. S ⊆ {−1, 0, 1}2 \ {(0, 0)},
2. our step set is non-degenerate, i.e. there is no (possibly rotated) half-plane containing all

allowed steps,

3. S is orbit-summable, i.e.

xyQ(x, y; t) = [x>] [y>]
N(x, y)

k(x, y; t)
,

where

N(x, y) :=
g∈G

sgn(g)g(xy).

Suppose that s0 = (x0, y0) is a dominant saddle point, with associated other saddle points si,
1 ≤ i ≤ r (meaning that we consider r + 1 saddle points in total). Furthermore, let αi, βi, ζi be
the roots of unity as constructed in Section 2.1.4. Then, there are a constant c ∈ N, a constant
γ > 0, and γ-polyharmonic functions vp of degree p such that for any m ∈ N we have

q((0, 0), (k, l);n) =
γn

nc

m−1

p=1

vp(k, l)
r
i=1 α

k
i β

l
iζ

n
i

np
+O 1

nm
. (4.1)

The polyharmonic functions vp(k, l) are polynomials precisely if the drift of the model is zero,
else they contain an additional factor of x−k

0 y−l
0 , with (x0, y0) the dominant saddle point. They

can be computed explicitly via a Cauchy-type integral, as in (4.19).
Lastly, the constant c can be expressed using the arctangent of the correlation coefficient θ
defined in Section 2.1.2 via c = π/θ, and for the constant γ we have γ = S(1, 1).

In order to keep the proof of Thm. 4.1 reasonably concise, we will first start with two somewhat
technical lemmas. In the first lemma, we will establish some periodicity properties of S(x, y)
and the group, in the case where we have multiple saddle points.

Lemma 4.2. Let (x0, y0) be a dominant saddle point, and (xi, yi) = (αix0, βix0) be the as-
sociated ones, with S(xi, yi) = ζiS(x0, y0). Let furthermore Φ(x, y) = (x, ϕ(x, y)),Ψ(x, y) =
(ψ(x, y), y) be the generators of the group as in (2.12),(2.13). We then have, for all x, y ∈ C:

S(αix, βiy) = ζiS(x, y), (4.2)
ψ(αix, βiy) = αiψ(x, y), (4.3)
ϕ(αix, βiy) = βiϕ(x, y). (4.4)

Remark: Lemma 4.2 still holds true in more than two dimensions, with a completely analogous
proof.

Proof. As (x0, y0) is a dominant saddle point and (xi, yi) associated to it, we have |αi|= |βi|=
|ζi|= 1, and know that for each monomial xkyl appearing in S(x, y) we have (αix)

k(βiy)
l =

ζix
kyl. Consequently, for all such k, l we have αk

i β
l
i = ζi, and thus (4.2) holds.

We can define ψ(x, y) almost everywhere by the properties

S(ψ(x, y), y) = S(x, y), (4.5)
ψ(x, y) ̸= x, (4.6)

85



the exception being the points where ∂S
∂x
(·, y) = 0, i.e. where x is uniquely defined by the

property S(·, y) = S(x, y). We know that for any y, we have αix ̸= αiψ(x, y) almost everywhere.
Furthermore, using (4.2), we can rewrite:

S(αiψ(x, y), βiy) = ζiS(ψ(x, y), y) = ζiS(x, y) = S(αix, βiy). (4.7)

Note in particular that (4.2) and therefore (4.7) hold true for all x, y ∈ C, not only saddle
points. Since ψ is rational, we therefore have (4.3), and by symmetry also (4.4).

Lastly, we will show that given an asymptotic representation as in Thm. 4.1 below, the functions
appearing therein are indeed polyharmonic. Note that this lemma is similar to Lemma 1.3. The
latter does not, however, account for the roots of unity.

Lemma 4.3. Suppose q(B;n) is a (combinatorial) quantity satisfying

q(B;n+ 1) =
x∈S

ωsq(x− s;n) ∀B ∈ Z≥0 × Z≥0, n ≥ 0, (4.8)

and at the same time it is of the form

q(B;n) =
γn

nc

m−1

p=1

r
i=1 vp,i(B)ζni

np
+O 1

nm+1
, (4.9)

for all k ≥ 0, with the ζi pairwise different roots of unity. Then, the vp,i are γ-polyharmonic of
degree p.
If, additionally, for a fixed point B we know that q(B;n) = 0 ∀n ∈ N, then vp,i(B) = 0 for all
p, i.

Proof. Substituting (4.9) into (4.8) gives us

q(B;n+ 1) =
s∈S

ωsq(B − s;n) ⇔

γn+1

m−1

p=1

r
i=1 vp,i(B)ζn+1

i

(n+ 1)p+c
+O 1

nm+c
= γn

s∈S
ωs

m−1

p=1

r
i=1 vp,i(B − s)ζni

np+c
.

Extracting the terms for p = 1 and noticing that the others are smaller by a factor of at least
1
n
, we obtain

γ
nc+1

(n+ 1)c+1

r

i=1

v1,i(B)ζn+1
i +O 1

n
=

s∈S
ωs

r

i=1

v1,i(B − s)ζni . (4.10)

Letting n go to ∞, we notice that the fraction nc+1

(n+1)c+1 will converge to 1. This gives us

γ
r

i=1

v1,i(B)ζn+1
i +O 1

n
=

s∈S
ωs

r

i=1

v1,i(B − s)ζni . (4.11)

All we need to do now is show that each of the v1,i(x) is γ-harmonic by itself, i.e. that (4.11)
holds for each summation index separately. To do so, let us forget for a moment the part O 1

n

and solve the exact analogue to (4.11).
Since by assumption the ζi are all different, we know that the vectors

(ζm1 , . . . , ζml ), 0 ≤ m ≤ r − 1 (4.12)
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are linearly independent (written as a matrix, they give a Vandermonde matrix with determi-
nant i<j(ζj − ζi) ̸= 0). Therefore, the system

r

i=1

cvi,1(B)−
s∈S

ωsvi,1(B − s) ζni = 0 (4.13)

has no nontrivial solutions, and hence

cvi,1(B) =
s∈S

ωsvi,1(B − s) ∀1 ≤ i ≤ l. (4.14)

All that remains to do now is to see that the error term O 1
n

in (4.11) does not change
anything. To do so, suppose now that (4.14) is not satisfied for some i. Then we know that
there are arbitrarily large n such that (4.13) does not hold, i.e. its right-hand side takes a value
εn ̸= 0. As the ζi are roots of unity, there are only finitely many values which εn can take for
different n, so we cannot have convergence of εn to 0. But then, choosing n large enough, (4.10)
cannot hold either; a contradiction. Thus, (4.14) must hold, and we know that the v1,i(B) are
harmonic. By induction, applying the discrete Laplacian △ to both sides of (4.10), we argue
in the same fashion that the vk,i(B) must be polyharmonic of degree k.
For the second part, suppose that q(B;n) = 0 for all n, but we have p, i such that vp,i(B) ̸= 0.
Assume our p to be minimal with this property. Then, we know that

l

i=1

vp,i(B)ζni = 0, (4.15)

because otherwise this would be a contradiction to (4.9) for large n. But then we can utilize
independence of the vectors (ζk1 , ζ

k
2 , . . . , ζ

k
l ) for k = 0, . . . , l − 1 as before and arrive at a

contradiction.
Finally, to show that the vp,i are polyharmonic of order p, we can apply the operator △p−1 to
both sides of (4.9), notice that the first p− 1 terms vanish by assumption and then repeat the
above argument.

Remarks:

• In the proof of Thm. 4.1 we will see that in our case, for different i the vp,i(k, l) differ only
by a factor of α−k

i β−l
i . Here, given a dominant saddle point (x0, y0), and an associated

one (xi, yi), then αi, βi are the numbers such that (xi, yi) = (αix0, βiy0). This allows us
to essentially talk about only a single polyharmonic function vp for any given p; namely
the one related to the dominant saddle point.

• We will see in Section 4.2.1 that we always have △vp+1 = vp + rp−1, where rp−1 is
some polyharmonic function of degree at most p − 1. This hints at the fact that the
polyharmonic functions appearing in the asymptotic expansions are not arbitrary, but do
have some form of recursive structure.

We now have all ingredients ready for the proof of Thm. 4.1.

Proof (of Thm. 4.1). By the assumptions, we know that we have

q(0, (k, l);n) = xkyltn Q(x, y; t) = xk+1yl+1tn
g∈G sgn(g)g(xy)

k(x, y; t)
. (4.16)
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As k(x, y) = 1− tS(x, y), we can rewrite

q(0, (k, l);n) = xk+1yl+1tn
∞

i=0

tiS(x, y)iN(x, y) (4.17)

= xk+1yl+1 S(x, y)nN(x, y). (4.18)

By Cauchy’s formula, we have

q((0, 0), (k, l);n) = − 1

4π2
Γ1 Γ2

S(x, y)nN(x, y)

xk+2yl+2
dxdy, (4.19)

with Γ1,2 being closed curves around the origin. To evaluate the asymptotics of this integral,
we utilize the saddle point method, as described for instance in [73, Chapter VIII].
The main idea is to conveniently choose our contours Γ1,Γ2 such that they make the integral
as easy to compute as possible.
With this in mind, suppose that (x0, y0) is a dominant saddle point, and pick Γ1 = {|x|=
|x0|},Γ2 = {|y|= |y0|}. We know that the modulus of S(x, y) on Γ1 ∩ Γ2 is maximal; and the
only other points where it attains the same value are the associated saddle points (xi, yi). At
any other point, |S(x, y)| will be strictly smaller – hence, when n goes to infinity, it suffices to
compute the integral locally around our saddle points, since the rest will grow exponentially
slower. We could hypothetically run into issues if N(x, y) were to be infinite, but we will see that
this is not the case at our saddle points (and for any other point, we can always just slightly shift
our contour to avoid a pole). It is easy to check that, given an ε > 0, the set |S(x0, y0)−S(x, y)|<
ε is contained in a domain of the form |x − x0|< ε1, |y − y0|< ε2. As previously mentioned,
the rest of the integral can be – in order to find the asymptotics – neglected, as it will be
exponentially smaller. Changing our coordinates to x = x0e

is/
√
n, y = y0e

it/
√
n, this corresponds

to a region of the form s√
n

< δ1,
t√
n

< δ2, or, equivalently, |s|< δ1
√
n, |t|< δ2

√
n.

To find the asymptotics, it therefore suffices to compute the integrals

δ1
√
n

−δ1
√
n

δ2
√
n

−δ2
√
n

Fj(s, t, k, l, n)dtds, (4.20)

where Fj(s, t, k, l, n) is the expression obtained by substituting x = xje
is/

√
n, y = yje

it/
√
n, for

(xj, yj) the relevant saddle points (i.e. (x0, y0) and the ones associated to it, as outlined in
Section 2.1.4). We will see that, given any fixed m ∈ N, each such integral can be written in
the form

γn

nc

δ1
√
n

−δ1
√
n

δ2
√
n

−δ2
√
n

e−Q(s,t) p0(s, t) +
p1(s, t)

n
+

p2(s, t)

n2
+ · · ·+O 1

nm
dtds, (4.21)

where Q(s, t) is some (positive definite) quadratic form and the pj(s, t) are polynomials. Uti-
lizing the error estimate in Lemma A.1 in Appendix A, we can see that instead of (4.21) we
can consider the integral

γn

nc

∞

−∞

∞

−∞
e−Q(s,t) p0(s, t) +

p1(s, t)

n
+ · · ·+O 1

nm
dtds, (4.22)

since the difference between the two is exponentially small in n. Note that the coordinate
transform above also allows us to compute this kind of integrals by splitting them up into
Gaussian integrals and then proceeding with integration by parts, see e.g. [118].

Consequently, all we need to do is to consider the (4.22) for all saddle points with maximum
absolute value (of which there are finitely many), and by computing all the expressions up to a
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fixed pj(s, t), we will then have obtained the asymptotics of (4.19) and at the same time shown
(4.1).
In the following, we will proceed in two steps: first, we pick a dominant saddle point and show
that, locally around this point, everything works out smoothly. Then, we pick any associated
saddle point and show that, up to powers of roots of unity, nothing changes from the first step.

1. Suppose (x0, y0) is a dominant saddle point, let γ := S(x0, y0) and fix a m ∈ N. First,
we show that 0 = |N(x0, y0)|< ∞. This is due to (x0, y0) being a saddle point: we
have ∂S

∂y
(x0, y0) = 0 and thus y0 is the unique solution to S(x0, ·) = S(x0, y0). Therefore,

ϕ(y0) = y0, and in the same manner we can see ψ(x0) = x0. It follows immediately that
the alternating orbit sum of xy evaluated at (x0, y0) is 0; in particular it is finite.
Our next step is to show that we can rewrite the integrand (that is, the one in (4.19))
as in (4.22). To do so, we substitute x → x0 exp

is√
n
=: es, y → y0 exp

it√
n
=: et, and then

separate the integral into three parts: S(es, et)n, N(es, et) and the denominator 1/ek+1
s ek+1

t

(note that a power in the denominator vanishes due to the substitution rule).

(a) Part 1: S(es, et)
n

As (x0, y0) is a dominant saddle point of S(x, y) and therefore ∂S
∂x
(x0, y0) =

∂S
∂y
(x0, y0) =

0, we have a Taylor expansion of S(x, y) around (x0, y0) of the form

S(x, y) = γ − u(x− x0)
2 − v(x− x0)(y − y0)− w(y − y0)

2 + . . . (4.23)

After our substitution, this gives us (note that es, et are functions of s, t and n)

S (es, et) = γ − u
s2

4n
− v

st

n
− w

t2

4n
+ A(s, t, n), (4.24)

with A(s, t, n) = n−3/2 2m−1
j=0

aj(s,t)

nj/2 + O n−m−3/2 , and the rj homogeneous poly-
nomials. We know that Q̂(s, t) := u

4
s2 + vst+ w

4
t2 is a positive definite quadratic

form (seeing as our saddle point is a local minimizer of S(x, y) in R+ × R+). Con-
sequently, we can write

log S(es, et) = log γ − Q̂(s, t)− A(s, t, n) (4.25)

= log γ − 1

γ
Q̂(s, t)

=:Q(s,t)

+B(s, t, n), (4.26)

with once again B(s, t, n) = n−3/2 2m−1
j=0

bj(s,t)

nj/2 +O n−m−3/2 , the b′j homogeneous
polynomials and Q(s, t) a positive definite quadratic form. Consequently,

S(es, et)
n = exp [n log S(es, et)] = γn exp [−Q(s, t)] exp [nB(s, t, n)] . (4.27)

Comparing this to (4.19), the first two factors are already precisely as we want
them, and the last factor is of the form m≥1

qm(s,t)

nm/2 , with the qm(s, t) homogeneous
of degree m.

(b) Part 2: N(es, et)
As we have seen that |N(x0, y0)|< ∞, and seeing as N(x, y) is a rational function in
x, y, it follows that we can write

N(es, et) =
2m−1

j=0

dj(s, t)

nj/2
+O n−m−1 , (4.28)

with the dj(s, t) homogeneous polynomials of degree j.
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(c) Part 3: 1/ek+1
s el+1

t

Lastly, we have

1

ek+1
s el+1

t

= x−k−1
0 y−l−1

0

j≥0

1

nj/2

(−i[(k + 1)s+ (l + 1)t])j

j!
. (4.29)

Note in particular that this last factor is the only part which depends on the endpoint
(k, l).

Multiplying the power series together and sorting them by powers of n, we obtain as a
result the contribution of this saddle point to (4.22) of the form

γn

nc

m−1

p=0

1

np/2

1

xk+1
0 yl+1

0

∞

−∞

∞

−∞
e−Q(s,t)q′p(s, t, k, l)dsdt+O 1

nm−1/2
, (4.30)

where the q′i,p(s, t, k, l) are polynomials in s, t, k, l. One can easily see, however, that
q′p(s, t, k, l) is homogeneous of degree p; for odd p the double integral therefore vanishes
by symmetry. Thus we can rewrite (4.30) as

γ

nc

m−1

p=0

1

np

1

xk+1
0 yl+1

0

∞

−∞

∞

−∞
e−Q(s,t)qp(s, t, k, l)dsdt+O 1

nm
, (4.31)

with qp := q′2p. The factor 1
nc in (4.30) stems from the fact that we obtain a factor of 1/n

by the substitution rule, and that the integral might vanish for small values of p.

2. Suppose now that we have another saddle point (xi, yi) = (αix0, βiy0) associated to
(x0, y0), and pick ζi such that S(xi, yi) = ζiS(x0, y0) (notice that we then have |ζi|= 1,
as discussed in Section 2.1.4). Our goal is now to describe the series expansion of
the numerator around (xi, yi) using the one around (x0, y0). We substitute as before
x → e′s := xi exp

is√
n
, y → e′t := yi exp

it√
n
. Due to Lemma 4.2, we can now conclude

that the series representation (w.r.t. n at ∞) around S(e′s, e
′
t) is the same as the one of

ζiS(es, et), and the representation of N(e′s, e
′
t) is the same as αiβiN(es, et). Lastly, the

expansion of 1/e′(k+1)
s e

′(l+1)
t clearly changes only by adding a factor of αk+1

i βl+1
i as well.

Therefore, we can conclude that the contribution of the saddle point (xi, yi) is the same
as the one of (x0, y0) up to a factor of ζni α

−k
i β−k

i .

By Lemma 4.3, we deduce that the vp(k, l) are indeed γ-polyharmonic of degree p (note that
for our dominant saddle point we have α = β = ζ = 1).
Seeing as the only point in the construction where k, l appear is in (4.29), one finds that the
vp(k, l) are, up to a factor of x−k

0 y−l
0 , bivariate polynomials in k, l. Due to Lemma 2.2, they are

therefore polynomials if and only if the model has zero drift.
The fact that c = π/θ (with θ the arctangent of the correlation coefficient as defined in (2.1.2)
follows from [51, Thm. 7].

The construction used in the proof allows us to give some further properties of the polyharmonic
functions appearing in the asymptotic expansion.

Corollary 4.3.1. The degree of the polynomial part of vp(k, l) (that is, without the factor of
x−k
0 y−l

0 ) is c+ 2(p− 1).

Proof. By looking once again at the proof of Thm. 4.1 and in particular (4.29). From there,
the statement follows immediately.
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Corollary 4.3.2. For any orbit-summable model, we have π/θ ∈ N.

Remarks:

• Thm. 4.1 holds true in higher dimensions as well, and indeed the proof translates directly.
The only difference lies in the powers of n which appear: by the substitution rule dxi

dsi
=

cie
isi/

√
n, one obtains an additional factor of n−1/2. Thus, for even dimensions the constant

c in (4.1) will be integer, whereas for odd dimensions it will be in 1
2
+ N. An example

case for three dimensions is treated in App. B.2.

• When looking at models with large steps, the one thing that could go wrong is that the
numerator might have a singularity at a saddle point. Usually, this seems not to be the
case, and for a given model this condition is very easy to check. An example is treated
in App. B.1.

• A table of the first three asymptotic terms for the 19 unweighted orbit-summable models
is given in App. D.

4.1.2 Example: the Gouyou-Beauchamps model

In this section, we will illustrate the result of Thm. 4.1 by computing the asymptotics for the
Gouyou-Beauchamps model, and in doing so find an explicit formula for the polyharmonic
functions appearing therein.
The Gouyou-Beauchamps walk is defined by the step set {↖,↘,←,→}. Its step polynomial
is S(x, y) = y

x
+ x

y
+ 1

x
+ x, and solving Sx = Sy = 0 yields the four solutions (x, y) = (±1,±1).

We find that S(1, 1) = 4, S(−1, 1) = −4, S(1,−1) = S(−1,−1) = 0. Verifying that the second
derivatives do not vanish, we therefore have the dominant saddle point (1, 1) and one other
associated to it, namely (−1, 1), to consider. Note that the appearance of two saddle points is
not at all surprising here, due to parity (or, in more general terms, periodicity) considerations:
depending on the first coordinate, we can only hit a point after an even or odd number of
steps. Therefore we can already expect at this point the asymptotics resulting from the saddle
points to be precisely the same up to a factor of (−1)k+n, which coincides with the statement
of Thm. 4.1. Hence, we will only consider the dominant saddle point here.
The alternating orbit sum of xy can be checked to be

N(x, y) := −(−1 + x2)(−1 + y)(x4 + y3 − x2y − x2y2)

x3y2
. (4.32)

Out integrand is therefore of the form

S(x, y)nN(x, y)

xk+2yl+2
,

where after letting x → es := eis/
√
n, y → et := eit/

√
n, by the substitution rule we will end up

with

− 1

n

S(es, et)
nN(es, et)

ek+1
s el+1

t

.

The first factor of −1/n is entirely harmless; we will therefore proceed to compute each of the
factors in the second fraction separately.
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1. Series representation of S(es, et)n:
First, we can compute (we let m :=

√
n for readability)

S(es, et) = 4−
j≥2

aj
mj

= 4− s2 + (s− t)2

n

=:4Q(s,t)

+
j≥3

aj
mj

=:A(s,t,m)

, (4.33)

with

aj := ij
sj + (s− t)j

j!
(1 + (−1)j).

From here we obtain

log [S(es, et)] = log 4− Q(s, t)

n
+B(s, t,m), (4.34)

where B(s, t,m) = j≥3
bj
mj , with

bj =
i1+i2+···+in=j

(−1/4)n

n

n

p=1

aip ,

with the ij positive integers.
Finally, we can compute

S(es, et)
n = exp (n log [S(es, et)]) (4.35)
= exp (n log [4 + B(s, t,m)]−Q(s, t)) (4.36)

= 4ne−Q(s,t) exp [B(s, t,m)]

:=C(s,t,m)

, (4.37)

where C(s, t,m) = k≥1
cj
jk

with

cj =
i1+···+in=j

1

n!

n

p=1

bip ,

with the ij again positive integers.

2. Series representation of N(es, et):
Using (4.32), we find that

N (es, et) =
j≥1

dj
mj

, (4.38)

with

dj :=
ij

j!
−(−4)jsj + (2s− 3t)j − 2j(s− t)j − (t− 2s)j + (t− 4s)j + (−2)j(s+ t)j − (−3)jtj .

3. Series representation of 1/ek+1
s el+1

t :
Lastly, we have

1

ek+1
s el+1

t

= exp [−i(s(k + 1) + t(l + 1))/m] =
j≥0

1

mj

(−i((k + 1)s+ (l + 1)t))j

j!

=:fj

.
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Overall, we obtain as product of the three factors computed above

4ne−Q(s,t)

p≥0

1

mp
j1+j2+j3=p

cj1dj2fj3

=:qp

,

for j1, j2, j3 nonnegative integers. In particular, we notice that qp is homogeneous of degree p
in s, t, and of degree p in k, l. In order to compute the contribution up to order O 1

nj of this
saddle point to the asymptotics, all we need to do now is compute

4n
1

4π2n

2r−1

p=0

∞

−∞

∞

−∞
e−Q(s,t)qp(s, t, k, l)dtds.

This gives us an explicit formula for the asymptotics of this model. In particular, we can check
directly that all coefficients of 1

mk for odd k vanish. By computing the integrals, we see that

v1(k, l) =
64

π
(1 + k)(1 + l)(2 + k + l)(3 + k + 2l),

v2(k, l) =− 32

π
(1 + k)(1 + l)(2 + k + l)(3 + k + 2l)(35 + 2k2 + 4k(2 + l) + 4l(3 + l)),

v3(k, l) =
8

π
(1 + k)(1 + l)(2 + k + l)(3 + k + 2l)(25 + 2k2 + 4k(2 + l)

+ 4l(3 + l))(61 + 2k2 + 4k(2 + l) + 4l(3 + l)).

The harmonic function v1(k, l) was already computed in [13, 124].

4.1.3 Periodicity

Considering the combinatorial context, it is clear that in any asymptotic expansion as in (4.1),
the discrete harmonic function v1(k, l) will always be positive. When looking at the compu-
tations in App. D, it appears as if there is an even stronger pattern; namely that vp(k, l) is
positive for even p, and negative for odd p. It turns out, however, that this is not generally
true; a counterexample is given for instance by computing enough terms in the expansion of
the simple walk [35].
It is also a direct consequence of Thm. 4.1 that the number of saddle points is closely tied to the
periodicity of the model. If we have a single saddle point, then clearly our model is aperiodic;
but the number of saddle points also corresponds directly to the periodicity.

Lemma 4.4. Suppose that our model is irreducible (that is, the step set S generates all of Z2),
and that it is m-periodic. Then we have exactly m− 1 saddle points s1, . . . , sm−1 associated to
our dominant saddle point s0 = (x0, y0). The corresponding ζi are – in some order – the m-th
roots of unity.

Proof. Let r be the number of saddle points. We use the representation (4.1) for the asymptotics
of q(k, l;n). We know that the αi, βi, ζi are roots of unity. We can therefore pick k, l such that
αk
i = βl

i = 1 for all i. We then know, since our model is m-periodic, that there is a z,
0 ≤ z ≤ m− 1, such that we have

χ(n) := 1 + ζn1 + · · ·+ ζnr−1 =
0 n ̸≡ z mod m,

m n ≡ z mod m.
(4.39)
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Note that as value for χ(k ·m), k ∈ Z, we could pick any constant, because to compensate we
can just multiply the corresponding polyharmonic functions in (4.1) with a constant factor. By
definition, we know that χ is a character on Z/mZ. Therefore, it can be uniquely written as
sum of irreducible characters [105], which in this case are all the m-th roots of unity. From
this, and the fact that the ζi are pairwise different, it follows already that the ζi are (in some
ordering) the m-th roots of unity.

The regularity condition in Lemma 4.4 is necessary, as can be seen for the diagonal walk for
instance. This walk is 2-periodic, but we still have 4 saddle points. The reason for the two
extra saddle points is that there are some points the walk will never reach, which, heuristically
speaking, translates to two additional conditions on k, l for which two saddle points then do
not suffice to express them.

4.2 Quadrant walks with arbitrary starting point

4.2.1 Full asymptotic expansion

If we want to count walks starting from a point other than (0, 0), then the only thing that
changes is that we have a different monomial xk+1yl+1 in the functional equation (2.2). It follows
that we can proceed in exactly the same manner as before in order to obtain an expression as
in (2.18), where only the sum on the right hand side changes. Hence, we can proceed in a
the same manner as for Thm. 4.1, which allows us to recover the result of [51, Thm. 7], which
states that the first order term in the asymptotics of the number of walks terminating at y
and starting at x will be given – up to, once again, an exponential term and some power of
n, and possible parity constraints – by the product of two functions; a harmonic function in x
and a function in y which is adjoint harmonic. This is fairly natural, seeing as the underlying
combinatorial problem is highly symmetrical: any path from x to y corresponds to a path from
y to x with reversed steps. This, and a similar statement for the higher order terms, can be
formalized in Thm. 4.5 below and the following Thm. 4.7.

Theorem 4.5. Suppose that S is a step set satisfying the assumptions of Thm. 4.1. Then,
with (x0, y0) being a dominant saddle point and (si) the associated ones such that si = (xi, yi) =
(αix0, βiy0) and S(xi, yi) = ζiS(x0, y0), then there are a constant c ∈ N and γ ∈ R+ as well as
functions vp(k, l, u, v) such that for any m ∈ N we have

q((u, v), (k, l);n) =
γn

nc

m−1

p=1

vp(k, l, u, v)
r
i=1 α

u−k
i βv−l

i ζni
np

+O 1

nm
. (4.40)

The vp(k, l, u, v) are polynomials precisely if the drift is zero. In this case they are of bidegree
c + 2(p − 1) in both (k, l) and (u, v), and of total degree 2c + 4(p − 1). Each vp(k, l, u, v) is
multivariate polyharmonic of degree p. If the drift is not zero, then they have an additional
factor of the form xu−k

0 yv−l
0 , where (x0, y0) is the dominant saddle point.

Before proving Thm. 4.5, we first show the following lemma, which is a natural extension of
Lemma 4.3.

Lemma 4.6. Suppose that q(A,B;n) is a (combinatorial) quantity satisfying

s∈S
ωsq(A− s, B;n− 1) = q(A,B;n), (4.41)

s∈S
ωsq(A,B + s;n− 1) = q(A,B;n), (4.42)
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for all A,B ∈ Z≥ × Z≥0, n ≥ 0. Assume furthermore that q(A,B;n) has an asymptotic
representation of the form

q(A,B;n) =
γn

nc

m−1

p=1

l
i=1 vp,i(A,B)ζni

np
+O 1

nm
(4.43)

for all k, with the ζi pairwise different and of modulus 1. Then, each vp,i is multivariate
polyharmonic of order p.

Proof. The proof works in the very same manner as the proof of Lemma 4.3; at each step we
can choose whether to apply the identity (4.41) or (4.42), leading to an additional instance of
△ or △̃ respectively.

Proof (of Thm. 4.5). Analogous to the proof of Thm. 4.1. We will also use the same notation.
The only difference lies in the term N(x, y) in (4.19), which now depends on u, v and is now
given by the orbit sum of xu+1yv+1 instead of xy. By the same argument as in aforementioned
proof, we see that this orbit sum is also finite around a saddle point. In particular, seeing as the
group consists of birational transformations, we can therefore expand N(es, et) as a series with
respect to n around infinity as in (4.28), where the numerators dj(s, t) are now polynomials
in (u, v, s, t). By Lemma 4.2, we can also deduce that the resulting series representations of
N(es, et) are the same up to a factor of αu+1

i βv+1
i for the dominant and associated saddle points.

It follows that each vp(k, l, u, v) is, up to a factor of xu−k
0 yv−l

0 , a polynomial in k, l, u, v. Next, we
want to know the bidegree of this polynomial in (u, v) and in (k, l). To avoid doing so explicitly,
we can make of the fact that in the same manner as in the proof of Thm. 4.1 we can conclude by
Cor. 4.3.1 that the polynomial part vp(k, l, u, v) has bidegree c+2(p−1) in k, l, where c = π/θ.
Denoting by q(A,B;n) and q̃(A,B;n) the number of paths from A to B in n steps with our
chosen step set and its reverse respectively, we have q((k, l), (u, v);n) = q̃((u, v), (k, l);n). Seeing
as the parameter θ does not change when reversing the step set (see (2.11)), we can therefore
conclude that vp(k, l, u, v) is of the same bidegree in (k, l) and (u, v).
Lastly, the polyharmonicity properties of the vp(k, l, u, v) are a direct consequence of Lemma 4.6.

Remark:

• While the starting point (u, v) and the end point (k, l) of the walk end up playing a
very similar role (see also Thm. 4.7), which is not at all surprising from a combinatorial
point of view, this is not at all obvious from the proof: the role of (k, l) is very easily
summarized as these coefficients only appear in the integrand as a factor of x−k−1y−l−1,
the starting point does not appear directly as factor xu+1yv+1, but instead as its orbit
sum. A priori, without the combinatorial interpretation, it does not seem to be obvious
that both of these occurrences lead to a symmetrical role in the result.

In the following, we will want to describe the coefficients vp(k, l, u, v) appearing in Thm. 4.5
more precisely. We will consider the drift zero case, which is however not a real restriction as we
can transform any other model via a zero drift one using the Cramer transformation discussed
in Section 2.2.4. The goal will be to prove the following theorem:

Theorem 4.7. The polynomials vp(k, l, u, v) in the zero drift case of Thm. 4.5 each have a
representation of the form

vp(k, l, u, v) =
1≤i,j≤p,
i+j≤p+1

ai,jh
j
i (k, l)g

j
i (u, v), (4.44)

where the ai,j are constants, the hj
i are polyharmonic of degree (at most) i, and the gji are

adjoint polyharmonic of degree (at most) p+ 1− i.
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In order to prove Thm. 4.7, it turns out to be very useful to have a polynomial basis of the
space of polyharmonic functions for any given model. As the group is finite by assumption and
π/θ ∈ Z by Cor. 4.3.2, we can use the basis given in [114], which consists of sequences hm

n of
n-polyharmonic functions satisfying:

1. △hm
n+1 = hm

n ,

2. the hm
n (k, l) are bivariate polynomials of increasing degree in both n and m: the degree

will increase by 2 for each step in n, whereas it will increase by at least 2 and at most
c+ 1 for each step in m.

Proof (of Thm. 4.7). Taking u, v as parameters, we can for each (u, v) write vp(k, l, u, v) as a
sum of the basis functions hj

i (k, l), and obtain

1≤i,j≤p,
i+j≤p+1

hj
i (k, l)g

j
i (u, v). (4.45)

Since we know that vp(k, l, u, v) is a bivariate polynomial of bidegree c + 2p − 1 in both (k, l)
and (u, v) (which is also where the conditions i, j ≤ p and i + j ≤ p + 1 come from), the only
thing we need to show is that gji is adjoint polyharmonic of degree p + 1 − i for any j. To do
so, we utilize Lemma 4.6. First, consider i = p. We then have

△̃ △p−1qp(k, l, u, v) = △̃h1
1(k, l)g

1
p(u, v) = h1

1(k, l)△̃g1p(u, v) = 0, (4.46)

therefore v1p(u, v) is adjoint harmonic. Seeing as the discrete Laplacians are linear, we can now
proceed by induction, in each step applying the same argument as above to all terms which
are polyharmonic (in (k, l)) of order j, i.e. the multiples of h1

j , . . . , h
p+1−j
j . The statement

follows.

Remarks:

• Thm. 4.7 tells us in particular that we can write each coefficient vp as a product of
polyharmonic and adjoint polyharmonic functions, so that the degree of the former and
latter adds up to at most p+1. This can be viewed as an extension of [51, Thm. 7], where
an equivalent statement is shown for v1 (albeit in a much more general setting).

• Using the fact that we know that bidegree of vp(k, l, u, v) as polynomials in k, l and
u, v is π/θ + 2(p − 1) according to Thm. 4.5, we can deduce from Thm. 3.19 that the
only base function hj

p appearing in vp(k, l, u, v) can be h1
p. From this it follows that

△vp+1(k, l, u, v) = vp(k, l, u, v)+ rp−1(k, l, u, v), with rp−1 polyharmonic of degree at most
p− 1.

• If the model is symmetric, then one can easily see that ai,j = aj,i due to the symmetry
of the underlying combinatorial problem (q(A,B;n) = q̃(B,A;n), where q̃ denotes the
paths with reversed steps). This holds true for an appropriate choice of basis in some
other cases as well; for examples of this, see App. C.

• A priori it is not at all clear which elements of the basis hj
i constructed in [114] actually

appear in connection with some combinatorial problems, i.e. if this basis is combinatorially
reasonably chosen. As we will see in Section 4.2.2 and App. D, this seems to be the case.

• We can in fact give an upper bound on the number of summands appearing in the de-
composition (4.44). First of all, we know for all p that all (i, j) such that hj

i appears
in the decomposition are contained in the subset {(i, j) : i + j ≤ p + 1}. If one writes
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the hj
i as a table, this gives us a triangular shape of size increasing with p. Along the

lines i + j = k, we will have functions of degree at least 2(k − 1). We can now count
the number of possible products of a given function hj

i with a base function h̃n
m of the

adjoint Laplacian. In order not to exceed the maximum degree, we can multiply h1
1 with

the entire triangle of adjoint base functions. For h2
1 and h1

2, we cannot multiply them
with any h̃n

m with m + n = p + 1, and so on. All in all, this gives us a maximum of
p(p+1)(p+2)(p+3)

24
summands. This maximum is achieved e.g. for the simple walk for v1,2,3.

Generally, the larger the value of π/θ, the less summands we will have (since the degrees
of the hj

i increase more quickly).

In the following, we will see what this decomposition looks like in case of the simple walk. The
Gouyou-Beauchamps model and the tandem walk are treated in App. C.

4.2.2 Example: the simple walk

In the following, to keep the expressions a bit shorter, we will give the expressions as after the
substitution k → k−1, l → l−1 etc. (i.e. we have kl instead of (k+1)(l+1)). This corresponds
to a shift of the quarter plane, where instead of Z≥0×Z≥0 we now consider Z>0×Z>0. For the
simple walk, with S = {→, ↓,←, ↑}, we then have (after rescaling by multiplicative constants)

h1
1(k, l) =kl,

h2
1(k, l) =kl(k − l)(k + l),

h3
1(k, l) =kl(14− 5k2 + 3k4 − 5l2 − 10k2l2 + 3l4),

h1
2(k, l) =kl(l − 1)(l + 1),

h2
2(k, l) =kl(l − 1)(l + 1)(7 + 5k2 − 3l2),

h1
3(k, l) =kl(l − 2)(l − 1)(l + 1)(l + 2).

By symmetry, we can pick the base functions h̃j
i (u, v) = hj

i (u, v) for the adjoint Laplacian. For
the first three asymptotic terms with arbitrary starting and ending points, we obtain (again up
to multiplicative constants)

v1(k, l, u, v) =kluv,

v2(k, l, u, v) =kluv(7 + 2k2 + 2l2 + 2u2 + 2v2),

v3(k, l, u, v) =kluv(167 + 140k2 + 12k4 + 140l2 + 24k2l2 + 12l4 + 140u2 + 40k2u2

+ 24l2u2 + 12u4 + 140v2 + 24k2v2 + 40l2v2 + 24u2v2 + 12v4).

One can check that Cor. 4.7 takes the form

v1 =h1
1h̃

1
1,

v2 =4 h1
2h̃

1
1 + h1

1h̃
1
2 + 2 h2

1h̃
1
1 + h̃1

2h
1
1 + 15h1

1h̃
1
1,

v3 =
192

5
h1
3h̃

1
1 + h̃1

3h
1
1 +

64

5
h2
2h̃

1
1 + h̃2

2h
1
1 + 4 h3

1h̃
1
1 + h̃3

1h
1
1 + 64 h1

2h̃
2
1 + h̃1

2h
2
1

+ 128h1
2h̃

1
2 + 24h2

1h̃
2
1 + 576 h1

2h̃
1
1 + h̃1

2h
1
1 + 288 h2

1h̃
1
1 + h̃2

1h
1
1 + 951h1

1h̃
1
1.

As the degree of hj
i is truly increasing by only 2 whenever we increase either i or j by one,

it turns out that we have indeed 1, 5 and 15 different summands respectively. Due to the
symmetry of this model, the second and third equations can be simplified a bit: for v2, letting
g2 := 4h1

2 + 2h2
1 (clearly, g2 is then biharmonic) gives us

v2 = g2h̃1
1 + h1

1g̃2 + 15h1
1h̃

1
1.
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For v3, letting in the same manner g3 :=
192
5
h1
3 +

64
5
h2
2 + 4h3

1, we have

g3h̃1
1 + g̃3h

1
1 + 144 g2h̃1

1 + g̃2h
1
1 + 64 h1

2h̃
2
1 + h̃1

2h
2
1 + 951h1

1h̃
1
1.

While one can view the definition of g2,3 as purely a crutch to make the resulting expressions
shorter, they do in fact give in a sense a natural decomposition of the vi: g2 consists of the
highest order terms in v2, while g3 consists of those in v3.

Remarks:

• By the above, when taking a scaling limit, then we have

lim
µ→0

mαvi
x

m
,
y

m
= lim

µ→0
mαgi

x

m
,
y

m
,

where α is an appropriate scaling constant, which means that the gi already give us all
the terms which will not vanish in this kind of limit.

• As described in Section 2.2.3, we know that the continuous heat kernel pt(x, y, u, v) of a
Brownian motion with covariance matrix

Σ =
σ11 σ12

σ12 σ22

with σ11 = E[X2], σ12 = E[XY ], σ22 = E[Y 2] (the scaling limit of this model) allows for
an asymptotic representation of the form

pt(x, y, u, v) =
1

t2
k≥1

fk(x, y, u, v)

tk
. (4.47)

Seeing as this representation looks almost the same as the one for the discrete case in
Thm. 4.5, it is natural to compare the functions vp to their continuous counterparts fp.
For v1, for instance, by [51] we know that we will have (after appropriate scaling by a
constant) v1(k, l, u, v) → f1(k, l, u, v). However, this is not at all clear for p > 1. For the
simple walk, one can check that v2 → f2, but this fails for p = 3: we have

f3(k, l, u, v)

= kluv(3k4 + 6k2l2 + 3l4 + 22k2u2 + 6l2u2 + 3u4 + 6k2v2 + 22l2v2 + 6u2v2 + 3v4),

whereas the scaling limit of v3(k, l, u, v) turns out to be

kluv(3k4 + 6k2l2 + 3l4 + 10k2u2 + 6l2u2 + 3u4 + 6k2v2 + 10l2v2 + 6u2v2 + 3v4),

where the coefficients of k2u2 and l2v2 do not match.
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Chapter 5

Logarithmic terms in discrete heat kernel
expansions in the quadrant

The combinatory analysis in my opinion holds the ground between the
theory of numbers and algebra, and is the proper passage between the
realms of discontinuous and continuous quantity

Percy A. MacMahon

Among the 79 quadrant walk models studied in [31], 13 have the property of admitting a so-
called decoupling function, see [12]. The existence of such a function allows us to express their
path counting function using Jacobi ϑ-functions as defined in (2.19) (see also [12, 61, 63, 62]).
This in turn will enable us to extract properties about their asymptotic behaviour.

While this approach would work for all these decoupled models, for brevity we choose to
focus in the present work on the two examples of Figure 5.1. See Propositions 5.1 and 5.6 for
instances of such expressions in terms of theta functions.

The main novelty in our complete asymptotics is the presence of logarithmic terms, see for
instance (5.27). Such terms did not appear yet in the lattice walk literature, nor do they appear
in the continuous setting, when deriving complete asymptotic expansions of the continuous heat
kernel [36].

The structure of this chapter is as follows:

• In Section 5.1, the approach will be illustrated using the example of the Kreweras model.
This allows us to recover results in [74, 30, 28, 31].

• In Section 5.2, we will compute a series expansion of the generating function Q(x, 0; t)
around the critical point tc. In particular, we will see that this expansion contains poly-
nomial as well as logarithmic terms.

• In Section 5.3, we will show in Thm. 5.9 how the dependency on the endpoint translates
to polyharmonic functions. In particular, we will see that due to the specific form of the
expansion, we will get a stronger statement as implied by Lemma 1.3.

This chapter is largely based on [64], which is joint work with Andrew Elvey-Price and
Kilian Raschel.
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Figure 5.1: The models considered in this work: on the left, the algebraic (unweighted) Kreweras
model will serve as an example for our approach (Section 5.1); on the right, a more generic
model with associated infinite reflection group (Section 5.2). In the second model, we allow
a weight a for the jump (1, 1), our motivation being to show how our results depend on this
parameter, in particular in the limit a → 0, at which the model degenerates into the simple
walk (to the four nearest neighbors).

5.1 An algebraic example: the Kreweras model

5.1.1 Definition of the model

By definition, the Kreweras model corresponds to the step set {←, ↓,↗}, and the kernel

K(x, y) = xy − txy xy +
1

x
+

1

y
.

The functional equation (2.2) for the path generating function (2.2) takes the form

K(x, y)Q(x, y) = xy − txQ(x, 0)− tyQ(0, y). (5.1)

It is known that the generating function of this model admits the following expansion:

Q(x, 0) =
1

xt

1

2t
− 1

x
− 1

W
− 1

x

√
1− xW 2 , (5.2)

with W being the unique power series in t solution to W = t(2 +W 3), see [30, 28, 31].

5.1.2 Parametrization of the kernel curve

We want to find a parametrization of the elliptic curve C as defined in (2.8), meaning we want
to find functions X(z) and Y (z) meromorphic on C such that

C = {(X(z), Y (z)) : z ∈ C}. (5.3)

Such a parametrisation has been obtained in [70, 61]. To state the result of [61], recall the
Jacobi theta function ϑ(z) introduced in Section 2.1.5.

First, define τ ∈ iR+ in terms of t ∈ (0, 1
3
) as follows:

t = e−iγ/3 ϑ′(0|τ)
4iϑ(γ|τ) + 6ϑ′(γ|τ) , (5.4)

with γ = π τ
3
. The fact that τ is defined in terms of t using an equation as (5.4) will be shown

in higher generality in Lemma 5.5. Then setting
 X(z) = e−4iγ/3 ϑ(z|τ)ϑ(z − γ|τ)

ϑ(z + γ|τ)ϑ(z − 2γ|τ) ,

Y (z) = X(z + γ),

(5.5)
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Lemma 3 in [61] asserts that Equation (5.3) holds. In particular, we know that X(z) has its
only (double) pole at z = −γ and Y (z) at z = γ, see (2.21).

We can use (5.4) to write t as a series in q, and as a consequence find an inverse, giving us

q = t9/2 +
45

2
t15/2 +

4023

8
t21/2 +

184341

16
t27/2 +O t27/2 . (5.6)

Notice that in [61], the equivalent of (5.6) is not exactly the same due to a slightly different
choice in parametrization: what is q here corresponds to q3/2 in [61].

5.1.3 Explicit expression for the generating function

In order to obtain an expression for Q(x, y), we will first find Q(x, 0) explicitly, and then make
use of the functional equation (5.1). To that purpose, we will use an approach utilizing an
invariant for this model [12, 61, 63, 62] and recall the proof of the following:

Proposition 5.1 ([61]). We have

tX(z)Q(X(z), 0) =
1

2t
− 1

X(z)
− J(z), (5.7)

where (with γ = π τ
3
)

J(z) = −e−4iγ/3 ϑ(2γ|τ)ϑ′(0| τ
3
)

ϑ(π/2| τ
3
)ϑ′(0|τ)

ϑ(z + π/2| τ
3
)

ϑ(z| τ
3
)

. (5.8)

Proof. We make use of the fact that:

X(z)Y (z) +
1

X(z)
+

1

Y (z)
=

1

t
, (5.9)

tX(z)Q(X(z), 0) + tY (z)Q(0, Y (z)) = X(z)Y (z). (5.10)

Here, (5.9) is due to the fact that (X(z), Y (z)) parametrises the kernel curve C, see (5.3), and
(5.10) is a reformulation of the functional equation (5.1). Letting

A(x) :=
1

x
+ xtQ(x, 0) and B(y) :=

1

y
+ ytQ(0, y), (5.11)

we find that
J(z) :=

1

2t
− A(X(z)) = − 1

2t
+B(Y (z)). (5.12)

By symmetry of our model we could in fact conclude that in our case we have A(x) = B(x),
and hence J(−z) = −J(z), but this is not necessary for our approach.

Knowing that J(z) can be expressed as a function of X(z) and as a function of Y (z) at the
same time, it must have a range of symmetry properties:

• J(γ − z) = J(z), because J(z) is a function of X(z);

• J(−γ − z) = J(z), because J(z) is a function of Y (z);

• J(2γ + z) = J(z) by the above;

• J(z + π) = J(z) is inherited from this property of ϑ functions, see (2.21).
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In particular, we know that J is doubly periodic with periods π and 2γ. We thus construct
as a candidate for J(z) a function which has simple poles at {kπ + ℓγ: (k, ℓ) ∈ Z2}. This
way we obtain (5.8), by scaling with an appropriate constant and verifying that all poles of
the difference between (5.8) and (5.12) vanish. Using this together with (5.11) and (5.12), we
obtain (5.7).

From Prop. 5.1 we can deduce the representation (5.2) of Q(x, 0) in the following manner:
Defining W := X(π/2) = Y (π/2), the equation W = t(2+W 3) follows from substituting z = π

2

into (5.9). Next, defining

U(z) :=
ϑ(γ|τ)

ϑ(π
2
+ γ|τ)

ϑ(z + π
2
+ γ|τ)

ϑ(z + γ|τ) ,

we have the equations

J(z)

U(z)
+

1

X(z)
=

1

W
and

U(z)2 − 1

X(z)
= −W 2,

as in both cases the left-hand side is an elliptic function with no poles, where the constant
value can be determined explicitly by setting z to π

2
or π

2
− γ. Combining these three equations

yields (5.2).
To keep computations short, in this section we will only give a representation for Q(0, 0)

rather than all of Q(x, y). Conveniently, X(0) = 0, so it suffices to take the z → 0 limit of our
expression for Q(X(z), 0). Expanding both sides of (5.7) as series in z then yields

Q(0, 0) =
q2/3ϑ(γ|τ)2
ϑ′(0|τ)2 ×

2 +
ϑ′′ π

2
| τ
3

2ϑ π
2
| τ
3

− ϑ′′′(0| τ
3
)

6ϑ′(0| τ
3
)
+

ϑ′′′(0|τ)
6ϑ′(0|τ) − 6iϑ′(γ|τ)− 1

2
ϑ′′(γ|τ)

ϑ(γ|τ) − 4ϑ′(γ|τ)2
ϑ(γ|τ)2 . (5.13)

Rewriting this as a series in q and making use of (5.6), we obtain the generating function of
Kreweras excursions (see A006335 in the OEIS)

Q(0, 0) = 1 + 2t3 + 16t6 + 192t9 + . . .

5.1.4 Effect of the Jacobi transformation

As previously discussed, the Jacobi transformation (2.23) involves a parameter q̂, related to q
by log(q) log(q̂) = π2. Using (2.23) in (5.4), we find that

t =
ϑ′(0, q̂)
6ϑ′(π

3
, q̂)

.

This in turn can be used to express q̂ as a series in t around the critical point 1
3

(the property
that q̂ = 0 actually corresponds to the critical value of t turns out to be a general fact and will
be proven in Lemma 5.7, see also the beginning of Section 5.2.4), which starts

q̂ =
1√
3

1

3
− t

1/2

− 1√
3

1

3
− t

3/2

+

√
3

2

1

3
− t

5/2

− 70

27
√
3

1

3
− t

7/2

+ . . . (5.14)
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Next, we use the Jacobi identity (2.23) in order to rewrite (5.13) in terms of q̂, which, after
some simplifications, yields

Q(0, 0) =
ϑ π

3
, q̂

ϑ′(0, q̂)2
− 9ϑ 2π

3
, q̂

2
− ϑ′′ π

3
, q̂

2
+

ϑ π
3
, q̂ ϑ′′′ (0, q̂)
6ϑ′(0, q̂)

− 4ϑ′ π
3
, q̂

ϑ π
3
, q̂

− 3ϑ 2
3
, q̂ ϑ′′′ (0, q̂3)
2ϑ′ (0, q̂3)

+
9ϑ 2π

3
, q̂

ϑ 3i
2
log q̂, q̂3

1

2
ϑ′′ 3i

2
log q̂, q̂3 − iϑ′ 3i

2
log q̂, q̂3 . (5.15)

Note in particular that the terms of the form ϑ(k) 3i
2
log q̂, q̂3 are not quite as unwieldy as they

appear, since the dependency of ϑ (or its derivatives) on the first component is essentially given
by trigonometric functions, and we have for instance

sin
3i

2
log q̂ =

1

2i
q̂−3/2 − q̂3/2 .

That a simplification of this form works is to be expected, seeing as we already know this model
to be algebraic, thus all logarithms must vanish [74, 30, 28, 31]. In terms of the computation,
this relies heavily on the relation γ = π τ

3
in the parametrisation (5.5). For the model we study

in Sec. 5.2, there is no similar relation between γ and τ , and thus there is no intuitive reason
why the logarithms should disappear.

5.1.5 Series expansion around the critical point

Lastly, all we need to do is substitute (5.14) into (5.15) in order to find a local expansion at
the critical point t = 1

3
, starting

Q(0, 0) =
9

8
− 27

8

1

3
− t − 9

√
3

1

3
− t

3/2

+ 72
√
3

1

3
− t

5/2

± . . .

One can easily verify that this coincides with the explicit expression for Q(0, 0) given in [74,
30, 28, 31].

5.2 An infinite group model
We follow the exact same exposition as in Section 5.1.

5.2.1 Definition of the model

We consider the problem of quadrant walks with N, E, S, W and NE steps with a weight a > 0
for each NE step, see Figure 5.1. The generating function for this model was shown to be
D-algebraic by Bernardi, Bousquet-Mélou and Raschel [12]. As in Section 5.1, we start with
the functional equation (1.13), which takes the form

K(x, y)

xyt
Q(x, y) = R(x, y),

where K(x, y) is the kernel as in (2.3), and the term

R(x, y) =
1

t
− 1

x
Q(0, y)− 1

y
Q(x, 0)
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is called the remainder. The benefit of writing the equation in this form is that we know that
if K(x, y) = 0 then we also have R(x, y) = 0, as long as the series all converge (alternatively
one could write x as a formal power series of y satisfying this equation, but we choose to take
the analytic approach in this work). We note that for t sufficiently small (i.e., |t|< 1/(a+ 4)),
the series Q(x, y) converges in the domain where |x|, |y|< 1.

5.2.2 Parametrisation of the zero-set of the kernel

In this subsection, we deduce a parametrisation of the kernel curve using results from [62]
(which follows [68, 70, 123, 54]) for general weighted step-sets, then specialising these results
to our step-set. We consider the curve C = {(x, y) ∈ C × C : K(x, y) = 0} as in (2.8). Under
the assumption that our step-set is non-singular and that

0 < t <
1

S(1, 1)
=

1

a+ 4
, (5.16)

we have the following lemmas (see [62, Lem. 2.3]):

Lemma 5.2. There are meromorphic functions X, Y : C → C ∪ {∞} which parametrise C,
that is

C = {(X(z), Y (z)) : z ∈ C},
and numbers γ, τ ∈ iR with ℑ(πτ) > ℑ(2γ) > 0 satisfying the following conditions:

• K(X(z), Y (z)) = 0;

• X(z) = X(z + π) = X(z + πτ) = X(−γ − z);

• Y (z) = Y (z + π) = Y (z + πτ) = Y (γ − z);

• |X(−γ
2
)|, |Y (γ

2
)|< 1;

• Counting with multiplicity, the functions X(z) and Y (z) each contain two poles and two
roots in each fundamental domain {zc + r1π + r2πτ : r1, r2 ∈ [0, 1)}.

The following is [62, Lem. 2.5], under the assumption (5.16).

Lemma 5.3. The complex plane can be partitioned into simply connected regions {Ωs}s∈Z as
in Figure 5.2, satisfying

s∈Z
Ω4s ∪ Ω4s+1 = {z ∈ C : |Y (z)|< 1},

s∈Z
Ω4s−2 ∪ Ω4s−1 = {z ∈ C : |Y (z)|≥ 1},

s∈Z
Ω4s−1 ∪ Ω4s = {z ∈ C : |X(z)|< 1},

s∈Z
Ω4s+1 ∪ Ω4s+2 = {z ∈ C : |X(z)|≥ 1}.

Moreover, the equations

π + Ωs = Ωs,

sπτ + γ − Ω2s ∪ Ω2s+1 = Ω2s ∪ Ω2s+1 ⊃ sπτ + γ

2
+ R,

sπτ − γ − Ω2s ∪ Ω2s−1 = Ω2s ∪ Ω2s−1 ⊃ sπτ − γ

2
+ R,

hold for each s ∈ Z.
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Ω3
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Ω−2
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Ω−4

0 π−π

γ
2

−γ
2

−πτ−γ
2

−πτ
2

−πτ+γ
2

−πτ + γ
2

−πτ

πτ+γ
2

πτ
2
πτ−γ
2

πτ − γ
2

πτ

|X(z)|, |Y (z)| < 1

|Y (z)| < 1 ≤ |X(z)|

|X(z)|, |Y (z)| < 1

1 ≤ |X(z)|, |Y (z)|

|X(z)|, |Y (z)| < 1

|Y (z)| < 1 ≤ |X(z)|

|X(z)| < 1 ≤ |Y (z)|

|X(z)| < 1 ≤ |Y (z)|

1 ≤ |X(z)|, |Y (z)|

Figure 5.2: The complex plane partitioned into regions Ωj. For z on the blue lines, |Y (z)|= 1,
while on the red lines |X(z)|= 1.

The third result that we will need is [62, Prop. 2.6].

Proposition 5.4. There are some α ∈ Ω0 ∪Ω−1, β ∈ Ω0 ∪Ω1, δ ∈ Ω1 ∪Ω2, ϵ ∈ Ω−2 ∪Ω−1 and
xc, yc ∈ C \ {0} satisfying


X(z) = xc

ϑ(z − α|τ)ϑ(z + γ + α|τ)
ϑ(z − δ|τ)ϑ(z + γ + δ|τ) ,

Y (z) = yc
ϑ(z − β|τ)ϑ(z − γ + β|τ)
ϑ(z − ϵ|τ)ϑ(z − γ + ϵ|τ) .

In the following result, we specialise the above parametrisation to our weighted step-set and
thus describe the zero-set of the kernel, meaning the set C as introduced in (2.8):

Lemma 5.5. Given a step-set as defined in Section 5.2.1, that is, with counting polynomial
S(x, y) = x + y + 1

x
+ 1

y
+ axy, and assuming (5.16), there exists a triple (c, γ, τ) ∈ C3 with

γ, τ ∈ iR, 0 < ℑ(2γ) < ℑ(πτ), satisfying the following equations:

ac3 = −ϑ(4γ|τ)
ϑ(2γ|τ) , (5.17)

c2 =
ϑ(3γ|τ)
ϑ(γ|τ) , (5.18)

c

t
= 4

ϑ′(γ|τ)ϑ(2γ|τ)
ϑ′(0|τ)ϑ(γ|τ) − 2

ϑ′(2γ|τ)
ϑ′(0|τ) . (5.19)

With the above notation, the functions X(z) and Y (z) given by


X(z) = c
ϑ(z|τ)ϑ(z + γ|τ)

ϑ(z − γ|τ)ϑ(z + 2γ|τ) ,

Y (z) = c
ϑ(z|τ)ϑ(z − γ|τ)

ϑ(z + γ|τ)ϑ(z − 2γ|τ) = X(−z),
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satisfy the conditions of Lemmas 5.2 and 5.3.

Proof. From the definition of X(z) and Y (z) given in [62, App. A], the fact that the step-set
is symmetric implies that X(z) = Y (−z). Moreover, Ω0 ∪ Ω1 is the connected component
of {z ∈ C : |Y (z)|< 1} containing γ

2
+ R, while Ω0 ∪ Ω−1 is the connected component of

{z ∈ C : |X(z)|< 1} containing −γ
2
+ R. Combining with X(z) = Y (−z), this implies that

−Ω0 ∪ Ω1 = Ω−1 ∪ Ω0. Considering the intersection Ω0 = (Ω0 ∪ Ω−1) ∩ (Ω0 ∪ Ω1), we see that
−Ω0 = Ω0.

Now, by the definition (2.8) of C, we have (0, 0), (∞, 0), (0,∞) ∈ C.
From Lemma 5.2, we know that X(z) and Y (z) each contain two roots and two poles in

each fundamental domain. Consider the fundamental domain F = {z ∈ Ω−1 ∪ Ω0 ∪ Ω1 ∪ Ω2 :
ℜ(z) ∈ [0, π)}, and let α ∈ F and δ ∈ F be a root and pole of X(z), respectively, which are
both roots of Y (z). From Lemma 5.3, we must have α ∈ Ω0 and δ ∈ Ω1. Since these are
distinct, Y (z) has no other roots in F , and so the complete set of roots of Y (z) in Ω0 ∪ Ω1 is
α + πZ ∪ δ + πZ. Note that −α ∈ Ω0 is also a root of Y (z), so we must have −α ∈ α + πZ.
In fact, since α ∈ F , we have α = π

2
or α = 0. We will start by considering the case where

α = 0. Then 0 is a root of Y (z), so, since Y (γ − z) = Y (z), the value γ ∈ Ω0 ∪ Ω1 is also a
root of Y (z). Since ℜ(γ) = 0, we have γ ∈ F , so δ = γ. Recall also that δ is a pole of X(z), so
−γ = −δ is a pole of Y (z). This implies that the function Ỹ (z) defined by

Ỹ (z) := Y (z)
ϑ(z + γ|τ)ϑ(z − 2γ|τ)

ϑ(z|τ)ϑ(z − γ|τ)
has at most a single pole in each fundamental domain, at the pole of Y (z) other than −γ. But
Ỹ (z) is an elliptic function with periods π and πτ , so it cannot have only a single pole in each
fundamental domain [1, p. 8]. Therefore it must have no poles, and is therefore a constant
function.

Now write Ỹ (z) = c where c ∈ C. Note c ̸= 0 as Y (z) is not the zero function. Then

Y (z) = c
ϑ(z|τ)ϑ(z − γ|τ)

ϑ(z + γ|τ)ϑ(z − 2γ|τ)
and

X(z) = Y (−z) = c
ϑ(z|τ)ϑ(z + γ|τ)

ϑ(z − γ|τ)ϑ(z + 2γ|τ) .
Equations (5.17), (5.18) and (5.19) follow from considering the equation K(X(z), Y (z)) = 0 at
z = 2γ, γ and 0.

Finally we will discuss the case α = π
2

instead of α = 0. Then the functions X̂(z) :=

X(z+ π/2) and Ŷ (z) := Y (z+ π/2) satisfy X̂(0) = Ŷ (0), so we can apply the rest of the proof
to X̂(z) and Ŷ (z), to show that they have the required properties. By carefully analysing the
definition of X(z) and Y (z) in [62, App. A], one can prove that the α = π

2
case actually never

occurs; this is however unnecessary for the proof.

Remark: the fact that ϑ(3γ|τ)
ϑ(γ|τ) > 0 > ϑ(4γ|τ)

ϑ(2γ|τ) , along with γ
πτ

∈ (0, 1
2
) implies that γ

πτ
∈ (1

4
, 1
3
).

Observe that the above uniformization is very similar to that (5.5) of Kreweras’ model. Unlike
in the latter case, however, where we had (after rescaling τ) α = 3τ , there is no obvious relation
between γ and τ here.

5.2.3 Explicit expression for the generating function

As a consequence of this definition, we can define holomorphic functions Q1 : Ω−1 ∪ Ω0 → C
and Q2 : Ω0 ∪ Ω1 → C by

Q1(z) = Q(X(z), 0) and Q2(z) = Q(0, Y (z)).
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Moreover, by symmetry, Q1(z) = Q1(γ − z) and Q2(z) = Q2(−γ − z).
The next step is to find a function of X(z) which is equal to a function of Y (z) for z ∈ Ω0

using the equations K(X(z), Y (z)) = R(X(z), Y (z)) = 0. Note that, given (1.13), this is
equivalent to finding a decoupling function in the sense of [12, 4.2].

In this case, this is immediate as combining the two equations yields

atX(z)Q(X(z), 0) + atY (z)Q(0, Y (z)) = aX(z)Y (z) = −X(z)− Y (z)− 1

X(z)
− 1

Y (z)
+

1

t
,

so we can now define a meromorphic function J(z) on Ω−1 ∪ Ω0 ∪ Ω1 by writing

J(z) :=




1

2t
− atX(z)Q1(z)−X(z)− 1

X(z)
for z ∈ Ω−1 ∪ Ω0,

− 1

2t
− atY (z)Q2(z)− Y (z)− 1

Y (z)
for z ∈ Ω0 ∪ Ω1,

(5.20)

as these expressions are equal on Ω0. Moreover, J(z) satisfies J(γ − z) = J(z) = J(z + π) for
z ∈ Ω−1 ∪ Ω0 and J(−γ − z) = J(z) for z ∈ Ω0 ∪ Ω1, so J(z − γ) = J(z + γ) for z ∈ Ω0. We
can use this to extend J(z) to a meromorphic function on C which satisfies

J(γ − z) = J(z), J(−γ − z) = J(z) and J(z + π) = J(z).

This implies that J is doubly periodic, with periods π and 2γ, which will allow us to determine
it exactly. We also note that by symmetry in x and y, we have J(z) + J(−z) = 0. Solving this
exactly yields the following result, analogous to Proposition 5.1 for the Kreweras model:

Proposition 5.6. Let c, γ, τ be defined as in Lemma 5.5. The function J in (5.20) is given by

J(z) = −ϑ′(0| γ
π
)ϑ(2γ|τ)ϑ(z + π

2
| γ
π
)

cϑ(π
2
| γ
π
)ϑ′(0|τ)ϑ(z| γ

π
)

.

Proof. Define I(z) by

I(z) := J(z) +
ϑ′(0| γ

π
)ϑ(2γ|τ)ϑ(z + π

2
| γ
π
)

cϑ(π
2
| γ
π
)ϑ′(0|τ)ϑ(z| γ

π
)

.

Then it suffices to show that I(z) = 0. Using properties of ϑ (see (2.21)), we observe that
I(z) satisfies the same transformations as J(z), namely I(z) = −I(−z) = I(γ − z) = I(z + π).
Moreover, by (5.20), the poles of J(z) in Ω−1 ∪Ω0 occur precisely at the points πn and γ + πn
for n ∈ Z. By the definition, I(z) has no other poles in Ω−1 ∪ Ω0, and taking z → 0, we see
that 0 is not a pole of I(z). Hence, the transformations I(z) = I(γ − z) = I(z + π) imply that
I(z) must be holomorphic on Ω−1 ∪ Ω0. Moreover, since I(z) = −I(γ + z), this implies that
I(z) is holomorphic on C, so it is a constant function. Finally we find that this constant k is 0
from k = I(z) = −I(−z) = −k.

Proposition 5.6 combined with (5.20) gives an explicit expression for Q(x, 0), starting from
which we can extract the exact form of Q(0, 0). For convenience we will write ϑ(z) = ϑ(z|τ)
and ϑ̃(z) = ϑ(z| γ

π
). Analysing J(z) as z → 0 yields the equation

1 + atQ(0, 0) =

ϑ(2γ)2

c2ϑ′(0)2
1

2

ϑ′(γ)ϑ′(2γ)
ϑ(γ)ϑ(2γ)

− 2
ϑ′(γ)2

ϑ(γ)2
− 1

2

ϑ′′(2γ)
ϑ(2γ)

+
1

6

ϑ′′′(0)
ϑ′(0)

+
1

2

ϑ̃′′(π
2
)

ϑ̃(π
2
)
− 1

6

ϑ̃′′′(0)

ϑ̃′(0)
.
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We now describe how the coefficients of the series Q(0, 0) can be extracted from the solution
above. Writing s = eiγ, the right-hand side of the equation

a2 =
ϑ(γ|τ)3ϑ(4γ|τ)2
ϑ(2γ|τ)2ϑ(3γ|τ)3 (5.21)

is a series in q and s, while the left-hand side is constant. We can use this to write q as a series
in s, which starts

q = a1/2s7/2 +
1

2
√
a
− 3

4
a3/2 s9/2 +O(s11/2).

We can then write t (and c) as series in s using (5.17), (5.18) and (5.19). Consequently our
expression for Q(0, 0) can be expanded as a series in s and therefore t.

5.2.4 Effect of the Jacobi transformation

Before analysing the Jacobi transformation (2.22), let us define the critical point of the model.
As shown in [66, 69, 21, 51], the critical point tc > 0 may be defined as the smallest positive
singularity of the series Q(0, 0). It can be further characterized as the exponential growth of
the coefficients of Q(0, 0), meaning that (up to a polynomial correction) [tn]Q(0, 0) ∼ 1/tnc (see
(5.28) for a more precise statement). Finally, it is also the smallest value of t > 0 such that the
Riemann surface C has genus 0.

What is essential for applying the Jacobi transformation is the fact that the critical point
corresponds to q = 1 (and consequently q̂ = 0, whereas q̂ = 1, or q = 0, is equivalent to the
regime t = 0). Additionally, we will also need to know that the only singularity of Q(0, 0) lies on
the positive real axis. These two facts will be shown in the following Lemmas 5.7 and 5.8, which
are true for more general models than considered here. They will be proven in Appendix A.

Lemma 5.7. Writing q as a function of t, we have

1. 0 < q(t) < 1 for 0 < t < tc,

2. q(t) as a function of t is continuous on (0, tc),

3. limt→0 q(t) = 0,

4. limt→tc q(t) = 1.

Lemma 5.8. Let S be a non-singular, weighted step-set, and let Q(x, y) be the generating
function (2.1) for walks in the quadrant using this step-set. Define the period of the model to
be the maximum value k such that Q(0, 0) = Q(0, 0; t) ∈ R[tk]. If r is the radius of convergence
of Q(0, 0), then the singularities of Q(0, 0) on the radius of convergence are precisely the points
re

2πij
k for j = 0, 1, . . . , k − 1. The same result holds for the generating function [xa][yb]Q(x, y)

for any a, b for which this generating function is non-zero.

Applying Lemma 5.8 to our case, since a > 0, the period k is 1, so the only singularity on
the radius of convergence is on the positive real line. Moreover, Lemma 5.7 implies that q and
τ have no singularity for t in the interval [0, tc). In addition, γ in Lemma 5.5 is analytic as
well on [0, tc); this follows from the expression of γ in terms of two periods ω1, ω3 given in [62,
App. A], and from the analytic behavior of these periods shown in [97, Sec. 7.4]. Together
these imply that if Q(0, 0) has a singularity at tc, then it is the unique singularity within the
radius of convergence, so the asymptotic form of the coefficients is uniquely determined by the
behaviour at this point. The same holds for all coefficients of Q(x, 0) in its series expansion at
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x = 0. Again by Lemma 5.7, the point t = tc corresponds to q̂ = 0. For this reason we proceed
by analysing the parameters at q̂ = 0.

It is convenient to parametrise a using the unique k ∈ (0, 1) satisfying

a =
1− k2

k3
. (5.22)

Writing β = i
π
log(q̂)γ, the equation (5.21) relating q and a becomes

a2 =
ϑ(β, q̂)3ϑ(4β, q̂)2

ϑ(2β, q̂)2ϑ(3β, q̂)3
.

This equation allows 2 cos(2β) to be written as a series in q̂, with initial terms

2 cos(2β) = k2 − 1− k2(2k2 − 1)(k2 + 1)(k2 − 3)(k2 − 1)q̂2 +O(q̂4).

This allows us to write β itself as a series in q̂:

β = β0 + β1q̂
2 + β2q̂

4 +O(q̂6),

where the constant term β0 is given by

β0 =
1

2
cos−1 k2 − 1

2
, (5.23)

while β1 is given by

β1 =
1

2
k2(2k2 − 1)(1− k2) (1 + k2)(3− k2). (5.24)

It follows that t is also a series in q̂, given by

1

t
= −a− 1

a
− 1

a

ϑ(β, q̂)2ϑ(5β, q̂)

ϑ(3β, q̂)3
.

The initial terms are then

t =
k

k2 + 3
1− (k2 + 1)2(3− k2)3

k2 + 3
q̂2 +O(q̂4).

In particular, the critical point tc is given by

tc =
k

k2 + 3
,

so tc is given by an algebraic function of a. Taking the inverse of the series above yields

q̂2 =
k2 + 3

(k2 + 1)2(3− k2)3
1− t

tc
+O 1− t

tc

2

.

Notice that the parameter β0 is connected to another relevant parameter θ introduced in [51,
21]. Based on [51, Ex. 2], θ is computed in [21] to describe the asymptotic behavior of walks
in two-dimensional cones. More precisely, let S(x, y) be the step polynomial of the model as
in (2.4). There exists a unique point (x0, y0) ∈ (0,∞)2 such that ∂S

∂x
(x0, y0) =

∂S
∂y
(x0, y0) = 0.

Then the parameter θ can be defined as follows

θ = arccos

−
∂2S
∂x∂y

(x0, y0)

∂2S
∂x2 (x0, y0) · ∂2S

∂y2
(x0, y0)

 .

Standard computations give that x0 = y0 are both solutions to the equation ax3
0 = 1 − x2

0,
hence with our notation (5.22), we have x0 = y0 = k. Accordingly, θ = arccos(k

2−1
2

) = 2β0.
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5.2.5 Series expansion of Q(x, 0) at the critical point

In order to understand the asymptotics of the coefficients of Q(x, 0), we will write Q(x, 0) as a
series in x and q̂. Recall that an expression for Q(x, 0) was given parametrically by J(z) and
X(z), see Proposition 5.6. It is important to notice that in the previously cited proposition, it
is assumed that t < 1

S(1,1)
, see (5.16), while we now want to work with t close to tc >

1
S(1,1)

. We
observe that the identity in Proposition 5.6, giving an expression for the generating function in
terms of theta functions, can be readily extended from t ∈ (0, 1

S(1,1)
) to t ∈ (0, tc) by analytic

continuation, the two sides of the identities being actually analytic in that bigger domain.
Using then the Jacobi identity (2.23) on the expressions for X(z) and J(z) yields (see

Lemma 5.5 and Proposition 5.6)

X(z) = d
ϑ(−zτ̂ , q̂)ϑ(−β − zτ̂ , q̂)

ϑ(β − zτ̂ , q̂)ϑ(−2β − zτ̂ , q̂)
(5.25)

and

J(z) = −e
iπτ̂z
β

π

βd

ϑ(2β, q̂)ϑ(−πτ̂ π+2z
2β

, q̂
π
β )ϑ′(0, q̂

π
β )

ϑ′(0, q̂)ϑ(−πτ̂ π
2β
, q̂

π
β )ϑ(−πτ̂ z

β
, q̂

π
β )

, (5.26)

where d := c exp(−4iβ2

πτ̂
) is determined by

d2 =
ϑ(3β, q̂)

ϑ(β, q̂)
,

and d > 0. The first few terms of d are

d = k − k3(k2 − 3)(k2 − 1)(k2 + 1)q̂2 +O(q̂4).

Using (5.25)–(5.26), we can expand X(z) and J(z) as series in C(eiτ̂z)[[q̂]] and C(e
iπτ̂z
β )[[q̂2, q̂

π
β ]],

respectively. Writing ẑ = zτ̂ , we can write X(z) and J(z) as series in ẑC[[ẑ, q̂]] and 1
ẑ
C[[ẑ, q̂2, q̂

π
β ]],

respectively. Writing u = cos(β0+2ẑ)
cos(β0)

− 1 ∈ C[[ẑ]], these have initial terms


X(z) =
ku

u+ 3− k2
+ k

3− k2

1 + k2

−4β1 sin(2ẑ)

(u+ 3− k2)2
+

u(1 + k2)2(1− k2 + k4 + u)

u+ 3− k2
q̂2 +O(q̂4),

J(z) =
π

β0k

sin(2β0)

sin(πẑ
β0
)
+ J1(ẑ)q̂

2 +
4π

β0k
sin(2β0) sin

πẑ

β0

q̂
π
β0 +O(q̂4),

where

J1(ẑ) =
π sin(2β0)

β0k sin(
πẑ
β0
)

(1 + k2 − k4)(3− k2)(1 + k2) +
πβ1ẑ cos(

πẑ
β0
)

β2
0 sin(

πẑ
β0
)

+
2β1 cos(2β0)

sin(2β0)
− β1

β0

.

Taking the inverse of the first series, we can then write ẑ as a series in C[q̂2, X(z)], which yields
J as a series in 1

X(z)
C[[q̂2, q̂

π
β , X(z)]]. Combining this with (5.20), this yields Q(x, 0) as a series

in C[[q̂2, q̂
π
β , x]]. Note, however, that β still depends on q̂, so to complete our understanding of

Q(x, 0) we will need to expand q̂
π
β as a series in q̂. This is where logarithmic terms will appear,

as q̂
π
β ∈ q̂

π
β0 (1 + q̂2 log(q̂)C[[q̂, q̂2 log(q̂)]]). In particular, using β = β0 + β1q̂

2 + . . . , we have

q̂
π
β = q̂

π
β0 1− 2πβ1

β2
0

q̂2 log(q̂) +
2π2β2

1

β4
0

q̂4 log(q̂)2 +
2π(β2

1 − β0β2)

β3
0

q̂4 log(q̂) +O(q̂6−ϵ) .
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So, finally, Q(x, 0) is a series in C[[q̂2, x]]+q̂
π
β0C[[q̂2 log(q̂), q̂2, q̂

π
β0 , x]]. Using the relation between

q̂ and t, we can write q̂2 as a series in (t− tc)C[[(t− tc)]]. Hence Q(x, 0) is a series in

C[[t− tc, x]] + (t− tc)
π

2β0C[[(t− tc) log(t− tc), t− tc, (t− tc)
π

2β0 , x]].

Explicitly, we can write this as:

Q(x, 0) = A(x, 1− t/tc) +
∞

k,ℓ=0

ℓ

m=0

(1− t/tc)
ℓ+(k+1) π

2β0 log(1− t/tc)
mPk,ℓ,m(x), (5.27)

where each Pk,ℓ,m(x) ∈ C[[x]]. The A part in (5.27) has no effect on the asymptotic expansion,
this all comes from the series Pk,ℓ,m. We note that β0 ∈ (π

4
, π
3
), so π

2β0
∈ (3/2, 2). So the leading

terms in the asymptotic expansion are:

(1− t/tc)
π

2β0P0,0,0(x) + (1− t/tc)
1+ π

2β0P0,1,0(x) + (1− t/tc)
1+ π

2β0 log(1− t/tc)P0,1,1(x)

+ (1− t/tc)
π
β0P1,0,0(x).

We can calculate these explicitly, for example the first term is given by

xP0,0,0(x) =
2πk(3 + k2)

√
3 + 2k2 − k4

β0(1− k2)

3 + k2

(3− k2)3(1 + k2)2

π
2β0

sin
π

β0

ẑ ,

where ẑ and x are related by

x = k
sin(ẑ − β0) sin(ẑ)

sin(ẑ − 2β0) sin(ẑ + β0)
=

ku

u+ 3− k2
.

It can be checked by a direct computation that the function sin π
β0
ẑ exactly corresponds to

the generating function of the positive harmonic function for the model, as computed in [125].
The term associated to P0,0,0(x) determines the leading asymptotic behaviour of the coeffi-

cients:
[xj][tn]Q(x, 0) ∼ C [xj+1] sin

π

β0

ẑ n
−1− π

2β0 t−n
c (5.28)

for fixed j as n → ∞, where C is a constant (only depending on a) given by

C =
2πk(3 + k2)

√
3 + 2k2 − k4

β0(1− k2)Γ(− π
2β0

)

3 + k2

(3− k2)3(1 + k2)2

π
2β0

.

In order to verify that there really is a log term in this expansion, we also calculate P0,1,1(x)
exactly. In fact this only differs from P0,0,0(x) by a constant multiple (dependent on a but not
x):

xP0,1,1(x) =
π2k3(k2 + 3)(1− 2k2)(3− k2)(1 + k2) 3+k2

(3−k2)3(1+k2)2

1+ π
2β0

2β3
0

sin
π

β0

ẑ .

The only value of k for which P0,1,1(x) = 0 is k = 1√
2
, corresponding to a =

√
2, β0 =

1
2
arccos(−1

4
) and tc =

√
2
7

, However we note that there are still log terms in the asymptotics in
this case, for example P0,1,2(x) ̸= 0.
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5.2.6 The limit a → 0

A priori our results only apply for a > 0, and indeed this is necessary as some functions such
as P0,0,0 diverge for a = 0. Nonetheless, we see that the leading asymptotic expression (5.28)
converges in a way that somewhat corresponds to the a = 0 case. Note that as a → 0 we also
have k → 1, β0 → π

4
and tc → 1

4
. The limit of the constant C as a → 0 is 4

π
. Moreover, we have

x =
sin(ẑ − π

4
) sin(ẑ)

sin(ẑ − π
2
) sin(ẑ + π

4
)
,

from which it follows that
sin

π

β0

ẑ = sin (4ẑ) =
4x

(1− x)2
.

So (5.28) would give

[xj][tn]Q(x, 0) ∼ 16

π
(j + 1)n−34n.

The only problem with this is that [xj][tn]Q(x, 0) is 0 when j and n have opposite parity,
whereas for terms with the same parity the correct asymptotic formula is

[xj][tn]Q(x, 0) ∼ 32

π
(j + 1)n−34n.

In other words, this correctly yields the behaviour of Q(x, 0) around t = tc =
1
4
, however there

is a second critical point, −1
4

on the radius of convergence.

5.3 Polyharmonicity of coefficients
Due to (5.27) we already have a fair amount of information about the coefficients of Q(x, 0)
at the critical point. One can now use this in order to describe the asymptotic behaviour of
the (weighted) number of paths q((0, 0), (i, j);n) := q(i, j;n) in the quadrant from the origin
to (i, j) with n steps, see (2.1). In particular, we will see in Lemma 5.11 that the dependence
on the number of steps n is given in terms of a mix of powers of n and logarithms. In a similar
fashion as in [113], one can then show that the dependence on the endpoint (i, j) is given in
terms of so-called discrete polyharmonic functions (see [114, 113, 5, 125, 36]).

Given a step-set S with corresponding weights (ωs)s∈S , we define a discrete Laplacian op-
erator △ acting on functions v : Z2 → C as follows:

△v(A) =
s∈S

ωsv(A+ s)− tv(A).

We say that a function v is t-harmonic (resp. t-polyharmonic of order k) if for all points A in
the quarter plane, △v(x) = 0 (resp. △kv(x) = 0 for some positive integer k). Furthermore, in
order to keep the notation compact in the following, let

ρ :=
π

2β0

,

where β0 is defined as in (5.23). As mentioned in the previous section, ρ varies (continuously)
in 3

2
, 2 as a varies in (0,∞).

Our main objective in this section is to show the following result:
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Theorem 5.9. If ρ /∈ Q, then for any p > 0 (not necessarily integer), we have

q(i, j;n) = t−n
c

k≥1,ℓ≥m≥0
kρ+ℓ+1<p

vk,ℓ,m(i, j)
(log n)m

nkρ+ℓ+1
+O t−n

c

log n

n

p

,

where the vk,ℓ,m are discrete tc-polyharmonic functions of order ℓ −m + 1. If ρ = u
v
∈ Q with

u and v coprime, then the same holds with the additional condition that the summation index
k be at most v.

0,0

1,0

2,0

1,1

2,1 2,2

3,0 3,1 3,2 3,3

Figure 5.3: The arrows indicate a change in the coefficients of fℓ,m := (logn)m

nℓ when substituting
(5.30) into (5.33). We see that f0,0, f1,1, f2,2 and f3,3 (the green nodes) are not affected as we
can only ever go down and to the left as indicated (see Lemma 5.10); thus their coefficients
v0,0, v1,1, etc., are harmonic. Drawing the same diagram for △q(x;n), these nodes therefore
disappear, and the unaffected coefficients are then those of the blue nodes. Thus, v1,0, v2,1, . . . ,
are biharmonic, and so on.

See Figure 5.3 for an illustration of Theorem 5.9 for fixed k, showing in particular the inter-
dependency of the polyharmonic functions vk,ℓ,m. For irrational ρ we will have infinitely many
such diagrams; whereas for rational ρ there will be only finitely many.

The rest of Section 5.3 is devoted to the proof of Theorem 5.9. In the following we will
assume that ρ /∈ Q; otherwise we only need to bound the k in the summation indices by its
denominator (as in Theorem 5.9). Using a standard transfer between the local behaviour of
the generating function around the singularity and the asymptotics of the coefficients as in [73,
VI.2], we know due to (5.27) that we have an asymptotic expansion of q(i, 0;n) and q(0, j;n)
(which are identical due to the symmetry of the model; this is however not necessary for the
following) of the form

q(i, 0;n) = t−n
c

k≥1,ℓ≥m≥0
kρ+ℓ<p

vk,ℓ,m(i, 0)
(log n)m

nkρ+ℓ+1
+O t−n

c

log n

n

p

, (5.29)

for some coefficients denoted by vk,ℓ,m(i, 0). The structure of the proof of Theorem 5.9 is as
follows: first, we want to show that a similar expansion holds not only for q(i, 0;n), but also
for q(i, j;n), which will be done in Lemma 5.11. Then we will make use of this in order to show
that the resulting coefficients vk,ℓ,m(i, j) are discrete polyharmonic functions, see Lemma 5.13.

Before we start, we will state a simple lemma, which will turn out to be useful:
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Lemma 5.10. For any integer p > ℓ, we have

(log(n+ 1))m

(n+ 1)ℓ
=

(log n)m

nℓ
+

p−ℓ

i=1

m

j=max(m−i,0)

cℓ,m,i,j
(log n)j

nℓ+i
+O log nm

np+1
, (5.30)

with the cℓ,m,i,j constants (in particular, if m = 0, then we will have no logarithmic parts).

Proof. The result follows immediately from writing log(n + 1) = log(n) + log(1 + 1
n
) and

expanding as a series in 1
n
.

Note that in particular all terms inside the sum on the right-hand side have powers of the
logarithm not exceeding m, and powers of n strictly smaller than −ℓ (this is the reason why in
Figure 5.3 all arrows can only go downwards, and possibly to the left).

We can now extend the asymptotic expansion of q(i, 0;n) as in (5.29) to one of q(i, j;n).

Lemma 5.11. For any (i, j) ∈ Z2 and any p > 0, we have

q(i, j;n) = t−n
c

k≥1,ℓ≥m≥0
kρ+ℓ+1<p

vk,ℓ,m(i, j)
(log n)m

nkρ+ℓ+1
+O t−n

c

log n

n

p

. (5.31)

Proof. By induction on r := min(i, j). For r < 0, the statement is trivial because we have
q(i, j;n) = 0 (we will use repeatedly this convention throughout the proof). For r = 0, the
statement is precisely (5.29). So let us suppose that we already know that (5.31) holds up to
a given r, and consider a point (i, r + 1). We can then write

q(i, r;n+ 1) =

q(i, r + 1;n) + q(i, r − 1;n) + q(i− 1, r;n) + q(i+ 1, r;n) + aq(i− 1, r − 1;n).

By induction hypothesis and Lemma 5.10 applied to q(i, r;n+ 1), the statement follows.

In the following Lemmas 5.12 and 5.13, we will formalize the argumentation given in Fig-
ure 5.3. By [113] we know that, ordering the triples (k, ℓ,m) in (5.31) such that the weight
functions fk,ℓ,m(n) := (logn)m

nk+ℓρ+1 are decreasing, then the corresponding coefficient functions vk,ℓ,m
are polyharmonic functions of increasing order; i.e. v1,0,0 is harmonic, v1,1,0 is biharmonic, v1,1,1
is triharmonic, and so on. It turns out, however, that the fact that we know the fk,ℓ,m explicitly
allows us to greatly improve upon this statement.

Lemma 5.12. Suppose we have p > 0 and a sequence of reals ak,ℓ,m such that

k≥1,m≥ℓ≥0
kρ+ℓ<p

ak,ℓ,m
nkρ+ℓ+1

(log n)m = O n−p .

Then, ak,ℓ,m = 0 for all triples (k, ℓ,m).

Proof. After multiplying with nρ+1, taking the limit n → ∞ we can see immediately that
a1,0,0 = 0. Proceeding by multiplying with increasing powers of n and log n and using that by
assumption in each case there is only one non-zero coefficient (note that we make use of the
fact that ρ /∈ Q here), we can inductively show that ak,ℓ,m = 0 for all triples (k, ℓ,m).

The idea behind the following Lemma 5.13 is similar as in [113, Lem. 6]. One writes q(x;n +
1) recursively as a sum over the step-set, and utilizes Lemma 5.10 in order to compare the
coefficients. For large n, many of these coefficients will disappear, leaving us essentially with
the (poly-)harmonicity of the vk,ℓ,m.
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Lemma 5.13. Suppose we have a combinatorial quantity q(x;n) such that we have

q(x;n+ 1) =
s∈S

ωsq(x− s;n), (5.32)

and for each p > 0 we have

q(x;n) = t−n
c

k≥1,ℓ≥m≥0
kρ+ℓ+1<p

vk,ℓ,m(x)
(log n)m

nkρ+ℓ+1
+O t−n

c

log n

n

p

. (5.33)

Then vk,ℓ,m is tc-polyharmonic of order ℓ−m+ 1.

Proof. To shorten notation, define the sets

U :={(k, ℓ,m) ∈ Z3 : k ≥ 1, ℓ ≥ m ≥ 0, kρ+ ℓ+ 1 < p},
Vk,ℓ,m :={(i, j) ∈ Z2 : 1 ≤ i ≤ m, kρ+ ℓ+ i+ 1 < p,m− i ≤ j ≤ m}.

First, we notice that by (5.33) and (5.30), we have

q(x;n+ 1) =

t−n−1
c

(k,ℓ,m)∈U
vk,ℓ,m(x)

(log n)m

nkρ+ℓ+1
+

(i,j)∈Vk,ℓ,m

ck,ℓ,m,i,j
(log n)j

nkρ+ℓ+i+1

+O t−n
c

log n

n

p

for some constants ck,ℓ,m,i,j. Utilizing (5.32), we now obtain

t−n
c

s∈S (k,ℓ,m)∈U
ωsvk,ℓ,m(x− s)

(log n)m

nkρ+ℓ+1
=

t−n−1
c

(k,ℓ,m)∈U
vk,ℓ,m(x)

(log n)m

nkρ+ℓ+1
+

(i,j)∈Vk,ℓ,m

ck,ℓ,m,i,j
(log n)j

nkρ+ℓ+i+1

+O t−n
c

log n

n

p

.

(5.34)

Now let us partially order the triples (k, ℓ,m) giving them the index ℓ − m (which means
sorting them by their diagonal in Figure 5.3). We proceed inductively by the index of the
triples (k, ℓ,m).

For index 0, one can check immediately (using an argument as shown in Figure 5.3; for-
mally utilizing (5.30)) that the coefficient of (logn)m

nkρ+ℓ+1 in the right-hand side of (5.34) is precisely
vk,ℓ,m(x). From Lemma 5.12 it follows immediately that the corresponding coefficients vk,ℓ,m
are tc-harmonic.

Now suppose the statement is already shown for all triples of order r, and consider those of
order r + 1. We utilize the same arguments as before on △rq(x;n). The equivalent of (5.34)
now has the form

t−n
c

s∈S (k,ℓ,m)∈U
ωs△rvk,ℓ,m(x− s)

(log n)m

nkρ+ℓ+1
=

t−n−1
c

(k,ℓ,m)∈U
△rvk,ℓ,m(x)

(log n)m

nkρ+ℓ+1
+

(i,j)∈Vk,ℓ,m

ck,ℓ,m,i,j
(log n)j

nkρ+ℓ+i+1

+O t−n
c

log n

n

p

,

where we let the sum run over the triples with index at least r+1, since by induction hypothesis
△rvk,ℓ,m(x) = 0 for all (k, ℓ,m) with index at most r. But from here it is again easily seen that
the coefficient of (logn)m

nkρ+ℓ+1 is nothing else than △rvk,ℓ,m for the triples of index r; thus △rvk,ℓ,m is
harmonic and the proof is complete.
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Finally, Theorem 5.9 follows from Lemmas 5.11 and 5.13. Note that for the proof we did
not make use of the fact that we are in dimension 2; the only part where we used any properties
of our model in particular was in the proof of Lemma 5.11.
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Chapter 6

Open problems

We often hear that mathematics consists mainly of "proving theorems."
Is a writer’s job mainly that of "writing sentences?"

Gian-Carlo Rota

1. In Chapter 3, discrete polyharmonic functions in the quarter plane were constructed in
two fashions: in Section 3.3 via a purely algebraic approach, and in Section 3.4.1 via
decoupling functions. In light of the fact that, for orbit-summable models, the only
ones appearing in asymptotic expansions are those constructed in the latter fashion (see
Section 4.1.3), one might ask if a similar construction to the decoupling approach (or an
altogether different method leading to similar results) may be applicable for a wider class
of models.

2. Utilizing Analytic Combinatorics in Several Variables (ACSV, see [119] for an introduc-
tion) would in many of the cases treated in Chapter 4 be an alternative to the saddle
point method when computing an asymptotic expansion. Seeing as in many cases, first-
order approximations have already been done [43, 108, 106], it might also be interesting
to more formally compare the two methods and see up to which point ACSV would yield
the same results, or if there are cases in which one or the other is easier to use or not
applicable at all.

3. Working on a parametrization of a rational kernel curve in Section 3.5, we saw that finding
a decoupling function is the same as solving a difference equation of the form

f(s) = f
s

q
= B(s),

as in (3.129). However, one could transition to the parametrization even sooner: utiliz-
ing (3.127), and letting K(x(s), 0)H(x(s), 0) := f(s) for some harmonic function H(x, y),
we can then see that we must have

f(s) = f(qs).

Notice, however, that it is not a priori clear that this criterion is sufficient for H(x, y)
to be harmonic. It would be interesting to know if there is a deeper link of this kind of
q-difference equations and the computation of polyharmonic functions. Maybe some or
even a lot of the theory could be reformulated or simplified using methods as presented
for example in [82, 80, 81]. Seeing as the decoupling approach only works for finite
groups, and in particular not for those which only have a finite restriction to the kernel
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curve. Correspondingly, if one were to find a solution using such a parametrization
and q-difference equations, then maybe such a solution would work independently of
the finiteness of the underlying group (or at least work in different cases).

4. In the context of non-singular small-step models in the quarter plane, in this thesis we
have computed asymptotics expansions of models which were either orbit-summable, or
belonged to a very specific subset of those with infinite group (i.e. a simple walk together
with a weighted North-East step attached). Leaving the exponential term and the poly-
harmonic functions aside, in the former case this expansion consisted only of powers of
the path length n (see Thm. 4.1), while in the latter we also have logarithms (see 5.9).
This immediately bears the question of whether the appearance of logarithms is due to
the group of the model being infinite (which is the same as the generating function not
being D-finite), or if there is some other way to classify the models according to their
asymptotic behaviour. One might also ask if an expansion as in Thm. 5.9 generally holds.
An approach using ϑ-functions seems promising to do so, though the computations might
get a lot more complicated, and it is for instance not obvious how one would construct
the function J(z) in Section 5.2 in general.

5. When counting lattice paths with fixed start- and endpoint, there is (for an appropri-
ate choice of t) a unique combinatorially relevant t-harmonic function for a given model,
which can easily be characterized by its positivity. For higher order polyharmonic func-
tions, however, there is no similar way to characterize the functions appearing in the
asymptotics, nor a reasonable combinatorial interpretation. It would be very interesting
to know if there is such a characterization, or interpretation, or at least, in some sense,
a ’canonical’ polyharmonic function of a given degree p > 1. Intuitively, one may think
such a canonical function should coincide in its scaling limit with the (continuous) poly-
harmonic function appearing in the corresponding continuous heat kernel, but seeing as
the higher order asymptotics of the discrete and continuous cases do not coincide (see
Section 4.2.2), this might not be an ideal choice. Maybe the functions g2, g3, . . . as defined
at the end of Section 4.2.2 could serve as candidates for such canonical representatives
instead.

6. While so far we have always considered non-singular models with small steps in the
quarter plane, there are of course a lot of ways to generalize the questions, be it that of
construction of polyharmonic functions or that of a complete asymptotic expansions of
lattice paths. The two obvious ways to change the setting are a change of the domain,
and a change of the step set. For works on different cones (most notably the three-quarter
plane or in the octant), see e.g. [26, 130, 126, 19, 25, 137, 23]. Work on domains other than
cones is much rarer; for some results on walks in Lipschitz domains see for instance [112].

Changing the step sets, one could for instance look at singular models as in [55, 86], allow
larger step sets [19, 85], or even infinite ones sets (possibly requiring moment conditions
and using probabilistic methods, as in e.g. [51, 57]). In one dimension, it appears there
has been recent progress showing that, under some moment conditions, one always has a
complete asymptotic expansion as in Thm. 4.1 [48].

It should be noted, however, that counting lattice paths seems to get a lot more involved
with the number of dimensions increasing, due to the functional equation (2.2) having
more and more boundary terms. To the author’s knowledge, there is no general method
for treating models with an arbitrary number of dimensions at this point.
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Appendix A

Proofs

Proof of Lemma 1.3
Lemma 1.3. Let q(x;n) be some combinatorial quantity depending on n and a point x ∈ Zd,
and let S ⊂ Zd be some step set. Suppose that q(x) satisfies a recursive relation of the form

q(x;n+ 1) =
s∈S

ωsq(x− s;n),

and that for each m ∈ N we can write

q(x;n) =
m−1

k=1

fk(n)vk(x) +O (fm(n)) ,

where limn→∞
fk+1(n)

fk(n)
= 0 and limn→∞

fk(n+1)
fk(n)

= 1 for all k ≥ 1, and the Landau-O is to be
understood with respect to n. Then, for all k ≥ 1, vk(x) is a polyharmonic function of degree k.

Proof. Suppose we already know that for p = 1, . . . ,m, vp is p-polyharmonic. We have

△mq(x;n+ 1) =
s∈S

ωs△mq(x− s;n) ⇔ (A.1)

∞

k=1

fk(n+ 1)△mvk(x) =
s∈S

∞

k=1

ωsfk(n)△mvk(x) ⇔ (A.2)

∞

k=m+1

fk(n+ 1)△mvk(x) =
s∈S

∞

k=m+1

ωsfk(n)△mvk(x) ⇒ (A.3)

∞

k=m+1

fk(n+ 1)

fm+1(n)
△mvk(x) =

s∈S

∞

k=m+1

ωs
fk(n)

fm+1(n)
△mvk(x− s) ⇒ (A.4)

△mvm+1(x) =
s∈S

ωs△mvm+1(x− s), (A.5)

where in the last line we take the limit n → ∞. This tells us that △mvm+1(x) is harmonic,
which the same as vm+1(x) being polyharmonic of degree m+ 1.
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Proof of Prop. 1.4
Proposition 1.4. Let A ⊂ Zd be bounded, and let (Sn)n≥0 be a random walk starting at some
x ∈ Zd. Let τ be the exit time of Sn from A, and g : Ac → C be any function. Finally, define
for k ∈ Z+:

fk(x) := Ex τ k−1g (Sτ ) . (1.42)

Then the fk satisfy the discrete Dirichlet problem

△kfk(x) = 0 ∀x ∈ A, (1.43)
f(x) = g(x) ∀x ∈ Ac. (1.44)

Proof. For x ∈ Ac we have τ = 0, therefore fk(x) = g(x) and the statement follows. So let us
assume in the following that x ∈ A. We will proceed by induction.

First, suppose that k = 1. Let S be the step set of the random walk, with weights (ωs)s∈S .
We can write, by decomposing over the first step,

f1(x) = Ex [g (Sτ )] (A.6)

=
s∈S

ωsEx+s [g (Sτ )] (A.7)

=
s∈S

ωsf1(x+ s), (A.8)

thus f1(x) is discrete harmonic.
Now assume that Prop. 1.4 holds for k = 1, . . . , l − 1. We can then write

fl(x) = Ex τ l−1g (Sτ ) (A.9)

=
s∈S

ωsEx+s (τ − 1)l−1g (Sτ ) (A.10)

=
s∈S

ωsEx+s

l−1

i=0

l − 1

i
τ i(−1)l−1g (Sτ ) (A.11)

=
s∈S

ωs

l−1

i=0

l − 1

i
fi(x+ s). (A.12)

Since by assumption we have △l−1fi = 0 for i = 1, . . . , l − 1, it follows that

△l−1fl(x) =
s∈S

ωsfl(x+ s), (A.13)

which is equivalent to △lfl(x) = 0.
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Figure A.1: The region S1 in the (s, t)-, and its imagine in the (u, v)-plane. As we want to
bound the integral of the exponential of the respective quadratic forms on the complements
on these regions from above, we can consider the complement of any square inscribed into S2

instead of that of the latter.

An error estimate for Section 4.1
Our goal in this section is to prove

Lemma A.1. Let Q(s, t) be a positive definite quadratic form. Then there are constants c, d > 0
such that

∞

−∞

∞

−∞
e−Q(s,t)dtds−

δ1
√
n

−δ1
√
n

δ2
√
n

−δ2
√
n

e−Q(s,t)dtds < ce−d
√
n. (A.14)

Proof. As Q(s, t) is positive definite, after a suitable (linear) coordinate transformation D we
can write Q(s, t) = λ1u

2+λ2v
2 =: Q′(u, v), where (u, v) = (s, t) ·D [115]. Under this coordinate

transformation, the rectangle S1 := {|s|< δ1
√
n, |t|< δ2

√
n} is mapped to a parallelogram

S2 := D · S1 containing the origin. We can then find another square S3, with sidelength δ3
√
n,

where δ3 > 0, which is completely contained in S2 (see Fig. A.1). Consequently, we know that

|detD|
S1

e−Q(s,t)dtds =
S2

e−Q′(u,v)dvdu >
S3

e−Q′(u,v)dtds.

In order to show (A.14) it therefore suffices to show that the integral of e−Q′(u,v) over the
complement of S3 is bounded from above by a term of the form c′e−d′

√
n, with c′, d′ > 0. As this

complement can be written as Sc
3 = A1 ∪A2, with A1 := {|u|> δ3

√
n} and A2 := {|v|> δ3

√
n},

it is therefore enough to show that

A1

e−Q′(u,v)dvdu+
A2

e−Q′(u,v)dvdu < c′e−d′
√
n. (A.15)
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We will consider the integral over A1, the one over A2 can be treated in the same fashion. We
have

A1

e−Q′(u,v)dvdu =
|u|>δ3

√
n

∞

−∞
e−Q′(u,v)dvdu (A.16)

=2
∞

δ3
√
n

e−λ1u2
∞

−∞
e−λ2v2dvdu (A.17)

=2
π

λ2

∞

δ3
√
n

e−λ1u2

. (A.18)

For n large enough, we know that λ1u
2 > λ1u for u ≥ δ3

√
n, thus we can utilize the (very

crude, but sufficient) estimate

∞

δ3
√
n

e−λ1u2

du <
∞

δ3
√
n

e−λ1udu =
e−λ1δ3

√
n

λ1

.

Applying the same argument to the integral over A2, we see that (A.15) holds for c′ = 1
λ1

+ 1
λ2

,
and d′ = min(λ1, λ2)δ3. From this, (A.14) follows immediately.

Proof of Lemma 5.7
We want to show

Lemma 5.7. Writing q as a function of t, we have

1. 0 < q(t) < 1 for 0 < t < tc,

2. q(t) as a function of t is continuous on (0, tc),

3. limt→0 q(t) = 0,

4. limt→tc q(t) = 1.

Proof. From [17] we know that we can write

q = exp −πK
√
1− k2 /K (k) ,

where k is the elliptic modulus, with 0 < k < 1, and K(k) is the complete elliptic integral

K(k) =
π/2

0

dθ

1− k2 sin2 θ
.

Using the explicit formula [97, (7.26)] for k, we see that k ∈ (0, 1) for t ∈ (0, tc), so the first
point follows. Making use of the fact that zeros of a polynomial are generically continuous in
its coefficients, we see that q(t) is continuous for t ∈ (0, tc).

It is shown in [97, 7.4] that if t → 0, then k → 1, which implies that limt→0 q(t) = 0. By the
same argument we can see that, using the notation as in [70, 97], if as t → tc we have x2 → x3,
then forcibly limt→tc q(t) = 1. But this can be seen with a straightforward adaptation of [70,
Sec. 2.3] (note that for our model the discriminant vanishes for no t at either 0 or ∞).

Remark: While not needed here, it seems plausible that q(t) is in fact increasing for t ∈ (0, tc).
A proof of this would likely come down to the study of the zeros x1 to x4 of the discriminant
(see e.g. [97]) and get rather technical.
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Proof of Lemma 5.8
In this section, our goal is to prove Lemma 5.8. To do so, we first show the preparatory
Lemma A.2.

Lemma A.2. Let S be a weighted step-set, let Q(x, y, t) be the generating function for walks
in the quadrant using this step-set and let r be the radius of convergence of Q(0, 0, t). If ℓ ∈ N
satisfies [tℓ]Q(0, 0, t) ̸= 0, then each generating function [xa][yb]Q(x, y, t) has no singularities tc
for |tc|≤ r except possibly at points re

2πij
ℓ for j = 0, 1, . . . , ℓ− 1.

Proof. We start by writing

Q(x, y, t) = Q0(x, y, t
ℓ) + tQ1(x, y, t

ℓ) + · · ·+ tℓ−1Qℓ−1(x, y, t
ℓ),

so tjQj(x, y, t
ℓ) counts walks whose length is j more than a multiple of ℓ. The radius of

convergence of [xayb]tjQj(x, y, t
ℓ) is no less than r as its coefficients are bounded above by the

coefficients of [xayb]Q(x, y, t). Hence each [xayb]Qj(x, y, t) has no singularities in |t|≤ rℓ. We
will now prove that each [xayb]Qj(x, y, t) has no singularities in |t|= rℓ except possibly at t = rℓ.
Note that [xayb]Qj(x, y, t) counts weighted quadrant walks from (0, 0) to (a, b) which can be
cut into succesive walks w1, w2, w3, . . . , wm of length ℓ followed by a walk v of length j, where t
counts the number of walks of length ℓ. Let Ω be a path of length ℓ from (0, 0) to (0, 0) in the
quadrant and let wΩ > 0 be the weight of Ω. Now let Q̃j(x, y, t) be the generating function for
walks counted by Qj(x, y, t), where none of the subpaths wk is equal to Ω. Note then that any
walk counted by Qj(x, y, t) can be uniquely constructed by taking a walk counted by Q̃j(x, y, t)
and inserting any number of copies of Ω before each wk and v. Hence

Qj(x, y, t) =
1

1− wΩt
Q̃j x, y,

t

1− wΩt
.

Now, the series F (t) := Q̃j(x, y, t), has non-negative coefficients, so its radius of convergence
tF > 0 is a singularity of F (t). Moreover, F (t) satisfies

[xa][yb]Qj(x, y, t) =
1

1− wΩt
F

t

1− wΩt
.

Hence [xa][yb]Qj(x, y, t) has a corresponding singularity at tQ = tF
1+wΩtF

> 0, so we must have
tQ ≥ rℓ. If [xa][yb]Qj(x, y, t) has another singularity t0 satisfying |t0|= rℓ, then t0

1−wΩt0
is a

singularity of F , so

rℓ

|1− wΩt0| =
|t0|

|1− wΩt0| ≥ tF =
tQ

1− wΩtQ
≥ rℓ

1− wΩtQ
,

hence
|1− wΩt0|≤ 1− wΩtQ ≤ 1− wΩr

ℓ = 1− |wΩt0|.
By the triangle inequality this is only possible if wΩt0 > 0 i.e., t0 = rℓ. Hence [xa][yb]Qj(x, y, t)
has no other singularities t0 satisfying |t0|= rℓ. Therefore, the series [xa][yb]tjQj(x, y, t

ℓ) has no
singularities on the radius of convergence r except possibly at points re

2πij
ℓ for j = 0, 1, . . . , ℓ−1.

Since this is true for all j, it follows that the same statement holds for [xa][yb]Q(x, y, t).

We can now proceed with the proof of Lemma 5.8.
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Lemma 5.8. Let S be a non-singular, weighted step-set, and let Q(x, y) be the generating
function (2.1) for walks in the quadrant using this step-set. Define the period of the model to
be the maximum value k such that Q(0, 0) = Q(0, 0; t) ∈ R[tk]. If r is the radius of convergence
of Q(0, 0), then the singularities of Q(0, 0) on the radius of convergence are precisely the points
re

2πij
k for j = 0, 1, . . . , k − 1. The same result holds for the generating function [xa][yb]Q(x, y)

for any a, b for which this generating function is non-zero.

Proof. First, since Qa,b(t) := [xa][yb]Q(x, y, t) is non-constant, it must have the same radius of
convergence r as Q(0, 0, t). Moreover, since Qa,b(t) has only non-negative coefficients, r must
be a singularity. Since k is a period of the model, the powers of t appearing in the generating
function Qa,b(t) must all have the same residue u modulo k. This means that for each integer
j, we can write

Qa,b(e
2πij
k t) = e

2πiju
k Qa,b(t),

so re
2πij
k is a singularity of Qa,b(t), as claimed. now suppose for the sake of contradiction that

there is some other singularity rκ on the radius of convergence, with |κ|= 1 but κk ̸= 1. Let
ρ > 0 be minimal such that κρ = 1 (with ρ := ∞ and ρZ := {0} if κ is not a root of unity).
Then k /∈ ρZ since κk ̸= 1. It follows from the maximality of k that there is some ℓ satisfying
[tℓ]Q(0, 0, t) ̸= 0 and ℓ /∈ ρZ. From Lemma A.2, the singularity rκ must satisfy κℓ = 1, but this
is a contradiction as ℓ /∈ ρZ.
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Appendix B

Additional examples

B.1 An example with large steps
Consider the model with steps (1, 0), (−1, 0), (0,−1), (−2, 1). In [19, Prop. 16] it is shown that

Q(x, y; t) = [x>y>]
(x2 + 1)(x+ y)(y − x)(x2y − 2x− y)(x3 − x− 2y)

x7y3(1− tS(x, y))
,

with S(x, y) the step counting polynomial

S(x, y) = x+ x−1 + y−1 + x−2y.

We find the dominant saddle point to be at s0 :=
√
3,
√
3 , and one other saddle point at

s1 = −√
3,−√

3 associated to it. We can check that we have1, using the notation as in the
proof of Thm. 4.1, N(s0) = 0 (in particular it is not infinite), thus we can proceed in the same
manner as in aforementioned theorem. We obtain

γ = 2
√
3, c = 3,

and have

v1(k, l) =
16

π
·
√
3
−1−k−l

(1 + k)(1 + l)(3 + k + 2l),

v2(k, l) = − 2

π

√
3
−1−k−l

(1 + k)(1 + l)(3 + k + 2l)(107 + 4k2 + 32l + 16l2 + 8k(1 + l)),

v3(k, l) =
1

8π

√
3
−3−k−l

(1 + k)(1 + l)(3 + k + 2l)(15205 + 16k4 + 8672l + 4976l2 + 832l3 + 256l4 + 64k3(1 + l)

+ 8k2(157 + 48l + 24l2) + 16k(149 + 157l + 36l2 + 16l3)).

B.2 A three-dimensional example
Consider the model with steps (−1,−1,−1), (−1,−1, 1), (−1, 1, 0), (1, 0, 0). In [23, 4.3] it is
shown that we have

Q(x, y, z; t) = x>0 y>0 z>0 x− x−1y − x−1y−1z − x−1y−1z−1 y − y−1z − y−1z−1 z − z−1

xyz (1− tS(x, y, z))
,

with the step counting polynomial

S(x, y, z) = x−1y−1z−1 + x−1y−1z + x−1y + x.

1This is in fact a consequence of K(x, y) still being quadratic in y, which allows one to argue in a fashion
similar as in the proof of Thm. 4.1.
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We can find the dominant saddle point of S(x, y, z) to be at s0 = 23/4, 21/2, 1 , with 7 others
associated to it. Using the notation as in (4.1), we can check that

γ = 2 · 23/4, c =
7

2
,

and that we have

v1(k, l,m) =
26

π3/2
2−3k/4−l/2(1 + k)(1 + l)(1 +m),

v2(k, l,m) =− 24

π3/2
2−3k/4−l/2(1 + k)(1 + l)(1 +m)(63− 8k + 2k2 − 4l + 4l2 + 16m+ 8m2),

v3(k, l,m) =
2

π3/2
2−3k/4−l/2(1 + k)(1 + l)(1 +m)(5313− 32k3 + 4k4 − 32l3 + 16l4 + 3040m

+ 1776m2 + 256m3 + 64m4 − 32k(43− 3l + 3l2 + 12m+ 6m2)

+ 8l2(93 + 16m+ 8m2) + 4k2(99− 4l + 4l2 + 16m+ 8m2)− 8l(103 + 48m+ 24m2)).
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Appendix C

Decomposition of polyharmonic functions

In this section we will, as in Sec. 4.2.2, once again give the expressions after the substitution
k → k − 1, l → l − 1 etc.

C.1 Gouyou-Beauchamps
For the Gouyou-Beauchamps model with steps S = {←,→,↖,↘}, we obtain as a basis of the
polyharmonic functions (from here on, all functions will be given only up to constant multiples):

h1
1 =kl(k + l)(k + 2l),

h2
1 =kl(k + l)(k + 2l)(42− 7k2 + k4 − 14kl + 4k3l − 14l2 − 8kl3 − 4l4),

h3
1 =kl(k + l)(k + 2l)(52976− 11880k2 + 2211k4 − 110k6 + 3k8 − 23760kl + 8844k3l − 660k5l + 24k7l

− 23760l2 + 4620k2l2 − 1100k4l2 + 32k6l2 − 8448kl3 − 144k5l3 − 4224l4 + 2200k2l4 − 424k4l4

+ 2640kl5 − 288k3l5 + 880l6 + 128k2l6 + 192kl7 + 48l8),

h1
2 =kl(k + l)(k + 2l)(−20 + k2 + 2kl + 2l2),

h2
2 =kl(k + l)(k + 2l)(−3010 + 567k2 − 78k4 + k6 + 1134kl − 312k3l + 6k5l + 1134l2 − 84k2l2

+ 10k4l2 + 456kl3 + 228l4 − 20k2l4 − 24kl5 − 8l6),

h1
3 =kl(k + l)(k + 2l)(−373 + k2 + 3k4 + 2kl + 12k3l + 2l2 − 4k2l2 − 32kl3 − 16l4).

In this case, due to the symmetry of the model we can pick h̃m
n (u, v) := hm

n (u, v). We consider
once again the first three vp(k, l, u, v) as appearing in Thm. 4.5. We obtain

v1(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v),

v2(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v)(15 + 2k2 + 4kl + 4l2 + 2u2 + 4uv + 4v2),

v3(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v)(1225 + 420k2 + 20k4 + 840kl + 80k3l + 840l2

+ 160k2l2 + 160kl3 + 80l4 + 420u2 + 48k2u2 + 96klu2 + 96l2u2 + 20u4 + 840uv

+ 96k2uv + 192kluv + 192l2uv + 80u3v + 840v2 + 96k2v2 + 192klv2 + 192l2v2

+ 160u2v2 + 160uv3 + 80v4).

We obtain

v1 =h1
1h̃

1
1,

v2 =2 h1
2h̃

1
1 + h1

1h̃
1
2 + 95h1

1h̃
1
1,

v3 =− 40 h1
3h̃

1
1 + h1

1h̃
1
3 + 48h1

2h̃
1
2 + 2400 h1

2h̃
1
1 + h1

1h̃
1
2 + 140 h2

1h̃
1
1 + h1

1h̃
2
1 + 36425h1

1h̃
1
1.

Here we notice that the number of summands is noticably reduced: as the degree of hj
i increases

by 4 whenever j increases by one, there are a lot less suitable combinations of base functions.
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C.2 Tandem walk
For the tandem walk, with steps S = {→, ↓,↖}, we have

v1(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v),

v2(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v)(15 + 2k2 + 4kl + 4l2 + 2u2 + 4uv + 4v2),

v3(k, l, u, v) =kl(k + l)(k + 2l)uv(u+ v)(u+ 2v)(1225 + 420k2 + 20k4 + 840kl + 80k3l + 840l2

+ 160k2l2 + 160kl3 + 80l4 + 420u2 + 48k2u2 + 96klu2 + 96l2u2 + 20u4 + 840uv

+ 96k2uv + 192kluv + 192l2uv + 80u3v + 840v2 + 96k2v2 + 192klv2 + 192l2v2

+ 160u2v2 + 160uv3 + 80v4).

We can compute

v1(k, l, u, v) =kluv(k + l)(u+ v),

v2(k, l, u, v) =kl(k + l)uv(u+ v)(20 + 3k2 + 3kl + 3l2 + 3u2 + 3uv + 3v2),

v3(k, l, u, v) =kl(k + l)uv(u+ v)(881 + 375k2 + 12k3 + 18k4 + 375kl + 18k2l + 36k3l + 375l2 − 18kl2

+ 54k2l2 − 12l3 + 36kl3 + 18l4 + 375u2 + 45k2u2 + 45klu2 + 45l2u2 − 12u3 + 18u4

+ 375uv + 45k2uv + 45kluv + 45l2uv − 18u2v + 36u3v + 375v2 + 45k2v2 + 45klv2

+ 45l2v2 + 18uv2 + 54u2v2 + 12v3 + 36uv3 + 18v4).

We can check that, although the model is not symmetric, we can let h̃m
n (u, v) := hm

n (v, u),
and obtain

v1 =h1
1h̃

1
1,

v2 =3 h1
2h̃

1
1 + h1

1h̃
1
2 + 38h1

1h̃
1
1,

v3 =18 h1
3h̃

3
1 + h1

1h̃
1
3 + 45h1

2h̃
1
2 + 660 h1

2h̃
1
1 + h1

1h̃
1
2 +

10

3
h2
1h̃

1
1 + h1

1h̃
2
1 + 14780h1

1h̃
1
1.

Note that even though we have v3(k, l, 1, 1) ̸= v3(1, 1, k, l) (i.e. we cannot just exchange starting
and endpoint and hope to obtain the same number of paths), the resulting representation for v3
in terms of products of the base functions is symmetrical. This is, as mentioned in the remark
after Thm. 4.7, still due to a symmetry property, using the fact that the polyharmonic and
adjoint polyharmonic functions are the same: the number of paths from a point x to a point y
is forcibly the same as the number of paths from y to x with the reversed step set.
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Appendix D

Table of polyharmonic functions

This section contains the first three asymptotic terms of the 19 orbit-summable examples from
[31]. Models 1 to 16 correspond to the models in [31, Table 1], models 17 and 18 to the first two
in [31, Table 2], and finally model 19 is the same as the first one in [31, Table 3]. The remaining
for models do not satisfy (2.18). All these models have, according to Thm. 4.1, asymptotics of
the form

q(k, l;n) =
a

π
· γ

n

nc

3

p=1

vp(k, l)
m
i=1 α

−k
i β−l

i ζni
np

+O 1

n4
. (D.1)

Here, a is a multiplicative constant (which one could just as well move into the vp, but is
separate here to keep things shorter). The constants α, β, γ are defined as in Section 2.1.4,
that is, given our dominant saddle point (x0, y0) with x0, y0 > 0, and another saddle point
(xi, yi) we have αi = xi/x0, βi = yi/y0 and ζi = S(xi, yi)/S(x0, y0). In particular, they all have
modulus 1. The number of relevant saddle points is given by m. Also, it will be noted for
each example if and when the cancellations occur that lead to the coefficients to vanish, i.e. for
which constellations of n, k and l we will have q(k, l;n) = 0 (which is also a direct consequence
of (D.1) and can be checked to agree with basic combinatorial considerations).

Model 1 (Simple walk)
S = x+ y + x−1 + y−1.
Relevant saddle points: (1, 1), (−1,−1).
γ = 4,
c = 2,
a = 16.
Periodicity: q(k, l, n) vanishes if j + k ̸≡ n mod 2.

v1(k, l) = (1 + k)(1 + l),

v2(k, l) = −1

2
(1 + k)(1 + l)(15 + 2k(2 + k) + 2l(2 + l)),

v3(k, l) =
1

4
(1 + k)(1 + l)(317 + 168l + 4(k(2 + k)(21 + k(2 + k)) + 4k(2 + k)l

+ (25 + 2k(2 + k))l2 + 4l3 + l4)).

Model 2 (Diagonal walk)
S = xy + xy−1 + x−1y + x−1y−1.
Relevant saddle points: (1, 1), (−1,−1), (1,−1), (−1, 1).
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γ = 4,
c = 2,
a = 2.
Periodicity: q(k, l, n) vanishes if j + k ̸≡ n+ k or j + k ̸≡ mod 2.

v1(k, l) =(1 + k)(1 + l),

v2(k, l) =− 1

2
(1 + k)(1 + l)(9 + k(2 + k) + l(2 + l)),

v3(k, l) =
1

4
(1 + k)(1 + l)(113 + 4k3 + k4 + 4k(13 + l(2 + l))

+ 2k2(15 + l(2 + l)) + l(2 + l)(26 + l(2 + l))).

Model 3
S = xy + y + x−1y + x−1y + x−1 + x−1y−1.
Relevant saddle points: (1, 1), (1,−1).
γ = 6,
c = 2,
a = 3

√
6

2
.

Periodicity: q(k, l;n) vanishes if l ̸≡ n mod 2.

v1(k, l) =
2
√
6

π
(1 + k)(1 + l),

v2(k, l) =− 1

16
(1 + k)(1 + l)(75 + 12k(2 + k) + 8l(2 + l)),

v3(k, l) =
1

512
(1 + k)(1 + l)(7793 + 3424l + 8(3k(2 + k)(103 + 6k(2 + k)) + 48k(2 + k)l

+ 6(41 + 4k(2 + k))l2 + 32l3 + 8l4)).

Model 4 (King’s walk)
S = xy + y + x−1y + x+ x−1 + xy−1 + x−1 + x−1y−1.
Relevant saddle point: (1, 1).
γ = 8,
c = 2,
a = 128

27
.

v1(k, l) =(1 + k)(1 + l),

v2(k, l) =− 1

3
(1 + k)(1 + l)(15 + 2k(2 + k) + 2l(2 + l)),

v3(k, l) =
1

18
(1 + k)(1 + l)(307 + 168l + 4(k(2 + k)(21 + k(2 + k))

+ 4k(2 + k)l + (25 + 2k(2 + k))l2 + 4l3 + l4)).

Model 5
S = xy + x−1y + y−1.
Relevant saddle points: 1, 1√

2
, 1,− 1√

2
, −1, i√

2
, −1, −i√

2
.

γ = 2
√
2,
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c = 2,
a = 4

√
2.

Periodicity: q(k, l;n) vanishes if n+ l ≡ 0 mod 4 ∧ k ≡ 0 mod 2 or n+ l ≡ 2 mod 4 ∧ k ≡ 1
mod 2.

v1(k, l) =2l/2(1 + k)(1 + l),

v2(k, l) =− 1

4
2l/2(1 + k)(1 + l)(27 + 8k + 4k2 + 10l + 2l2),

v3(k, l) =
1

32
2l/2(1 + k)(1 + l)(1049 + 64k3 + 16k4 + 748l + 264l2 + 40l3

+ 4l4 + 16k(43 + 14l + 2l2) + 8k2(51 + 14l + 2l2)).

Model 6
S = xy + x−1y + y−1 + x+ x−1.
Relevant saddle point: 1, 1√

2
.

γ = 2 + 2
√
2,

c = 2,
a = 2 7 + 5

√
2.

v1(k, l) =2l/2(1 + k)(1 + l),

v2(k, l) =− −239 + 169
√
2

2
2l/2(1 + k)(1 + l)(116592 + 82443

√
2

+ 4(3363 + 2378
√
2)k(2 + k) + 2l(26327 + 18616

√
2 + (8119 + 5741

√
2)l)),

v3(k, l) =
−47321 + 33461

√
2

16
2l/2(787537656 + 556873217

√
2

+ 32(941664 + 665857
√
2)k3 + 8(941664 + 665857

√
2)k4

+ 16k(24218939 + 17125376
√
2 + l(9255076 + 6544327

√
2(2273378 + 1607521

√
2)l))

+ 8k2(27985595 + 19788804
√
2 + l(9255076 + 6544327

√
2 + (2273378 + 1607521

√
2)l))

+ 2l(345292494 + 244158664
√
2 + l(168998590 + 119500049

√
2

+ l(35593948 + 25168722
√
2 + (5488420 + 3880899

√
2)l)))).

Model 7
S = y + y−1 + xy + x−1y.
Relevant saddle points: 1, 1√

3
, 1,− 1√

3
.

γ = 2
√
3,

c = 2,
a = 6

√
3.

Periodicity: q(k, l;n) vanishes if if n+ l ̸≡ 0 mod 2.

v1(k, l) =3l/2(1 + k)(1 + l),

v2(k, l) =− 1

8
3l/2(1 + k)(1 + l)(57 + 24k + 12k2 + 20l + 4l2),

v3(k, l) =
1

128
3l/2(1 + k)(1 + l)(4649 + 576k3 + 144k4 + 3160l + 1080l2 + 160l3

+ 16l4 + 48k(85 + 28l + 4l2) + 24k2(109 + 28l + 4l2)).
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Model 8
S = xy + y + x−1y + x+ x−1 + y−1.
Relevant saddle point: 1, 1√

3
.

γ = 2 + 2
√
3,

c = 2,
a = 2 10 + 6

√
3.

v1(k, l) =3l/2(1 + k)(1 + l),

v2(k, l) =
−332313 + 191861

√
3

48
3l/2(1 + k)(1 + l)(16850187 + 9728460

√
3

+ 12(191861 + 110771
√
3)k(2 + k) + 4l(1623931 + 937577

√
3 + (524174 + 302632

√
3)l)),

v3(k, l) =
897909603− 518408351

√
3

4608
3l/2(1 + k)(1 + l)

· (3(6408751361721 + 3700094323859
√
3) + 1152(897909603 + 518408351

√
3)k3

+ 288(897909603 + 518408351
√
3)k4 + 16(925894850856 + 534565641383

√
3)l

+ 16(434596264689 + 250914270407
√
3)l2 + 128(10381790502 + 5993929541

√
3)l3

+ 64(3351044259 + 1934726305
√
3)l4 + 96k(113649411684 + 65615518429

√
3

+ 4(9395817327 + 5424677663
√
3)l + 8(1226567328 + 708158977

√
3)l2)

+ 48k2(135199242156 + 78057318853
√
3 + 4(9395817327 + 5424677663

√
3)l

+ 8(1226567328 + 708158977
√
3)l2)).

Model 9
S = xy + y + x−1y + x−1y−1 + xy−1.
Relevant saddle points: 1, 2

3
, 1,− 2

3
.

γ = 2
√
6,

c = 2,
a = 12

√
6

5
√
5
.

Periodicity: q(k, l;n) is non-zero if l + n ≡ 0 mod 2.

v1(k, l) =
3

2

l/2

(1 + k)(1 + l),

v2(k, l) =− 1

2

3

2

l/2

(1 + k)(1 + l)(93 + 24k + 12k2 + 14l + 10l2),

v3(k, l) =
1

20000

3

2

l/2

(1 + k)(1 + l)(59581 + 2880k3 + 720k4 + 20540l + 14400l2 + 1400l3

+ 500l4 + 240k(133 + 10l + 10l2) + 120k2(157 + 10l + 10l2)).

Model 10
S = xy + y + x−1y + x+ x−1 + xy−1 + x−1y−1.
Relevant saddle point: 1, 2

3
.

142



γ = 2 + 2
√
6,

c = 2,

a =
2
√

(15893+4923
√
6

19
√
19

.

v1(k, l) =
3

2

l/2

(1 + k)(1 + l),

v2(k, l) =−
1/5(−19 + 9

√
6)

(21660(1 +
√
6)3/2(4027973401873 + 1644413252328

√
6)

3

2

l/2

(1 + k)(1 + l)

· (45(18505016772606410202221 + 7554641462421834757881
√
6)

+ 114(849879402283532379258 + 346961813082711773063
√
6)k(2 + k)

+ 19l(10112697572977267931562 + 4128491496146047169957
√
6

+ 19(333219362627049080772 + 136036235141952170767
√
6)l)),

v3(k, l) =
−95 + 45

√
6

312770400(1 +
√
6)39/2(7 + 2

√
6)5(2390878567 + 976071762

√
6)

3

2

l/2

(1 + k)(1 + l)

· (22785474319872188716997492431026219 + 9302130938496072914827735095375459
√
6

+ 190(58714971272234353430633623258438 + 23970286646524502952271000638793
√
6)l

+ 38(2736(8664069065571669392670303409 + 3537091384480473116541295049
√
6)k3

+ 684(8664069065571669392670303409 + 3537091384480473116541295049
√
6)k4

+ 19l2(7(1500064194302005269895412262701 + 612398642909845697072016762286
√
6)

+ 19l(80841533399881759930812247918 + 33003417808979012226614318448
√
6

+ 19(1331888155405956061399604179 + 543741062533549475178623769
√
6)l))

+ 12k(24218384855131622572815433525886 + 9887114214903395698238202393071
√
6

+ 38l(85765441941624024361847057633 + 35013595053545704368047082063
√
6

+ 19(3396994401828483455926278281 + 1386817157261791314493514666
√
6)l))

+ 6k2(5(5633840069806460763174618376078 + 2300005577245298287876206587083
√
6)

+ 38l(85765441941624024361847057633 + 35013595053545704368047082063
√
6

+ 19(3396994401828483455926278281 + 1386817157261791314493514666
√
6)l)))).

Model 11
S = y + xy−1 + y−1 + x−1y−1.
Relevant saddle points: 1,

√
3 , 1,−√

3 .
γ = 2

√
3,

c = 2,
a = 6

√
3.
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Periodicity: q(k, l;n) is non-zero if l + n ≡ 0 mod 2.

v1(k, l) =3−l/2(1 + k)(1 + l),

v2(k, l) =− 1

8
3−l/2(1 + k)(1 + l)(57 + 12k(2 + k) + 4(−1 + l)l),

v3(k, l) =
1

128
3−l/2(1 + k)(1 + l)(4649− 824l + 8(3k(2 + k)(85 + 6k(2 + k))− 36k(2 + k)l

+ 3(29 + 4k(2 + k))l2 − 4l3 + 2l4)).

Model 12
S = y + xy−1 + y−1 + x−1y−1 + x+ x−1.
Relevant saddle point: 1,

√
3 .

γ = 2 + 2
√
3,

c = 2,
a = 2 10 + 6

√
3.

v1(k, l) =3−l/2(1 + k)(1 + l),

v2(k, l) =
191861

√
3− 332313

48
3−l/2(1 + k)(1 + l)(16850187 + 9728460

√
3 + 12(191861

+ 110771
√
3)k(2 + k) + 4l(472765 + 272951

√
3 + (524174 + 302632

√
3)l)),

v3(k, l) =
897909603− 518408351

√
3

4608
3−l/2(1 + k)(1 + l)(3(6408751361721 + 3700094323859

√
3)

+ 1152(897909603 + 518408351
√
3)k3 + 288(897909603 + 518408351

√
3)k4

+ 96k(113649411684 + 65615518429
√
3 + 4l(416721297 + 240594153

√
3

+ 2(1226567328 + 708158977
√
3)l)) + 48k2(135199242156 + 78057318853

√
3

+ 4l(416721297 + 240594153
√
3 + 2(1226567328 + 708158977

√
3)l))

+ 16l(254773295988 + 147093431021
√
3 + l(316845801201 + 182931008615

√
3

+ 4l(6044773068 + 3489951358
√
3 + (3351044259 + 1934726305

√
3)l)))).

Model 13
S = xy + xy−1 + x−1y + x−1y−1 + y−1.
Relevant saddle points: 1, 3

2
, 1,− 3

2
.

γ = 2
√
6,

c = 2,
a = 12

√
6

5
√
5
.

144



Periodicity: q(k, l;n) is non-zero if n+ l ≡ 0 mod 2.

v1(k, l) =
2

3

l/2

(1 + k)(1 + l),

v2(k, l) =− 1

20

2

3

l/2

(1 + k)(1 + l)(93 + 12k(2 + k) + 2l(13 + 5l)),

v3(k, l) =
1

4000

2

3

l/2

(1 + k)(1 + l)(59581 + 32660l + 20(6k(2 + k)(133 + 6k(2 + k))

+ 180k(2 + k)l + 60(14 + k(2 + k))l2 + 130l3 + 25l4)).

Model 14
S = xy + xy−1 + x−1y + x−1y−1 + x+ x−1 + y−1.
Relevant saddle point: 1, 3

2
.

γ = 2 + 2
√
6,

c = 2,
a = 15893+4923

√
6

19
√
19

.

v1(k, l) =
2

3

l/2

(1 + k)(1 + l),

v2(k, l) =−
√
5

4332(1 +
√
6)23/2(119287 + 48682

√
6)

2

3

l/2

(1 + k)(1 + l)

· (45(923103972550017581 + 376855618721953841
√
6)

+ 114(42395371053890538 + 17307837756843143
√
6)k(2 + k)

+ 19l(758833876782694710 + 309792632946741935
√
6 + 19(16622309568974292

+ 6786029465163487
√
6)l)),

v3(k, l) =

√
5(847 + 342

√
6)

12510816(1 +
√
6)392(7 + 2

√
6)5(2390878567 + 976071762

√
6)

2

3

l/2

(1 + k)(1 + l)

(22785474319872188716997492431026219 + 9302130938496072914827735095375459
√
6

+ 38(407278641540756052645599450611474 + 166270809151458123021641573213639
√
6)l

+ 38(2736(8664069065571669392670303409 + 3537091384480473116541295049
√
6)k3

+ 684(8664069065571669392670303409 + 3537091384480473116541295049
√
6)k4

+ 19l2(12049478807347825345170268735043 + 4919179124080296718913160023698
√
6

+ 19l(121605466221823561401927587290 + 49645223696120508000536494440
√
6

+ 19(1331888155405956061399604179 + 543741062533549475178623769
√
6)l))

+ 12k(24218384855131622572815433525886 + 9887114214903395698238202393071
√
6

+ 38l(172406132597340718288550091723 + 70384508898350435533460032553
√
6

+ 19(3396994401828483455926278281 + 1386817157261791314493514666
√
6)l))

+ 6k2(5(5633840069806460763174618376078 + 2300005577245298287876206587083
√
6)

+ 38l(172406132597340718288550091723 + 70384508898350435533460032553
√
6

+ 19(3396994401828483455926278281 + 1386817157261791314493514666
√
6)l)))).
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Model 15
S = y + xy−1 + x−1y−1.
Relevant saddle points: 1,

√
2 , 1,−√

2 , −1, i
√
2 , −1,−i

√
2 .

γ = 2
√
2,

c = 2,
a = 4

√
2.

Periodicity: q(k, l;n) is non-zero if n+ l ≡ 0 mod 4∧k ≡ 1 mod 2 or n+ l ≡ 2 mod 3∧k ≡ 0
mod 2.

v1(k, l) =2−l/2(1 + k)(1 + l),

v2(k, l) =− 1

4
2−l/2(1 + k)(1 + l)27 + 4k(2 + k) + 2(−1 + l)l),

v3(k, l) =
1

32
2−l/2(1 + k)(1 + l)(1049 + 8k(2 + k)(43 + 2k(2 + k))− 188l − 48k(2 + k)l

+ 8(21 + 2k(2 + k))l2 − 8l3 + 4l4).

Model 16
S = y + x+ x−1 + xy−1 + x−1y−1.
Relevant saddle point: 1,

√
2 .

γ = 2 + 2
√
2,

c = 2,
a = 2 7 + 5

√
2.

v1(k, l) =2−l/2(1 + k)(1 + l),

v2(k, l) =
4756− 3363

√
2

8
2−l/2(1 + k)(1 + l)(116592 + 82443

√
2

+ 4(3363 + 2378
√
2)k(2 + k) + 2l(6149 + 4348

√
2 + (8119 + 5741

√
2)l)),

v3(k, l) =
−941664 + 665857

√
2

64
2−l/2(1 + k)(1 + l)(787537656 + 556873217

√
2

+ 32(941664 + 665857
√
2)k3 + 8(941664 + 665857

√
2)k4 + 16k(24218939

+ 17125376
√
2 + l(−161564− 114243

√
2 + (2273378 + 1607521

√
2)l))

+ 8k2(27985595 + 19788804
√
2 + l(−161564− 114243

√
2 + (2273378 + 1607521

√
2)l))

+ 2l(77265162 + 54634720
√
2 + l(114437518 + 80919545

√
2 + l(8313412 + 5878470

√
2

+ (5488420 + 3880899
√
2)l)))).

Model 17 (Tandem walk)
S = y + x−1 + xy−1.
Relevant saddle points: (1, 1), e4πi/3, e2πi/3 , e2πi/3, e4πi/3 .
γ = 3,
c = 3,
a = 27

√
3

2
.
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Periodicity: q(k, l;n) is non-zero if 2k + l ≡ n mod 3.

v1(k, l) =(1 + k)(1 + l)(2 + k + l),

v2(k, l) =− 1

3
(1 + k)(1 + l)(2 + k + l)(38 + 3k2 + 9l + 3l2 + 3k(3 + l)),

v3(k, l) =
1

18
(1 + k)(1 + l)(2 + k + l)(1930 + 9k4 + 954l + 417l2 + 60l3 + 9l4

+ 6k3(8 + 3l) + 3k2(121 + 33l + 9l2) + 3k(300 + 157l + 39l2 + 6l3)).

Model 18
S = y + x+ xy−1 + y−1 + x−1 + x−1y.
Relevant saddle point: (1, 1).
γ = 6,
c = 3,
a = 27

√
3

2
.

v1(k, l) =(1 + k)(1 + l)(2 + k + l),

v2(k, l) =− (1 + k)(1 + l)(2 + k + l)(11 + k2 + k(3 + l) + l(3 + l)),

v3(k, l) =
9

104
(1 + k)(1 + l)(2 + k + l)(940 + 6k4 + 12k3(3 + l) + 3l(3 + l)(57 + 2l(3 + l))

+ 3k(3 + l)(57 + 4l(3 + l)) + 9k2(25 + 2l(4 + l))).

Model 19 (Gouyou-Beauchamps)
S = x+ x−1 + xy−1 + x−1y.
Relevant saddle points: (1, 1), (−1, 1).
γ = 4,
c = 4,
a = 64.
Periodicity: q(k, l;n) is non-zero if k + n ≡ 0 mod 2.

v1(k, l) =(1 + k)(1 + l)(2 + k + l)(3 + k + 2l),

v2(k, l) =− 1

2
(1 + k)(1 + l)(2 + k + l)(3 + k + 2l)(35 + 2k2 + 4k(2 + l) + 4l(3 + l)),

v3(k, l) =
1

8
(1 + k)(1 + l)(2 + k + l)(3 + k + 2l)(25 + 2k2 + 4k(2 + l)

+ 4l(3 + l))(61 + 2k2 + 4k(2 + l) + 4l(3 + l)).
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