Constraints (2023) 28:320-361
https://doi.org/10.1007/510601-023-09347-2

®

Check for
updates

Exact methods for the Oven Scheduling Problem

Marie-Louise Lackner'® - Christoph Mrkvicka? - Nysret Musliu® -
Daniel Walkiewicz? - Felix Winter'

Accepted: 24 March 2023 / Published online: 4 July 2023
© The Author(s) 2023

Abstract

The Oven Scheduling Problem (OSP) is a new parallel batch scheduling problem that arises
in the area of electronic component manufacturing. Jobs need to be scheduled to one of
several ovens and may be processed simultaneously in one batch if they have compatible
requirements. The scheduling of jobs must respect several constraints concerning eligibil-
ity and availability of ovens, release dates of jobs, setup times between batches as well
as oven capacities. Running the ovens is highly energy-intensive and thus the main objec-
tive, besides finishing jobs on time, is to minimize the cumulative batch processing time
across all ovens. This objective distinguishes the OSP from other batch processing problems
which typically minimize objectives related to makespan, tardiness or lateness. We propose
to solve this NP-hard scheduling problem using exact techniques and present two different
modelling approaches, one based on batch positions and another on representative jobs for
batches. These models are formulated as constraint programming (CP) and integer linear
programming (ILP) models and implemented both in the solver-independent modeling lan-
guage MiniZinc and using interval variables in CP Optimizer. An extensive experimental
evaluation of our solution methods is performed on a diverse set of problem instances. We
evaluate the performance of several state-of-the-art solvers on the different models and on
three variants of the objective function that reflect different real-life scenarios. We show that
our models can find feasible solutions for instances of realistic size, many of those being
provably optimal or nearly optimal solutions.

DX Marie-Louise Lackner
marie-louise.lackner @tuwien.ac.at

Christoph Mrkvicka
christoph.mrkvicka@mcp-alfa.com

Nysret Musliu
musliu@dbai.tuwien.ac.at

Daniel Walkiewicz
daniel.walkiewicz@mcp-alfa.com

Felix Winter

winter @dbai.tuwien.ac.at

Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning
and Scheduling, DBAI, TU Wien, Favoritenstraie 9, 1040 Vienna, Austria

2 MCP GmbH, Canovagasse 7, 1010 Vienna, Austria

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-023-09347-2&domain=pdf
http://orcid.org/0000-0002-9916-9011

Constraints (2023) 28:320-361 321

Keywords Oven Scheduling Problem - Parallel batch processing -
Constraint programming - Integer linear programming

1 Introduction

In the electronics industry, many components need to undergo a hardening process which is
performed in specialised heat treatment ovens. As running these ovens is a highly energy-
intensive task, it is advantageous to group multiple jobs that produce compatible components
into batches for simultaneous processing. However, creating an efficient oven schedule is a
complex task as several cost objectives related to oven processing time, job tardiness and setup
costs need to be minimized. Furthermore, a multitude of constraints that impose restrictions
on the availability, capacity, and eligibility of ovens have to be considered. Due to the inherent
complexity of the problem and the large number of jobs that usually have to be batched in
real-life scheduling scenarios, efficient automated solution methods are thus needed to find
optimized schedules.

Over the last three decades, a wealth of scientific papers investigated batch scheduling
problems. Several early problem variants using single machine and parallel machine settings
were categorized and shown to be NP-hard [1]; further literature reviews on different problem
variants have been provided by Mathirajan et al. [2] as well as Fowler et al. [3]. Batch
scheduling problems share the common goal that jobs are processed simultaneously in batches
in order to increase efficiency. Besides this common goal, a variety of different problems with
unique constraints and solution objectives arise from different applications in the chemical,
aeronautical, electronic and steel-producing industry where batch processing machines can
appear in the form of autoclaves [4], ovens [5] or kilns [6].

For example, a just-in-time batch scheduling problem that aims to minimize tardiness and
earliness objectives has been recently investigated in [7]. Another recent study [6] introduced
a batch scheduling problem from the steel industry that includes setup times, release times,
as well as due date constraints. Furthermore, a complex two-phase batch scheduling problem
from the composites manufacturing industry has been solved with the use of CP and hybrid
techniques [8].

Exact methods used for finding optimal schedules on batch processing machines involve
dynamic programming [9] for the simplest variants as well as CP and mixed integer program-
ming (MIP) models. CP models have e.g. been proposed by Malapert et al. [4] and by Kosch
et al. [10], where both publications consider batch scheduling on a single machine with non-
identical job sizes and due dates but without release dates. A novel arc-flow based CP model
for minimizing makespan on parallel batch processing machines was recently proposed [11].
Branch and Bound [12] and Branch and Price [13] methods have been investigated as well.
As the majority of batch scheduling problems are NP-hard, exact methods are often not
capable of solving large instances within a reasonable time limit and thus (meta-)heuristic
techniques are designed in addition. These range from GRASP approaches [14] and variable
neighbourhood search [15], over genetic algorithms [16, 17], ant colony optimization [18]
and particle swarm optimization [19] to simulated annealing [20].

In this paper, we introduce the Oven Scheduling Problem (OSP), which is a new real-
life batch scheduling problem from the area of electronic component manufacturing. The
OSP defines a unique combination of cumulative batch processing time, tardiness and setup
cost objectives that need to be minimized. To the best of our knowledge, this objective has
not been studied previously in batch scheduling problems. Furthermore, we take special

@ Springer

322 Constraints (2023) 28:320-361

requirements of the electronic component manufacturing industry into account. Thus, the
problem considers specialized constraints concerning the availability of ovens as well as
constraints regarding oven capacity, oven eligibility and job compatibility.

The main contributions of this paper are:

e We introduce and formally specify a new real-life batch scheduling problem.

e Based on two different modelling approaches, we propose solver independent CP and
ILP models. These models are implemented using the high-level modeling language
MiniZinc, which allows us to use a palette of state-of-the-art solvers and to find the best-
suited one for the Oven Scheduling Problem. In addition, these two modelling approaches
are formulated using interval variables, which are decision variables tailored for the use
in scheduling problems. The interval variable models are implemented using the OPL
modeling language and solved with CP Optimizer.

e We provide a construction heuristic that can be used to quickly obtain feasible solutions.

e All our solution methods are extensively evaluated through a series of benchmark exper-
iments, including the evaluation of several search strategies and a warm-start approach.
Results are compared for three different variants of the objective function that arise from
practical use cases. For a sample of 80 benchmark instances, we obtain optimal results
for 37 instances, and provide upper and lower bounds on the objective for all instances.

We make the benchmark instances as well as the models described in this paper publicly
available on Zenodo [21]. The current paper is a significant extension of our CP 2021 con-
ference paper [22]. The major addition to our conference paper is an entirely new modeling
approach based on representative jobs for batches, which produces the best results on our
benchmark set (see Sections 4 and 5.2).

The rest of this paper is organized as follows: We first provide a description of the OSP
(Section 2) before we formally define the problem and formulate an ILP model (Section 3).
Then we present a second modelling approach using representative jobs (Section 4). Alter-
native model implementations as well as search strategies and the warm-start approach are
described in Section 5. Finally, we present and discuss experimental results (Section 6).

2 Description of the OSP

The OSP consists in creating a feasible assignment of jobs to batches and in finding an optimal
schedule of these batches on a set of ovens, which we refer to as machines in the remainder
of the paper.

Jobs that are assigned to the same batch need to have the same attribute;! in the context
of heat treatment this can be thought of as the temperature at which components need to
be processed. Moreover, a batch cannot start before the release date of any job assigned to
this batch. The batch processing time may not be shorter than the minimal processing time
of any assigned job and must not be longer then any job’s maximal processing time, as this
could damage the produced components. Every job can only be assigned to a set of eligible
machines. Moreover, machines have a maximal capacity, which may not be exceeded by the
cumulative size of jobs in a single batch.

Setup times between consecutive batches must also be taken into account. Setup times
depend on the ordered pair of attributes of the jobs in the respective batches and are inde-
pendent of the machine assignments. In the context of heat treatment, this can be thought

! In the literature, the concept of attribute compatibility is often treated under the term of incompatible job
Sfamilies, see, e.g. [15].

@ Springer

Constraints (2023) 28:320-361 323

of as the time required to switch from one temperature to another. Moreover, setup times
before the first batch on every machine need to be taken into account. Setup times before first
batches depend on the initial state of machines. Setup operations are scheduled immediately
before every batch.

Furthermore, machines are only available during machine-dependent availability inter-
vals, both batch processing times and setup times between batches need to be scheduled
within these machine availability intervals. In practice, an interval for which a machine is
unavailable can correspond to a period during which a machine is turned off or occupied with
some other task, or to a period for which the personnel required for the setup and running of
ovens is unavailable. For all described cases, the setup of machines for a given batch cannot
be performed during an interval for which the machine is unavailable and must precede the
batch immediately. Therefore, setup times also need to fall completely within the associated
availability interval.

The objective of the OSP is to minimize the cumulative batch processing time, total setup
costs, as well as the number of tardy jobs. These three objective components are combined
in a single objective function using a linear combination, as is formalized in Section 3.2. As
the minimization of job tardiness usually has the highest priority in practice, the tardiness
objective has a higher weight than the other objectives.

In practice, the cumulative batch processing time should be minimized as the cost of
running an oven depends merely on the processing time of the entire batch and not on the
number of jobs within a batch. Therefore, running an oven containing a single small job
incurs the same costs as running the oven filled to its maximal capacity.

Furthermore, we note that setup costs and setup times are not necessarily correlated. In
fact, cooling down an oven from a high to a low temperature might not incur any (energy)
costs, but still might require a certain amount of time. Setup costs are used to capture all
costs that are related to the setup required between batches; e.g. costs related to personnel
involved in the setup operation can also be captured by setup costs. Therefore, setup times are
not included in the objective function, only setup costs are. However, up to a certain extent,
setup times are implicitly minimized since they can have an impact on the tardiness of jobs.

Using the three-field notation introduced by Graham et al. [23], the OSP can be classified
as 15|rj-, d;, maxtj, bi, STsa p, SCsap, £, Avy|obj, where £; stands for eligible machines
and Av,, for availability of machines. A more formal description of the problem constraints
and the objective function obj is given in Section 3.

As shown by Uzsoy [24], minimizing makespan on a single batch processing machine is
an AP-hard problem. This can be seen as follows: For the special case that all jobs have
identical processing times, minimizing makespan on a single batch processing machine is
equivalent to a bin packing problem where the bin capacity is equal to the machine capacity
and item sizes are given by the job sizes. It follows that the OSP is A/P-hard as well, since it
generalizes this problem. Indeed, minimizing makespan on a single batch processing machine
is equivalent to minimizing batch processing times in an oven scheduling problem with a
single machine, a single attribute, no setup times, and for which all jobs are available at the
start of the scheduling horizon.

2.1 Instance parameters of the OSP
An instance of the OSP consists of a set M = {1, ..., k} of machines, aset 7 = {1, ..., n}

of jobs and a set A = {1, ..., a} of attributes as well as the length / € N of the scheduling
horizon. Every machine m € M has a maximum capacity c,, and an initial state s,, € A. The

@ Springer

324 Constraints (2023) 28:320-361

machine availability times are specified in the form of time intervals [as(m, i), ae(m, i)] C
[0, [] where as(m, i) denotes the start and ae(m, i) the end time of the i-th interval on
machine m. W.l.o.g. we assume that every machine has the same number of availability
intervals and denote this number by / where some of these intervals might be empty (i.e.
as(m, i) = ae(m,i)). Moreover, availability intervals have to be sorted in increasing order
(i.e.as(m,i) <ae(m,i) <as(m,i+ 1)]foralli <1 —1).

Every job j € J is specified by the following list of properties:

A set of eligible machines £; € M.

An earliest start time (or release time) ef; € Nwith 0 < et; <.

A latest end time (or due date) It; € N withet; < t; <1I.

A minimal processing time mint; € N with mint < mint; < maxr, where mint > 0
is the overall minimum and maxr <[is the overall maximum processing time.

e A maximal processing time maxt; € N with mint; < maxt; < maxr.

o Asizes; € N.

e Anattribute a; € A.

Moreover, an (¢ X a)-matrix of setup times st = (st(a;, a;))i<a;aj<a and an (a X a)-
matrix of setup costs sc¢ = (sc(a;, a;))1<q,a j<a are given to denote the setup times (resp.
costs) incurred between a batch with attribute a; and a subsequent batch with attribute a;.
Setup times (resp. costs) are integers in the range [0, maxgsr] (resp. [0, maxsc]), where
maxsy <1 (resp. maxsc € N) denotes the maximal setup time (resp. maximal setup cost).
Note that these matrices are not necessarily symmetric.

2.2 Objective function
The objective of the OSP is to minimize the following threefunctions:

e the cumulative batch processing time across all machines p
o the number of tardy jobs t
e and the cumulative setup costs sc.

The cumulative batch processing time is the sum of processing times of all batches, not of
all jobs. Minimizing the cumulative batch processing time thus leads to batches being formed
in the most efficient way. Setup costs are composed of the setup costs before the first batch
on every machine, which are determined by the initial state of the machine and the attribute
of the first batch, and the setup costs between consecutive batches, which are determined by
the attributes of the batches.

Depending on the application scenario, each of these three objective components are given
integer weights, and these weighted components are then combined in a single function by
means of a linear combination. Using such weights also allows us to implement lexicographic
optimization, as is detailed at the end of Section 3.2.

2.3 Example instance with six jobs
Consider the following example for an OSP instance consisting of six jobs, two attributes, two

machines and a scheduling horizon of length/ = 15. The instance parameters are summarized
in the following tables and matrices:

@ Springer

Constraints (2023) 28:320-361 325

12
Machine M, M, st = (3 1)
Cm 100 150
Sm 1 2
Availability [0,6] 2,10] sc — (0 20)
intervals [as, ae] [8,14] [11, 14] 10 0

Jobj | 1 2 3 4 5 6

g; M, M, M, M

M, My, M, M,
et 2 0 0 3 0 2
It 10 10 20 20 20 20

Figure 1 visualises a solution of this instance consisting of three batches. In this visu-
alisation, the dark grey areas correspond to time intervals for which the machine is not
available, light gray rectangles before batches are setup times and the dashed lines represent
the machine capacities. This solution is optimal with respect to the cumulative batch pro-
cessing time (p = 11) and the tardiness (r = 0). It is however not optimal with respect to the
setup costs: for this solution, the setup costs are sc¢ = 40, but solutions with s¢ = 30 exist as
well. However, lower setup costs can only be achieved to the detriment of job tardiness.

2.4 Construction heuristic

We designed a construction heuristic that can find initial solutions and can also serve as
upper bound on the optimal solution cost. The heuristic is a dispatching rule that prioritizes
jobs first by their earliest start date and then by their latest end date. Similar rules, such as
the Earliest Due Date (EDD) dispatching rule presented by Uzsoy [25] for batch scheduling
on a single machine with incompatible job families, have been proposed for other batch
scheduling problems.

Machine 1 Machine 2

i~ Job 1 = 1
etup _ etup a=
152 | a2 251 4

T

t=0 t=8 t=15 t=0 t=10 t=15

Fig.1 An optimal solution to the OSP for a small example problem

@ Springer

326 Constraints (2023) 28:320-361

The heuristic starts at time t = 0. At every time step ¢, the list of currently available
machines is generated: these are all machines on which no batch is running at time ¢ and
for which ¢ lies within a machine availability interval. For these available machines, the list
of available jobs is generated: these are jobs that have not yet been scheduled, have already
been released and can be processed on one of the available machines. Among these jobs, the
one with the earliest due date is chosen. If there are several jobs that fulfill these conditions,
the largest one is chosen first. In case of ties, the job with smallest index is selected. Let
the selected job be j € J. Moreover, if there are several machines for which j fits into the
current availability interval and that are eligible for j, the heuristic chooses the machine for
which the setup time from the previous batch (or from the initial state of the machine) is
minimal.

Once a job j is scheduled, the algorithm tries to add other jobs that are currently available
to the same batch: For this, jobs are only considered if their attribute as well as minimal and
maximal processing times are compatible with job j and the combined batch size does not
exceed the machine capacity. Moreover, unless job j finishes too late anyway, other jobs are
only considered if their processing time does not force j to finish late. If job j finishes late
in the current schedule, all compatible jobs that are currently available are considered for
addition to the batch. In case there are several jobs that meet these requirements, we sort
them in decreasing order of their latest end dates and keep adding jobs to the batch as long as
the machine capacity and compatibility requirements are fulfilled. If there are no jobs (left)
that can be added to the batch and the maximum machine capacity is not reached yet, we
look ahead and also consider jobs with an earliest start time > ¢. However, we only consider
compatible jobs that do not force job j to finish late (unless this was already the case) and
that can still be processed within the current machine availability interval. Once all jobs for
the batch have been chosen, the batch is scheduled at the earliest possible time.

If there are other jobs that can be processed at time ¢, we schedule them and fill up their
batches in the same way. If no job can be scheduled, the time is increased to ¢ + 1 and the
above procedure is repeated until the end of the scheduling horizon is reached or all jobs
have been scheduled.

For the example instance presented in the previous section (Section 2.3), the construction
heuristic delivers the optimal solution depicted in Fig. 1. It proceeds as follows: At time
t = 0, machine 1 is available and jobs 2 and 3 are available for this machine. Since job 2 has
an earlier latest end date, it is scheduled first. In order to respect the necessary setup times
from the initial state of machine 1, job 2 is scheduled at time ¢ = 2. To this batch, job 1 can
be added. No other jobs can be scheduled at the time is increased to + = 2. Now, job 5 is
selected and scheduled at time = 5 on machine 2. To this batch, jobs 4 and 6 can be added.
Finally, the time is increased until # = 8 and job 3 can be scheduled.

Note that this construction heuristic is not guaranteed to find a feasible solution for every
instance of the OSP. sIndeed, due to the ordering of the jobs and the way that jobs are
chosen to fill up batches, it is possible that the heuristic is not capable of scheduling all jobs
within the scheduling horizon. In order to see this, consider the following small example
with a single machine and two jobs: The scheduling horizon is / = 3 and the machine is
available for the entire interval [0, 3]. The two jobs 1 and 2 have the same attribute and
sizes are such that they can be processed together in a batch. The earliest start, latest end
and processing times are given as follows: er; = O and et = 1,1ty = 2 and It) = 3,
minty = minty = maxt; = maxty = 2. The only feasible solution is to schedule both
jobs at time r = 1, which leads to job 1 finishing late. The construction heuristic however
schedules job 1 at time ¢+ = 0 and then fails to schedule job 2. Even though we cannot
guarantee that the described construction heuristic finds a feasible solution for all instances

@ Springer

Constraints (2023) 28:320-361 327

(where such a solution exists), we can guarantee that the partial solution provided by the
heuristic, i.e., the solution restricted to those jobs that were scheduled, is be feasible. This is
due to the fact that all constraints are fulfilled when jobs are scheduled or added to existing
batches by the heuristic.

3 Formal problem definition and direct model for the OSP

In this section we provide a formal definition of the OSP that will also serve as an ILP model
for the problem that can be directly implemented using the modelling language MiniZinc [26].
The full MiniZinc model is also available on Zenodo [21].

The advantage of the free and open-source constraint modeling language MiniZinc is that
it can be used to model constraint optimization problems in a high-level, solver-independent
way. This model is then compiled into FlatZinc, which is a solver input language that can be
processed by a multitude of state-of-the-art solvers.

We first explain how batches are modeled and afterwards define decision variables, objec-
tive function, and the set of constraints.

The core idea is to model batches by their positions on machines. In the worst case
we need as many batches as there are jobs; we thus define the set of potential batches as
B ={B11,....Bin,....Br1,..., Brn} to model up to n batches for machines 1 to k.
In order to break symmetries in the model, we further enforce that batches are sorted in
ascending order of their start times and empty batches are scheduled at the end. That is,
B, p+1 1s the batch following immediately after batch By, , on machine m for b < n — 1.
Clearly, at most n of the k - n potential batches will actually be used and the rest will remain
empty.

3.1 Variables

We define the following decision variables:

e Machine and batch number assigned to job: X, ; € {0,1} Vm € M Vb €
[l,n] VjeJ
The binary variables X,, ; ; encode whether job j is assigned to batch B, i.e.,
Xm,p,j = 1if and only if job j is assigned to batch b on machine m.

e Start times of batches: S, 5 € [0,/]] CN Vm e M Vb e [1,n]

e Processing times of batches: Py, € [0, maxr] CN Vm e M Vb € [1,n]

To handle empty batches, we define an additional attribute with value 0 and extend the
matrices of setup times s and setup costs s¢ so that no costs occur when transitioning from an
arbitrary batch to an empty batch: s7(a;, aj) = 5c(a;, aj) = 0if a; = 0 or a;=0. Moreover,
we add a machine availability interval [/, /] of length O to the list of availability intervals so
that empty batches can be scheduled for this interval (the maximum number of intervals per
machine therefore becomes / + 1).

We then define the following auxiliary variables:

e Availability interval for batch: I, ,; € {0, 1} Vm e M Vbe|[l,n] Viell,I+1]
The binary variables I,, , ; encode whether batch b on machine m is scheduled within
the machine’s i-th availability interval.

e Attribute of batch: A, , € [0,a] VYm e M Vb e [1,n]

@ Springer

328 Constraints (2023) 28:320-361

e Tardy jobs: T;, . ; € {0,1} Vm e MVb e [1,nlVj e T
The binary auxiliary variables T}, 5 ; encode whether job j in batch By, j finishes after
its latest end date.
e Setup times and costs: st,, 5 € [0, maxsr] and scp, p € [0, maxsc]Vm € M Vb €
[1, n] for setup times and costs between batch b on machine m and the following batch.
e Empty batches: E,, , € {0, 1} Vm e M Vb € [1, n]
The binary variables E,, , encode whether batch b on machine m is empty.

3.2 Objective function
Recall that the three components of the objective function are the cumulative batch processing

time across all machines p, the number of tardy jobs ¢ and the cumulative setup costs sc.
They are formally defined as follows:

n
pP= Z me,b

meM b=1
n—1
sC = Z Sc(Sm> Am,1) + Z Zscm,b
meM meM b=1
n
=YY Y T <
jeJ meM b=l

Note that in the definition of the setup costs, the first sum refers to the setup costs from the
initial state of a machine to its first batch and the second sum refers to the costs incurred
between batches.

Normalization of cost components Finding a trade-off among several objectives is the
topic of multiobjective optimization [27, 28]. In practice, lexicographic optimization is often
chosen. For our specific application, we wanted an approach that allows high flexibility and
lets users decide on the importance of each objective. We thus decided in consultation with
our industrial partner to define the objective function as a linear combination of the three
components. This approach also enables lexicographic optimization, by setting the weights
accordingly as will be explained at the end of this subsection. Also note that all solutions that
are optimal with respect to a weighted sum of the objective components are Pareto-optimal
[29] with respect to the three objective components. However we cannot guarantee to find
all Pareto-optimal solutions using this type of objective function.

In order to combine the three objective components using a linear combination, p, sc
and ¢ need to be normalized to p, sc and 7 € [0, 1] so that we can guarantee that all three
components take values in the same range:

> .o mint;
p= Lwith avg, = [L]
avg; -n
- sc
sc =
max(maxsc, 1) - n
~ t
t=— ?2)

n

In the worst case, every batch processes a single job. In this case the total batch processing
time is n times the average job processing time avg;. The setup costs are bounded by the
maximum setup cost multiplied with the number of jobs. We take the maximum of 1 and

@ Springer

Constraints (2023) 28:320-361 329

maxgc since it is possible that maxgc = 0. The number of tardy jobs is clearly bounded by
the total number of jobs.
Finally, the objective function obj is a linear combination of the three normalized compo-
nents:
obj = (wp - P+ Wy - SC+ wy - f)/(wp +wse +w;) €[0,1]CR 3

where the weights w,, wy. and w, take integer values.

Integer-valued objective As some state-of-the-art CP solvers can only handle integer
domains, we propose an alternative objective function obj’, where we additionally multiply
P, sc, and £ by the number of jobs and the least common multiple of avg, and maxsc:

obj’ =C-n-(wp+wg+w) -obj €N
.C .C
=Y -p+ Wse -sc+w; - C -t
avg; max(maxsc, 1)

where C = 1lcm(avg;, max(maxsc, 1)). 4)

Preliminary experiments using the MIP solver Gurobi showed that using obj and obj’ both
lead to similar results. We therefore used only obj’ in our final experimental evaluation.

Lexicographic optimization The use of integer weights for each of the objective com-
ponents also allows us to express the OSP as a lexicographic minimization problem. This
can be done using so-called “big M”-constants. In order to explain this in more detail, let us
denote by obj; € {p, sc, t} the objective component with highest lexicographic importance,
obj, the component with second-highest importance and with obj; the component with low-
est importance. Lexicographic optimality is defined using the lexicographic order <;,, as
follows:

S1 <lex 52
<= obj;(s1) < obj;(s2)
with j € {1, 2, 3} the smallest index such that objj (s1) # objj(sz)
and where s1 and s; are two feasible solutions to the OSP. Lexicographic minimization can

be achieved by minimizing the integer-valued objective function obj” with weights set as
follows:

3]

obj’ = wj - obj; + wa - obj, + w3 - objy
1

wy = ub(objz) + 1

wy = wy - (ub(obj,) + 1),

w3

where the upper bounds of the objective components are calculated as in the normalization
of components (see (2)), i.e.,

ub(p) = avg; - n
ub(sc) = max(maxsc, 1) -n
ub(t) = n.

Note that the calculation of the least common multiple as in (4) is not necessary here. The
corresponding normalized objective function obj is then given as follows:

=/ :/

obj obj

= = c [0, 1].
ub(obj) wy - ub(obj;) + wy - ub(obj,) + ub(objsz) [0 11

obj

@ Springer

330 Constraints (2023) 28:320-361

For a concrete example of lexicographic minimization, see the description of use case UC2
in Section 6.1.2.

3.3 Constraints

In what follows, we formally define the constraints of the OSP2

e Each job is assigned to exactly one batch:

n
DD Xupj=1 Vj

meM b=1

e Each job is assigned to exactly one eligible machine:
n
2D Xmbj=1 Vi
meSj b=1
e Batches may not start before the earliest start of any job in the batch:
Smp > etj-Xmp,j Ym,Vb,Vj

e Batch processing times must lie between the minimal and maximal processing time of
all assigned jobs:

mintj . Xm,b,j < Pm,b A
Py p <maxtj - Xpp, j +maxy - (1 — Xy p,j) Vm, Vb,V j

Batches on the same machine may not overlap and setup times must be considered
between consecutive batches:

Sm,b + Pm,b + Sty p < Sm,b+1 Ym,V¥b <n—1,

Batches and the preceding setup times must lie entirely within one machine availability
interval:

as(m» l) . Im,b,i = Sm,b A

Sm,h <ae(m,i) - Im,b,i +1- (1 — Im,h,i) Vm, Vb, Vi (5)
S Inpi =1 Vm, Vb (6)

I<i<I+l1
as(m,i) - Impi < Smp— Stm.b—1 VYm,Vb > 2,Vi (7)
as(m,i) - Iy1i < Su1—St(Sm, Am.1) Vm, Vi (8)
Sm,b + Pup < ae(m,i) - Im,b,i +1-(1— Im,b,i) VYm, Vb, Vi 9)

The binary auxiliary variables I,,, , ; in constraint (5) encode whether batch b on machine
m is scheduled within the i-th availability interval [as(m, i), ae(m, i)] of machine m.
Therefore, if I, ,; = 1, it must hold that as(m, i) < S, , < ae(m,i). The redundant
constraint (6) ensures that every batch is scheduled within exactly one availability interval.
Constraints (7)— (9) ensure that the entire processing time of batch By, ;, as well as the
preceding setup times s?,, 1 lie within a single availability interval. Constraint (8) takes
care of the special case of the first batch on a machine.

2 If not stated otherwise, Vm is short for Vm € M, Vb for Vb € [1,n], Vi for Vi € [1,I + 1] and V for
VjiedJ.

@ Springer

Constraints (2023) 28:320-361 331

e Total batch size must be less than machine capacity:
Z Sj-Xmp,j <cm Ym,Vb
jeg
e Jobs in one batch must have the same attribute, which we model with auxiliary variables
A p to set the attribute of a batch:
aj 'Xm,b,j =< Am,b A
Amp <aj - Xppj+a - (1 —Xppj) Vm,Vb,Vj,
where a is the total number of attributes. It thus has to hold that a; = A,, ;, if job j is

scheduled in batch B, , 0 < A, < a if job j is not scheduled in batch B, p.
e Helper variables for tardy jobs:

Tm,b,j = Xm,b,j Vj,Vm,Vb (10)
Smb + Pnp < Xmpj— T j) - Uty =D +1 Vj,Vm, Vb (11)
Snl,b+P)n,b+(1_Tm,b,j)'(l+1) >ltj Vj,Vm,Vb (12)

The binary auxiliary variables 7, , ; encode whether job j in batch b on machine m
finishes after its latest end date and is used to calculate the number of tardy jobs ¢.
Constraint (10) ensures that T} ;,, , = 1 is only possible if job j is assigned to batch b on
machine m.If T} ,, , = 0, job j must finish before /¢; (Constraint (11)) and if T} , p, = 1,
it must hold that Sy, 5 + Py, > It; (Constraint (12)).

e Setup times and costs between consecutive batches on the same machine:

Stm,p = S_I(Am,b» Ampr1) Ym,¥b <n —1
Scmp = SC(Am.p, Amp+1) Ym,¥Yb <n —1

The helper variables st,, 5 (resp. scp,) encode the setup time (resp. setup cost) between
batch b on machine m and the following batch on the same machine. Note that setup
times and costs are also defined between empty batches and set to O in this case, as the
setup costs and times from attribute O to attribute O are equal to 0.

e Set decision variables for empty batches:

Zje._’] Xmb,j = 1—Enp Ym,Vb (13)
Xmp,j < 1= Enp Ym,Vb,Vj (14)
Smp =1 Epp VYm, Vb (15)

Py <=maxr - (1 — Ep p) Ym, Vb (16)
Em,b <= Im,b,]+l Vm, Vb (17)
App<=a-(1—Ey,p) VYm,Vb (18)
Emp <= Emps1 Vm, Vb <n — 1 (19)

The binary helper variables E,, , encode whether batch b on machine m is empty or not.
Constraints (13) and (14) ensure that E,, , = 1 iff no job is scheduled for batch By, ;.
The constraints (15) to (17) set the start times, processing times, availability intervals,
and attributes for empty batches: S, = I, Pyp = 0, Ay = 0and I, = I + 1.
Moreover, in order to break symmetries, the list of batches (B, p)1<p<n per machine
m € M is sorted so that all non-empty batches appear first (constraint (19)).

@ Springer

332 Constraints (2023) 28:320-361

4 Interval variable model using representative jobs for batches

For the model presented in Section 3, we decided to create decision variables for start times
and processing times of every batch that could possibly be present (n - k batches in total).
Which batch a job is assigned to was then encoded using additional decision variables. The
scheduling constraints were formulated for the batches.

An alternative approach is to schedule jobs instead of batches. However, only one rep-
resentative job for every batch is scheduled; all other jobs in the same batch point to their
representative job. In order to break symmetries, the job with lowest index is chosen to be the
representative job for its batch. Whereas the previous approach models the OSP primarily
as an assignment problem (jobs are assigned to batches that have a predefined order), this
approach focuses more on the scheduling aspect of the OSP: a subset of representative jobs
are chosen for which an optimal schedule needs to be found. Such a modelling approach has
been used previously in the literature for batch scheduling problems, e.g. by Kosch et al. [10]
who speak of host jobs instead of representative jobs.

Since CP Optimizer is particularly well suited for scheduling problems as demonstrated
by Laborie et al. [30], we formulated this modelling approach based on representative jobs
as a CP model for IBM ILOG CPLEX Studio. This model is written using the Optimization
Programming Language (OPL) [31] and makes use of interval variables, as well as other con-
cepts that are specific to CP Optimizer. The full OPL model is also available on Zenodo [21].
In addition, we modelled this approach using the MiniZinc modelling language in order to
be able to evaluate the performance of different solvers. This alternative solver-independent
CP formulation is briefly described in Section 5.2.

Before we describe the model, we give a brief explanation of the use of interval
variables in OPL. An interval variable int is a decision variable that can either be
present or absent in a solution. In case it is present, it is characterized by a start time
Start(int), an end time End(int) and a size size(int). An interval variable is defined
by a tuple (optional, [StartMin, EndMax], [SZMin, SZMax], F) or (optional,
[StartMin, EndMax],[SZMin, SZMax]), where the parameters can take the following
values:

e optional € {T, L} indicates whether the interval variable is optional or not. Optional
interval variables are used to model tasks that can be left unperformed in the schedule,

o the time window [StartMin, EndMax] C N restricts the start and end time of the
interval variable, i.e., StartMin < Start(int) and End(int) < EndMax.

o the size range [SZMin, SZMax] C N restricts the size of the interval variable, i.e.,
SZMin < size(int) < SZMax,

o the intensity function F, is a step-function taking integer values. Intensity functions are
used to model time periods during which tasks cannot be (fully) performed. For the OSP,
intensity functions can be used to model the machine availability times.

For a more formal definition of the used CP Optimizer concepts, see [30], and for more
information on how they can be used, see the tutorial [32].
We define the following decision variables for the OSP:

e Optional interval variables for jobs:
interval job; : (T, [et;, 1], [mint;, maxt;]) Vje€J.

The variable job; is only present if job j is the representative job of its batch. Note that
the time window [et;, [] ensures that every representative job starts after its earliest start
time et;.

@ Springer

Constraints (2023) 28:320-361 333

e Optional interval variables for jobs on machines:
intervaljoij’m : (T, [etj, 1], [mint;, maxt;], avy,) Vj€J VYme M.

The variable jobM; ,, is only present if job j is assigned to machine m and is representa-
tive for its batch. The intensity function av,, encodes the machine availability times and
is modeled using intensity step functions; av,, (t) = 100% if machine m is available at
time ¢ (the job can be fully performed by the machine) and av,, (1) = 0% otherwise (the
job cannot be performed by the machine).

e Pointers to representative jobs in the same batch:

inBatchWith; € [0,n] Vj € J.

If inBatchWith; = i for some job i € 7, job j is scheduled in the same batch as job i
and job i is representative for this batch. If inBatchWith; = 0, job j is representative for
its batch.

e In order to establish the order of jobs, respectively batches, on machines, we make use
of a type of decision variable called interval sequence variable in OPL. An interval
sequence variable seq is defined by a tuple (S, 7') where S is a set of interval variables
and 7 € N with |T| = |S] is a set of so-called integer fypes. The value of an interval
sequence variable seq is a permutation of the interval variables in S (any absent interval
variables are ignored). We define the following interval sequence variables:

sequence mach,, : ({jobM; ,, : j € T}, {a;j: j € T}) Vm € M.

The value of mach,, is thus a permutation of the interval variables jobM; ,,. The types
are used to model the attribute of jobs (the attribute of a batch containing job j is equal
to a;). This allows us to formulate scheduling constraints such as noOverlap and to
use functions such as endOfPrev and typeOfPrev to formulate constraints on the
start times of batches and setup times between batches.

e Setup times between batches are also modelled using optional interval variables:

interval setup; ,, : (T,10,1]1, [0, maxsT], avy) VjeTJ VYmeM,

where maxgr denotes the overall maximum setup time. The variable setup; , is used to
model the setup operation before jobM; . Setup times need to be modelled in addition
to jobs themselves in order to ensure that setup times fall within the same machine
availability interval as the following jobs.

e A binary helper variable is used to model tardy jobs:

tardy; € {0, 1} Vj e J.

For the formulation of the objective function as well as the constraints, we make use of the
OPL function typeOfPrev. For a sequence interval variable s, an interval variable i, and
two integers b and ¢, typeOfPrev(s,i, b, c) returns the type (=attribute) of the interval
variable that is previous to i in the sequence s. When i is present and is the first interval in s,
the function returns the constant integer value b. When i is absent, the function returns the

@ Springer

334 Constraints (2023) 28:320-361

constant integer value c. We then model the OSP as follows:

Min.obj” = w), - p + Wy - sc + w; - £, with

D

memM jeg
jeT

sC = } SCprev(j.m).a;>

meM
jeTJ

where prev(j,m) = typeOfPrev(machm,joij,m, Sm, 0).

s.t. alternative(job;, {jobM; ,, : m € M})
alternative(job;, {jobM; , :m € &yu})
(presenceof(jobj) A inBatchWith; = 0)

\/(—-presenceof(iobj) A inBatchWith; > 0)
inBatchWith; =i = presenceOf(job;,) Ai < j
inBatchWith; =i
= a; =aj
Amint; < lengthOf(job;) < maxt;
AstartOf(job;) > et;

A Y presenceOf(jobM;) =1
mesj
presenceOf(jobM;) - (s; + > 5i) < Cm
ieJ with
inBatchWith; =
noOverlap(mach,,, st)

presenceOf(jobM;) = presenceof(setupj’m)

j.m

endAtStart(setup; ,,, jobM;)

Jj.m
endOfPrev(mach,,, jobM; , , 0)

J.m>

< startof(setupj’m)
lengthOf(setup; ,,) = sig; a;

Z lengthOf(joijym), t= Z tardyj,

vj

vj

vj
Vi,jed
Vi,jed
Ym,Vj
Vm
Vm,Vj
Ym,Vj
VYm,Vj

where a; = typeOfPrev(machm,joij,m, Sm,0) Ym, Vj

forbidExtent(joij’m, avy,)
forbidExtent(setupj’m, avy,)
(presenceO£f(job;) A endO£(job;) > Ir})
V(inBatchWith; =i A endO£f(job;) > It;)
= tardy; =1

>, presenceOf(jobM;) <n
meM,jeJ

Ym,Vj
Vm, Vj

Vi,jeJd

(20)

2y
(22)

(23)
24)

(25)
(26)
€2))

(28)
(29)

(30)
3D

(32)
(33)

(34)
(35)

The alternative constraint in (21) ensures that every job j, whenever present, is
scheduled on exactly one machine and that the interval variables job; and jobM; , are
synchronised, where m is the machine j is assigned to. Constraint (22) ensures that every job
J, whenever present, is scheduled on an eligible machine. Constraints (23) and (24) ensure

@ Springer

Constraints (2023) 28:320-361 335

that every job is either scheduled or points at some other job that is scheduled and has a lower
index.

Constraint (25) concerns the conditions that need to be fulfilled for all non-representative
jobs in a batch: every job needs to have the same attribute as the representative job for the
batch, the length of the interval variable corresponding to the representative job must be
greater than or equal to the minimum processing time and smaller than or equal to than the
maximum processing time of every job in the batch and the start of the representative job may
not before the earliest start time of any other job in the batch. Note that for representative jobs,
the conditions on the processing times and the earliest start time are fulfilled by definition of
the job interval variables. However, for all non-representative jobs in a batch, these conditions
need to be stated explicitly in the form of constraints. Moreover, it is ensured that jobs can only
be processed together with another job if the assigned machine is eligible. Constraint (26)
guarantees that machine capacities are not exceeded.

The noOverlap-constraint in equation (27) ensures that representative jobs, i.e. batches,
on the same machine do not overlap. Passing the setup time matrix st as additional parameter
to the noOverlap-constraint enforces a minimal distance between consecutive jobs based
on the types (=attributes) of the jobs. This constraint is sufficient to ensure that enough time
is left between batches to allow for the setup operation to be performed. However, we also
need to guarantee that the setup operation falls within the same machine availability interval
as the following batch.

Therefore, setup times are also modelled as interval variables and have to fulfill con-
straints (28)—(31): the setup time interval before job j on machine m is present if and only
if job j is present on machine m (constraint (28)), setup times end exactly at the start of the
following job (constraint (29)) and start after the preceding job on the same machine, or at a
time > 0 if the following job is the first on this machine (constraint (30)). The length of the
setup time interval is given by the entry st(a;, a;) in the setup time-matrix, where a; is the
attribute of the preceding and a; of the following job on the machine. Constraints (32) and
(33) finally force jobs and setup times to fall entirely within a machine availability interval
of the assigned machine: whenever jobM; ,, or setup; ,, is present, it cannot overlap a point
t where av,,(t) = 0.

The helper variable encoding tardy jobs is set via constraint (34). Finally, (35) is a redun-
dant constraint that states that the total number of batches is smaller or equal to the total
number of jobs.

5 Alternative model implementations, search strategies

and warm-start
To make a thorough comparison of our models possible, we also implemented the direct
model presented in Section 3 using OPL and created a solver-independent MiniZinc model
with representative jobs per batch based on the OPL model presented in Section 4. We briefly

describe these two alternative implementations in the following. The full models are available
on Zenodo [21].

5.1 Alternative interval variable model using batch positions

This model is based on the direct model using batch positions as described in Section 3.

@ Springer

336 Constraints (2023) 28:320-361

We use optional interval variables for all possible batches:
Bup : (T,10,11, [mint, maxt], av,,) forallm e M, b € [1, n],

where mint is the overall minimum and maxr is the overall maximum processing
time). Batches are optional since not all & - n batches will actually be used. Setup
times between batches are also modelled using optional interval variables: st p
(T, 10,11, [0, maxsT], avy) for all m € M and all possible batch positions b € [1, n]
(recall that maxgr is the overall maximum setup time).

Besides these interval variables, we use the same decision variables as in Section 3:
Xm,p,j € {0, 1} to encode whether job j is assigned to batch By, p, Ay p € [0, a] for the
attribute of batch By, ;, and sc, , for setup costs.

The following constraints are used for the batch and setup time interval variables:

e presenceOf ensures that a batch is present iff some job is assigned to it. Similarly,
setup times are present iff the preceding and following batch are present.

e endBeforeStart is used to enforce the order of batches and setup times on the same
machine and endAtStart is used to schedule setup times exactly before the following
batch.

e startOf restricts the start time of batches to be after the earliest start date of any
assigned job and 1engthOf is used to enforce that batch processing times lie between
the minimal and maximal processing time for every assigned job

e noOverlapisused as aredundant constraint to ensure that batches on the same machine
do not overlap

e forbidExtent isused to guarantee that batches and setup times are scheduled entirely
within one machine availability interval: whenever By, ;, or st is present, it cannot
overlap a point r where av,, (t) = 0.

5.2 Alternative direct model with representative jobs per batch

This model is based on the OPL model presented in detail in Section 4 and is implemented
using the high-level constraint modeling language MiniZinc [26].

In MiniZinc, interval variables are not available. Instead, we model (optional) start times
of jobs and processing times of jobs in separate decision variables. Optional integer variables
are available in MiniZinc as well and can either take an integer value or the value <>,
indicating that the variable is absent. We define the following decision variables:

e Optional start time of jobs and optional start times of jobs on machines: start; € [0, /]
and startM; , € [0,]] Vj € J Vm € M. (this variable is absent for jobs which are
not representative or not assigned to the given machine).

e Processing times of jobs and processing times of jobs on machines: proc; € [0, maxr]
and proch’m € [0,maxt] VjeJ Vme M.

o Optional pointers to representative jobs in the same batch: inBatchWith; € 7 Vj € J

e Optional variables for the length of setup times before batches: setup im € [0, maxsr] Vj e
J VYm e M.

Moreover, we use the following auxiliary variables to handle machine availability intervals
and to define setup times between batches:

e Optional variables for the availability interval a job is scheduled to an a given machine:
Iimelll VjeJ VmeM.

@ Springer

Constraints (2023) 28:320-361 337

o Attribute of previous job on the same machine: attPrev; ,, € [0,a] Vj e J Vm e M
(is equal to O if there is no previous job).

e End time of previous job on the same machine: endPrev; ,, € [0,]] Vj € J Vm e M
(is equal to O if there is no previous job).

e Binary variables encoding whether a job is the first one on its assigned machine: first; ,, €
(0,1} VjeJ VYme M.

We make use of the following global constraints:

e alternative to ensure that every job that is present, i.e., every representative job, is
scheduled to exactly one machine,
e disjunctive to enforce that representative jobs on the same machine do not overlap.

5.3 Alternative interval variable model using state functions in OPL

Another way of modeling batches in CP Optimizer is with the help of so-called state function
variables [30], as done, e.g., by Ham et al. [33] for a flexible job shop scheduling problem
with parallel batch processing machines. These functions model the time evolution of a
value that can be required by interval variables; for the OSP, state functions could model
the attribute of jobs. Two interval variables requiring incompatible states cannot overlap and
interval variables requiring compatible states can be batched together. That is, state functions
can be used to model that jobs can only be processed together in a batch if they have the
same attribute. We developed an alternative OPL model for the OSP using state functions;
it is available on Zenodo [21]. However, preliminary experiments showed that this model is
not competitive with the one using representative jobs presented in Section 4. We therefore
did not include it in the experimental evaluation presented in this paper.

5.4 Alternative direct model using MiniZinc’s high-level CP modeling notation
and batch positions

We also created a direct model using the modeling approach based on batch positions as
described in Section 3 and MiniZinc’s high-level CP modeling notation to formulate the
constraints. This has the advantage that constraints do not need to be manually linearised and
the model is somewhat easier to read for non-experts. In the formulation of the constraints,
we implicitly make use of constraint reification to express conditional sums and additionally
use the maximum global constraint. Furthermore, we implicitly utilize the element constraint
to use variables as array indices.

As an example, let us present the constraints for batch start and processing times. We use
the decision variables M; € M for the machine job j is assigned to and B; € [1, n] for the
position of the assigned batch. Then the constraint stating that jobs may not start before their
earliest start time can be formulated as follows:

Sm;.B; = etj VjeT.

The constraint on batch processing times can be stated as:
Py p =max(mint; : j € FwithB; =bAM; =m) Ym € M, b € [by]
Py, p; <maxtj VjeJ

The full model can again be found on Zenodo [21]. and is referred to as
direct_cp_model_simpler.mzn. We decided not to include this model in our exper-

@ Springer

338 Constraints (2023) 28:320-361

imental evaluation, since the results in our previous publication [22] showed that—in terms of
the number of solutions found and the quality of solutions—this model cannot achieve better
results than the ILP model from Section 3 for any of the evaluated solvers. Since both models
are based on the same modelling approach, we decided to include only the stronger one of
the two in this paper.

5.5 Programmed search strategies

For our solver-independent MiniZinc models, we implemented several programmed search
strategies, which are based on variable- and value selection heuristics. Such heuristics deter-
mine the order of the explored variable and value assignments for a CP solver and can play a
critical role in reducing the search space that needs to be enumerated by the solver. For our
experiments, we implemented the search strategies directly in the MiniZinc language using
search annotations.

Variable ordering In our implemented search strategies we first select an auxiliary vari-
able that captures the total number of batches. For this variable we always use a minimum
value first heuristic to encourage the solver to look for low cost solutions early in the
search. Afterwards, we sequentially select decision variables related to a job by assign-
ing the associated batch, machine, batch start time, and batch duration for the job (i.e.,
Bl, Ml, S(Ml,Bl)’ P(MI,BI)’ ey B|j|, M|j‘, S(M\J\!BIJ\)’ P(M\JI*BIJ\))' For the CP model
using representative jobs briefly presented in Section 5.2, we select the jobs’ start times
and processing times (i.e., start|, procy, ..., start| 7|, procm).

Variable selection heuristics We use three different variable selection strategies on the
set of decision variables that are related to job assignments: input order (select variables
based on the specified order), smallest (select variables that have the smallest values in their
domain first, break ties by the specified order), and first fail (select variables that have the
smallest domains first, break ties by the specified order).

Value selection heuristics We experimented with two different value selection heuristics
for the set of variables which is related to job assignments: min (the smallest value from a
variable domain is assigned first), and split (the variable domain is bisected to first exclude
the upper half of the domain).

Evaluated search strategies Using the previously defined heuristics we evaluated 8 dif-
ferent programmed search strategies:

—_

. default: Use the solver’s default search strategy.

2. searchl: Assign number of batches first, then continue with the solver’s default strategy.

3. search2: Assign number of batches first, then continue with input order and min value
selection on the job variables.

4. search3: Assign number of batches first, then continue with smallest and min value
selection on the job variables.

5. search4: Assign number of batches first, then continue with first fail and min value
selection on the job variables.

6. search5: Assign number of batches first, then continue with input order and split value
selection on the job variables.

7. search6: Assign number of batches first, then continue with smallest and split value
selection on the job variables.

8. search7: Assign number of batches first, then continue with first fail and split value

selection on the job variables.

@ Springer

Constraints (2023) 28:320-361 339

5.6 Warm-start approach

For those solvers that support a warm-start option, we implemented such an approach. The
construction heuristic described in Section 2.4 was used to find an initial solution for a
given OSP instance. The solution is then provided to the model by fixing the values of
certain decision variables; based on these values the solver then needs to complete this
partial solution. We decided to provide values of the following variables:

e For the models using batch positions: the machines and batches jobs are assigned to, the
start times of batches. More precisely:

— For the direct model implemented in MiniZinc as described in Section 3: the values
of the variables X, , j and Sy, , forallm e M, b € [1,n], j € J.
Note that MiniZinc only supports providing warm-start variables as one-dimensional
arrays and therefore a slight modification of the model was necessary. We defined
two sets of additional variables encoding the machine a job is assigned to and the
batch position a job is assigned to. These variables were then used to set the values
of the binary decision variables X, ;.

— For the interval variable model described in Section 5.1: The values of the binary
variables X, » ; and the start times of the interval variables By, , forallm € M, b €
[L,n],jeJ.

e For the models using representative jobs: the pointers to representative jobs in the same
batch and the start times or processing times of representative jobs. More precisely:

— For the interval variable model described in Section 4: the pointers to representative
jobs inBatchWith ;, the start times of interval variables for jobs job; and for jobs on
machines jobM; , forall j € 7, m € M.

— For the direct model implemented in MiniZinc as described in Section 5.2: the point-
ers to representative jobs inBatchWith;, the processing times of jobs proc; and of
jobs on machines procM;; ,, forall j € 7, m € M. We decided to give the values for
processing times rather than start times because MiniZinc does not support providing
arrays of optional variables for warm-start.

6 Experimental evaluation

In this section we give an overview on the results of an extensive set of experiments that
we conducted to evaluate all proposed models. First, we describe our experimental setup
in Section 6.1: This consists of the description of the benchmark set, of three different
sets of weights that stem from three practical use cases, of the solution methods chosen
for comparison and of the experimental environment. Moreover, we describe the method
chosen to compare the overall performance of solutions methods against each other. Then, in
Section 6.2 we configure our methods: where the chosen solvers allow to do so, we choose
the best search strategy per model and per use case and evaluate the impact of the warm-start
approach. Finally, in Section 6.3, we present the results of our extensive analysis: We first
give an overall performance evaluation of our methods, compare the sizes of our models and
then investigate the performance with respect to several criteria in more detail.

@ Springer

340 Constraints (2023) 28:320-361

6.1 Experimental setup
6.1.1 Benchmark instances

Using a random instance generator specifically designed for the OSP, we created a large set
of benchmark instances to evaluate the performance of our proposed models. Our random
instance generator is described in detail in Section 1 of the Appendix. First, we executed the
random generator once for every possible configuration of the 15 parameter values specified
in Table 13. Thereby we produced 1024 instances for each of the 16 combinations of the
parameters n, k and a. Then we randomly selected 5 instances from every set of 1024
instances, creating a set of 80 instances which we used throughout our experiments. This set
thus consists of 20 instances each with 10 (instances 1-20), 25 (21-40), 50 (41-60) and 100 jobs
(61-80). All benchmark instances turn out to be satisfiable and solvable by the construction
heuristic described in Section 2.4. This reflects our real-life industrial application, for which
feasible solutions usually can be found heuristically and the main aim is to find cost-minimal
schedules. The set of benchmark instances is publicly available [21].

Note that this set of benchmark instances is slightly different to the one presented in the
authors’ conference paper [22], since we have added initial states of machines. Note also
that the objective function as defined in equation (4) no longer includes setup times; we can
therefore not expect that the optimal solutions for this benchmark set have the same solution
cost as in the conference paper [22].

6.1.2 Three use cases for the choice of weights

Together with our industrial partner, we formulated weight settings for three different use
cases that we used throughout our experiments.

e UC1: Reducing job tardiness has the highest priority for this use case. Tardy jobs are
only accepted if absolutely necessary and if scheduling all jobs on time would lead to
much higher runtime of ovens. Alternatively, finishing jobs before their latest end date
could have been modelled as hard constraints, but this would potentially lead to infeasible
instances which was not desired by our industrial partner. Reducing the runtime of ovens
has a higher priority than reducing setup costs. The weights are set as follows:

-w, =4
- wye = 1
—w,:100

This choice of weights implies that reducing the number of tardy jobs by one reduces the
solution cost by the same amount as reducing the cumulative batch processing time by
25-avgy, i.e., 25 times the average processing time of a job. In other words, grouping 26
jobs with average processing time in a single batch instead of processing them individually
has the same impact as scheduling one more job so that it finishes on time. Note that
for our benchmark instances that have 100 jobs or less, it will hardly ever be possible
to schedule 26 or more jobs in one batch. Thus, setting the tardiness-weight w; to 25 -
w), basically corresponds to modelling lexicographic minimization with tardiness being
lexicographically more important than cumulative batch processing time.

e UC2: This use case models lexicographic minimization with minimizing cumulative
batch processing time being lexicographically more important than the number of tardy
jobs and minimizing tardiness being lexicographically more important than setup costs.

@ Springer

Constraints (2023) 28:320-361 341

Using the notation of Section 3.2, we thus have: p = obj;, t = obj, and sc = objs. In
this case, weights need to be set individually for each instance. This is done as follows
(as described in Section 3.2):

—wp,=w,-(n+1)
- wye =1
- w; =n-maxsc + 1

e UC3: In this use case, the same importance given to reducing tardiness and oven runtime.
Reducing setup costs is less important by a factor of 2.

-wp, =2
- wye =1
—w,:2

This choice of weights implies that processing two jobs with average processing time in a
single batch instead of processing them individually has the same impact on the solution
cost as scheduling one more job so that it finishes on time. Reducing the number of tardy
jobs by one (or the cumulative batch processing time by avg;), has the same impact as
reducing the setup costs by 2 - maxsc.

6.1.3 Evaluated methods and computing environment

An overview of the models and solvers that we evaluated on our benchmark set can be found
in Table 1: We implemented the models presented in Sections 3 and 5.2 using the high-level
constraint modeling language MiniZinc [26]. We used the MiniZinc IDE version 2.5.3 and
recent versions of Chuffed (version 0.10.4), OR-Tools (version 8.0), CP Optimizer (version
20.1.0.0) and Gurobi (version 9.1.1) to evaluate the models. Note that MiniZinc automatically
provides an ILP encoding for any constraints that are not already stated in a linear form when
an ILP solver such as Gurobi is used to solve the high-level constraint model [34]. For Chuffed
and OR-Tools, we used all 7 search strategies described in Section 5.5 and compared them
with the solver’s default search strategy. For Chuffed, we activated the free search parameter
which allows the solver to interleave between the given search strategy and its default search.
Furthermore, we investigated a warm-start approach with Gurobi (for the other solvers, warm-
start is currently not supported by MiniZinc), as described in Section 5.6. Finally, the OPL
models presented in Sections 4 and 5.1 were run using CP Optimizer in IBM ILOG CPLEX
Optimization Studio version 20.1.0.0. The warm-start approach was evaluated for these two
models as well.

This results in a total of 42 different combinations per instance, when considering all
possible combinations of models, solvers, search strategies and of the warm-start option.
The time limit for every one of these combinations was set to one hour per instance; this
includes the flattening time in MiniZinc and the model extraction time for CP Optimizer. In
order to refer to one of these methods in our evaluation, we use the following abbreviations
throughout the remainder of this section: “solver-model”, where the model names introduced

in Table 1 are used. The solvers are referred to as “chuffed”, “gurobi”, “cpopt”, “ortools”

and “oplrun”.3
Experiments were run on single cores, using a computing cluster with 10 identical nodes,

each having 24 cores, an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and 252 GB RAM.

3 “oplrun” is used as an abbreviation for CP Optimizer run directly using the oplrun executable in order to

distinguish it from CP Optimizer run via MiniZinc.

@ Springer

342 Constraints (2023) 28:320-361

Table 1 Overview of the experimentally evaluated models and of the solvers used

solver independent OPL model
MiniZinc model for CP Optimizer
= direct model = interval variable model
model with “direct-batch-pos” “interval-batch-pos”
batch positions (Section 3) (Section 5.1)
model with “direct-repr-jobs” “interval-repr-jobs”
representative jobs (Section 5.2) (Section 4)
solvers used
warm-start supported Gurobi CP Optimizer (oplrun)
not supported Chuffed, OR-Tools,

CP Optimizer

6.1.4 Borda scores for the assessment of solution methods

We want to compare the performance of our solution methods across the whole benchmark
set and assign a score to every solution method. Moreover, when assessing the performance
of a solution method on a particular instance, we would like to take into account the solution
status, i.e., whether a solution has been found and whether the found solution was proven
to be optimal within the runtime limit, as well as the solution quality for non-optimal solu-
tions. The assessment method used by the MiniZinc challenges [35] fulfills both these goals
in a particularly concise way and we therefore decided to implement this method for our
experimental evaluation.

The following explanation of the assessment method follows the description of the rules of
the MiniZinc challenge 2022 as presented on the challenge’s website.* The scoring procedure
is based on the Borda count [36] voting system. Each benchmark instance is treated like a
voter who gives each solution method a score that reflects how many solution methods it beats
on this instance. The overall Borda score of a solution method is then given by summing up
the scores across all instances.

More precisely, a method m is better than method m’ on instance i if and only if:

e m solved instance i (found a feasible solution for instance i) within the runtime limit and
m’ did not solve the instance, or

e both m and m’ solved the instance i within the runtime limit, but m provided an optimality
proof and m’ did not, or

e both m and m’ did not provide an optimality proof for instance i within the runtime limit,
but m found a solution with higher quality than m’, i.e., the solution cost of the solution
found by m is smaller than the solution cost of the one one found by m’'.

A method m then scores points on instance i by comparing its performance with each
other method m’ on instance i. Points are scored as follows:

o If m gives a better answer than m’ (in the above sense), it scores 1 point.

e If m gives a worse answer than m’, it scores 0 points.

e If m and m’ give indistinguishable answers, the scoring is based on execution time
comparison:

4 https://www.minizinc.org/challenge2022/rules2022.html

@ Springer

https://www.minizinc.org/challenge2022/rules2022.html

Constraints (2023) 28:320-361 343

Table 2 Best variants of solution methods per use case

solution method UCl uc2 uc3
chuffed-direct-batch-pos search4 search4 search5
chuffed-direct-repr-jobs search6 search3 search6
ortools-direct-batch-pos search7 search3 search3
ortools-direct-repr-jobs search6 search6 search6
gurobi-direct-batch-pos warm-start warm-start warm-start
gurobi-direct-repr-jobs warm-start warm-start warm-start
oplrun-interval-batch-pos warm-start warm-start warm-start
oplrun-interval-repr-jobs warm-start - warm-start

— Let £(i, m) (t(i, m’)) denote the total time required by method m (method m”) on
instance i. Then method m scores

t(i,m)
t(i,m) +t(i,m)

points.
— For the special case that both m and m’ do not solve instance i, both score 0 points.

6.2 Configuration of solution methods for each use case

Based on the results of our experiments, we select the best search strategy for every eligible
solution method and evaluate whether using the warm-start option is beneficial. This selection
per use case is summarised in Table 2. The selected variants are then used in the overall
comparison of solution methods in Section 6.3.

6.2.1 Search strategies

To evaluate the performance of the 7 search strategies described in Section 5.5, we ran
experiments on all benchmark instances using Chuffed and OR-Tools together with the batch
position model as well as the representative jobs model.

We calculated Borda scores independently for both MiniZinc models, the two solvers
Chuffed and OR-Tools and the three use cases. The Borda scores and ranks for all three use
cases with Chuffed and the batch position based model are displayed in Table 3.

We can see in the results that the solver’s default search scored the lowest rank for all
three use cases. Further, we clearly see an improvement with the custom search strategies in
the Borda score compared to default search. Search4, which uses a first fail based variable
selection strategy together with a minimum value selection heuristic, performed best on UC1
and UC2, however, for UC3 Search5, which relies on an input order based variable selection,
performed better.

Table 4 shows the Borda scores and results for Chuffed with the representative jobs model.

Again the solver’s default search strategy is not competitive with any custom search,

although the difference in Borda scores is smaller than it was with the batch position model.
Search6, which relies on a smallest domain variable selection strategy and a split value

@ Springer

344 Constraints (2023) 28:320-361

selection heuristic, performs best on UC1 and UC3, while Search3, which uses a minimum
domain value selection instead, produces the best results on UC2.

Results achieved by the different search strategies with OR-Tools and the batch position
model are shown in Table 5.

Similar as with the results produced by Chuffed there is a clear improvement over the
solver’s default search when using the custom search strategies. In this case Search3 per-

Table 3 Comparison of Borda Scores achieved by different search strategies with Chuffed and the model
using batch positions

search UCI Score UCI Rank UC2 Score UC2 Rank UC3 Score UC3 Rank
default 41.13 8 50.30 8 48.04 8
searchl 214.20 7 223.59 7 215.69 7
search2 247.18 6 267.71 5 258.69 5
search3 261.28 5 271.25 4 246.01 6
search4 312.22 1 283.66 1 264.31 4
searchS 282.93 3 281.70 2 311.05 1
search6 262.69 4 272.66 3 281.74 3
search7 300.36 2 262.13 6 296.48 2

Table 4 Comparison of Borda Scores achieved by different search strategies with Chuffed and the model
using representative jobs

search UCI Score UCI Rank UC2 Score UC2 Rank UC3 Score UC3 Rank
default 17.98 8 45.44 8 15.24 8
searchl 64.82 7 48.49 7 60.25 7
search2 106.88 3 115.23 4 116.34 5
search3 123.20 2 159.52 1 143.87 2
search4 101.66 6 112.20 6 111.68 6
search5 105.20 4 124.54 3 121.79 3
search6 124.46 1 159.26 2 152.43 1
search? 104.79 5 112.31 5 120.39 4

Table 5 Comparison of Borda Scores achieved by different search strategies with OR-Tools and the model
using batch positions

search UC1 Score UC1 Rank UC2 Score UC2 Rank UC3 Score UC3 Rank
default 172.84 8 197.04 8 201.17 8
searchl 210.03 7 252.80 7 243.87 7
search2 293.23 3 279.64 5 290.62 3
search3 296.54 2 288.95 1 309.78 1
search4 293.13 4 282.28 4 294.03 2
search5 292.92 5 283.45 3 276.61 4
search6 284.31 6 279.51 6 261.31 6
search? 305.00 1 284.33 2 272.61 5

@ Springer

Constraints (2023) 28:320-361 345

Table 6 Comparison of Borda Scores achieved by different search strategies with OR-Tools and the model
using representative jobs

search UCI Score UCI Rank UC2 Score UC2 Rank UC3 Score UC3 Rank
default 4.96 8 2.77 8 6.47 8
searchl 145.57 4 139.17 4 146.93 4
search2 90.27 7 84.13 7 81.89 7
search3 308.29 2 340.07 2 315.06 2
search4 133.66 5 128.05 5 136.81 5
search5 120.33 6 108.78 6 89.39 6
search6 336.29 1 342.27 1 345.63 1
search? 169.63 3 162.76 3 172.82 3

formed best on UC2 and UC3, whereas Search7, which uses a first fail variable selection
together with a split value selection strategy, scores rank 1 on UCI1.

Finally, Table 6 displays the scores for OR-Tools and the representative jobs model.

Again the default search cannot compete with the other search strategies. Further, Search6
is ranked first on all three use cases, which is similar to the results with Chuffed and the
representative job model where Search6 also performed high scores for all use cases.

To summarize, the evaluated custom search strategies could clearly improve the results of
the default search strategies in all considered cases. Further, which search strategy performed
best differs depending on the evaluated model and solver. However, the results indicate that
Search6 delivers high scores with the representative job model with both Chuffed and OR-
Tools.

Search strategies can also be used for Gurobi and are implemented with branching pri-
orities by the MiniZinc interface. However, initial experiments with Gurobi and all search
strategies did not reveal significant differences between the search strategies for this solver.
For CP Optimizer run via MiniZinc, search strategies are currently not supported.

Based on the results presented in this section, we selected the search strategy that led to
best results per solver, model, and use case for our final experiments which are presented in
later sections (see Table 2 for details).

6.2.2 Warm-start option

As described in Section 5.6, we implemented a warm-start approach. This approach was
tested with Gurobi run via MiniZinc and the models direct-batch-pos and direct-repr-jobs
as well as with CP Optimizer run directly and the models interval-batch-pos and interval-
repr-jobs. Note that warm-starts are referred to as starting points in CP Optimizer. Currently,
MiniZinc does not support a warm-start option for the other evaluated solvers. An overview
of the results, when comparing the chosen method with and without the warm-start option,
can be found in Table 7.

The construction heuristic (see Section 2.4) could find feasible solutions for all 80 instances
within a few seconds. On average, the construction heuristic required 0.271 seconds per
instance, 57 out of 80 instances could be solved in less than 0.1 seconds and the maximum
time required per instance was 5.6 seconds. As can be seen in the left part of Table 7,
warm-starting the methods gurobi-direct-batch-pos, oplrun-interval-batch-pos and oplrun-
interval-repr-jobs with these initial solutions led to solutions for all 80 instances, i.e, 20

@ Springer

346 Constraints (2023) 28:320-361

Table 7 Impact of the warm-start option on the number of solved instances and on the solution quality

model warm-start # solved instances # better solutions
UClI uC2 UC3 UCl uC2 uc3

gurobi-direct-batch-pos X 64 61 63 7 10 7

v 80 80 80 24 31 26
gurobi-direct-repr-jobs X 33 31 36 3 0

v 39 36 38 10 5 8
oplrun-interval-batch-pos X 49 50 49 8 10 10

v 80 80 80 49 49 48
oplrun-interval-repr-jobs X 80 80 80 13 12 16

v 80 80 80 19 10 20

The best results per method and use case are highlighted in bold font

to 30 more instances than without the warm-start option, for gurobi-direct-batch-pos and
oplrun-interval-batch-pos. For gurobi-direct-repr-jobs however, only 39 instances could be
solved for UC1 (36 for UC2 and 38 for UC3), increasing the number of solved instances only
slightly.

The heuristic solution could be improved by the warm-start approach for almost all of
the 80 benchmark instances for the methods gurobi-direct-batch-pos and oplrun-interval-
repr-jobs. Interestingly, for one of the benchmark instances with 10 jobs, the construction
heuristic already finds the optimal solution. However, for both gurobi-direct-repr-jobs and
oplrun-interval-batch-pos, this is not the case: the initial solution can only be improved for
slightly less than half of the benchmark instances (between 34 and 37 instances for all three
use cases).

Regarding the solution quality, using the warm-starting approach leads to an improvement
for some instances, but not for all. Detailed numbers can be found in the right part of Table 7.
These should be read as follows, as exemplified for the method gurobi-direct-batch-pos
and UC1: For 7 of the 80 benchmark instances, the solution found without the warm-start
approach was strictly better than with warm-start; for 24 instances the solution was strictly
better when using the warm-start approach. Note that we consider found solutions to be
better if the other method could not find a solution. As one can see by the values in bold font
(indicating whether it was advantageous to use the warm-start option), using warm-start on
average helped to improve the solution quality within the runtime limit of one hour for almost
all methods and use cases. The number of better solutions with the warm-start approach are
largest for gurobi-direct-batch-pos and oplrun-interval-batch-pos. For oplrun-interval-repr-
jobs however, the picture is less clear. For UC1 and UC3, using the warm-start approach led to
lower solutions costs for more instances than it did not, but the number of better solutions are
quite close with and without the warm-start approach. For UC2, the numbers are also close
but on average it was better not to use the warm-start approach. A possible explanation is that
oplrun-interval-repr-jobs is already good a solving the benchmark instances even without the
additional warm-start data. The time spent on loading the warm-start data and completing
it to a full solution is thus better spent on improving the solution that can be found without
warm-start.

5 The warmstart data provided to Gurobi only contains values for a subset of the decision variables. The solver
thus needs to complete the partial solution and, for gurobi-cp-repr-ws, fails to do so for 41 instances.

@ Springer

Constraints (2023) 28:320-361 347

As for the number of optimality proofs, these could be increased in more than half of
the cases, mostly when using Gurobi as a solver. When comparing proof times, it did - on
average - however not make much difference whether warm-start was used or not.

To conclude, the major advantage of using the warm-start approach is that it can help find
solutions for more instances. Moreover, for the modelling approach using batch positions and
both Gurobi and CP Optimizer, the solutions found were in the great majority of the cases
better than (or equally good as) those found without warm-start. Also for gurobi-direct-
repr-jobs, the quality of solutions was improved more often than deteriorated by using the
warm-start approach. For oplrun-interval-repr-jobs, that could already find solutions for all
80 benchmark instances without warm-start the advantage is not so clear and the use of a
warm-start approach cannot be recommended in general.

6.3 Experimental results

In this section, we summarize the results of all performed experiments. For every solution
method and every use case, we picked the best configuration regarding search strategies and
warm-starting (see the results displayed in Table 2).

6.3.1 Evaluation of overall performance of our solution methods

In order to compare the overall performance of our solution methods, we computed the Borda
scores (as defined in Section 6.1.4) independently for all three use cases for all configured
evaluated methods, including the greedy construction heuristic. The exact techniques are
configured using the best search strategy per use case and, if advantageous, the warm-start
option as reported in Table 2. This also allows us to evaluate the robustness of our solution
methods regarding different sets of weights of the objective components. The results are
displayed in Fig. 2, where one line-graph is drawn per use case. The solution methods are
sorted from best to worse when considering the sum of Borda scores obtained for all three
use cases. As one can see, the Borda scores for the two other use cases UC2 and UC3 follow
the same general tendency and are close in value to those for use case UC1. This means
that the performance of the evaluated solution methods is almost the same across all three
evaluated use cases and that the performance of our solution methods are robust with respect
to changes in the chosen weights.

In particular, for all three use cases the first four places are taken by the same solvers:
The overall best solution method is the interval model with representative jobs run directly
with CP Optimizer (oplrun-interval-repr-jobs) and the second best is the direct model with
batch positions run with Gurobi (gurobi-direct-batch-pos). The third place is taken by cpopt-
direct-batch-pos and the fourth by oplrun-interval-batch-pos. The values of the Borda scores
of the three best solution methods for all three use cases UC1, UC2 and UC3 are reported
in Table 8. Note that for UC1 and UC3, the scores obtained by oplrun-interval-repr-jobs and
gurobi-direct-batch-pos are very close in value; for UC2 however, the difference is larger.
One possible explanation is that UC2 models lexicographic minimization and involves large
multiplicative constants for the three components of the objective function; it could be that
CP Optimizer is better at dealing with these large numerical values in the objective function
than Gurobi. Moreover, note that there is a significant gap between the second and third
place; oplrun-interval-repr-jobs and gurobi-direct-batch-pos are by far the best two solutions
methods for all three use cases.

@ Springer

348 Constraints (2023) 28:320-361

—e— UC1
--+-- UC2
600- - e UC3

Borda score

Solution method

Fig.2 Borda scores of compared solution methods for the three use cases UC1, UC2 and UC3

Table 8 Borda scores of the three best solution methods for the three use cases UC1, UC2 and UC3

Ist place 2nd place 3rd place
oplrun-interval-repr-jobs gurobi-direct-batch-pos cpopt-direct-batch-pos
UCl 728.53 716.39 442.14
uc2 747.16 589.02 45491
ucs3 716.77 710.25 462.80

Moreover, note that the maximum possible score for any solution method is 800, since
every solution method is compared to 10 other solution methods on a total of 80 instances. The
scores of the overall best solution method opl-interval-repr-jobs thus lie between 89% (for
UC3) and 93% (for UC2) of the possible maximum. Also for the second-best solution method
gurobi-direct-batch-pos, the scores lie between 73% (UC2) and 89% (UC1). A method that
always achieves better results than all other methods would achieve a score of 100%. The
very high scores of the two best solution methods lead us to the conclusion that when solving
a benchmark instance for the OSP with one of these methods, the likelihood is very large
that the result is better than when using any of the other methods.

It is also interesting to observe that when using a Gurobi, Chuffed or CP Optimizer
run via MiniZinc, the modelling approach using batch positions is better than the one with
representative jobs, whereas the contrary is the case for the interval models run directly with
CP Optimizer. A possible explanation can be found by investigating the model sizes of these
two modelling approaches, as we will see in the following section.

Alsonote that the greedy construction heuristic ranks in 9th place out of 12, when summing
up the scores across all three use cases and was capable of achieving scores that are comparable
with those achieved by the exact techniques ortools-direct-repr-jobs, ortools-direct-batch-pos,

@ Springer

Constraints (2023) 28:320-361 349

Table 9 Overview on the number of variables and constraints for selected instances and the two direct mod-
elling approaches solved with Gurobi

gurobi-direct-batch-pos gurobi-direct-repr-jobs
inst n k a var cons var cons
1 10 2 2 810 2,207 9,100 21,688
6 10 2 5 1,342 2,354 9,677 22,455
11 10 5 2 2,039 5,688 21,642 51,660
16 10 5 5 3,319 5,978 21,765 51,620
21 25 2 2 3,590 11,693 86,893 236,384
26 25 2 5 4,842 11,010 85,726 234,026
31 25 5 2 9,019 29,839 208,741 573,510
36 25 5 5 12,269 27,556 207,027 570,146
41 50 2 2 11,988 43,321 580,177 1,669,031
46 50 2 5 14,942 46,034 581,916 1,669,249
51 50 5 2 30,566 111,036 1,426,954 4,117,751
56 50 5 5 36,699 104,336 1,425,095 4,113,469
61 100 2 2 44,590 156,446 - -
66 100 2 5 49,142 172,382 - -
71 100 5 2 110,664 428,584 - -
76 100 5 5 124,549 444,589 - -

chuffed-direct-batch-pos, cpopt-direct-repr-jobs and gurobi-direct-repr-jobs (for some of the
use cases). This relatively good result is mainly due to the fact that the construction heuristic
was capable of solving all 80 benchmark instances, which is not the case for all exact methods
(details for UC1 can be found later on in Table 11).

To sum up: Across all three use cases, the overall best solution method is the interval
model with representative jobs run with CP Optimizer directly and the second best is the
direct model with batch positions run with Gurobi. Also for the other solution methods, the
choice of weights does not have much influence on the overall performance of our methods
and we can conclude that our methods are robust with respect to different weight settings.

6.3.2 Comparison of model sizes

Tables 9 and 10 summarize the numbers of variables and constraints for selected instances
for use case UC1 (we selected one instance for each of the 16 different size categories). These
numbers are retrieved from the solvers’ log files.

The tables display in each row from left to right: The id of the instance, the parameters
n (number of jobs), k (number of machines), a (number of attributes) that were used for
generating the instance, the number of constraints (cons) and variables (vars) for all four
modelling approaches. Table 9 contains information for the two direct models implemented
in MiniZinc and solved with the overall best solver Gurobi; Table 10 contains information on
the same instances for the two interval variable models solved directly with CP Optimizer.

The numbers displayed in Table 9 show that the direct-batch-pos model uses much fewer
variables and constraints compared to direct-repr-jobs for instances of all sizes with Gurobi.
Actually, the direct-repr-jobs model becomes so large with n = 100 that the model com-
pilation with MiniZinc could not finish within the given runtime, and thus no numbers on

@ Springer

350 Constraints (2023) 28:320-361

Table 10 Overview on the number of variables and constraints for selected instances and the two interval
variable modelling approaches solved with CP Optimizer

oplrun-interval-batch-pos oplrun-interval-repr-jobs
inst n k a var cons var cons
1 10 2 2 282 1,652 112 998
6 10 2 5 282 1,652 112 998
11 10 5 2 705 4,082 235 1,691
16 10 5 5 705 4,082 235 1,691
21 25 2 2 1,452 7,877 277 4,343
26 25 2 5 1,452 7,877 277 4,343
31 25 5 2 3,630 19,622 580 6,071
36 25 5 5 3,630 19,622 580 6,071
41 50 2 2 5,402 28,252 552 14,918
46 50 2 5 5,402 28,252 552 14,918
51 50 5 2 13,505 70,522 1,155 18,371
56 50 5 5 13,505 70,522 1,155 18,371
61 100 2 2 20,802 106,502 1,102 54,818
66 100 2 5 20,802 106,502 1,102 54,818
71 100 5 2 52,005 266,072 2,305 61,721
76 100 5 5 52,005 266,072 2,305 61,721

the variables and constraints can be shown in the table (marked with -). On the other hand,
when comparing the interval-batch-pos and interval-repr-jobs models in Table 10, we can see
that the model using representative jobs uses a lower number of variables and constraints.
This is an expected result as the representative job model can be captured more efficiently
when using the scheduling global constraints available with CP Optimizer. We further see
that the number of attributes does not affect the number of variables and constraints with CP
Optimizer. Again this is expected as attributes can be implicitly handled with the scheduling
global constraints.

These numerical findings are in line with the overall performance results presented in the
previous section: when using a direct modelling approach in MiniZinc the smaller model
with batch positions leads to better results; when using interval variables with CP Optimizer
the smaller model with representative jobs beats the batch position model.

6.3.3 Detailed results for several performance measures (for UC1)

The rankings reported in Section 6.3.1 allowed us to compare the overall performance of our
solution methods. Now, we want to take a closer look at several performance measures and
answer the following questions: Which methods are best at ...

..finding solutions?
..providing optimality proofs?
..finding good solutions?
..providing lower bounds?
..closing the optimality gap?

@ Springer

Constraints (2023) 28:320-361 351

Finally, we are also interested in assessing the quality of solutions found by the best solution
methods. In the following, we answer these questions for the first use case UCI since the
results for the other two use cases are similar.

Table 11 provides an overview of the final results produced for UC1 on the 80 benchmark
instances with all configured evaluated methods, including the greedy construction heuristic.
For the exact techniques, we used the beat search strategy as reported in Table 2 and the
warm-start option. The first column in each row denotes the evaluated solver and model. The
solution methods are sorted by their Borda scores for UC1. From left to right, the columns
display: the number of solved instances, the number of instances where overall best, i.e.
minimal, solution cost results could be achieved, the number of obtained optimal solutions,
the number of optimality proofs, the number of instances where the fastest optimality proof
could be found, and the number of instances where the best, i.e. maximal, lower bound could
be found.

Finding solutions The OPL model with representative jobs (oplrun-interval-repr-jobs) and
with batch positions (oplrun-interval-batch-pos) as well as the direct model with batch posi-
tions run with Gurobi (gurobi-direct-batch-pos) finds solutions for all 80 instances. This
is not surprising since these three solution methods all use a warm-start approach (for a
comparison of the results with and without the warm-start approach, see Section 6.2.2) and
the construction heuristic is capable of finding feasible solutions for all 80 instances. Even
without a warm-start approach, ortools-direct-batch-pos was capable of finding solutions for
78 instances, followed by cpopt-direct-batch-pos (71 instances) and chuffed-direct-batch-
pos (70 instances). For all solvers run via MiniZinc, the model with batch positions led to
much better results than the one with representative batches; this is in line with the overall
performance results.

To conclude, we can note that besides the best-performing solution methods OR-Tools
was also good at finding solutions with the model using batch positions.

Finding optimal solutions and delivering optimality proofs Using all evaluated methods,
optimal solutions could be found for 38 instances: all instances with 10 jobs, 16 instances
with 25 jobs, one with 50 jobs and one with 100 jobs.

Most optimality proofs were provided by Gurobi and the batch position model (34 proofs),
followed by CP Optimizer run directly with the representative jobs model (28 proofs) and
Gurobi with the representative jobs model (26 proofs). Moreover, some of the solutions found
by Gurobi were optimal, but not proven to be optimal (3 solutions each for gurobi-direct-
batch-pos and gurobi-direct-repr-jobs). With oplrun-interval-repr-job, 7 additional optimal
solutions could be found but were not proven to be optimal.

Far less optimality proofs were delivered by the other solution methods, but optimal
solutions could still be found. Even though cpopt-direct-batch-pos (cpopt-direct-repr-jobs)
could only provide 13 (18) optimality proofs, it did find 31 (29) optimal solutions; similarly
chuffed-direct-batch-pos provided only 14 optimality proofs but could find 24 optimal solu-
tions. For ortools-direct-batch-pos, optimality proofs could be delivered for all 20 instances
where the optimal solution was found. It is noteworthy that for Chuffed and CP Optimizer
run via MiniZinc significantly more optimality proofs could be found when using the model
with representative jobs.

Overall, the greatest number of fastest proofs were delivered by oplrun-interval-repr-jobs
(15 fastest proofs in total). For the subset of instances with 10 jobs (20 instances in total)
for which many solution methods could deliver optimality proofs, Table 12 contains further

@ Springer

Constraints (2023) 28:320-361

352

juoj proq ur pajurid are uwnjod 1ad synsar 1sog

0 0 1C €T €T LT sqol-1dox-10011p-paynyo
8¢ 0 9T 6T 6T 6¢ sqol-1dai-3oa11p-1qon3
0 0 0 I 1 08 Apoai3
0s 0 81 6T 0¢ 8% sqol-1da1-10amp-1dodo
81 € 81 1T 1T 96 $qof-1do1-10311p-$[00110
0 0 71 ¥ ¥C 0L sod-yo1eq-10011p-paginyd
0¢C 0 0c 0c 0c 8L $0d-y018q-10211p-S[00}IO
L1 0 L1 (44 (54 08 sod-yoreq-rearaur-unido
[4¢ 0 €l 1€ 8¢ L sod-yoyeq-1001p-1dodo
144 6 123 LE S 08 sod-yo1eq-10a11p-1qoIng
8C ST 8C g€ $9 08 sqof-1dor-reasoyur-unido
PpUNOQq I9MO] 15aq# Jooud jsaise# rewndo uoaoxdy rewndog 159q# PaAJOSH# poyjow

SQOUBISUI JIBWYOUAQ ()] UO Paseq [D() J0j synsal [euoneindwod pa[rejap Ay} Jo MAIAIAQ || 3|qel

pringer

as

Constraints (2023) 28:320-361 353

Table 12 Average runtimes until optimality is proven and number of visited nodes for the 20 small instances
with ten jobs

method avg rt avg nodes std rt std nodes
oplrun-interval-repr-jobs 4.06 1.04E+05 7.81 2.27E+05
gurobi-direct-batch-pos 2.23 2.15E+02 1.92 3.29E+02
ortools-direct-batch-pos 153.07 n/a 353.96 n/a

gurobi-direct-repr-jobs 34.58 5.62E+02 43.92 7.47E+02
chuffed-direct-repr-jobs 105.46 2.59E+06 126.20 4.08E+06

Numbers are reported only for those methods that could prove optimality for all small instances
The best results are highlighted in bold font

information regarding optimality proofs: the average total runtime (which includes the time
for finding the optimal solution and for proving optimality), the average number of nodes
visited in the search process, the standard deviation of the runtime and the standard deviation
of the number of visited nodes. We can see that fastest proofs were delivered by gurobi-direct-
batch-pos: on average, 2 seconds were required per instance and all proofs could be delivered
within less than 10 seconds. Second best results were achieved by oplrun-interval-repr-jobs;
the slightly higher average and standard deviation are mainly due to a single instance for
which more than 10 seconds were required for the optimality proof. The other three solution
methods that could provide optimality proofs for all 20 small instances require more time
with averages above 30 seconds. However, for all methods compared in Table 12, the proof
times are on average less than three minutes and exceed ten minutes only for a single instance:
the maximum proof time for a small instance is 183 seconds for gurobi-direct-repr-jobs, 515
seconds for chuffed-direct-repr-jobs and 1473 seconds for ortools-direct-batch-pos.

For the solution methods run via MiniZinc, the average number and the standard deviation
of nodes visited during the search process are in line with the distribution of proof times: the
fewer nodes were visited, the faster proofs were delivered. For oplrun-interval-repr-jobs, the
number of nodes visited were higher, even though proofs could be delivered very quickly.

To sum up, the two best performing methods oplrun-interval-repr-jobs and gurobi-direct-
batch-pos also found most optimal solutions and provided most optimality proofs. However,
in terms of delivering optimality proofs, gurobi-direct-batch-pos clearly outperforms the
overall best method oplrun-interval-repr-jobs. For small instances with ten jobs, the two best
performing methods were capable of providing proofs much faster than other methods.

Best solutions Regarding the quality of found solutions, the results are totally in line with the
overall ranking of solution methods: best results were achieved by oplrun-interval-repr-jobs
(65 bestresults), followed by gurobi-direct-batch-pos (54 best results) and cpopt-direct-batch-
pos (38 best results). For all other solution methods, best results could only be achieved for
those instances that were solved optimally or for one additional instance.

Best lower bounds Lower bounds (also referred to as dual bounds) on the solution cost of
an optimal solution are provided by Gurobi, OR-Tools and CP Optimizer (both when called
directly and via MiniZinc). Interestingly, best lower bounds were found by CP Optimizer run
via MiniZinc and the model using representative jobs, a solution method that did not perform
particularly well with respect to other criteria (best bounds for 50 instances). Second-best
results were provided by gurobi-direct-batch-pos, the solution method that could also find
most optimality proofs (best bounds for 44 instances).

@ Springer

354 Constraints (2023) 28:320-361

gurobi-direct-batch-pos oplrun-interval-repr-jobs
100 T __r_ T %
80 T o)
60 T
o) 0]
40 T o) 7]
20 T
0 - |f| —— - .
25 50 100 25 50 100
[#]jobs] [#]jobs]

Fig.3 Optimality gap in % for the solutions found by the two best solution methods. Results are grouped by
the size of the instances

Optimality gap for solutions found by best methods Finally, we want to evaluate the ability
of the two best performing methods oplrun-interval-repr-jobs and gurobi-direct-batch-pos
in closing the optimality gap. That is, how good are these two methods and finding primal
and dual bounds that are close to each other? For small instances with 10 jobs, optimal
solutions and optimality proofs could be found very quickly. For larger instances, for which
no optimality proof could be delivered within the runtime limit, we compute the optimality
gap which is defined as follows: For a given solver, if s (i) is the objective value of the solution
found and b (i) is the best (i.e. maximal) lower bound found for instance i, the optimality gap
is given by g(i) = (s(i) — b(i))/s(i). The boxplots in Fig. 3 visualize the distribution of the
optimality gap (in %) per instance for the two best solution methods oplrun-interval-repr-jobs
and gurobi-direct-batch-pos. The results are grouped by the number of jobs in the instance.

For both compared solution methods, the optimality gap increases with the number of jobs
per instance. However, for all three job sizes the median optimality gaps are significantly
smaller for gurobi-direct-batch-pos than for oplrun-interval-repr-jobs. For instances with 25
jobs and gurobi-direct-batch-pos, the optimality gap is smaller than 1% for 14 instances
compared to 8 instances for oplrun-interval-repr-jobs. Moreover, the gap is never above 40%
for gurobi-direct-batch-pos, whereas it is above 40% for 11 instances for oplrun-interval-
repr-jobs. For instance with 50 jobs and gurobi-direct-batch-pos, the gap is smaller than
1% for 10 instances and never above 60%; for oplrun-interval-repr-jobs it is always above
60%. For the largest jobs with 100 jobs, the gap reaches values close to 100% for both
solvers. But again, the median value is much lower for gurobi-direct-batch-pos (50%) than
for oplrun-interval-repr-jobs (94%).

@ Springer

Constraints (2023) 28:320-361 355

gurobi-direct-batch-pos oplrun-interval-repr-jobs
100 .
80 T
60 - i
0]
40 o 7 =
0]
o)
20 g — T g
o o [T
0 4 —_— — — - a. _——
25 50 100 25 50 100
[#]jobs] [#]jobs]

Fig. 4 Solution quality for the solutions found by the two best solution methods measured in terms of the
relative distance to the overall best lower bound found. Results are grouped by the size of the instances

We can conclude that for those instances where no optimality proof could be delivered
within the runtime limit, gurobi-direct-batch-pos is much stronger than oplrun-interval-repr-
jobs in closing the gap between upper and lower bounds.

Quality of solutions found by best methods We previously saw that gurobi-direct-batch-pos
is a lot better than oplrun-interval-repr-jobs at closing the optimality gap for instances with 25
jobs or more. This does however not imply that the solutions found by oplrun-interval-repr-
jobs are necessarily worse than those found by gurobi-direct-batch-pos. Indeed, as indicated
in Table 11, more best solutions were found by oplrun-interval-repr-jobs than by gurobi-
direct-batch-pos. In order to evaluate the quality of solutions found by the best two solution
methods, we therefore compute the relative distance to the overall best lower bound found
as follows. For a given instance i, let ob(i) be the overall best lower bound found by any
solver and let s(i) be the objective value of the solution found by some solver. Then the
relative distance for this solver is given by r (i) = (s(i) — ob(i))/s(i). The boxplots in Fig. 4
visualize the distribution of this relative distance (in %) per instance for the two best solution
methods oplrun-interval-repr-jobs and gurobi-direct-batch-pos. The results are grouped by
the number of jobs in the instance.

The first observation that we can make is that—in contrast to the results concerning the
optimality gap displayed in Fig. 3—the results look very much alike for both best-performing
methods. For both methods, the relative distance increases with the number of jobs per
instance: while the solutions are optimal or very close to the optimum for most instances
with 25 jobs (oplrun-interval-repr-jobs found optimal solutions for 14 out of 20 instances,
gurobi-direct-batch-pos did so for 16 instances) and never above 20 %. This is no longer the
case for instances with 50 or 100 jobs. Even though the relative distance generally increases

@ Springer

356 Constraints (2023) 28:320-361

with the number of jobs, there are also quite a few larger instances that are close to the
optimum: For oplrun-interval-repr-jobs there are 15 instances with 50 jobs or more for which
the optimality gap is less than 1% (14 instances for gurobi-direct-batch-pos). In total, the
optimality gap is less than 1% for 51 instances for oplrun-interval-repr-jobs (50 instances for
gurobi-direct-batch-pos) and smaller than 10% for 61 instances out of 80 (for both methods).

Looking closer at the data, we can see that oplrun-interval-repr-jobs achieves results with
slightly smaller optimality gap for the larger instances with 50 or 100 jobs than gurobi-
direct-batch-pos. Nonetheless, the large instances still leave room for improvement for both
methods, regarding finding better solutions (or improved lower bounds).

6.4 Conclusions of the experimental evaluation

The overall scoring of solution methods provided in Section 6.3.1 produced two clear
winners: the interval model with representative jobs solved by CP Optimizer directly
(oplrun-interval-repr-jobs) and the direct model with batch positions solved by Gurobi
(gurobi-direct-batch-pos). The rankings of solution methods created for three different prac-
tical use cases shows the robustness of our methods with respect to changes in the weights of
the objective components. The analysis of our solution methods with respect to several per-
formance criteria in Section 6.3.3 showed that the two winning methods also produced best
results in terms of the number of solved instances, of best solutions, of optimality proofs and
of proof speed. Only with respect to finding good lower bounds best results were achieved
by a different method, namely cpopt-direct-repr-jobs.

The evaluation of different search strategies showed that the selection of search strategy
has a major impact on the solvers Chuffed and Gurobi. However, the solution methods
using these solvers could still not compete with the best two solution methods. We saw that
including an initial solution with a warm-start approach can help the solvers CP Optimizer and
Gurobi produce more solutions. The positive impact was however less obvious for the best
method oplrun-interval-repr-jobs, which could already produce very good results without a
warm-start approach.

Finally, let us attempt to answer the question which solver and which model are best at
solving the OSP. This is difficult to answer in general, since the combination of solver and
model is crucial for the performance of a solution method.

Using the results presented in Section 6.3.3 we can nonetheless discern CP Optimizer
(run directly) as the overall best method when it comes to solving all instances and finding
good solutions. The second best solver in this respect is Gurobi; moreover Gurobi is the best
solver when it comes to providing optimality proofs.

Regarding the performance of the different models, the experimental results show that the
model using representative jobs produced the largest number of best results when interval
variables can be utilized (which is the case with the OPL models and CP Optimizer). However,
if interval variables are not supported by the solver (which is the case with Gurobi, Chuffed,
OR-tools, and CP Optimizer via the MiniZinc interface), in general the number of best found
solutions is improved when using the model with batch positions instead of representative
jobs. We conclude that using representative jobs for batches can be considered the overall
better model if efficient interval variables can be utilized. However, if no solver that supports
interval variables is available or proving optimality is the main aim, the model based on batch
positions can leads to better results.

@ Springer

Constraints (2023) 28:320-361 357

7 Summary and future work

In this paper, we introduced and formally defined the Oven Scheduling Problem and provided
instances for this problem, a new batch scheduling problem that appears in the electronic com-
ponent industry. We proposed two different modelling approaches, presented corresponding
CP and ILP models in MiniZinc and OPL and investigated various search strategies.

Using our models as well as a warm-start approach, we were able to find feasible solutions
for all 80 benchmark instances. Provably optimal solutions could be found for nearly half of
the instance set and for 51 of the 80 instances, the optimality gap is less than 1%. Overall,
the best results could be achieved with the interval variable model using representative jobs
(see Section 4) and running CP Optimizer directly, followed by the direct model with batch
positions (see Section 3) solved by Gurobi using warm-start. We evaluated all our solution
methods for three different use cases that arise in practice. The results showed that the same
methods achieved best results in all three cases, which indicates the robustness of our solution
methods with respect to changes in the weights of the objective components.

The proposed exact approach was able to produce solutions for instances up to 100 jobs.
However, to further improve the solution quality for large instances and efficiently tackle
large-scale realistic instances with more than 100 jobs, we plan to develop metaheuristic
search strategies based on local search or large neighborhood search. First results using
a local search approach with simulated annealing already look promising and we plan to
continue our research in this direction [37]. Within a runtime limit of five minutes, the
simulated annealing approach could reach all optimal solutions found by exact methods.
The solution quality could be improved for approximately half the instances for which no
provably optimal solutions were found by the exact methods.

Moreover, in order to explain which parameters cause instances to be hard, an in-depth
instance space analysis could be conducted. This could also shed light onto which methods
perform best on different parts of the instance space.

Acknowledgements The financial support by the Austrian Federal Ministry for Digital and Economic Affairs,
the National Foundation for Research, Technology and Development and the Christian Doppler Research
Association is gratefully acknowledged.

Funding Open access funding provided by TU Wien (TUW).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix
Random instance generator
The random instance generator we propose is based on random instance generation proce-

dures for related problems from the literature [16, 38]. However, as the existing variants
were designed for batch scheduling problems which neither include machine eligibility con-

@ Springer

http://creativecommons.org/licenses/by/4.0/

358 Constraints (2023) 28:320-361

straints, machine availability times nor setup costs and times, the random generation of the
associated instance parameters is a novel contribution of this paper. The list of parameters
for this instance generator is given in Table 13.

Jobs. The listof n jobs is generated as follows. First, for every job j, the minimal processing
time mint; is chosen using a discrete uniform distribution U (1, maxr). For the maximum
processing time, there are two options: either there is no upper limit on the processing time
of jobs (max_time = false), in which case the maximum processing time is set to maxr
for all jobs. Or, if max_time = true, the maximum processing time for a job is chosen
using a discrete uniform distribution U (mint;, maxr). Next, the earliest start and latest end
times are determined for every job. The earliest start time et; is chosen similarly as by Velez
Gallego [38] according to a discrete uniform distribution U (0, [p - Z7]) where p € [0, 1] and
Z =) mint; is the total processing time of all jobs. If p = 0, all jobs are available right
at the beginning and as p grows, the jobs are released over a longer interval. The latest end
time /t; is chosen as in [16] according to It; = et; + [U(1, ¢) - mint;] where ¢ > 1. If
¢ = 1, the latest end time is equal to the sum of the earliest start time and the minimum
processing time, meaning that all jobs must be processed immediately in order to finish on
time. As ¢ grows, more time is given for every job to be completed and tardy jobs are less
likely. Regarding the set of eligible machines for a job, one machine is chosen at random
among all machines. Additional machines are then added to this set with probability o each.
The size s; and attribute a; of a job are both chosen at random between 1 and the maximum
job size s or number of attributes respectively.

Attributes. The setup times and setup costs matrices can be of four different types: Con-
stant, arbitrary, realistic and symmetric. For the type “constant”, setup times/costs are all equal
to arandomly chosen constant between 0 and [max7 /4]. For the type “arbitrary”, every entry
is chosen independently at random between 1 and [max7 /4]. For the type “realistic”, setup
times/costs between two batches of the same attribute are lower and are chosen independently
at random between 0 and [maxr /8], whereas setup times/costs between different attributes
are higher and are chosen between [maxr /8] + 1 and [maxt /4]. For the type “symmetric”
a symmetric matrix is generated with random entries between 0 and [maxr /47.

Machines. The maximum machine capacity c;, is randomly chosen between minc and
maxc where the lower bound minc is set to the maximum job size s to ensure that every job
fits into every machine. The initial state s,, is chosen at random among the set of attributes
{1, ..., a}. For the machine availability times, we first fix the length of the scheduling horizon
1. If we assume that every job is processed in a batch of its own and that all jobs are processed
on the same machine, the total runtime is at most equal to the sum of all processing times Z
plus n times the maximal setup time maxg,. The parameter T € (0, 1] is a lower bound for
the fraction of time that every machine is available. Thus, if max,, is the latest earliest start
time, all jobs should—on average—be finished at time

I =maxe + [(Z +n-maxg)/(t)]

which we use to set the length of the scheduling horizon. Note that if the latest end date of
a job is greater than this upper bound we simply use it instead. Now, for every one of the
k machines, we pick the number of availability intervals / randomly between 1 and max;.
Every interval [start;, end;] should be long enough to accommodate at least a single job
with minimal processing time miny = min(mint; : j € J) (plus the necessary setup
times). Thus, the minimum distance between two interval start times start; and start;4 is
d = mint+maxg,. We first pick the start time start; of the first interval: In order to guarantee
that every machine is available at least a fraction 7 of the time, 0 < start; < |- (1 — 17)]
must hold and in order to leave enough time for all availability intervals, it has to hold

@ Springer

359

Constraints (2023) 28:320-361

S
SL0STO
001 ‘0¢
0TS

T

DTIISUMAS ‘DTJSTTeaI ‘ATRIITCIR ‘QUR]SUOD

s[eAIoul AJ[Iqe[IBAR JO IOQUINU “Xeu

Sqe[TeAR dIE SAUIYORW SWIT) JO UOTIIRI)) J0J PUNOq Iomo]
Kyoedes suryoew wnwirxew 1oy punoq 1oddn

(az1s qol "xew=) Kjoedes suryorw “Xew I0J punoq Imoj|

SQUIYOBW JO IoquINU

xujew 1509-dmes Jo 2dA) x1yew swn-dnjes jo od4)

Ixpw

2

Oxvw

s = Junu

i

sauryoew 0) Suneal sigjoweIeq

1S00” s =awWI]” s

(S S9INqLIIE JO Joquinu)

sonquje 0} Sune[aI sI)owWeIe

0TS az1s qof wnuwrxew s

$0°TOo qof 1od soumyorw 9[qISI[Q JO JoqUINU SUIWLIAJIP 0

SC qol Jo pud 1S9Je[0) JIe)S ISAU[IL WOI W) SOUTULIIP ¢

S0°T'0 sown 11e)s 1s91[Ied Jo pealds SouIuLIop Jd
asTeJ ‘enig owmn Sursseooid “xew e oAey sqol J1 snx] SuITy Xeu
001 ‘01 own 3urssoo0ld WNWIXLW [[BISAO Lxpw

001 ‘0S ‘ST ‘01 sqof Jo Joquinu u
sqol 0y Suneja1 s1)owereq

sonjeA uonduosoqg QwieN

J0JBIQUAS QOUB)SUI WOPUEI Y} JO s1jowered Jo IS €1 d|qel

pringer

Qs

360 Constraints (2023) 28:320-361

start; <1 — I -d. Next, for the start times of the remaining intervals, we pick / — 1 random
integers between (start; + d) and (I — d) that are at least d apart. Finally, we determine the
end time end; of the i-th interval:

end; = start; + max(d, [U(z, 1) - (startiy1 — start;)])

References

1. Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: A review. European Journal of
Operational Research, 120(2), 228-249.

2. Mathirajan, M., & Sivakumar, A. I. (2006). A literature review, classification and simple meta-analysis on
scheduling of batch processors in semiconductor. The International Journal of Advanced Manufacturing
Technology, 29(9-10), 990-1001.

3. Fowler, J. W., & Monch, L. (2022). A survey of scheduling with parallel batch (p-batch) processing.
European Journal of Operational Research, 298(1), 1-24.

4. Malapert, A., Guéret, C., & Rousseau, L.-M. (2012). A constraint programming approach for a batch
processing problem with non-identical job sizes. European Journal of Operational Research, 221(3),
533-545.

5. Lee, C.-Y., Uzsoy, R., & Martin-Vega, L. A. (1992). Efficient algorithms for scheduling semiconductor
burn-in operations. Operations Research, 40(4), 764-775.

6. Zhao, Z., Liu, S., Zhou, M., Guo, X., & Qi, L. (2020). Decomposition Method for New Single-Machine
Scheduling Problems From Steel Production Systems. /EEE Transactions on Automation Science and
Engineering, 17(3), 1376-1387.

7. Polyakovskiy, S., Thiruvady, D., & M’Hallah, R. (2020). Just-in-time batch scheduling subject to batch
size. In Proceedings of the 2020 genetic and evolutionary computation conference (GECCO ’20, pp.
228-235). New York, NY: Association for Computing Machinery

8. Tang, T. Y. & Beck, J. C. (2020). CP and Hybrid Models for Two-Stage Batching and Scheduling. In
Integration of constraint programming, artificial intelligence, and operations research (Lecture Notes in
Computer Science, pp 431-446)

9. Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M. Y., Potts, C. N., Tautenhahn, T., & Van De Velde,
S. L. (1998). Scheduling a batching machine. Journal of Scheduling, 1(1), 31-54.

10. Kosch, S. & Beck, J. C. (2014). A new mip model for parallel-batch scheduling with non-identical job
sizes. In International Conference on Al and OR techniques in constriant programming for combinatorial
optimization problems (pp. 55-70). Springer

11. Trindade, R. S., de Araujo, O. C., & Fampa, M. (2020). Arc-flow approach for parallel batch processing
machine scheduling with non-identical job sizes. In International Symposium on Combinatorial Opti-
mization (pp. 179-190). Springer

12. Azizoglu, M., & Webster, S. (2001). Scheduling a batch processing machine with incompatible job
families. Computers & Industrial Engineering, 39(3—4), 325-335.

13. Parsa, N. R., Karimi, B., & Kashan, A. H. (2010). A branch and price algorithm to minimize makespan
on a single batch processing machine with non-identical job sizes. Computers & Operations Research,
37(10), 1720-1730.

14. Damodaran, P., Vélez-Gallego, M. C., & Maya, J. (2011). A grasp approach for makespan minimization
on parallel batch processing machines. Journal of Intelligent Manufacturing, 22(5), 767-777.

15. Cakici, E., Mason, S. J., Fowler, J. W., & Geismar, H. N. (2013). Batch scheduling on parallel machines
with dynamic job arrivals and incompatible job families. International Journal of Production Research,
51(8), 2462-2477.

16. Malve, S., & Uzsoy, R. (2007). A genetic algorithm for minimizing maximum lateness on parallel iden-
tical batch processing machines with dynamic job arrivals and incompatible job families. Computers &
Operations Research, 34(10), 3016-3028.

17. Costa, A., Cappadonna, F. A., & Fichera, S. (2014). A novel genetic algorithm for the hybrid flow
shop scheduling with parallel batching and eligibility constraints. The International Journal of Advanced
Manufacturing Technology, 75(5-8), 833-847.

18. Cheng, B., Wang, Q., Yang, S., & Hu, X. (2013). An improved ant colony optimization for scheduling
identical parallel batching machines with arbitrary job sizes. Applied Soft Computing, 13(2), 765-772.

19. Zhou, H., Pang, J., Chen, P.-K., & Chou, F.-D. (2018). A modified particle swarm optimization algorithm
for a batch-processing machine scheduling problem with arbitrary release times and non-identical job
sizes. Computers & Industrial Engineering, 123, 67-81.

@ Springer

Constraints (2023) 28:320-361 361

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

Damodaran, P., & Vélez-Gallego, M. C. (2012). A simulated annealing algorithm to minimize makespan
of parallel batch processing machines with unequal job ready times. Expert Systems with Applications,
39(1), 1451-1458.

Lackner, M.-L., Mrkvicka, C., Musliu, N., Walkiewicz, D., & Winter, F. (2022a). Benchmark instances and
models for the Oven Scheduling Problem [Data Set]. Zenodo. https://doi.org/10.5281/zenodo.7456938
Lackner, M.-L., Mrkvicka, C., Musliu, N., Walkiewicz, D., & Winter, F. (2021). Minimizing Cumulative
Batch Processing Time for an Industrial Oven Scheduling Problem. In 27th International conference
on principles and practice of constraint programming (CP 2021), volume 210 of leibniz international
proceedings in informatics (LIPIcs) (pp. 37:1-37:18). Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5, 287-326.

Uzsoy, R. (1994). Scheduling a single batch processing machine with non-identical job sizes. The Inter-
national Journal of Production Research, 32(7), 1615-1635.

Uzsoy, R. (1995). Scheduling batch processing machines with incompatible job families. International
Journal of Production Research, 33(10), 2685-2708.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., & Tack, G. (2007). MiniZinc: Towards a
Standard CP Modelling Language. In C. Bessiere (Ed.), Principles and practice of constraint programming
- CP 2007 (Lecture Notes in Computer Science, pp. 529-543). Berlin, Heidelberg: Springer.

Deb, K. (2014). Multi-objective optimization. Search methodologies (pp. 403-449). Boston, MA:
Springer.

Miettinen, K. (2012). Nonlinear multiobjective optimization (vol. 12). New York: Springer Science &
Business Media.

Chiandussi, G., Codegone, M., Ferrero, S., & Varesio, F. (2012). Comparison of multi-objective optimiza-
tion methodologies for engineering applications. Computers & Mathematics with Applications, 63(5),
912-942.

Laborie, P, Rogerie, J., Shaw, P., & Vilim, P. (2018). IBM ILOG CP optimizer for scheduling. Constraints,
23(2), 210-250.

. Hentenryck, P. V. (2002). Constraint and integer programming in OPL. INFORMS Journal on Computing,

14(4), 345-372.

(2017). IBM ILOG CPLEX Optimization studio, Getting Started with Scheduling in CPLEX Studio. IBM.
https://www.ibm.com/docs/en/SSSASP_12.8.0/ilog.odms.studio.help/pdf/sched_gs.pdf

Ham, A. M., & Cakici, E. (2016). Flexible job shop scheduling problem with parallel batch processing
machines: Mip and cp approaches. Computers & Industrial Engineering, 102, 160-165.

Belov, G., Stuckey, P. J., Tack, G., & Wallace, M. (2016). Improved linearization of constraint program-
ming models. In M. Rueher (Ed.), Principles and Practice of Constraint Programming - 22nd International
Conference, CP 2016, September 5-9, 2016, Proceedings, volume 9892 of Lecture Notes in Computer
Science (pp 49-65). Toulouse, France: Springer.

Stuckey, P. J., Feydy, T., Schutt, A., Tack, G., & Fischer, J. (2014). The minizinc challenge 2008-2013.
Al Magazine, 35(2), 55-60.

Zwicker, W. S. (2016). Introduction to the theory of voting. In F. Brandt, V. Conitzer, U. Endriss, J. Lang,
& A. D. Procaccia (Eds.), Handbook of computational social choice (chapter 2, pp. 23-56). Cambridge:
Cambridge University Press.

Lackner, M.-L., Musliu, N., & Winter, F. (2022b). Solving an industrial oven scheduling problem with a
simulated annealing approach. In Proceedings of the 13th international conference on the practice and
theory of automated timetabling - PATAT 2022 - Volume III (pp 115-120)

. Velez Gallego, M. C. (2009). Algorithms for scheduling parallel batch processing machines with non-

identical job ready times. PhD thesis, Florida: International University

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.5281/zenodo.7456938
https://www.ibm.com/docs/en/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/sched_gs.pdf

	Exact methods for the Oven Scheduling Problem
	Abstract
	1 Introduction
	2 Description of the OSP
	2.1 Instance parameters of the OSP
	2.2 Objective function
	2.3 Example instance with six jobs
	2.4 Construction heuristic

	3 Formal problem definition and direct model for the OSP
	3.1 Variables
	3.2 Objective function
	3.3 Constraints

	4 Interval variable model using representative jobs for batches
	5 Alternative model implementations, search strategies and warm-start
	5.1 Alternative interval variable model using batch positions
	5.2 Alternative direct model with representative jobs per batch
	5.3 Alternative interval variable model using state functions in OPL
	5.4 Alternative direct model using MiniZinc's high-level CP modeling notation and batch positions
	5.5 Programmed search strategies
	5.6 Warm-start approach

	6 Experimental evaluation
	6.1 Experimental setup
	6.1.1 Benchmark instances
	6.1.2 Three use cases for the choice of weights
	6.1.3 Evaluated methods and computing environment
	6.1.4 Borda scores for the assessment of solution methods

	6.2 Configuration of solution methods for each use case
	6.2.1 Search strategies
	6.2.2 Warm-start option

	6.3 Experimental results
	6.3.1 Evaluation of overall performance of our solution methods
	6.3.2 Comparison of model sizes
	6.3.3 Detailed results for several performance measures (for UC1)

	6.4 Conclusions of the experimental evaluation

	7 Summary and future work
	Acknowledgements
	Appendix
	Random instance generator

	References

