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1. Introduction

In forest inventories as well as in the process of building models, obtaining an efficient sample is a 

central goal to reach precise estimates of forest attributes (Hawbaker et al. 2009, Frazer et al. 2011, 

Grafström et al. 2014, Saarela et al. 2015, Bouvier et al. 2019). In a model-based approach, a plots 

sample must cover adequately the variability of the considered forest attributes in order to minimise 

prediction error. Different strategies have been proposed to efficiently distribute the field sampling units 

in the auxiliary space of the remote sensing data (e.g. Hawbaker et al. 2009, Grafström et al. 2014). 

Some authors have proposed to stratify Airborne Laser Scanning data (ALS) to optimize sampling 

(Hawbaker et al. 2009, Frazer et al. 2011), and Maltamo et al. (2011) compared different field plot 

selection strategies in order to optimise models precision.  

Interestingly, White et al. (2013) applied convex hull approach to show uncovered forest 

structures by the field calibration sampling units, since large prediction errors could be associated with 

model extrapolations, resulting in potentially biased map derivatives. In this research, we use convex 

hull to identify the proportion of extrapolated pixels, computed their distance to the calibration domain 

and estimated bias associated to the linear model predictions on an ALS case study.  

2. Data and Methods

The study area is based on an ALS flight performed in February 2019 in Northeastern France, which 

covers a forested area of 18,646 ha, with a pulse emission density of 16 points per m². Within this area, 

a set of 487 systematic field plots were carried out in the Mouterhouse forest (5,324 ha) during the winter 

of 2019-2020 (Figure 1). The Mouterhouse forest consisted of broadleaved, mixed and coniferous stands 

(respectively 43%, 23% and 34% on an area basis) and is representative of the whole ALS area. The 

main species are Scots pine, sessile oak, beech, Douglas fir and Norway spruce. Diameter and tree 

species were measured in these calibration plots of 15-meter radius spaced at every ~300 meters. An 

independent set of 56 plots, located in the same forest area was used for validation. 

In order to evaluate the effect of different sampling efforts, the systematic plots grid was thinned 

by half successively to obtain coarser grids, up to a remaining minimum of 8 plots. The resulting grid 

sizes obtained were then respectively of 487, 247, 115, 56, 25, 11 and 8 plots. 

Figure 1: The ALS flight area in orange, with the Mouterhouse forest in green (left) and for 

illustration, its initial systematic grid (487 plots in black) (middle) and thinned once (247 plots in red) 

(right). 

For 71% of the ALS acquisition area (in orange in Figure 1), no plots were available, giving the 

opportunity to examine the impact of model application out of its calibration area. Standard area-based 

metrics were computed from the ALS tiles using the R package lidR (Roussel and Auty 2021). A simple 

linear model was built to estimate basal area (G), quadratic mean diameter (Dg) and plot density (N). It 
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included 3 independent variables: mean and standard deviation of all pulse heights and the average slope 

of the pixels (or of the field plots), computed from the digital terrain model (DTM) (Bouvier et al. 2015). 

From these independent variables, convex hulls were computed for all calibration 

configurations using the geometry package (Habel et al. 2019). It yielded points of the convex hulls and 

a function allowing to know if a pixel to be predicted belong to the inside or outside space of the hull. 

The proportion of extrapolated pixels and their distance to the proximal point inside the hull were 

computed for all pixels of the Mouterhouse forest, as well as for the extended ALS area. Using the 

validation dataset, it was then possible to compute prediction bias and their distance to the most proximal 

calibration plot.    

3. Results and Discussion

The conventional way to evaluate precision gain associated with sampling efforts is to examine 

validation RMSEs. In Figure 2, this indicator appears to reach a plateau around 50 calibration plots. 

With this number of plots however, the proportion of extrapolated pixels in our area of interest (AOI) 

has not reach a plateau and remains relatively high (ca. 40%). The extrapolation plateau seems rather to 

occur in the range of 200-300 plots (14-22% extrapolation). Figure 2 also shows a minor difference in 

the proportion of extrapolated pixels between the two AOI examined. Extrapolation tends to be slightly 

higher (by ~3%) within the extended AOI, where no calibration plots were present. With a lower amount 

of calibration plots, the extrapolation distance also tends to increase (Figure 2). 

Figure 2: Impact of sampling effort on root means squared errors (RMSE) of validation plots for the 

different forest attributes examined (left) and on the proportion of pixels located outside the convex 

hull according to the area of interest (whole ALS or only Moutherhouse) (middle). Boxplots of the 

distances to the hull are also presented (right). 

As large prediction errors might be associated with model extrapolation, Figure 3 presents for 

each forest attributes examined, the bias obtained with the validation datasets as a function of their 

distance to to the most proximal calibration plot. Large positive and negative bias were observed (from 

-303% to +161%). However, a negative trend appears to occur as a function of distance (a distant 

position being associated with an overestimation of the model). This trend appears to be low for Dg, but 

high for G and N. This result indicates that it is not only possible to identify pixels that are extrapolated, 

but also suggest the possibility to correct this result based on the relationship between bias and 

extrapolation distance.  

In this study, we used a simple model, but a preliminary work also showed that more complex 

models are generating larger proportion of extrapolated pixels. This is certainly associated to the curse 

of dimensionality. Therefore, the approach used in this study could be considered as an interesting tool 

to compare competing ALS models.  

Figure 3: Relative bias for the different forest attributes examined associated to the extrapolated 

validation plots as function of their distance to to the most proximal calibration plot. (Attributes are 

basal area (left), quadratic mean diameter (middle), and plot density (right.) 
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Extrapolated pixels are easily identified using this approach and can then be mapped. Therefore, 

the spatial distribution of these extrapolated pixels (mapped) could provide additional information that 

require further attention. This information could reveal important aspects for forest managers, indicating 

areas where model predictions are out of the calibration domain.  

Finally, as Knn is frequently used with ALS, the use of convex hull could also be considered as 

an interesting tool for further investigations, since this modelling method is also known to be sensitive 

to extrapolation. 

4. Conclusions

The study showed the possibility to identify (and afterward map) pixels that are extrapolated using a 

convex hull approach. It also showed that prediction bias tends to increase with distance to the 

calibration domain and that low amount of calibration plots tend to increase these distances. Convex 

hull is certainly an interesting tool to evaluate model “representativeness” over an AOI and could then 

serve to compare models in a phase of model selection. It could also serve at the stage of sampling effort 

determination. Further studies are nevertheless required to evaluate this tool to correct extrapolation 

bias. 
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