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Abstract. Transparent objects and surfaces are pervasive in man-made
environments and need to be considered in any vision system. Accu-
rate depth data is a key factor for such systems reliability, requiring
transparency to be inferred, due to the sensing challenges. However, the
current state-of-the-art methods to predict the depth of such objects are
not reliable enough to ensure safe operation of robots in arbitrary com-
plex scenes. In order to better understand and improve upon existing
solutions, we evaluate the performance of a variety of depth estimation
methods. Doing so, we disentangle the different factors impacting their
performance. Among our findings, neural radiance fields offer the best ac-
curacy, but are very sensitive to the number of images used to understand
the scene, and do not benefit from any level of object understanding to
help them fill in the gaps.

Keywords: Transparent objects perception · Depth Estimation · Depth
Completion.

1 Introduction

Vision systems need to provide sufficient information for the task and scene at
hand to enable reliable and safe operations, whether in an industrial context, or
when considering a service robot in a household. The COCO and LVIS [4] chal-
lenge have demonstrated the very significant progress [11,5,14] made in object
detection and the robustness of such approaches to support scene understand-
ing. An important aspect of that requirement is the ability of vision systems to
reliably understand the geometry of the environment, which becomes necessary
as soon as an agent is expected to act in that environment.

While widely available depth sensors have provided a solid baseline to re-
cover the scene’s geometry, they assume surfaces to be lambertian. Recovering
the shape of transparent objects is therefore still an open challenge. Their ap-
pearance strongly depends on the environment in which they are observed for all
wavelengths commonly used in vision sensors. Either no depth is predicted, pre-
venting any interaction, or the depth of the transparent object’s background is
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estimated, potentially leading to unsafe robot’s movement in the scene. Learned
methods have been introduced to address this specific problem using the color
image to complete the depth [12,16,3], but their generalisation ability when
encountering such transparent objects in environments with large scene shift
remains to be proven.

This work presents a representative comparison of recent depth completion
and NeRF methods for transparent object depth retrieval. The aim is to highlight
the advantages and disadvantages of both types of approaches, and to quanti-
tatively evaluate the expected error. We collected diverse data to empirically
investigate the reliability of depth estimation methods for transparent objects.
By using glass and plastic objects, filled with liquid or empty, properties like
opacity and index of refraction are varied. Additionally, scene properties, such
as viewing angle, object arrangements and lighting are varied to create diverse
evaluation scenarios. In order to provide ground truth depth for evaluation, ob-
jects are coated and scanned with a high-quality sensor for creating 3D models.
Image sets for testing are captured using the uncoated objects. The 6D pose
annotations are created by registering the object models against the captured
images. Ground truth depth is computed using these annotations. Evaluations
on these data are provided for a set of methods including monocular depth es-
timation [15], RGB-D transparent object depth estimation [12,16,3], and neural
radiance fields [6] as illustrated in Figure 1. In summary, our contributions are:

– an in-depth evaluation of the performance of depth estimation methods for
transparent objects on common ground.

– a set of principles and recommendations inferred from the requirements of
the individual approaches.

Fig. 1. Visual comparison. Depth prediction examples of the evaluated depth esti-
mation approaches, the sensor and the ground truth.
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We now present relevant state-of-the-art methods in Section 2, our proposed
evaluation scheme in Section 3, our experimental results in Section 4 before
presenting our conclusions in Section 5.

2 Related Works

This section introduces the state-of-the-art methods in the field of depth esti-
mation as well as other relevant datasets of transparent objects.

2.1 Depth estimation

While active depth sensors such as the Microsoft Kinect, the Asus XTion and the
Intel Realsense are widely available and provide accurate dense depth maps, none
of them provide reliable depth information for transparent objects. Structured
light ones tend to provide no depth at all, while active stereo can recover a
few points on the edges. In the worst case, such sensor will provide depth values
corresponding to the surface behind the transparent object, leading to potentially
unsafe motion for a robot.

Another approach is to directly predict the depth from an RGB image using
a learned method [1,15]. A major challenge in this context is to predict metric
depth, as a single image does not provide information about the absolute scale.
In [15], the authors split the task in two steps: first they predict monocular
depth, second, they refine the scale and a focal length. A point cloud is created
using the initial guess of the camera intrinsics and the estimated depth map and
fed to a module that predicts that refinement.

Depth Completion: A few works focused on completing the missing depth
maps produced by depth sensors using information from the corresponding RGB
image. The first one to do so, ClearGrasp [12], proposed to predict a mask
and surface normals of transparent objets, as well as their outline. From this
information, an optimisation step would fill in the gap of the sensor depth map.
LIDF [16] introduces a new local neural representation from ray-voxels pairs, and
use this representation to predict the occupancy of said voxels from which the
depth can be inferred. TransCG [3], on the other hand, proposes a more standard
but very efficient convolutional neural network designed for depth completion.

Neural Radiance Fields: Neural Radiance fields [9], or NeRF for short,
introduced a method to generate novel views of a scene from a set of posed
views by learning an implicit representation. A multi-layer perceptron learns to
predict density values and emitted colors for every position and direction within
the scene the field represents. They are in turn used in a volume rendering scheme
to recreate views of the scene. While this process originally took many hours to
train on a single scene, improvements introduced by Instant-NGP [10] reduced
this to less than 15 minutes. This speed-up is the result of a more efficient
position encoding using a multi-resolution hash encoding combined with more
efficient architectures.
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In Dex-NeRF [6], the authors noticed that the density values learned by
NeRF present small local maxima along rays passing through transparent ob-
jects. By setting a low threshold, the distance to the first density value crossing
that threshold along the ray is shown to produce depth estimation for trans-
parent objects. In the follow-up work Evo-NeRF [8], optimisation are made to
the pipeline to learn the implicit representation faster and predict grasp points
directly from a Dex-NeRF predicted depth map. Neural radiance fields have
demonstrated their ability to recover scene geometry, even for transparent ob-
jects, and are very actively researched.

Transparent Objects Dataset Transparent object handling has gained
considerable momentum, leading to the creation of a number of datasets of vary-
ing complexities. Cleargrasp [12] introduced its own synthetic dataset as well as
a very small scale real dataset for testing purposes (286 images). LIDF [16] in-
troduced the Omniverse large-scale synthetic dataset but no real counterpart.
TransCG [3] introduced a large-scale real dataset focused on bin picking setups,
mostly using top views of scenes. Most recently, [7] introduced a dataset com-
paring different depth sensors, including active and passive stereo, and direct
and indirect time-of-flight sensors. This work does include transparent objects
but is not focused on them.

The most relevant dataset to our benchmark task, ClearPose [2], introduced
a large-scale dataset of scenes containing transparent objects. The annotations
are obtained by placing object models in the 3D scene and hand-adjusting their
positions based on the reprojection over multiple images. We use a very similar
approach that was introduced in 3D-DAT [13], which uses the reconstruction of
NeRF to auto-align objects with the scenes. However, ClearPose only considers
transparent object with similar index of refraction, without filling. This work
utilises more diverse data for evaluation, featuring different materials, containers
with and without liquid filling. This allow us to reason about specific properties
of objects, as detailed in the Section 3.

3 Measuring the Quality of Estimated Depth maps

This section introduces the methodology to evaluate the quality of depth
estimation from a variety of methods, specifically looking into the viewpoint
from which scenes are observed, object properties, and scene properties such as
background and lighting. Formally, this work is concerned with predicting depth
data ID from a single or multiple color image inputs IC , and optionally, a sensed
and incomplete depth map ÎD. The previous section summarizes methods suited
for this task. We choose a representative subset and evaluate them in comparable
settings.

3.1 Depth Retrieval in Comparison

Generally, the clear advantages of depth completion approaches [12,16,3,15] is
that depth can be predicted from single images without corresponding cam-
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Table 1. Overview of compared methods. This table presents the inputs and in-
ference parameters for each of the compared ones. For NeRF-based methods, † indicate
results obtained using an Nvidia RTX 2070 Max-Q.

Method Multi-view Input Inference time (seconds) Inference resolution

ClearGrasp [12] ✗ RGB-D 4.8 640× 360
LIDF [16] ✗ RGB-D 0.25 320× 240
TransCG [3] ✗ RGB-D 0.16 320× 240

LeRes [15] ✗ RGB 0.06 320× 240
LeRes [15] (scaled) ✗ RGB 0.06 448× 448

Dex-Nerf [6] ✓ RGB
14.3/6.25†

1280× 720
Dex-Nerf [6] (half) ✓ RGB
Dex-NGP [6,10] ✓ RGB

360/219† (training)
NeRF [9] (Expected) ✓ RGB

era pose. This allows broader deployment. Disadvantages are that these ap-
proaches need to be trained, and thus inherently contain a bias with respect
to the training data, and require preparation time before deployment. NeRF-
based approaches [6,10,9] are unbiased with respect to the scene, since models
are trained directly on the observed data of the scene of interest. This how-
ever, requires availability of multiple views and corresponding camera poses. We
present an overview of the input and inference speed (together with the infer-
ence resolution) in Table 1. Time were measured using a Nvidia 1080Ti and an
Intel i7-7700K, unless mentioned otherwise. We also report timings on a Nvidia
RTX 2070 Max-Q for NeRF-based methods since the ray-tracing cores provide
significant speed-ups. For those methods, as training has to be performed on ev-
ery scene, we also report training time. In order to compare the depth retrieval
error on a common ground we create a test dataset of transparent objects. The
following section outlines this process. The dataset is illustrated in Figure 2.

Fig. 2. Dataset images. Visualised are different scenes setups and viewing angles.

3.2 Data Collection

The dataset is collected by moving a camera attached to a robot arm around a
scene. The same viewpoints are collected for every scene, and the camera poses
are obtained through inverse kinematics of the robot arm. We use 3D-DAT [13]
for annotation, placing object models in the virtual 3D scene, and manually
correcting their poses based on their reprojection error in the different RGB
views.
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To obtain 3D object models, the physical objects are coated using a mat spray
paint after collecting the different scenes. A high-quality depth sensor (Photoneo
MotionCam-3D scanner1) is used to reconstruct them. The set of objects used in
our experiments is illustrated in Figure 3, and includes plastics and glass objects,
filled or empty with a variety of shapes, and a variety of sizes.

A total of 23 scenes is collected using a Intel Realsense D435, saving both
the RGB image and the depth image at a resolution of 1280 × 720 pixels. The
robotic arm performs a circular motion around the scene with the camera ori-
ented toward the scene center, placing the camera at four different heights and
corresponding polar angles (68◦, 60◦, 48◦ and 33◦). For each circle, either 16 or
26 views are collecting resulting in a total of 64 or 104 views per scene. The light
is uniform and comes from the top of the scene. For four scenes, we add a strong
light projector to the side of the scene, producing caustics and other refraction
and reflection effects at the interface of transparent objects. Those scenes also
have more textured backgrounds, as opposed to the uniform background of the
others.

Fig. 3. Object set. Objects used for evaluating depth estimation. Properties are di-
versified with respect to size, shape, material and filling.

3.3 Evaluation Methodology

We report the same metrics as the ones presented in ClearGrasp [12]. In partic-
ular, with GTp the grountruth depth at pixel p and Dm

p the depth predicted by
method m at pixel p, we consider δT the percentage of pixels having a relative
depth prediction falling within a threshold T , that is, for P the set of pixels
considered:

δT =
1

P

∑
p∈P

{
1 if max

(
GTp

Dm
p
,
Dm

p

GTp

)
< T

0 otherwise

1 https://www.photoneo.com

https://www.photoneo.com/
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The threshold considered are 5%, 10%, 25%.

With Ep = GTp−Dm
p the difference at pixel p between the groundtruth depth

and the depth predicted by method m, we also report the root mean square error

RMSE =
√

1
P

∑
p∈P E2

p , and the mean absolute error MAE = 1
P

∑
p∈P |Ep|.

For all metrics and evaluations only pixels lying on object surfaces are con-
sidered, excluding any scene pixel. To provide a common basis for evaluation,
given that different methods produce depth maps of different ratios and differ-
ent sizes, all predicted depths are rescaled using bilinear interpolation, and crop
them to fit the 4

3 ratio (final resolution of 960× 720 pixels).

We evaluate Cleargrasp [12], LIDF [16] and TransCG [3], all designed for
depth completion for transparent objects from RGB-D pairs. The pre-trained
model is used together with the default parameters. In addition to using the
results obtained with the original depth sensor capturing the scene as baseline
(Intel Realsense D435), the depth maps produced by a monocular depth estima-
tion method (LeRes [15]) are also evaluated. Since LeRes does not have access
to any scale information, the results on metric depth prediction are predictably
poor. As such, we propose to rescale the predicted depth using the median value
of all the ratio

GTp

DLeRes
p

, giving a sizeable boost to the results and enabling the

evaluation of the shape predicted. Except in Table 2, only the rescaled results
are presented. Finally, we also present the results of depth maps generated by
Neural Radiance Fields. Such approaches use all RGB images of the scene during
training, and need to be trained on a per-scene basis, but do not require any
depth measurement. Multiple strategies can be used to extract depth maps once
trained. We evaluate the results when using the expected depth value obtained
from the volume rendering procedure [9], as well as Dex-NeRF depth rendering.
To provide a more complete view, we also report the results obtained when train-
ing Dex-NeRF with only half of the views collected, meaning that the method
never saw half of the views it is evaluated on. We also report the result when
combining Dex-NeRF depth rendering with Instant-NGP [10], a neural radiance
field using a different position encoding for faster training, that we refer to as
Dex-NGP.

4 Results and Findings

We now present our findings regarding the behavior of depth estimation meth-
ods. A summary of the results is presented in Table 2. We notice that, while
accuracy is underwhelming, all depth completion methods improve over the sen-
sor output, but Dex-NeRF-based methods present the most accurate results, as
long as enough views are available. Training with half of the views recorded, that
is 32/52 views, seems indeed to be too few views for accurate reconstruction.
Indeed RMSE is more strongly affected by incomplete results (missing depth)
than the δT , which favors ClearGrasp, LIDF and TransCG that all produce
“complete” output. We only observe a modest improvement for depth comple-
tion methods in δ1.05 values (corresponding to points within a 2.5cm error at
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50cm, or 5cm at 1m) over the sensor output. TransCG, in particular, does not
produce very accurate results but its prediction error remains within smaller
bounds than others, showing the lowest RMSE value. LIDF produces the most
accurate results out of the depth completion methods, that is the highest δ1.05.
Finally, LeRes is surprisingly competitive after re-scaling, which is probably due
to its access to a much larger training set. It should be emphasized that LeRes
predicts a depth from a single RGB image, and is not designed for transparent
object depth prediction but general monocular depth prediction. The fact that
we use a single scale factor for the entire image suggest that the method is very
good at predicting the shape of transparent objects, although not in a metric
way.

Table 2. Depth estimation comparison. Results are compared using different met-
rics. Number are averaged over objects and scenes.

Method δ1.05 ↑ δ1.10 ↑ δ1.25 ↑ MAE↓ RMSE↓
Sensor (D435) 43.4 57.7 66.1 0.204 0.343
ClearGrasp [12] 46.3 68.1 87.7 0.073 0.109
LIDF [16] 49.7 72.8 92.0 0.055 0.092
TransCG [3] 43.9 68.5 89.5 0.057 0.071
LeRes [15] 3.8 7.3 17.3 0.582 0.652
LeRes [15] (scaled) 22.2 36.9 61.5 0.161 0.218
Dex-Nerf [6] 57.5 80.5 92.6 0.058 0.088
Dex-Nerf [6] (half) 33.9 51.7 61.3 0.194 0.216
Dex-NGP [6,10] 78.0 86.5 91.8 0.054 0.136
NeRF [9] (Expected) 24.9 51.4 85.7 0.098 0.141

4.1 Impact of the Viewing Angle

As our scenes are captured at four different camera angles, relative to the vertical
orientation, Figure 4 presents the evaluation for each angle. TransCG, and to
a lesser extent, Cleargrasp and LIDF, improve the closer the camera gets to a
top view. This is a direct manifestation of the training data bias, as TransCG
was designed with bin-picking applications in mind. This underlines that none
of these learned methods gained a true understanding of transparent objects but
are bound by the quality of their training data.

4.2 Impact of the Object Properties

We evaluated the impact of different object properties on the depth estimation
methods. We hypothesize, that the more the object impacts the trajectory of
the light through refraction and reflection, the more visible it will be. In other
words, the stronger the difference of the index of refraction of adjacent mediums
and the thicker the medium, the easier it should be to infer the object shape.
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Fig. 4. Influence of the scene viewing angle. Left: Percentage of pixels with pre-
dicted depths within 5% of groundtruth (δ1.05). Right: RMSE

The size of transparent objects has a noticeable impact on the results, as
illustrated in Figure 5. We believe this is a subtle manifestation of the impact
of the object on the path of the light. Indeed, the strongest light effects happen
at the border of objects, while the center tends to be much less noticeable.
Larger objects will naturally have a smaller ratio of “border” pixels relative
to all the pixels their silhouette covers. This overall trend is slightly weaker
for depth completion methods, which can be explained by the fact that these
methods benefit from an object prior, having been exposed to many object types
during their training. This contrasts with NeRF-based methods that are trained
from scratch for every scene. We did not however notice any strong dependency
on the material (plastic or glass), or the thickness of the transparent object
surfaces. We hypothesize that these effects did not manifest themselves due to
the entanglement of the different properties of the chosen objects.

4.3 Impact of the Scene Lighting

In Table 3, the results for different types of scenes are reported. As described in
Section 3, the additional directional light on the side of the scene leads to stronger
refraction and reflection, and the additional scene texture should make the trans-
parent object’s distortion of the light path easier to distinguish. These scene
changes are positively affecting the RMSE of NeRF-approaches. Conversely, this
is detrimental to ClearGrasp and LIDF, but not to TransCG.

ClearGrasp and LIDF are trained from rendered data. It is still challenging
to model all the effects of transparent objects using rendering methods. We
hypothesize that this is the cause of the bad depth prediction of ClearGrasp and
LIDF reflected in the result.
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Fig. 5. Influence of the object size. Left: Percentage of pixels with predicted depths
within 5% of groundtruth (δ1.05). Right: RMSE

Table 3. Influence of lighting and background First two rows: Percentage of
pixels with predicted depths within 5% of groundtruth (δ1.05) per method. Higher is
better. Last two rows: RMSE per method.

Scene D435 Clearg. LIDF TransCG LeRes Dex-NeRF Dex-NeRF (h.) Dex-NGP

δ1.05
Uniform 43.4 48.3 51.9 42.6 20.2 59.3 22.4 76.2
Proj.+Clut. 46.0 38.1 39.1 48.0 28.2 57.3 54.5 86.1

RMSE

Uniform 0.357 0.118 0.097 0.076 0.243 0.108 0.297 0.161
Proj.+Clut. 0.305 0.097 0.084 0.055 0.137 0.044 0.081 0.043

4.4 Discussion

We now succintly present the main issues facing transparent object depth pre-
diction. As for any learning problem, data is the key to good performance. The
training dataset of [3] does not cover every part of the viewing sphere equally
and rendered data created as part of [12,16] does not accurately model every
light effects induced by transparent objects. This latter statement should how-
ever be continuously revised under the light of the progress made in the very
active field of computer graphics. Depth completion methods provide more com-
plete but less accurate depth maps, and can do so from a single view, with very
short inference time. They indeed benefit from a level of understanding of object
shapes implicitly learned during training that helps them to be more robust to
varying object’s size. Building on the surprisingly good results from [15], larger
dataset with high variety seem essential to improve these approaches. The fairly
simple but effective architecture presented in [3] also questions the need for ar-
chitectures designed specifically for transparent objects, as opposed to the more
general problem of depth completion.

On the opposite end of the spectrum, NeRF-based methods are the most
accurate, and circumvent the issue of training data bias as they perform trans-
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ductive learning. They also can provide basic guarantees about their convergence.
Indeed, as they are designed to render views of the scene, comparing their cur-
rent rendering to the captured images let us quickly identify the accuracy of
the renderings in their close vicinity. Radiance fields are a very recent research
direction, and significant progress have already been made in convergence speed,
and more are expected. The modeling of transparent objects in [6] is quite sim-
ple, and more advanced modeling of light propagation within the learned volume
could yield significant improvement in the quality of the recovered geometry, not
only for transparent objects, but any scene with complex materials.

5 Conclusion

In this study, we evaluated a large variety of methods for estimating the depth of
transparent objects. This includes depth completion methods tailored for trans-
parent objects, general monocular depth estimation methods, as well as neural
radiance fields-based methods. We demonstrated that, when possible, NeRF-
based methods provide the most accurate results. These methods do not have
priors about the scene, which is generally good, but detrimental when it comes
to larger objects, where depth far from the border has to be inferred from plau-
sible object shapes. Furthermore, we underlined once again the importance of a
high quality, as bias-free as possible, training dataset.

Future work will disambiguate influencing effects on the reconstruction qual-
ity more in depth, i.e. clutter, lighting, object fill level, as well as the effect of
transparent objects occluding other transparent objects. More detailed analysis
on the influence of data distribution shifts will follow, by training depth estima-
tion methods on real and on rendered data, and evaluating the reconstruction
quality on transparent objects unseen during training. Furthermore, a natural
next step for this work is to investigate the suitability of the depth estimated in
the context of down-stream tasks such as object pose estimation. Such an eval-
uation would help underline how accurately shapes are preserved, as opposed to
pixel-level evaluation.
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