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Abstract
We investigate network nonlocality in the triangle scenario when all three parties have no input
and binary outputs. Through an explicit example, we prove that this minimal scenario supports
nonlocal correlations compatible with no-signaling and independence of the three sources, but not
with realisations based on independent quantum or classical sources. This nonlocality is robust to
noise. Moreover, we identify the equivalent to a Popescu-Rohrlich box in the minimal triangle
scenario.

1. Introduction

The study of nonlocality has historically focused on the scenario of the Einstein–Podolsky–Rosen paradox
and Bell’s inequality. In this so-called Bell scenario, a single source emits pairs of particles that are distributed
between two parties who independently measure them in spacelike separated locations and then compare
their statistics. In more recent years, the study of nonlocality has moved beyond the Bell scenario to consider
the correlations that can arise in network scenarios [1]. A network features several independent sources that
emit particles that are then distributed between a number of parties according to the specific network
architecture. For example, the simplest network, known as the bilocal scenario [2, 3], has two independent
sources that each distribute a pair of particles; one between parties Alice and Bob and one between parties
Bob and Charlie. This is the same scenario encountered in the simplest form of entanglement swapping [4].

It is well-known that the introduction of multiple independent sources makes the technical analysis of
nonlocality in networks more challenging as compared to the Bell scenario. However, networks also offer
new conceptual insights. For example, this pertains to the use of complex numbers in quantum mechanics
[5–7], device-independent certification without inputs [8], nonlocality with single photons [9], upper
bounds on measurement dependence [10] and tests of generalised probabilistic theories [11]. Computational
methods have been developed, mainly based on the idea of inflation, to bound from the exterior the set of
local [12], quantum [13, 14] and post-quantum [15] correlations in networks. The exploration of network
nonlocality has lead to many nonlocality criteria specialised for different network architectures, for example
in the bilocal scenario [2, 3, 16], in the chain scenario [3, 17, 18], in the star scenario [19, 20] and many
others (see e.g. [21–27]).

A particularly enigmatic network is the so-called triangle scenario. It features three parties, Alice, Bob
and Charlie, and three sources that each emit a pair of particles between a pair of the parties (see figure 1).
The reason that this network is of particular interest is that it is the simplest scenario in which every party is
connected to every other party through a shared source. It may be thought of as the simplest instance of a
fully connected graph, in which the vertices represent the parties and the edges represent sources, each
emitting independent particle pairs shared between them. It is possible to create nonlocality in the triangle
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Figure 1. The simplest triangle scenario. Alice, Bob and Charlie are pairwise connected by sources that each emit a pair of
particles. They each perform a selected measurement and obtain binary outcomes.

scenario by means of standard Bell nonlocality: this can be done either by directly establishing bipartite Bell
nonlocal correlations between two of the parties, or by disguising them in no-input, four-outcome
distributions [28]. However, more genuine forms of triangle nonlocality are possible when none of the
parties have an input and all of them give one of four possible outputs [29, 30]. This has raised the question
of identifying a minimal example of nonlocality in the triangle scenario, i.e. a probability distribution arising
between Alice, Bob and Charlie that admits no local model in a scenario when they all have no input and
their output alphabets are as small as possible. It has already been found that a smaller nonlocality example is
possible: there exists a quantum nonlocal probability distribution when two parties have ternary outputs and
one party has a binary output [31]. However, the conspicuous question still remains open: is nonlocality
possible in theminimal scenario, namely when all parties have binary outputs? When restricting nonlocality
to quantum theory, a negative answer has been conjectured [32].

Here, we prove that there exists nonlocal correlations in the minimal triangle scenario that are
compatible with the minimal physical requirements of no-signaling and independence (NSI) of the sources
in the network, but cannot be created neither by measurements on quantum states nor by post-processing of
classical randomness. Such NSI correlations may be thought of as the network counterparts to the
no-signaling correlations in Bell scenarios. In [15], inflation methods were used to compute outer bounds on
the set of NSI correlations in the minimal triangle scenario. Subsequently, [33] constructed an explicit
example of a network nonlocal box that saturates a point on the NSI correlation boundary, thus proving it to
be an optimal characterisation6. Our proposal for an analogue of a Popescu-Rohrlich box (originally defined
in [34]) for networks is based on this network nonlocal box.

We here employ the inflation technique for classical correlations in networks [12] to prove that there
exists a noise-robust gap between the NSI-set and the local set of correlations in the minimal triangle
scenario. Then, we go further and investigate the same problem using quantum inflation [13] and prove the
existence of a noise-robust gap between the NSI-set and the quantum set of correlations. Since our bounds
on the quantum set and the local set do not coincide, they raise the question of whether a quantum nonlocal
example also is possible. However, we have been unable to find such an example.

2. Symmetric distributions in the minimal triangle

The distributions we consider are arguably the simplest that are supported in the triangle scenario with
binary outcomes. Namely, we consider tripartite probability distributions that are invariant under
permutation of parties. These distributions are characterised by only three independent parameters, that can
be taken to be the single-, two- and three-body correlators (respectively denoted E1, E2 and E3). Using them,
any tripartite distribution for binary outcomes that is invariant under permutation of parties can be
written as

p(a,b, c) =
1

8
[1+(a+ b+ c)E1 +(ab+ ac+ bc)E2 + abcE3] , (1)

where a, b, c ∈ {−1,1} represent the outcomes of Alice, Bob and Charlie respectively.

6 We note that a confusion is introduced in [33] above equation (22), where n ⩾ 2 should read n ⩾ 4.
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Figure 2. The hexagon-web inflation of the triangle scenario. There are two copies of each of the sources in the original triangle
scenario, and four copies of each of the parties, one for each combination of copies of sources that send systems to the
corresponding party. Note that this inflation assumes that information originating from the sources can be cloned, and thus it
constrains triangle-local models. The sub-network shaded is the hexagon inflation, used for instance in [15]. Since in this case the
sources do not make copies of the information sent, this inflation constrains NSI correlations.

These distributions, and which values of E1, E2 and E3 lead to distributions (in)compatible with NSI,
were extensively studied in [15]. There, several analytic inequalities were derived that are satisfied by all
distributions that can, in principle, be generated in the triangle scenario (this is, when the sources distribute
independent classical randomness, entangled quantum states, or more exotic no-signaling systems). In some
cases, these inequalities were shown to be tight by finding concrete realisations in terms of classical shared
randomness, i.e. of the form

p(a,b, c) =
∑
λAB

∑
λBC

∑
λAC

p(λAB)p(λBC)p(λAC)p(a|λAB,λAC)p(b|λAB,λBC)p(c|λBC,λAC) , (2)

which means that all distributions in those boundaries can be created by means of classical shared
randomness distributed by the sources, and thus they automatically satisfy NSI. However, in other situations,
classical realisations that matched the bounds could not be found. These are, notably, a small region in the
rectangle (E1,E2) ∈ [0.18,1/2]× [−1/3,0] and a whole section in (E2,E3) ∈ [0.3621,

√
2− 1]× [0,0.6] when

E1=0. It is in these regions where interesting phenomena may appear: there may exist distributions that,
albeit being compatible with no-signaling and independence, may not be possible to realise by
post-processing shared randomness, or by measuring quantum states. We address these questions with the
aid of the inflation technique [12, 13].

3. Inflation

Inflation is a general framework for characterising correlations in causal structures (among which networks
constitute a particularly interesting class). The key concept in inflation is the gedankenexperiment of
considering that one has access to multiple copies of the sources of physical systems and measurement
devices that make up the network, and can arrange them in arbitrary configurations. While at first it seems
that analysing the correlations that are generated in these new configurations is an equally (if not more)
daunting task, the fact that the elements in the inflation are copies of those in the original network imply a
number of symmetries that allows to simplify the characterisation, which can then be formulated in terms of
linear [12] or semidefinite programming [13]. In the following we provide a brief, high-level overview of the
reasonings behind inflation and how different variants constrain different types of correlations, referring the
reader to the original references [12, 13, 15] for more detailed descriptions.

Depending on the properties of the physical systems distributed by the sources, different types of
inflations will be allowed (see figure 2, also [1, figures 7, 8, 11]). When the sources distribute shared
randomness, this can be cloned, and thus the inflations considered can include, in addition to copies of the
sources and the measurement devices, copies of the shared randomness distributed to a given party. This
leads to inflations such as the hexagon-web inflation in figure 2 (see also, e.g. [12, figure 2] or [30, figure S2]),
where for a given number of copies of each source there exist as many copies of the measurement devices as
possible combinations of sources distributing states. If the sources distribute quantum systems, copying
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Figure 3. Random two-outcome distributions, parameterised by E1, E2 and E3, in the region of interest of [15, figure 2]. The
turquoise points denote the distributions that are incompatible with (a) the hexagon inflation, i.e. with any triangle model, and
(b) the hexagon-web inflation, i.e. with any triangle-local model. The grey region represents that for which the corresponding
values of E1 and E2 do not produce a valid probability distribution. Notably, when the LPI constraints are not added to the
classical hexagon-web inflation, the resulting figure is exactly the same as in (a).

individual subsystems is prohibited due to the no-cloning theorem [35], and thus the allowed inflations only
contain a given number of copies of each source, and each party has one different set of measurement
operators per possible combination of copies received (see, e.g. [13, figure 4]). Finally, if one wants to
constrain the distributions that can be generated in a given network with any type of systems (i.e. only
constrained by no-signaling and independence [15]), then the inflations that must be considered are those
where the information from the sources is not cloned, and each party only receives one copy of each relevant
source. This leads to inflations such as the hexagon inflation, which is the shaded sub-network in figure 2.

In addition to this, in order to make the programs as constraining as possible, we follow [30, 36] and add,
in particular, the linearised polynomial identification (LPI) constraints that associate a factorising probability
in the inflation to the product of a probability in the original network (therefore, a known, real number once
p(a,b, c) is fixed) and another probability that will remain as a variable in the corresponding optimisation
problem. For example, one of these constraints for distributions compatible with the inflation of figure 2 is
pinf(a1,1,a2,2,b2,1, c2,2) = p(a1,1)pinf(a2,2,b2,1, c2,2). Adding these constraints turns out to be crucial to
observe the non-trivial phenomenology that we describe in the following section.

4. Results

In the following we analyse the compatibility of the distributions in the ‘interesting’ regions of the parameter
space as identified by [15] (i.e. the areas colored in yellow in [15, figures 2, 3]) with classical and quantum
models in the triangle network. Classical and NSI inflation are implemented in MATLAB, and quantum
inflation is implemented Python using the package inflation [37]. All codes are available in the
computational appendix [38].

We begin by focusing on the E1 − E2 plane. There, [15] provided an inequality satisfied by any probability
distribution generated in the triangle scenario, which we recover using NSI inflation in figure 3(a). Indeed,
we confirm that whether a distribution can be generated in the triangle scenario can be discerned exclusively
by analysing the single- and two-body marginals of the distribution and, perhaps surprisingly, ignoring the
three-body correlator. In fact, when considering which distributions do not admit a hexagon-web inflation
(i.e. we ask which of those distributions can not be generated when the sources distribute classical
randomness) and not imposing the LPI constraints, the perspective offered is the same as that shown in
figure 3(a).

When inserting these constraints, the picture changes drastically (see figure 3(b)): we find that the
three-body correlator E3 has a role in determining whether the distribution p(a,b, c) admits a triangle-local
model of the form of equation (2). Interestingly, we observe a non-trivial relation, since we observe that, even
very close to the analytical boundary for NSI correlations of [15], there exist distributions that cannot be
identified as not admitting a triangle-local model using the inflations considered in this work. Changing the
perspective reveals a much sharper boundary (see figure 4). However, this boundary does not have a simple
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Figure 4. Rotation of figure 3(b) to depict the boundary between distributions not admitting (in light blue) and not known to
admit (in dark blue) triangle-local models. The boundary can not be described by a simple polynomial in the variables E1, E2, E3
up to degree 5.

expression in terms of a polynomial in the variables E1, E2 and E3 up to degree 5. Numerical searches based
on LHV-Net [39] suggest that triangle-local models do not exist in the region where inflation can not
guarantee the absence of a model. It is also interesting to see that there exist distributions far from the
boundary (in the area around E1 = 0.2, E2 =−0.1) that are triangle nonlocal. When visualizing the
datapoints of figure 3(b) in the three-dimensional space where the axes correspond to E1, E2 and E3, a sharp
boundary appears (see the computational appendix [38] and figure 4). This boundary, despite its seemingly
almost-linear form, does not have a simple expression in terms of a polynomial in the variables E1, E2 and E3
up to
degree 5.

Now we turn to the ‘interesting region’ in the E2 − E3 plane of [15, figure 3] with the additional
constraint that E1 is fixed to be 0. In this region, [33] showed that for each correlation with E1 = 0 and
E2 =

√
2− 1 there exists a unique non-local box that realises it. Positivity constraints bound the magnitude

of E3 by 2−
√
2 and, as shown in [15, supplementary note 2], in the extreme values of E3 the corresponding

distributions admit local models. The codes implementing the classical inflation shown in the appendix and
the corresponding quantum inflation [13], both available in the computational appendix [38], allow to
demonstrate that, up to numerical precision,±(2−

√
2) are the only values of E3 for which the

corresponding distribution admits a description in terms of sources of shared randomness or of quantum
states.

The E2 − E3 plane with E1 fixed to 0 also contains an even simpler set of correlations, namely the set of
noisy GHZ distributions

pGHZ
v (a,b, c) = v

(
1

2
if a= b= c

)
+

1− v

8
. (3)

This set of correlations is, in addition to invariant under permutation of parties, also invariant under
permutations of outcomes, and is characterised by E1 = E3 = 0, E2 = v. E2 = v can be seen as the probability
of the three parties sucessfully simulating a shared random bit by only using bipartite resources. Moreover,
this region is interesting because it contains what can be regarded as an equivalent of the well-known
Popescu-Rohrlich box [34] for networks: namely, it is known that the distribution corresponding to
E1 = E3 = 0, E2 =

√
2− 1, can be generated by wiring three copies of a unique non-signaling box forming a

triangle [33]. Thus, a natural question is to determine whether this distribution can equivalently admit a
description in terms of sources distributing shared randomness or quantum states.

When considering the hexagon-web inflation (with LPI constraints, so the linear program used is as
constraining as possible), it is possible to show that a distribution compatible with the inflation and that
satisfies all the necessary constraints exists. Therefore, the hexagon-web inflation cannot detect whether the
distribution with E1=E3=0, E2=

√
2− 1 can be generated or not with sources of classical shared

randomness. However, it is not possible to find such a distribution if considering the inflation corresponding
to having three copies of any of the sources in the scenario and two copies of the remaining ones, depicted in
the appendix. This impossibility is a rigorous proof that the distribution with E1 = E3 = 0, E2 =

√
2− 1

cannot be generated via sources of shared randomness. In the computational appendix [38] we provide a
program that detects this infeasibility.

The codes in the computational appendix allow to moreover show that any distribution with E1 = E3 = 0
is triangle nonlocal if E2 ⩾ 0.3942. We want to note that this critical value is, a priori, not tight, and can
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Figure 5. Summary of results for triangle-local and triangle-quantum models for the distributions in equation (3) in the minimal
triangle scenario. The arrows pointing rightwards represent lower bounds via the construction of explicit models, while the
arrows pointing leftwards represent upper bounds obtained via inflation. For the inflations, the green color denotes the results
obtained via linear programming, and the pink color denotes the results obtained via semidefinite programming. The values
highlighted are the best upper bounds for classical models (green) and quantum models (pink).

possibly be lowered by means of considering more restricting (and thus larger and computationally more
expensive) inflations. The constructions of explicit local models in [15, 40] strongly suggest that, in fact, the
boundary between triangle-local and triangle-nonlocal distributions lies at E2 ≈ 0.3621. We return to this
aspect later on.

In order to discern whether the distribution with E1=E3=0, E2=
√
2− 1 can indeed be considered as a

network analogue of the Popescu-Rohrlich box, one would like to prove that it also does not admit a
realisation in terms of sources distributing quantum systems. In order to do so, we implement the quantum
inflation [13] corresponding to the setting above (i.e. that with three copies of one of the sources and two
copies of the remaining ones, whose classical inflation is in the appendix ). It is possible to show numerically
that any distribution with E1 = E3 = 0 can not be generated in the quantum triangle for E2 ⩾ 0.4067 (we
provide the corresponding codes in the computational appendix [38]). With this, we prove that the
maximally network nonlocal distribution with E1=E3=0, E2=

√
2− 1 is indeed a network analogue of the

bipartite Popescu-Rohrlich box, in that it generates correlations that are stronger than those achievable in
classical and quantum mechanics while still satisfying the conditions of NSI. As in the case of classical
inflation, the critical value for E2 provided may not be tight. In this case, there are two possible ways of
potentially achieving stricter values [13]: either increasing the size of the inflation as in the classical case, or
increasing the level of the noncommutative polynomial optimization (NPO) hierarchy [41] associated to a
given inflation.

Indeed, none of the critical values provided above, namely E2 ≈ 0.3942 for triangle-local models and
E2 ≈ 0.4067 for triangle-quantum models are tight. By trading off the size of the inflation and the level of the
associated NPO hierarchy in the quantum case, we have been able to analyse compatibility with the inflation
consisting of three copies of each of the sources, where each party has a total of 32 = 9 families of operators,
each corresponding to a different choice of incoming systems to measure. Using this inflation we are able to
show that any distribution with E1 = E3 = 0 can not be generated in the quantum triangle if E2 ⩾ 0.3953.
Moreover, it is possible to use the quantum inflation technique to address compatibility with local models, by
considering that all variables in the problem commute (see [13, section 4]). This allows to create semidefinite
programming relaxations of the inflation linear program. By doing so, and considering the inflation
consisting of three copies of each of the sources, we see that any distribution with E1 = E3 = 0 is
triangle-nonlocal if, at least, E2 ⩾ 0.3921. This value is lower than that obtained with classical inflation and
three copies of one of the sources. However, it is possible, with moderate computational effort, to consider
the classical inflation consisting of three copies of two of the sources and two copies of the remaining one.
This gives a critical value for E2 that is reduced down to E2 ⩾ 0.3772, giving a gap with the lower bound of
∼4%. Figure 5 summarises all these results.

One must note that the computational requirements for implementing the linear and semidefinite
programs increase significantly with the amount of copies of the sources considered. For illustration, table 1
contains an indication of the problem sizes and solving times for the inflations considered in this work. By
comparing figure 5 and table 1 one can explicitly see the tradeoff associated to using semidefinite relaxations
for detecting incompatibility with network-local models: using SDP relaxations allows us to go up to three
copies of each of the sources in the triangle scenario with a fraction of the variables needed for the LP, at the
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Table 1. Problem sizes and computation times for the inflation problems considered in the work. The classical inflations are
implemented in MATLAB via CVX [42], while the quantum inflations are implemented in Python via the inflation package [37].
The resulting LPs and SDPs are solved in Mosek 9.1.9. For LPs, the number of variables is directly read from the solver and the size of the
problem is (N. vars.×N. constr.), where the number of constraints is also directly read from the solver. For SDPs, the number of
variables is directly read from the solver, and the size is the dimension of the matrix Γ such that Γ⪰ 0. Time is calculated using
MATLAB’s function timeit for the case of the LPs and Python’s timeit package for the SDPs, and it involves both the creation and
solving of the problem.

Inflation N. parties Type N. vars. Size Time (s)

2-2-2, NSI 6 LP 119 119× 37 0.1803
2-2-2, C 12 LP 4201 4201× 641 1.0732
3-2-2, C 16 LP 65 973 65 973× 3613 6.2624
3-3-2, C 21 LP 2099 453 2099 453× 36 849 3446.0
3-3-3, C 27 SDP 1335 2026× 2026 5277.9
3-2-2, Q 16 SDP 3798 1183× 1183 1289.5
3-3-3, Q 27 SDP 1812 2026× 2026 5426.9

cost of obtaining worse bounds than those obtained when considering three copies of only one of the sources
(and two copies of the remaining ones).

5. Discussion

Can any symmetric distribution generated in the simplest triangle network be produced with only classical
shared variables? While the analysis of [15] showed that, if the answer to the question was in the negative,
these non-classical distributions would be restricted to a quite limited region of the space of parameters, here
we have shown an interesting phenomenology. By using tools based on inflation, we have assessed the
compatibility of tripartite distributions only subject to no-signaling and independence in the triangle
network with classical and quantum realisations. We have found that, indeed, there exist distributions that
satisfy no-signaling and independence yet cannot be created by distributing classical randomness or
quantum systems in the binary-outcome triangle scenario, thereby proving that the sets of triangle-local and
triangle-quantum binary-outcome distributions are strictly contained in the corresponding set of NSI
distributions. Moreover, we have showed a much richer phenomenology than that reported in [15], noting
that the value of the three-partite correlator, E3, plays a role in determining whether distributions with fixed
E1 and E2 is triangle-nonlocal. Lastly, we have proven that the non-local box defined by equation (1) with
E1 = E3 = 0, E2 =

√
2− 1, can be seen as the analogous of a Popescu-Rohrlich box for networks, in that it

generates maximally nonlocal correlations that cannot be produced in quantum theory.
This work raises a series of questions regarding the correlations that can be achieved in the minimal

triangle. First, the phenomenology showcased in figure 3(b) motivates a deeper analysis of which are the
conditions, in terms of the distribution’s moments, that determine (in)compatibility with triangle-local
models. Ideally, these would come in the form of analytical inequalities that would define the boundary of
the set of triangle-local distributions. The approximation of this boundary generated from outer
constructions via inflation, shown in figure 4, cannot be properly fitted to polynomials up to degree 5. In the
computational appendix [38] we store the data that defines this boundary. While inequalities can be
extracted from the certificates of infeasibility of incompatible distributions, the fact that we use LPI
constraints limits their range of applicability, which can be nevertheless extended via an appropriate, but in
some cases intricate, analysis [30].

Another question that remains open is whether the set of distributions admitting triangle-local models is
strictly contained in the set of those admitting triangle-quantum models [32]. Our analysis reveals
distributions that admit quantum inflations but do not admit classical inflations, maintaining the possibility
that the correlation sets could be different and that a classical-quantum gap exists in the minimal triangle
scenario. However, these are, at this point, only indications since inflation considers relaxations of the sets of
correlations of interest. Therefore, the possibility that using larger inflations constrains significantly the
quantum set and reveals that classical and quantum correlations are equivalent in the minimal triangle
scenario can not be ruled out. Finding that the classical and quantum bounds for v= E2 in equation (3)
coincide would mean that simulating a shared random bit with bipartite resources is, as the
guess-your-neighbors’-input game [43], a game without quantum advantage.

Finally, there exists the possibility that the analytical boundary in figure 3, derived in [15], is not tight
and can be further constrained using stronger NSI inflations. However, we expect this to be unlikely due to
the fact that there exist distributions very close to it that can not be identified as not admitting even
triangle-local models.
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Appendix. The 3-2-2 inflation of the triangle network

Figure 6. The 3-2-2 classical inflation of the triangle network, where there exists two copies of the sources distributing systems
between parties A and B and between parties A and C, and three copies of the source distributing systems between parties B and
C. Note that this inflation contains the hexagon-web inflation as a subgraph. Thus, it is a relaxation at least as powerful as the
hexagon-web inflation.

Many of the results obtained in this work are obtained by considering the existence of probability
distributions compatible with the inflation of the triangle network consisting of two copies of two of the
sources, and three copies of the remaining one. This inflation is depicted in figure 6.
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