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Abstract

Abstraction is a double-edged sword in programming languages. On one hand, it
simplifies the management of complex systems, allowing developers to encapsulate
intricate details behind intuitive interfaces. On the other hand, there is a longstand-
ing perception that abstraction equates to increased runtime overhead, which can be
a significant deterrent in resource-constrained environments.

One common misconception often encountered is the fear that object-oriented
languages lead to runtime overhead, particularly in resource-constrained environ-
ments. This belief stems from the idea that abstraction, a key component of OOP,
invariably adds performance cost. This fear is especially prevalent in the world of
embedded systems, where every byte of memory and every millisecond of process-
ing time is of paramount importance.

The aim of this thesis is to demolish the misconception that adding layers of ab-
straction inevitably results in less efficient software. This work serves as a demon-
stration of how modern C++ language features make it possible to write firmware
that surpasses the equivalent C implementation in efficiency, maintainability and
readability.

In the first part of the research, the focus was on how modern C++ language fea-
tures can be used to optimize code commonly used in embedded firmware devel-
opment. It is shown that by using C++, parts of the firmware that are inherently
constant due to the embedded nature of the project could be executed at compile
time.

In the second part, abstractions common to object-oriented programming lan-
guages are examined, analyzing their impact on runtime performance, and iden-
tifying which abstractions could be used without incurring additional runtime over-
head. Many of these abstractions were found to be zero-cost, except for those explic-
itly designed for runtime.

In the final part, measurements on compilation time and runtime were performed
to substantiate the conclusions based on the previous detailed analysis. The findings
supported the earlier conclusions, indicating that C++ can be used to implement
embedded firmware that is superior to its C counterpart.
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Kurzfassung

Abstraktion ist ein zweischneidiges Schwert in Programmiersprachen. Einerseits
vereinfacht sie die Verwaltung komplexer Systeme und ermöglicht es Entwicklern,
komplizierte Details hinter intuitiven Schnittstellen zu kapseln. Andererseits herrscht
seit langem die Auffassung, dass Abstraktion mit einem erhöhten Laufzeit-Overhead
gleichzusetzen ist, was in ressourcenbeschränkten Umgebungen ein erhebliches Hin-
dernis darstellen kann.

Ein häufig anzutreffendes Missverständnis ist die Befürchtung, dass objektorien-
tierte Sprachen zu einem höheren Laufzeit-Overhead führen, insbesondere in Um-
gebungen mit eingeschränkten Ressourcen. Dieser Glaube rührt von der Vorstel-
lung her, dass Abstraktion, eine Schlüsselkomponente von OOP, unweigerlich zu
Leistungseinbußen führt. Diese Befürchtung ist besonders in der Welt eingebetteter
Systeme weit verbreitet, wo jedes Byte Speicher und jede Millisekunde Verarbei-
tungszeit von größter Bedeutung sind.

Ziel dieser Diplomarbeit ist es, zu widerlegen, dass das Hinzufügen von Abstrak-
tionsschichten unvermeidlich zu weniger effizienter Software führt. Diese Arbeit
dient als Demonstration, wie moderne C++ Features es ermöglichen, Firmware zu
schreiben, die die entsprechende C-Implementierung an Effizienz, Wartbarkeit und
Lesbarkeit übertrifft.

Im ersten Teil der Forschungsarbeit lag der Schwerpunkt darauf, wie moderne
C++-Sprachfunktionen zur Optimierung von Code genutzt werden können, der häu-
fig bei der Entwicklung eingebetteter Firmware verwendet wird. Es wird gezeigt,
dass durch die Verwendung von C++ Teile der Firmware, die aufgrund des ein-
gebetteten Charakters des Projekts von Natur aus konstant sind, zur Kompilierzeit
ausgeführt werden können.

Im zweiten Teil werden Abstraktionen, die in objektorientierten Programmier-
sprachen üblich sind, untersucht, ihre Auswirkungen auf die Laufzeitleistung ana-
lysiert und festgestellt, welche Abstraktionen ohne zusätzlichen Laufzeit-Overhead
verwendet werden können. Es wurde festgestellt, dass viele dieser Abstraktionen
keinen Overhead verursachen, mit Ausnahme derjenigen, die explizit für die Lauf-
zeit konzipiert sind.

Im letzten Teil wurden Messungen der Kompilierungs- und Laufzeit durchge-
führt, um die Schlussfolgerungen aus der vorangegangenen detaillierten Analyse
zu untermauern. Die Ergebnisse bestätigten die früheren Schlussfolgerungen und
zeigten, dass C++ für die Implementierung eingebetteter Firmware verwendet wer-
den kann, die ihrem C-Pendant überlegen ist.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

With the advent of an increasingly digital world, the importance of efficient and
highly structured programming languages has never been more relevant. The era
of Internet of Things (IoT) has paved the way for embedded systems to become a
common component of our day-to-day lives. These systems require firmware archi-
tectures that are both structurally sound and cost-effective in terms of performance
overhead. Modern C++, with its extensive set of features, fits this criterion and pro-
vides the tools necessary to create such frameworks.

Abstraction is a double-edged sword in programming languages. On the one
hand, it simplifies the management of complex systems, allowing developers to en-
capsulate intricate details behind intuitive interfaces. On the other hand, there is
a longstanding perception that abstraction equates to increased runtime overhead,
which can be a significant deterrent in resource-constrained environments. Modern
C++, however, shatters this misconception through a key concept: zero-cost abstrac-
tions [1].

1.1.1 Object-Oriented Programming Languages

In the complex world of programming languages, two dominant paradigms reign:
object-oriented programming (OOP) and procedural programming. OOP, utilized
by languages such as C++, Python, and Java, centralizes its design around objects,
i.e., instances of classes, which encapsulate both data and the functions that oper-
ate on that data. This approach promotes structured, reusable, and modular code,
making it intuitive to design, read, and maintain. Features such as encapsulation, in-
heritance, and polymorphism facilitate high levels of abstraction and complex data
interactions, offering programmers powerful tools to model the real world within
their software systems[2].

Conversely, procedural programming languages, exemplified by C and FORTRAN,
focus on the procedure or action to be performed rather than the data being manip-
ulated. Programs in these languages are generally a series of tasks (procedures or
functions) that are carried out sequentially[2]. While procedural languages can be
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straightforward and efficient for simple tasks, their linear nature can lead to chal-
lenges in code maintenance, readability, and scalability when tackling complex sys-
tems.

One common misconception often encountered is the fear that object-oriented
languages lead to runtime overhead, particularly in resource-constrained environ-
ments. This belief stems from the idea that abstraction, a key component of OOP,
invariably adds a performance cost. This fear is especially prevalent in the world
of embedded systems, where every byte of memory and every millisecond of pro-
cessing time is of paramount importance. The aim of this thesis is to demolish the
misconception that adding layers of abstraction inevitably results in a less efficient
software. This work serves as a demonstration on how modern C++ language fea-
tures make it possible to write firmware that surpasses the equivalent C implemen-
tation in efficiency, maintainability and readability. The focus will be on exploring
the modern C++ language and its powerful features that enable the construction of
highly structured firmware architectures with zero runtime overhead.

1.1.2 Zero-Cost Abstraction

Zero-cost abstraction refers to the ability to use higher-level programming con-
structs without incurring any additional runtime overhead. This is achieved by
performing extensive work at compile-time, rather than runtime. The premise of
zero-cost abstractions is that what can be done at compile-time should be done at
compile-time. The result is a cleaner, more maintainable codebase without sacrific-
ing runtime performance.

Modern C++ has robust support for this concept, offering advanced features that
allow developers to leverage high-level abstractions with the assurance that they
will not negatively impact performance. Features such as templates, constant expres-
sions, and immediate functions are utilized to provide abstractions that are evaluated
and optimized at compile-time, thereby avoiding additional runtime costs.

For instance, C++ templates allow developers to write generic, type-agnostic code
without sacrificing type safety or incurring runtime overhead. The compiler gen-
erates the necessary specific implementations based on the types used, ensuring no
extra cost at runtime. Similarly, constant expressions and immediate functions enable
computations and function calls to be resolved at compile-time, removing any over-
head they would have incurred if evaluated at runtime.

This zero-cost abstraction capability is a game-changer for resource-constrained
environments, such as those often encountered in the embedded systems and IoT
space. It opens the door for developers to leverage the benefits of object-oriented
programming and high-level abstractions without fearing the penalty of increased
runtime cost. The subsequent sections of this thesis are dedicated to exploring
how modern C++ exploits these features to create highly structured, zero-overhead
firmware architectures, thus dismantling the fear often associated with the use of
OOP in resource-constrained environments.
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1.2 Methodology and Outline

Throughout this document, the main focus will be on the runtime performance
and binary size of different source code examples. The basis for meaningful com-
parison will be an empty project, containing a single main function with an empty
infinite loop, alongside with the necessary file for successful cross-compilation. The
runtime overhead assessment will be conducted in two distinct ways: firstly, by in-
specting the size of the .text section of the compiled firmware, and secondly, through
an exploration and analysis of the disassembled ELF file, focusing on the assembly
code. Both methods are necessary, because although the size of the .text section (ex-
plained in detail in Section 2.2) is a simple and understandable metric, in and of
itself it is not sufficient to assess runtime overhead, because it can also contain loops,
branches and data. Therefore, the analysis will focus on the assembly code of the
disassembled ELF file to gather meaningful insight into the factors contributing to
changes in the binary size. Throughout this document, text size will be used to refer
to the size of the .text section in bytes.

In the first part of the thesis, the demonstration will center on how modern lan-
guage features can be effectively utilized to optimize runtime performance. This
will include an examination of a simplified code snippet written in C, followed by
an assessment of the runtime overhead. The code will mirror how real life Hardware
Abstraction Layer (HAL) libraries are implemented in the embedded world.

The example codebase will then be iteratively reworked using modern C++ lan-
guage features. Optimization steps that enable developers to shift runtime over-
head into compile-time will be performed. The above mentioned methods will be
used to assess the runtime overhead of the C++ code and compare the results with
the functionally equivalent C implementation. The goal is to demonstrate that in
many situations, especially in embedded projects, C++ can lead to a more efficient
firmware.

In the subsequent part of the thesis, the main focus will be on assessing the run-
time overhead of various OOP language features. The analysis will demonstrate
how different C++ features can be utilized to build layers of abstractions without
introducing unnecessary runtime overhead. Additionally, it will delve into some
of the language’s drawbacks, illustrating how careless implementations can lead to
significant runtime overhead.

In the subsequent part of the thesis, the initial focus will be on summarizing the
conclusions from previous chapters regarding the advantages and disadvantages
of the discussed language features and programming methods. This will be com-
plemented by presenting relevant measurements that elucidate the benefits of opti-
mization steps and their impact on compilation time. Following this, some of the
previously discussed programming techniques and presented architecture will be
applied to construct an LED blinking application, regarded as the Hello World of
embedded systems. An examination of the disassembled binary will reveal the opti-
mization results performed by the compiler and assess the runtime overhead of the
abstractions. Furthermore, a comparison will be made with a highly efficient and
functionally equivalent C implementation. The overarching goal of this part of the
thesis is to challenge the misconception that abstractions inherently carry runtime
overhead.
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Lastly, the thesis will analyze and discuss some of the hidden dangers of the lan-
guage that every embedded C++ developer should be aware of.

The driving goal of the thesis is to encourage embedded developers to start writ-
ing firmware more in C++, so that the embedded world can leave behind the rem-
nants of a bygone era and move to a more sustainable and modern future. It is
important to note right at the beginning that it is not intended to diminish the use-
fulness and robustness of C. Even with proficient knowledge of C++, there are situ-
ations where it is not possible to eliminate runtime overhead that is introduced by
the language. In highly resource-constraint environments or in hard real-time appli-
cations, C can indeed still be the language of choice because of its predictability. On
the other hand, in many cases, C++ can actually help to reduce runtime overhead,
whereas in other cases, the benefits of using C++ outweigh the small potential for
added runtime overhead.
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Chapter 2

Basic Concepts of Embedded
Software

Before diving into the specifics of embedded systems development, it’s crucial to
lay a solid groundwork of the key principles and concepts that underpin this field.
This chapter aims to briefly illuminate these fundamentals, such as the significance
of near-hardware languages and the role of cross-compilation in embedded systems
programming.

2.1 Compilation Process

When it comes to embedded systems, C and C++ languages stand out as the go-to
options, although there are new contestants in the field, like Rust and TinyGo [3].
This is primarily due to their classification as near-hardware languages. In essence,
these languages allow for a closer interaction with the hardware by granting pro-
grammers direct access to the system’s registers, the components that control and
manage the hardware’s behavior. By manipulating these registers, programmers
can have fine-tuned control over the system’s operations, making C and C++ the
preferred choices for embedded systems programming.

The C/C++ compilation takes several steps. Although the exact process may vary
depending on the specific compiler, target architecture, and build settings, the fol-
lowing gives a good overview of the process [4]:

• Preprocessing : In this stage, the preprocessor (a part of the compiler) takes
the source code and deals with the #include, #define, and other preprocessor
directives, replacing parts of the source code. The output is a "pure" C or C++
file without these directives.

• Compilation : The source code file is then compiled into an assembly language
file specific to the target architecture. This file contains low-level, human-
readable instructions specific to the machine architecture.

• Assembly : The assembler takes the assembly language file and converts it
into an object file, which contains the machine language instructions (binary
code) equivalent to the assembly instructions.

• Linking : Lastly, the linker takes one or more object files along with libraries
needed by the program, and combines them to create the final executable. The
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linker resolves references to functions and variables in different object files or
libraries, and assigns final addresses to functions and variables.

The resulting executable file contains machine code that can be loaded into mem-
ory and executed by the system. If the program was written in C++, an additional
name mangling step may occur before linking, which encodes additional informa-
tion (such as function argument types) into the names of functions and variables,
due to the more complex semantics of C++ compared to C.

When dealing with embedded systems, the compiler toolchains are not available
on the target platform, therefore native compilation is not possible. In such cases,
the solution is cross-compilation, where the code is compiled on one system (the host)
to run on a different system (the target). The firmware binary that results from this
process is loaded into the system’s onboard memory, where it directs the system’s
operations. This binary is composed of different sections (discussed in Section 2.2)
like the reset vector, which determines the initial point of execution after a system
reset, and sections for code, initialized variables, uninitialized variables, and so on.
Some sections must be at specific locations in the system’s memory, otherwise the
code will not execute [5].

In many cases, embedded developers do not have the support of any operating
system on the target. This type of programming is called bare-metal programming,
which refers to programming at the hardware level. Here, the programmer is re-
sponsible for controlling all aspects of the system, from managing interrupts and
task scheduling to handling memory management. This approach is typically used
in contexts where resources are limited or precise control over system operations is
required [5]. Furthermore, developers often need to be aware of the time it takes for
a specific code to execute on the target, because it can be crucial to the correct func-
tionality of a system. For example, dynamic memory allocations or time-consuming
algorithms should be avoided in an interrupt service routine [6].

2.2 Firmware Structure and Initialization Process

Understanding the firmware structure and how it is loaded into an embedded
device’s memory at startup is fundamental for embedded systems development.

Firmware in an embedded system is typically structured in sections, each having
a specific purpose. It includes the following main sections [7]:

• .text : This section, often referred to as the code section, contains the actual ma-
chine code that the CPU executes. It includes executable instructions generated
by compiling and linking the source code. Typically, this section is read-only
to prevent accidental modifications.

• .data : This section holds initialized static and global variables used by the
program. The values for these variables are specified in the program itself,
and they retain their values throughout the program’s lifetime.

• .rodata : Stands for "Read-Only Data". This section contains static constants
rather than variables.
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• .bss : Known as the Block Started by Symbol, this section includes uninitialized
static and global variables. Unlike the .data section, variables in the .bss section
are not explicitly initialized by the programmer and are set to zero by default.

• .heap : This section is used for dynamic memory allocation during program
runtime.

• .stack : This is the section that holds the program stack, a LIFO structure typi-
cally used for storing local variables and function call information.

When the embedded device is powered on, or reset, the startup process kicks
off. The processor’s program counter jumps the a predefined location in memory,
where the reset vector resides. The first field of the reset vector contains a memory
address which is the address fo the reset handler, implemented by the programmer
in a file known as the startup file. The reset handler is the entry point of the firmware
and is the first piece of code executed after a reset. Its main role is to set up the
environment to a known state before the main application runs. The firmware is
typically stored in a non-volatile memory such as flash. During this preparations
process, the firmware’s different sections are either copied into RAM or prepared in
some way [7]:

• .text : This section, being read-only, can be executed directly from flash mem-
ory, or in some systems for performance reasons, it might be copied into the
RAM.

• .data : At startup, initialized data is copied from the flash memory to the RAM,
so that the program can access and modify these variables.

• .rodata : Like the .text section, the .rodata section can also be left in the flash
memory, or it can be loaded into RAM depending on the system’s require-
ments and available resources.

• .bss : Since this section represents uninitialized variables that should start as
zero, there is no need to take up space in the firmware image in flash for this
section. Instead, during initialization, a region of RAM of the appropriate size
is allocated and zeroed out.

• .heap and .stack : The sizes of these sections usually aren’t known at compile
time, as they depend on the program’s dynamic behavior. Memory for the
heap and stack is set aside in RAM during initialization, typically with the
stack starting from one end of the remaining memory and the heap from the
other, growing towards each other.
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Chapter 3

Environment And Platform

3.1 Host Environment

Every example code presented in this section was compiled and tested on Ubuntu
22.04.2 LTS. For cross-compilation, the GNU Arm Embedded Toolchain was used
with the version 10.3.1.

The GNU Arm Embedded Toolchain is a comprehensive suite of software devel-
opment tools specifically designed for Arm-based microcontrollers and embedded
systems. Developed and maintained by Arm, the toolchain provides an open-source
platform for developers to create, debug, and optimize applications targeting these
devices [8].

The GNU Arm Embedded Toolchain comprises several key components. The
most essential component is the GCC (GNU Compiler Collection) for Arm proces-
sors, which includes compilers for both C and C++. The toolchain also includes a
number of other software tools, some of which are used in this work. The GNU As-
sembler (as) allows developers to write assembly code for Arm processors, while the
GNU Binary Utilities (binutils) provide a set of programming tools for creating, mod-
ifying, and analyzing binary files. For debugging, the toolchain offers GDB (GNU
Debugger), a powerful debugging tool that supports a wide range of debugging
techniques [8].

In addition to the tools, the GNU Arm Embedded Toolchain includes a stan-
dard C library optimized for embedded systems, known as Newlib. Newlib is a
lightweight C library suitable for the limited resources of embedded systems, as it
offers a smaller memory footprint compared to traditional C libraries.

3.2 Target Platform

Projects were compiled for, and tested on an STM32F030F4 microcontroller. It is
a highly integrated, 32-bit microcontroller produced by STMicroelectronics, a global
semiconductor leader. This microcontroller belongs to the STM32 F0 series, which
is part of the wider STM32 family that is based on Arm Cortex-M processors. The
STM32F030F4 specifically features the Arm Cortex-M0 core, the smallest and most



3.2. Target Platform 9

energy-efficient processor in the Arm Cortex-M family, making it well-suited for
cost-sensitive, low-power applications [9].

Throughout this thesis, the disassembled binary file will be frequently analyzed to
identify the exact cause of changes in the text size. In order to fully understand these
code snippets, it is essential to get familiar with the Cortex-M0 processor core regis-
ters. An overview is shown in Figure 3.1. The most important ones, in the context of
this thesis, are the general-purpose registers, the stack pointer, the link register and
the program counter. The general-purpose registers, as the name suggests, are used
for general data operations. The stack pointer stores the memory address of the last
data element and is used to allocate memory on the stack for local variables, func-
tion parameters and other information. The link register stores return information
for subroutines and function calls. The program counter contains the current pro-
gram address and, among others, is used to jump to functions when they are called
[10].

FIGURE 3.1: Processor core registers [10].

It is also important to gain a generic knowledge about the instruction set of the
microcontroller. The processor implements a version of the Thumb instruction set [10].
Below is a list of common instructions that appear in the assembly code snippets
throughout this work. Some operations listed here might have the letter S appended
to them, which causes them to set internal flags based on the result of the operation.
Note that this is not a complete and exhaustive list of instructions.

• MOV : This instruction copies the value from one register to another.

• ADD : Adds the values of two registers together and stores the result in a third
register.
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• SUB : Subtracts the value of one register from another and stores the result in
a third register.

• MUL : Multiplies the values in two registers and stores the result in a third
register.

• CMP : Compares two register values and sets the condition flags.

• AND : Performs a bitwise AND operation on two register values and stores
the result in a third register.

• ORR : Performs a bitwise OR operation on two register values and stores the
result in a third register.

• B : Causes a jump to a different location in the program.

• BL : Causes a jump to a different location in the program, storing the return
address in the link register.

• BX : Causes a jump to a different location, which is stored in a register, in the
program.

• BICS : Performs a bit clear operation on a register based on masks stored in
other registers.

• LDR : This instruction is used to load a value from memory into a register.

• STR : This instruction is used to store a value from a register into memory.

• LSL : Logical shift left instruction.

• LSR : Logical shift right instruction.

• NOP : No operation.

• POP : This instruction is used to pop registers from the stack.

• PUSH : This instruction is used to put registers on the stack.

3.3 Minimal Compilable Project

Two projects were set up for compiling the different code snippets and comparing
the results between the traditional C and the modern C++ solutions. The following
three files are necessary for compiling code for an STM32 microcontroller (and, in
fact, for most microcontrollers):

• Linker Script : The linker script, usually having the .ld extension, is a file
that guides the linker in arranging the compiled code and data in the mem-
ory of the target device. This includes the flash memory where the program
code goes, the RAM for static and dynamic data, and any special sections like
bootloaders or interrupt vector tables. Each STM32 microcontroller variant has
its own memory layout, so the linker script should be written (or generated)
specifically for the target device.

• Startup File : The startup file is a low-level code file, usually written in assem-
bly language, that runs immediately after the microcontroller is powered up or
reset. This file typically sets up important settings like the vector table, default
interrupt handlers, and initial stack pointer. It may also initialize static data
and BSS to zero. The startup file is specific to each microcontroller family, and
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sometimes even specific to individual microcontroller models within a family,
due to different peripherals and interrupt vector tables.

• Main File : This is the main source code file of the firmware, where the main
function resides. The main function is called from the startup file after all the
initial setup is done. This file will include application logic and calls to libraries
or APIs for peripheral usage, which is up to the user to define. It is written
in C or C++, as these languages offer higher-level abstractions and are more
suitable for application development than the assembly language.

For the sake of repeatability, the startup files and the linker script, as well as two
very simple makefiles are provided in Appendix A, Appendix B and Appendix C
respectively. The files are based on the ones provided by the official STM32 Cube
IDE.

The most crucial aspect of the compilation process, in relation to the goal of this
study, is that the compiler is instructed to optimize for binary size. For each com-
piled code, the text size will be assessed and the disassembled binary analyzed. To
render this assessment meaningful, a baseline is established for future comparisons.
Consequently, an empty project has been set up in both C and C++ for this purpose.
Empty in this context means that the application consists of a single main function
containing only an infinite loop. Other than that, there are no variables and func-
tions defined. Later sections will refer to this firmware as base firmware. The text
size of the base firmware is 744 bytes for both the C and the C++ versions. This
value can be retrieved using the provided makefile or the objdump utility directly.

Please be aware that most of the code snippets in this document serve demonstra-
tion purposes only. This means that example codes are not written to perform some
meaningful task on the given hardware, but rather to produce a simple assembly
that can be meaningfully analyzed and compared to alternative solutions.

At the time of writing this document, the C++20 standard is the most current
complete C++ standard and hence it is the version that is used in the project.
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Chapter 4

Optimizing for Runtime

In the realm of embedded systems, firmware architectures need to balance the
structured organization provided by OOP and the performance efficiency tradition-
ally associated with procedural languages. Here, modern C++ language features
present a compelling case. These features, when utilized correctly, offer the poten-
tial to create highly structured, zero-overhead firmware architectures.

In this chapter, an exploration will be conducted into both basic and modern C++
language features that can assist developers in eliminating runtime overhead. The
features to be examined in this section are as follows:

• C++ Type System

• Template Metaprogramming

• Constant Expressions

• Concepts

• Immediate Functions

4.1 C Runtime Overhead

In this section, an example code implemented in C will be examined to assess the
runtime overhead added to the firmware. In Sections 4.2, 4.3, 4.4 and 4.5, it will be
demonstrated how the runtime overhead can be eliminated using modern C++.

In the context of C-based Hardware Abstraction Layer (HAL) libraries, one often
observes the use of defined structures designated for the initialization and man-
agement of diverse hardware components. This particular paradigm is evident in
the HAL libraries of ESP32 and STM32 microcontrollers. The discussion will pri-
marily focus on a simplified example of a HAL library that sufficiently mirrors the
characteristics of a comprehensive HAL implementations but allows for meaningful
analysis. A simplified example of such a structure defined in HAL libraries is shown
in Listing 4.1. It has two fields that must be set by the developer according to the
desired behavior. The pin integral value contains a value that is used to select the
desired pin. The mode value is used to select between different pin operation modes,
such as input, output, analog or alternate pin function.
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1 typedef struct {
2 uint32_t pin;
3 uint32_t mode;
4 } GPIO_InitStruct;

LISTING 4.1: Simplified example of C HAL library GPIO initialisation
structure.

Note that in the structure, the pin and the mode values are of simple integral types.
Although usually there are only sixteen pins on one IO port of a microcontroller
and there are only around three or four possible GPIO operation modes, there is no
enforced restriction on the values of these fields of the structure. Runtime checks can
be - and usually are - introduced into the code to avoid incorrect initialization. The
hardware abstraction layer usually defines the necessary values, macros, bitmasks
and registers that the rest of the library and the firmware developer can use. An
example of the defined values and value checking macros are given in Listing 4.2.
Memory-mapped registers are given by address and converted to a pointer to be
accessed. Such memory-mapped registers must be denoted with the volatile type
qualifier to prevent compiler optimization. The volatile qualifier tells the compiler
that the value might change independent from the code being compiled, and hence
reading and writing the value must not be optimized. Register values can not only
be changed by the programmer during the firmware execution, but are changed by
the hardware itself as a consequence of external or internal hardware events and
states.

Bitmasks, modes and other constant values are defined with specific integer val-
ues. Using these defined values, developers can read register values, apply the de-
fined masks to retrieve the relevant pins and compare the result with the defined
modes and other characteristics. Similarly, the masks can be used to set and clear
only the relevant bits of the register and set them according to the desired function-
ality.

1 #define MODER (*(( volatile uint32_t *)0x48000000))
2 #define OTYPER (*(( volatile uint32_t *)0x48000004))
3 #define OSPEEDR (*(( volatile uint32_t *)0x48000008))
4 /* ... */
5 #define GPIO_PIN_6 (( uint16_t)0x0006U)
6 /* ... */
7 #define MODER_MASK (0x3UL)
8 #define OTYPER_MASK (0x1UL)
9 #define OSPEEDR_MASK (0x3UL)

10 /* ... */
11 #define GPIO_MODE_INPUT (0 x00000000U)
12 #define GPIO_MODE_OUTPUT (0 x00000001U)
13 /* ... */
14 #define GPIO_SPEED_FREQ_LOW (0 x00000000U)
15 /* ... */
16 #define GPIO_MODE (0 x00000003U)
17 #define GPIO_OUTPUT_TYPE (0 x00000010U)
18 /* ... */
19

20 #define IS_GPIO_PIN(X) ((X) < 16 && (X) >= 0)
21 #define IS_GPIO_MODE(X) (((X) == GPIO_MODE_INPUT) || ((X) ==

GPIO_MODE_OUTPUT))

LISTING 4.2: GPIO-related constants defined in HAL library.
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In the main application, the developer needs to create a variable with the type
GPIO_InitStruct, subsequently configuring its members to align with the applica-
tion’s requirements. To illustrate, suppose the application requires configuring pin
6 as an input. The code snippet provided in Listing 4.3 demonstrates this scenario.
The pin field of the structure is set to the defined value GPIO_PIN_6 in line 3, and
the mode is set to the defined value GPIO_MODE_INPUT in line 4. The GPIO_Init
function accepts a pointer to the instantiated data structure and performs the initial-
ization of the requested GPIO pin.

1 GPIO_InitStruct gpio_init_struct = {0};
2

3 gpio_init_struct.pin = GPIO_PIN_6;
4 gpio_init_struct.mode = GPIO_MODE_INPUT;
5

6 GPIO_Init (& gpio_init_struct);

LISTING 4.3: Example of C GPIO initialization.

The function GPIO_Init is implemented in the HAL. It is either provided by the
manufacturer of the microcontroller or it is written by the developer. It is a low-
level code that deals with reading and writing registers, setting bits according to the
desired configuration. An example implementation of this function in C is shown
in Listing 4.4. As mentioned above the function takes a pointer to a structure. In
lines 5 and 6, the relevant fields of the structure must be validated at runtime using
the provided value validating macros. This is important, because invalid values
might result in undesired values to be written to registers, which in turn can lead to
unexpected behavior of the hardware which can potentially damage the device. For
different configurations, different registers need to be written. Therefore, runtime
branches are introduced into the software, like the one in line 9. The OSPEEDR
(Output Speed Register) and the OTYPER (Output Type Register) need to be written
only if the pin is configured in output mode. The MODER (Mode Register) needs
to be set for every operation mode of the pin, hence it is done in lines 21, 22 23 and
24, outside of the conditional block. Only specific bits need to be set and cleared in
the registers. Therefore, bitmasks need to be calculated by shifting a base bitmask
by the value of the GPIO pin number, like it is done in lines 11 and 12.
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1 void GPIO_Init(GPIO_InitStruct* gpio_init_struct) {
2 uint32_t temp;
3

4 /* check the values */
5 if (! IS_GPIO_PIN(gpio_init_struct ->pin)) { return; }
6 if (! IS_GPIO_MODE(gpio_init_struct ->mode)) { return; }
7

8 /* configure the GPIO based on the settings */
9 if (gpio_init_struct ->mode == GPIO_MODE_OUTPUT) {

10 temp = OSPEEDR;
11 temp &= ~( OSPEEDR_MASK << (gpio_init_struct ->pin * 2u));
12 temp |= (GPIO_SPEED_FREQ_LOW << (gpio_init_struct ->pin * 2u));
13 OSPEEDR = temp;
14

15 temp = OTYPER;
16 temp &= ~( OTYPER_MASK << gpio_init_struct ->pin);
17 temp |= ((( gpio_init_struct ->mode & GPIO_OUTPUT_TYPE) >> 4u) <<

gpio_init_struct ->pin);
18 OTYPER = temp;
19 }
20

21 temp = MODER;
22 temp &= ~( MODER_MASK << (gpio_init_struct ->pin * 2u));
23 temp |= (( gpio_init_struct ->mode & GPIO_MODE) << (gpio_init_struct

->pin * 2u));
24 MODER = temp;
25

26 /* ... */
27 }

LISTING 4.4: Example implementation of low-level C GPIO
initialization function.

Such validity checks, if-else statements and bitmask calculations, as shown above
in Listing 4.4, all add runtime overhead to the firmware. This additional runtime
overhead can be verified by looking at the disassembled binary. Listing 4.5 shows
the section where the pin number is verified. Its value is loaded into the r3 register in
line 1 and compared to the immediate value 15 in line 2. If the pin number is higher
than 15, meaning that it is invalid, the program jumps to the end of the function and
returns (line 3).

1 800019c: 6803 ldr r3, [r0, #0]
2 80001a0: 2b0f cmp r3, #15
3 80001a2: d825 bhi.n 80001f0 <GPIO_Init+0x54 >

LISTING 4.5: Assembly representation of the pin number validity
check of the code from Listing 4.4 line 5.

This is not a large overhead, but occurs multiple times throughout the whole ap-
plication. And not just in the initialization functions, but in every function that takes
some integer parameter with no type restriction. This kind of input parameter check
and runtime branching is unavoidable in a traditional C firmware. And it is note-
worthy that low-cost microcontrollers usually do not include a branch predictor, and
as such, the overhead is not mitigated. The same way, every bitmask calculation ap-
pears in the firmware as runtime overhead.
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When examining the main function in the output of the objdump utility, as shown
in Listing 4.6, the expected results are observed:

• Register values are pushed to the stack in lime 3.

• In the following lines, the local variable (initialization structure) is created and
the values are set.

• The bl instruction in line 8 saves the return address in the link register (lr) and
then jumps to the called function GPIO_Init.

• The b.n instruction in line 9 branches to the same address it is at, effectively
locking the program in an infinite loop.

At first glance, this might not appear as an overhead, but a comparison with the
equivalent C++ implementation will be made in a later section.

1 080001fc <main >:
2 80001fc: 2300 movs r3, #0
3 80001fe: b507 push {r0, r1, r2, lr}
4 8000200: 9301 str r3, [sp, #4]
5 8000202: 4668 mov r0, sp
6 8000204: 3306 adds r3, #6
7 8000206: 9300 str r3, [sp, #0]
8 8000208: f7ff ffc8 bl 800019c <GPIO_Init >
9 800020c: e7fe b.n 800020c <main+0x10 >

LISTING 4.6: Call to the GPIO_Init function from the main function.
Refer to Listing 4.3 for the implementation.

FIGURE 4.1: .text section size of GPIO initialization in C compared to
the base firmware .text section size.

Subsequent sections will provide possible ways to eliminate runtime overhead,
mostly by pushing previously runtime calculations to compile-time. Note that there
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can be cases where the runtime overhead is unavoidable. For example, for appli-
cations designed to be configured by a configuration file at runtime, the necessary
values are not available at compile-time to make use of these optimization methods.
However, small and compact embedded firmware applications are usually not in
this category and can be optimized using modern language features, compile-time
calculations and decisions.

4.2 C++ Type System

C++ introduces a robust type system that offers several advantages over its pre-
decessor, C. One of these advantages is the potential to reduce runtime overhead by
establishing value constraints at compile time. This ability to perform checks during
the compilation phase rather than at runtime enables the creation of more efficient
and safer code, which is especially valuable in the domain of embedded systems
where resources are limited and performance is paramount.

A prime example of this power can be found in C++’s enum class type. An enu-
meration in C++ is a distinct type whose value is restricted to a specific range of
values. This differs from C-style enumerations, where the enumeration values are
essentially treated as integral values and can be freely interchanged with them. This
can lead to inadvertent errors if developers are not careful enough and assign an
arbitrary integer to an enum variable. In contrast, enum class provides type safety,
preventing these kinds of mistakes by not providing implicit conversion between
the values of the scoped enumeration and the underlying integral type. As shown
in Listing 4.7, the code in line 6 does not compile, since the integral type cannot be
implicitly converted to the enum class value. Moreover, enum class allows for more
efficient usage of memory and flexibility, as the size of a scoped enumeration type
can be explicitly defined. In contrast, enumerations in C are usually implemented as
integers.

1 enum class GPIO_Mode : std:: uint8_t {
2 input ,
3 output
4 };
5 /* ... */
6 GPIO_Mode mode = 5; /* will not compile */

LISTING 4.7: Example of C++ enum class representing the possible
GPIO modes and an example on type constraints enforced by the

compiler.

The type system itself does not necessarily guarantee that the value is valid and
holds one of the possible values of the enumerated type, but the developer must to
put extra effort into introducing a bug to the application by an intentional type cast,
as shown in Listing 4.8.

1 GPIO_Mode mode = static_cast <GPIO_Mode >(5); /* will compile */

LISTING 4.8: Example on how an integral value can be converted to
enumeration type in C++.
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By simply using enum class types instead of C-style enumerations, it could already
be argued that the runtime value checks are not necessary, since it takes an extra
effort to misuse the implemented functions. This way, the C++ type system not
only provides mechanisms for improving runtime efficiency but also enhances type
safety and code clarity.

4.3 Templates and Concepts

In embedded firmware applications, many parameters are declared by the sur-
rounding hardware. Pin functions are dictated by the external components con-
nected to the pins, and in most cases, these external components are fixed during
board layout design. If a pin is connected to a status-indicating LED, it is known at
the time of writing the firmware that the pin has to be configured as output. The
same way, parameters like I2C frequency, clock source, clock frequency and ADC
resolution are usually known at compile-time. Therefore it makes sense to use mod-
ern compiler features to eliminate the unnecessary runtime overhead. C does not
provide support for differentiating between runtime and compile-time constants,
but modern C++ gives a variety a features to deal with such concepts.

Templates are one of the most powerful and versatile features of C++, providing
the ability to generate classes or functions at compile-time, based on template pa-
rameters. They constitute an essential component in any C++ programmer’s toolkit,
especially those working with embedded systems where runtime performance is of
utmost importance. Templates offer the opportunity to shift much of the computa-
tional overhead from runtime to compile-time, which can yield substantial perfor-
mance gains. The principle is straightforward: instead of deferring decisions until
the runtime phase, the approach is to make as many decisions as possible during the
compile-time phase. In other words, the price is paid once, at the time of compila-
tion, rather than continuously paying a smaller price during runtime [11].

Constraints and concepts, introduced in C++20, are a significant enhancement to
the template system in C++. They provide a high-level mechanism to specify and
check the requirements on template arguments [12].

Before concepts were introduced, C++ templates were notorious for producing
complicated and hard-to-understand error messages when constraints on types were
not met. These constraints, or requirements for the type to support certain opera-
tions, were implicit and usually identified in the function or class template’s body.
When the actual type used did not meet the requirements, the compile-time error
message was usually triggered deep within the template code, leading to error mes-
sages that were difficult to understand and difficult to link to the original problem.

Concepts address this issue by enabling developers to express the intended con-
straints explicitly. A concept is a kind of compile-time predicate that operates on
types: a function or class template can specify a concept as a requirement for its tem-
plate arguments [12]. The C++ compiler checks whether the template arguments
satisfy the concept’s requirements and provides clear, understandable error messages
when the check fails. This takes place at the point of the template’s use, not inside
its implementation, leading to more understandable code and easier debugging.
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Listing 4.9 shows the modifications that can be applied using concepts and tem-
plates. A concept called is_valid_pin is defined in lines 1 and 2. It specifies that the
unsigned integer values that it receives as template argument is only valid if it is
smaller than fifteen. The GPIO_Init function is modified to be a templated function,
accepting two template arguments: the pin number as an 8 bit unsigned integer, and
the mode as a C++ enumeration value. The is stated in line 5, the function requires
the pin number to be a valid value by applying the previously defined concept. The
function is called in line 11 from inside the main function using template parame-
ters. Such method is extremely advantageous when the pin function is fixed and
known at the time of writing the firmware. The if-else decisions and the bitmask
calculations are still an unresolved issue inside the function body, which will be
examined in further detail in later sections. However, this solution allows the devel-
oper to eliminate the runtime parameter value verifications by pushing the checks
to compile-time, thus reducing the overall runtime overhead.

1 template <std:: uint8_t pin >
2 concept is_valid_pin = (pin <= 15);
3

4 template <std:: uint8_t pin , GPIO_Mode mode >
5 requires (is_valid_pin <pin >)
6 void GPIO_Init () {
7 /* ... */
8 }
9

10 int main (void) {
11 GPIO_Init <GPIO_PIN_6 , GPIO_Mode ::output >();
12 /* ... */
13 }

LISTING 4.9: Modified version of the GPIO_Init function using
templates and concepts.

4.4 Decisions

An important keyword, introduced in C++11, is constexpr. The name stands for
"constant expression" and the keyword can be used to create compile-time constant
variables. Many believe that the "const" keyword creates a compile-time constant,
but this is a misconception. While it might be true in some cases, in general, the
value of a "const" may be calculated at run time [13].

The equivalent of a constexpr variable would be the #define preprocessor directive
in C. In regard to performance, using a constexpr variable instead of a defined con-
stant does not make a difference. However, constexpr is far more robust than #define
when it comes to compile-time constants. Most importantly, it is type safe and it
behaves just like any other variable. The #define preprocessor directive is a simple
string substitution macro which is performed before the code is parsed by the com-
piler. Therefore, the macro does not respect scope or type and can lead to unexpected
results, especially when the same name is used in different contexts or with different
types. On the other hand, constexpr variables obey the C++ scope and type rules.
They exist in a given scope and cannot be accessed outside of that scope. Another
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aspect is the debuggability. Code full of preprocessor macros is generally harder to
debug because they are expanded by the preprocessor before the compilation step.
With constexpr, as it is part of the compilation process, the compiler can provide more
meaningful error messages.

Listing 4.9 shows how the values defined by the preprocessor directive #define can
be replaced by type-safe constexpr alternatives.

1 /* ... */
2 constexpr std:: uint8_t GPIO_PIN_6 = 0x06;
3 /* ... */
4 constexpr std:: uint32_t MODER_MASK = 0x3UL;
5 constexpr std:: uint32_t OTYPER_MASK = 0x1UL;
6 constexpr std:: uint32_t OSPEEDR_MASK = 0x3UL;
7 /* ... */

LISTING 4.10: C++ constexpr variables instead of preprocessor
defines.

In this section, however, another feature of the constexpr specifier is used to opti-
mize code performance: if constexpr. Using compile-time if statements, decisions
can be made at compile-time rather than at runtime [14, p. 148]. Although the key-
word was introduced in C++11, its combination with the if statement was only in-
cluded in the C++17 standard [15].

Listing 4.11 shows how the concept of compile-time if statement can be used to
further optimize the GPIO initializing function. In line 7, the runtime if statement
from Listing 4.4 is replaced by a compile-time if statement. As will be shown in
Listing 4.13, this code eliminates unnecessary runtime branching in the compiled
firmware, since the compiler excludes the inactive branch from the binary altogether.

1 template <std:: uint8_t pin , GPIO_Mode mode >
2 requires (is_valid_pin <pin >)
3 void GPIO_Init () {
4 uint32_t temp;
5

6 /* configure the GPIO based on the settings */
7 if constexpr (mode == GPIO_Mode :: output) {
8 /* ... */
9 }

10

11 /* ... */
12 }

LISTING 4.11: C++ constexpr if statement converts runtime
branching to compile-time decision.

4.5 Calculations

The next step in the optimization of the initial C code is the elimination of the
runtime bitmask calculations. This can be achieved by using immediate functions
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designated with the consteval keyword to force the compiler to execute calculations
at compile-time.

constexpr and consteval are both keywords in C++ that denote compile-time evalua-
tion. While they serve similar purposes, they differ in the strictness of their compile-
time evaluation requirements, with consteval being the more stringent of the two.

Introduced in C++11 and expanded in later standards, constexpr indicates that a
function, variable, or object could potentially be computed at compile-time. const-
expr functions can be called with arguments that are not known until runtime, which
means that they can also be executed at runtime [13]. This feature allows for a mix
of compile-time and runtime computation, providing flexibility to developers.

In contrast, consteval, introduced in C++20, guarantees that a function will always
be evaluated at compile-time [13]. In other words, a consteval function cannot be in-
voked at runtime. If it cannot be evaluated at compile-time, because the values of its
parameters are not known at compile-time, the compilation process will terminate
with error.

Using this modern C++ feature, it is possible to eliminate the need for runtime
bitmask calculation in the firmware. Listing 4.12 shows how consteval functions
can be used for this optimization. Between lines 1 and 3, the immediate func-
tion ospeedr_pin_mask is defined. It takes the pin number as parameter and calcu-
lates the bitmask using the constant OSPEEDR_MASK value. Similarly, the function
moder_pin_mask_out calculates the bitmask for the output mode register. Other func-
tions, such as ospeedr_pin_mask_low_freq and otyper_pin_mask are defined similarly,
but are not included in the presented code snippet. The functions are called in lines
17, 18, 22, 23, 28 and 29 just like regular functions. As long as all of the values are
known at compile-time, this code compiles and eliminates the need for runtime bit-
mask calculations.

1 consteval std:: uint32_t ospeedr_pin_mask(std:: uint8_t pin) {
2 return OSPEEDR_MASK << (static_cast <std::uint32_t >(pin) * 2u);
3 }
4 /* ... */
5 consteval std:: uint32_t moder_pin_mask_out(std:: uint8_t pin) {
6 return GPIO_OUTPUT_MODE << (static_cast <std::uint32_t >(pin) * 2u);
7 }
8

9 template <std:: uint8_t pin , GPIO_Mode mode >
10 requires (is_valid_pin <pin >)
11 void GPIO_Init () {
12 uint32_t temp;
13

14 /* configure the GPIO based on the settings */
15 if constexpr (mode == GPIO_Mode :: output) {
16 temp = OSPEEDR;
17 temp &= ~ospeedr_pin_mask(pin);
18 temp |= ospeedr_pin_mask_low_freq(pin);
19 OSPEEDR = temp;
20

21 temp = OTYPER;
22 temp &= ~otyper_pin_mask(pin);
23 temp |= otyper_pin_mask(pin);
24 OTYPER = temp;
25 }
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27 temp = MODER;
28 temp &= ~moder_pin_mask(pin);
29 temp |= moder_pin_mask_out(pin);
30 MODER = temp;
31

32 /* ... */
33 }

LISTING 4.12: C++ immediate functions used for bitmask calculation.

Since consteval functions are executed at compile time, the binary is expected to
use precalculated immediate values. Listing 4.13 shows the main function part of
the output of the objdump utility. By analyzing the assembly code, some drastic op-
timizations can be observed compared to the C implementation. The first thing that
might occur is the lack of the call to the GPIO_Init function. In the C version, as
shown in Listing 4.6, all the main function does is that it calls the GPIO_Init func-
tion with the given parameters. However, in the optimized C++ version, the whole
function call is eliminated by the optimizer during compilation. It can also be ob-
served, in contrast with the C implementation, that the bitmasks were calculated at
compile-time, as expected, and are stored in memory as immediate values. These
bitmask values are used to clear and set specific bits in the registers. Since the values
of the template parameters are given and verified at compile-time, these steps are
eliminated from the binary as well. Furthermore, the previously observed runtime
branching based on the GPIO mode input parameter is absent from the assembly as
well, because it was replaced with a compile-time if-else block in the source code.
As a result, the whole function with parameter value comparisons, branchings and
bitmask calculations was reduced to plain register operations in the main function.
Since these optimization steps are of upmost importance in the context of the thesis,
an explanation is provided for every line of Listing 4.13:

• Line 2: The literal value 16 (0x10 in hexadecimal) is moved into register r0.

• Line 3: Loads a value from a memory address computed by adding 28 to the
program counter (pc) into register r3. This value is the address 0x48000008 as
indicated at 0x80001bc in line 18.

• Line 4: Similarly, loads a value from an address offset by 28 from the pc into
register r1. This value is 0xfffffcff as indicated at 0x80001c0 in line 19.

• Line 5 and 6: Load the value from the address in r3 into r2, and then perform
a bitwise AND operation with the value in r1, updating r2.

• Line 7: Store the result from the previous operation back into the memory
location pointed to by r3.

• Line 8: Loads another value from memory (address offset by 24 from the pc)
into r3. This address is 0x48000004 as indicated at 0x80001c4 in line 20.

• Line 9 and 10: Load the value from the address in r3 into r2, then perform a
bitwise OR operation with the value in r0, updating r2.

• Line 11: Store the result from the previous operation back into the memory
location pointed to by r3.

• Line 12 and 13: Move the literal value 144 (0x90) into r2 and then left shift it
by 23 bits. This results in the address 0x48000000.
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• Line 14 and 15: Load the value from the address in r2 into r3, and then perform
a bitwise AND operation with the value in r1, updating r3.

• Line 16: Store the result from the previous operation back into the memory
location pointed to by r2.

• Line 17: An infinite loop is created by branching to the same address, effec-
tively keeping the program executing at this point indefinitely.

1 0800019c <main >:
2 800019c: 2010 movs r0, #16
3 800019e: 4b07 ldr r3, [pc, #28] ; (80001bc <

main+0x20 >)
4 80001a0: 4907 ldr r1, [pc, #28] ; (80001c0 <

main+0x24 >)
5 80001a2: 681a ldr r2, [r3, #0]
6 80001a4: 400a ands r2, r1
7 80001a6: 601a str r2, [r3, #0]
8 80001a8: 4b06 ldr r3, [pc, #24] ; (80001c4 <

main+0x28 >)
9 80001aa: 681a ldr r2, [r3, #0]

10 80001ac: 4302 orrs r2, r0
11 80001ae: 601a str r2, [r3, #0]
12 80001b0: 2290 movs r2, #144 ; 0x90
13 80001b2: 05d2 lsls r2, r2, #23
14 80001b4: 6813 ldr r3, [r2, #0]
15 80001b6: 400b ands r3, r1
16 80001b8: 6013 str r3, [r2, #0]
17 80001ba: e7fe b.n 80001ba <main+0x1e >
18 80001bc: 48000008 .word 0x48000008
19 80001c0: fffffcff .word 0xfffffcff
20 80001c4: 48000004 .word 0x48000004

LISTING 4.13: Assembly representation of the code from Listing 4.12.

As shown in Figure 4.2, the modern C++ version eliminated more than 60% of the
text size increase compared to the C version. This results in a shorter execution time,
although the relationship is not proportional, because the C binary includes sections
that might not get executed.
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FIGURE 4.2: .text section size of GPIO initialization in C and C++
compared to the base firmware .text section size.

For demonstrating that these optimization steps are not only viable in initializa-
tion code, Listing 4.14 shows the conventional C implementation of the GPIO set-
reset function. The code includes the runtime parameter value validity checks in
lines 5 and 6, as well as the branching based on the given pin’s state in line 8.

1 void GPIO_WritePin(uint16_t GPIO_Pin , GPIO_PinState PinState) {
2 uint32_t temp;
3

4 /* Check the parameters */
5 assert_param(IS_GPIO_PIN(GPIO_Pin));
6 assert_param(IS_GPIO_PIN_ACTION(PinState));
7

8 if (PinState != GPIO_PIN_RESET)
9 {

10 BSRR = (uint32_t)GPIO_Pin;
11 }
12 else
13 {
14 BRR = (uint32_t)GPIO_Pin;
15 }
16 }
17

18 int main (void) {
19 /* ... */
20 GPIO_WritePin(GPIO_PIN_10 , GPIO_PIN_SET);
21 /* ... */
22 }

LISTING 4.14: GPIO set-reset function implemented in C.

As demonstrated, in a conventional C firmware, every component initialization
and even every blinking of an LED, achieved by calling the GPIO_WritePin function,
adds mostly unnecessary additional runtime overhead. The functions first need to
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check the validity of the received arguments, since they are of integral types with
arbitrary values. Then, in the case of the LED blinking, based in whether the pin is
intended to be set or reset, the relevant bit in the BSRR (Bit Set-Reset Register) or in
the BRR (Bit Reset Register) is set. This means that every time an LED is blinked,
unnecessary runtime checks and branching is introduced.

I acknowledge that in some cases such overhead might be unavoidable and even
necessary. However, the problem is that C does not offer a flexible solution for
eliminating such overhead even if desired. C++, on the other hand, offers robust
and flexible solutions to achieve the same behavior as conventional C would, while
eliminating unnecessary runtime and binary size overhead. Concurrently, it helps
to improve readability and maintainability.
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Chapter 5

Overhead of Abstractions

It was confirmed in the previous chapter that modern C++ can be used to elim-
inate unnecessary runtime overhead of a conventional C codebase. However, the
power of C++ does more than simply allow us to optimize C code. One of the most
important differences between C and C++ is that while the former is a procedural
language, the latter is an object-oriented programming language. Object-oriented
programming languages use classes to encapsulate data and methods for manipu-
lating the data into a single entity [16]. Using these languages, developers can add
layers of abstractions in order to create simple models of more complex systems.

This chapter will explore the following object-oriented programming paradigms
and assess their impact on performance and binary size:

• Encapsulation

• Inheritance

• Polymorphism

5.1 Encapsulation

Encapsulation is one of the fundamental principles of object-oriented program-
ming. The principle of encapsulation emphasizes data security and integrity, offer-
ing a way to bundle data, and the methods that operate on that data, within a single
unit: the object [17]. At its core, encapsulation is about hiding the internal details
of how an object operates and exposing only what is necessary to interact with the
object [16]. This is usually accomplished through the use of classes, where data at-
tributes (also called member variables) and methods (functions associated with an
object) are defined. The class acts as a blueprint for creating individual objects, each
with its own specific state and behavior.

In the context of encapsulation, the data of a class is usually made private, which
means it can only be directly accessed from within the class itself. To access or mod-
ify this data from outside the class, public methods are provided, often referred to as
’getters’ and ’setters’. This level of control allows the class to maintain a consistent
and correct state, as the internal data cannot be changed arbitrarily.

Encapsulation brings several benefits to the software development process:
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• Increased data security: By hiding the data attributes and exposing only re-
quired features, encapsulation helps maintain the integrity of the data by pre-
venting unauthorized access and accidental modification.

• Improved maintainability: Encapsulated code is more modular, meaning that
changes in one part of the system are less likely to affect others. This modular-
ity makes the code easier to understand, modify, and debug.

• Enhanced flexibility: Encapsulated objects can be developed to be swapped
out or updated without impacting the rest of the system, allowing for greater
flexibility and scalability in evolving software systems.

Overall, encapsulation aids in creating a clear separation between an object’s in-
terface (how it communicates with the outside world) and its implementation (how
it achieves its functionality), thereby enabling cleaner, more robust, and more se-
cure programming. In C++, when encapsulating data and functions into a class, it
does not come with runtime overhead. What does affect performance, is how these
constructs are used. In this section, an examination of an example with surprising re-
sults will be conducted. The use of encapsulation to add a layer of abstraction over
the GPIO Mode Register will be explored, followed by an analysis of the compiled
binary.

Listing 5.1 contains the declaration of the scoped enumerations that represent the
GPIO modes (gpio_modes in line 1) and the GPIO pins (pin_numbers in line 7). The
enumerations have specific values that represent the bitmask for a given mode and
the pin number for shifting the bitmasks.

1 enum class gpio_modes : std:: uint32_t {
2 input = 0b00 ,
3 output = 0b01 ,
4 analog = 0b10
5 };
6

7 enum class pin_numbers : std:: uint32_t {
8 pin_0 = 0,
9 pin_1 = 1,

10 pin_2 = 2,
11 pin_3 = 3,
12 pin_4 = 4,
13 pin_5 = 5,
14 pin_6 = 6,
15 pin_7 = 7
16 };

LISTING 5.1: GPIO-related scoped enumerations.

Listing 5.2 shows the example implementation of a generic register class. As ex-
pected, a memory-mapped register has an address in memory, which is a private
member of the class, as shown in line 3, because it should not be accessible from out-
side of the class. Furthermore, the register class offers a couple of member functions
for interacting with the underlying hardware register. Such function is the set (lines
7..9), which allows for the setting of the entire register, the get (lines 11..13), which
returns the value contained in the register, and another set function (lines 15..19),
which makes it possible to set only certain bits in the register.
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1 class CRegister {
2 private:
3 const std:: uint32_t m_address;
4 public:
5 CRegister (std:: uint32_t address) : m_address(address) { }
6

7 void set (std:: uint32_t val) const {
8 *( reinterpret_cast <volatile std:: uint32_t *>(this ->m_address))

= val;
9 }

10

11 std:: uint32_t get () const {
12 return *( reinterpret_cast <volatile std:: uint32_t *>(this ->

m_address));
13 }
14

15 void set (std:: uint32_t value , std:: uint32_t bitmask) const {
16 std:: uint32_t tmp = this ->get();
17 tmp &= ~bitmask;
18 tmp |= value;
19 this ->set(tmp);
20 }
21 };

LISTING 5.2: Example implementation of generic register class.

Listing 5.3 presents a sample implementation of the Mode Register, which is used
to configure the mode for each GPIO pin. This register resides at the fixed memory
address 0x48000000, which is represented by the constant value ModeRegisterAddress.
It is worth noting that the class uses static member variables and functions. While
this might be a subjective opinion, using static members often leads to clearer code,
since it is not necessary to create an object to use the class’s member functions. And
since a hardware register at a specific memory location is a singleton by nature,
it makes sense to use the static keyword. The class has private consteval member
functions that allow for the computation of the necessary bitmasks at compile-time,
as shown in lines 5 through 13. Such a mechanism is especially useful for a register
class in an embedded project, since every register has a register-specific bit pattern
that must be accounted for using bitmasks. The register offers a public member
function in lines 15 through 18, which makes interaction with the register simple and
clear. In a typical project, this register would likely be encapsulated in a higher-level
abstractions, such as a CGpio class, which could be wrapped within even higher-
level classes. However, for this discussion, the focus will be on a simplified example
to facilitate a more detailed analysis.
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1 class CModeRegister {
2 private:
3 static inline const CRegister m_register { ModeRegisterAddress };
4

5 template <pin_numbers pin , gpio_modes mode >
6 static consteval std:: uint32_t calculate_value () {
7 return static_cast <std::uint32_t >(mode) << static_cast <std::

uint32_t >(pin) * 2;
8 }
9

10 template <pin_numbers pin , gpio_modes mode >
11 static consteval std:: uint32_t calculate_bitmask () {
12 return static_cast <std::uint32_t >(0 b11) << static_cast <std::

uint32_t >(pin) * 2;
13 }
14 public:
15 template <pin_numbers pin , gpio_modes mode >
16 static inline void set_mode () {
17 m_register.set(calculate_value <pin , mode >(), calculate_bitmask <

pin , mode >());
18 }
19 };
20

21 int main (void) {
22 CModeRegister ::set_mode <pin_numbers ::pin_6 , gpio_modes ::output >();
23

24 while (true) { /* ... */ }
25 }

LISTING 5.3: Example implementation of a specific GPIO register
class using encapsulation with static members.

Listing 5.4 shows the assembly representation of the main function shown in List-
ing 5.3. The most surprising part of this code snippet is probably how the address
of the GPIO Mode Register, 0x48000000, is handled. To better understand this, a
summary of the code in Listing 5.4 is provided below:

• Line 2: Loads a value from a memory address offset by 16 from the program
counter (pc) into register r3. This value is the address 0x20000088 as indicated
at 0x80001b0 in line 12.

• Line 3: Similarly, loads a value from an address offset by 20 from the pc into
register r2. This value is 0xffffcfff as indicated at 0x80001b4 in line 13.

• Line 4: Loads the value from the address in r3 into r1 (value at memory lo-
cation 0x20000088 is loaded into r1). 0x20000088 is a memory address in the
SRAM section of this microcontroller [18].

• Line 5: Loads the value from the address in r1 into r3 (value at memory lo-
cation represented by the value at memory location 0x20000088 is loaded into
r3). It will be demonstrated later, but for now, it can be assumed at this point
that r1 holds the address of the GPIO Mode Register, namely 0x48000000.

• Line 6: Performs a bitwise AND operation between the values in r2 and r3,
updating r2.
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• Line 7 and 8: Moves the value 128 (0x80 in hexadecimal) into r3, and then left
shifts it by 5 bits. This results in the value 4096 (0x1000 in hexadecimal).

• Line 9: Performs a bitwise OR operation between the values in r3 and r2, up-
dating r3.

• Line 10: Stores the result from the previous operation back into the memory
location pointed to by r1.

• Line 11: An infinite loop is created by branching to the same address, effec-
tively keeping the program executing at this point indefinitely.

1 0800019c <main >:
2 800019c: 4b04 ldr r3, [pc, #16] ; (80001b0 <

main+0x14 >)
3 800019e: 4a05 ldr r2, [pc, #20] ; (80001b4 <

main+0x18 >)
4 80001a0: 6819 ldr r1, [r3, #0]
5 80001a2: 680b ldr r3, [r1, #0]
6 80001a4: 401a ands r2, r3
7 80001a6: 2380 movs r3, #128 ; 0x80
8 80001a8: 015b lsls r3, r3, #5
9 80001aa: 4313 orrs r3, r2

10 80001ac: 600b str r3, [r1, #0]
11 80001ae: e7fe b.n 80001ae <main+0x12 >
12 80001b0: 20000088 .word 0x20000088
13 80001b4: ffffcfff .word 0xffffcfff

LISTING 5.4: Assembly representation of the code from Listing 5.3.

The indirection examined above in Listing 5.4 is not the only thing that captured
my attention. An estimation can be made of the expected increase in text section
size based on a given section in the disassembled ELF file. In the Thumb instruction
set, most instructions occupy 2 bytes in memory, while data words take up 4 bytes.
By counting the number of instruction lines and the number of added data lines, it
can be estimated that the text section should increase by around 26 bytes. However,
this does not align with the observation. When compared to the text size of the base
firmware (744 bytes), there is an observed increase of 56 bytes. This suggests that
there is another location in the binary where additional code has been introduced.

Listing 5.5 shows the code section that was additionally introduced by the com-
piler. This function is responsible for constructing and destructing the global objects.
Since the CModeRegister has a static member variable, that member variable must ex-
ist for the duration of the whole application, meaning that the lifetime of the object
extends beyond the end of the main function. The compiler cannot optimize this
away, it has to make sure that global objects are created before the main function
starts and are destroyed after the main function returns.

In the previous discussion of Listing 5.4, it was noted that the register address,
namely 0x48000000, resides in the microcontroller’s SRAM section. It is not imme-
diately evident, but the assembly in Listing 5.5 writes this value to the memory lo-
cation 0x20000088. In line 8, the immediate value 0x90 is loaded into the register, r2.
The subsequent line then loads the value 0x20000088 into r3. In line 10, the value in



5.1. Encapsulation 31

r2 is subjected to a left shift by 23, producing the expected value of 0x48000000. The
following line then stores the r2 value at memory location 0x20000088. This is the
memory location from where the main function retrieves the GPIO Mode Register
address.

1 080001b4 <_GLOBAL__sub_I_main >:
2 80001b4: 2201 movs r2, #1
3 80001b6: 4b05 ldr r3, [pc, #20] ; (80001cc <

_GLOBAL__sub_I_main+0x18 >)
4 80001b8: 6819 ldr r1, [r3, #0]
5 80001ba: 4211 tst r1, r2
6 80001bc: d104 bne.n 80001c8 <_GLOBAL__sub_I_main+

0x14 >
7 80001be: 601a str r2, [r3, #0]
8 80001c0: 2290 movs r2, #144 ; 0x90
9 80001c2: 4b03 ldr r3, [pc, #12] ; (80001d0 <

_GLOBAL__sub_I_main+0x1c >)
10 80001c4: 05d2 lsls r2, r2, #23
11 80001c6: 601a str r2, [r3, #0]
12 80001c8: 4770 bx lr
13 80001ca: 46c0 nop ; (mov r8, r8)
14 80001cc: 20000084 .word 0x20000084
15 80001d0: 20000088 .word 0x20000088

LISTING 5.5: Function responsible for constructing and destructing
global objects.

The example code discussed in Listing 5.5 indicates that if not managed properly,
encapsulation could lead to an increase in code size. However, it is important to note
that this extra code would only execute before the main function is called and after it
completes. As such, the core performance of the application wouldn’t be impacted.
The only changes would occur in the startup and shutdown times of the application.

However, it is possible to eliminate this overhead by getting rid of the runtime
static member variable using templates. Listing 5.6 presents the modified version of
the code from Listing 5.3 using templates. As shown in line 1, the generic register
class receives the memory address as template parameter, and is instantiated in line
22 with the memory address 0x48000000 of the mode register.
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1 template <std:: uint32_t address >
2 class CRegister {
3 public:
4 void set (std:: uint32_t val) const {
5 *( reinterpret_cast <volatile std:: uint32_t *>(address)) = val;
6 }
7

8 std:: uint32_t get () const {
9 return *( reinterpret_cast <volatile std:: uint32_t *>(address));

10 }
11

12 void set (std:: uint32_t value , std:: uint32_t bitmask) const {
13 std:: uint32_t tmp = this ->get();
14 tmp &= ~bitmask;
15 tmp |= value;
16 this ->set(tmp);
17 }
18 };
19

20 class CModeRegister {
21 private:
22 static inline const CRegister <0x48000000 > m_register { };
23

24 template <pin_numbers pin , gpio_modes mode >
25 static consteval std:: uint32_t calculate_value () {
26 return static_cast <std::uint32_t >(mode) << static_cast <std::

uint32_t >(pin) * 2;
27 }
28

29 template <pin_numbers pin , gpio_modes mode >
30 static consteval std:: uint32_t calculate_bitmask () {
31 return static_cast <std::uint32_t >(0 b11) << static_cast <std::

uint32_t >(pin) * 2;
32 }
33 public:
34 template <pin_numbers pin , gpio_modes mode >
35 static inline void set_mode () {
36 m_register.set(calculate_value <pin , mode >(), calculate_bitmask <

pin , mode >());
37 }
38 };
39

40 int main (void) {
41 CModeRegister ::set_mode <pin_numbers ::pin_6 , gpio_modes ::output >();
42

43 while (true) { /* ... */ }
44 }

LISTING 5.6: Address of register as template parameter leads to
optimized runtime performance.

With the modified code shown in Listing 5.6, the text size is reduced from 800
bytes to 764 bytes, which is only a 20 bytes increase compared to the base firmware’s
text size. The function, responsible for the construction and destruction of global
objects (Listing 5.5), is eliminated from the binary, and the main function, shown
in Listing 5.7, becomes much more readable than it was in Listing 5.3. The address
0x48000000 is not stored in the RAM at runtime anymore, but constructed directly in
the main function from immediate values and bitwise operations with the following
steps:
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• The instruction at 0x800019c (movs r1, #144; 0x90) moves the value 0x90 into
register r1.

• The instruction at 0x800019e (lsls r1, r1, #23) performs a left shift logical op-
eration on the value in r1 by 23 bits. This means 0x90 (which is 10010000 in
binary) is shifted 23 bits to the left, creating the number 0x48000000.

As a side-note, it is interesting to see how precise the optimization is. The value
0x48000000 could be stored as a read-only data in the binary at a specific address
and loaded into a register if needed. However, since it is loaded only once in the
program, it is more efficient to construct the value at runtime than storing it as data
and load from memory. Constructing the value at runtime takes two instructions,
which take up 4 bytes altogether in the binary, because an instruction is stored on 2
bytes in memory. On the other hand, storing the value as a word in memory takes up
4 bytes, and the additional loading instruction takes 2 bytes from the memory space,
since it is a single instruction, adding up to 6 bytes altogether. This is only true if the
value needs to be loaded into a register once in the program, and if the value can be
constructed from two operations.

1 0800019c <main >:
2 800019c: 2190 movs r1, #144 ; 0x90
3 800019e: 05c9 lsls r1, r1, #23
4 80001a0: 680b ldr r3, [r1, #0]
5 80001a2: 4a03 ldr r2, [pc, #12] ; (80001b0 <

main+0x14 >)
6 80001a4: 401a ands r2, r3
7 80001a6: 2380 movs r3, #128 ; 0x80
8 80001a8: 015b lsls r3, r3, #5
9 80001aa: 4313 orrs r3, r2

10 80001ac: 600b str r3, [r1, #0]
11 80001ae: e7fe b.n 80001ae <main+0x12 >
12 80001b0: ffffcfff .word 0xffffcfff

LISTING 5.7: Assembly representation of the code from Listing 5.6

Based on the examples presented in this section, I can conclude that it is possible
to use encapsulation without affecting the runtime performance of the firmware ap-
plication. This is just as well applicable for software applications running on more
powerful computers. This gives C++ a huge advantage over C, because it allows
the grouping and organization of the code with basically no runtime or binary size
penalty. This versatile feature of C++ makes writing efficient, readable and main-
tainable code possible.

5.2 Inheritance

Inheritance is a fundamental concept in object-oriented programming that enables
an object or class to take on the properties and methods of another class. This allows
for code reuse, reduced redundancy and increased maintainability.

The class that is being inherited from is known as the parent, base, or superclass.
The class that inherits from the base class is known as the child, derived, or subclass.
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The derived class can acquire the attributes and behavior of the base class, while also
having the ability to introduce specific attributes and behaviors of its own [13].

It is worth noting that while inheritance provides significant advantages in the
abstraction and organization of code, it should be used judiciously. Overuse or in-
appropriate use of inheritance can lead to overly complex code and potential issues
with data integrity.

To assess the runtime overhead of this OOP feature, a reworked version of the
code from Listings 5.6 and 5.3 was analyzed. Instead of having an instance of the
CRegister class as member variable, the CModeRegister inherits from it, as shown in
line 1 of Listing 5.8. The object is instantiated in line 21 of the main function, and the
member function set_mode is called in the subsequent line.

1 class CModeRegister : public CRegister <0x48000000 > {
2 private:
3

4 template <pin_numbers pin , gpio_modes mode >
5 static consteval std:: uint32_t calculate_value () {
6 return static_cast <std::uint32_t >(mode) << static_cast <std::

uint32_t >(pin) * 2;
7 }
8

9 template <pin_numbers pin , gpio_modes mode >
10 static consteval std:: uint32_t calculate_bitmask () {
11 return static_cast <std::uint32_t >(0 b11) << static_cast <std::

uint32_t >(pin) * 2;
12 }
13 public:
14 template <pin_numbers pin , gpio_modes mode >
15 inline void set_mode () {
16 set(calculate_value <pin , mode >(), calculate_bitmask <pin , mode

>());
17 }
18 };
19

20 int main (void) {
21 CModeRegister mode_register {};
22 mode_register.set_mode <pin_numbers ::pin_6 , gpio_modes ::output >();
23

24 while (true) { /* ... */ }
25 }

LISTING 5.8: Example code for inheritance.

The text size of the compiled code from Listing 5.8 remained the same compared
to the code from Listing 5.6. The disassembled ELF files are identical as well. As
such, I can conclude that adding inheritance to the project does not result in addi-
tional runtime overhead for objects typical on embedded systems. However, it can
be generally concluded that inheritance in and on itself, without the use of virtual
functions, does not result in penalty regarding performance and binary size. This
feature of C++ offers another great advantage over C implementations, namely that
it supports code reusability to a high extent.
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5.3 Polymorphism

Polymorphism, deriving from Greek terms poly meaning many and morph mean-
ing forms, is a fundamental principle of object-oriented programming and a core
feature of C++. In essence, polymorphism provides a way to structure code so that
one interface can be used to manipulate objects of different types, leading to greater
code reusability and cleaner design [16].

In C++, polymorphism is primarily achieved through inheritance and virtual func-
tions. With inheritance, derived classes inherit the attributes and methods of the base
class, but also have the ability to extend or override these elements. This forms the
basis for the two main types of polymorphism in C++: static (or compile-time) and
dynamic (or runtime) polymorphism.

Static polymorphism is realized at compile-time through function overloading
and templates. Function overloading allows functions with the same name but dif-
ferent parameters to be defined, with the compiler determining which function to
call based on the arguments. Templates, another form of static polymorphism, en-
able the creation of functions or classes that operate on different data types without
having to rewrite the code for each type [12].

Dynamic polymorphism, on the other hand, is facilitated by virtual functions and
abstract base classes. A virtual function defined in a base class can be overridden
in derived classes, and the decision of which function to call is made at runtime
based on the type of the object pointed to, rather than the type of pointer. This
enables a single interface to be used for general actions on different types of objects,
encapsulating variation in behavior in a clean and flexible manner [12][19].

Critically, C++’s support for polymorphism is designed with performance in mind.
The language offers fine control over when dynamic dispatch is used, allowing pro-
grammers to make informed trade-offs between abstraction and efficiency. With
careful design, polymorphic systems in C++ can exhibit both high-level expressive-
ness and low-level speed.

The following sections will dive into the different types of polymorphism and
demonstrate their usefulness and effectiveness as well as their drawbacks and pit-
falls.

5.3.1 Runtime Polymorphism

Runtime polymorphism leverages the language’s ability to resolve a function call
to different concrete functions based on the type of object the call is made on during
program execution. Under the hood, runtime polymorphism is implemented using
a mechanism called the virtual table, or vtable. A short overview on how runtime
polymorphism works is described in the following three points:

• Virtual table: When a class in C++ has at least one virtual function, the com-
piler generates a virtual table for that class. The virtual table is essentially an
array where each entry is a function pointer that points to the virtual function
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applicable to that class. Each object of the class will have a hidden pointer
(usually called a vpointer) that points to this vtable.

• Inheritance and vtables: When a derived class inherits from a base class and
overrides some of its virtual functions, the compiler creates a new vtable for the
derived class. This vtable contains pointers to the derived class’s overridden
functions and pointers to any virtual functions not overridden, pointing back
to the base class’s version.

• Virtual function call: When a virtual function is called on an object, the com-
piler generates code to first fetch the object’s vpointer, then index into the vtable
to find the correct function to execute. The function is then invoked using the
function pointer.

This mechanism introduces an overhead for the call to the virtual function and
for each object that has a vpointer, but it provides the powerful ability to call the
correct function based on the actual type of the object at runtime, even when handled
through a pointer or reference to the base type. The overhead introduced by virtual
interfaces in C++ is generally relatively small, but can be significant in certain cases.
There are two main sources of this overhead:

• Memory Overhead: Each object of a class with virtual functions needs to store
a pointer to its virtual method table (vtable). This increases the size of each
object by the size of a pointer. For classes with many small objects, this can
add up. Additionally, each distinct class with virtual functions needs to have
its own vtable stored somewhere in the binary, which also consumes space.

• Runtime Overhead: Calls to virtual functions are slightly slower than calls
to non-virtual functions. This is because a virtual function call requires two
pointer dereferences (one to get the vtable pointer from the object, and another
to get the function pointer from the vtable), whereas a non-virtual function call
is a direct branch to a known location and hence requires no pointer derefer-
ences. Furthermore, because the target of a virtual function call is not known
until runtime, it can potentially disrupt branch prediction in the CPU, causing
a pipeline stall and further slowing down execution. However, modern CPUs
and compilers are quite good at minimizing the impact of this.

In most situations, these overheads are small enough so that they are not of signifi-
cant concern. However, in performance-critical code, or on very memory-constrained
systems, they might be relevant. Developers need to consider whether the benefits
of using virtual functions (e.g., more flexible and maintainable code via polymor-
phism) outweigh these costs in specific situations.

Listing 5.9 presents an example on how polymorphism can be introduced to the
firmware. An IPin interface is created in lines 1 through 4 which has a single pure
virtual method. The derived classes that implement this interface must provide the
implementation for the pure virtual function. CPinA in lines 6 through 12 and CPinB
in lines 14 through 20 are two classes that implement the interface. The HandlePin
in lines 22 through 26 function represents an entity that operates with the interface
only and is independent from the underlying implementation.
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1 class IPin {
2 public:
3 virtual std:: uint8_t get_pin_number () const = 0;
4 };
5

6 class CPinA : public IPin {
7 private:
8 std:: uint8_t m_pin;
9 public:

10 CPinA (std:: uint8_t pin) : m_pin(pin) {}
11 std:: uint8_t get_pin_number () const override { return m_pin + 1; }
12 };
13

14 class CPinB : public IPin {
15 private:
16 std:: uint8_t m_pin;
17 public:
18 CPinB (std:: uint8_t pin) : m_pin(pin) {}
19 std:: uint8_t get_pin_number () const override { return m_pin - 1; }
20 };
21

22 std:: uint8_t HandlePin (IPin* pin) {
23 std:: uint8_t pin_number = pin ->get_pin_number ();
24 ++ pin_number;
25 return pin_number;
26 }
27

28 int main (void) {
29 GPIO_Init <GPIO_PIN_6 , GPIO_Mode ::output >();
30

31 CPinA pin_a { GPIO_PIN_6 };
32 std:: uint8_t pin_number = HandlePin (& pin_a);
33 CPinB pin_b { GPIO_PIN_6 };
34 pin_number = HandlePin (& pin_b);
35

36 while (true) { /* ... */}
37 }

LISTING 5.9: Runtime polymorphism implemented in C++.

A relevant part of the disassembled binary of the code in Listing 5.9 is shown in
Listing 5.10. The first instruction in line 2 loads the contents of the memory location
pointed to by the r0 register (the first argument, which is the object pointer) into the
r3 register. This effectively loads the vtable pointer into r3, since the vtable pointer
is the first element of an object instance with virtual methods. The next line pushes
the link register and r4 onto the stack, which is a standard way to save the return
location before a branch operation. Line 4 loads the contents of the memory location
pointed to by r3 (the vtable pointer) into r3. This retrieves the address of the first
virtual function from the vtable. Then the code branches to the location stored in r3,
and also stores the next instruction’s address (the return address) into the lr. This is
how a call to a virtual function is achieved using assembly.
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1 080001c0 <_Z9HandlePinP4IPin >:
2 80001c0: 6803 ldr r3, [r0, #0]
3 80001c2: b510 push {r4, lr}
4 80001c4: 681b ldr r3, [r3, #0]
5 80001c6: 4798 blx r3
6 80001c8: 3001 adds r0, #1
7 80001ca: b2c0 uxtb r0, r0
8 80001cc: bd10 pop {r4, pc}

LISTING 5.10: Low-level handling of interface pointer.

However, this is not the only overhead that appears when using polymorphism.
The size of the text section increased significantly (by around 6 kilobytes) after intro-
ducing the code presented in Listing 5.9. In the disassembled binary, many sections
appear as a result of introducing this indirection.

On the one hand, assembly sections like __gnu_unwind_frame and
__gnu_unwind_execute can be found. These are not directly related to polymorphism,
but are part of the exception handling mechanism used by the GNU GCC com-
piler. When an exception is thrown in C++, the program needs to unwind the stack,
cleaning up the objects in each stack frame until it finds a handler for the excep-
tion [20][21]. This process involves finding and executing the right destructors for
objects in the stack frames. In many embedded environments, exception handling
is disabled because, as observed above, it can add significant overhead and unpre-
dictability. For GCC, the -fno-exceptions flag can be used to disable exceptions, which
will prevent these sections from being generated. However, disabling exceptions
means that the developer needs to ensure that the code can handle error conditions
without them. Developers will also not be able to use any code that relies on excep-
tions, including part of the C++ Standard Library.

On the other hand, assembly sections like
__class_type_info11__do_upcast and __class_type_info appeared as well. These are sym-
bols introduced by the C++ ABI (Application Binary Interface) and are a part of the
C++ runtime support. Such symbols are typically introduced when certain features
of C++, such as RTTI (Run-Time Type Information), dynamic casting and exception
handling are used [20]. Depending on the use-case and the constraints of the en-
vironment, it is recommended to carefully consider which C++ features are used.
Some features, like RTTI, can add significant code and data size overhead, and may
not be suitable for all environments [22]. Note that some compilers or build systems
allow for disabling RTTI, which can reduce code size. However, if such features are
required, then the code for supporting them must be present in the binary.

Note that the large increase in the binary size does not necessarily influence the
runtime performance as long as the code segments are not executed. The stack un-
winding functions will not run until an exception is thrown. However, if memory
is a constrained resource on the embedded device, this could result in the firmware
not fitting into the device’s memory.

The goal of this section was to show that although modern C++ can be used to
optimize code if handled correctly, it has its limitations in the embedded world.
Indeed, significant overhead can be introduced if developers are not aware of such
traps. Developers who develop software for powerful PCs usually do not encounter
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such constraints and considerations, however, embedded developers must be aware
of such limitations. The following section will try to give an alternative method for
eliminating such overhead.

5.3.2 Static Binding - "Compile-Time Polymorphism"

In computer programming, binding refers to the process by which names are as-
sociated with objects in memory. This can happen at different stages in the program-
ming process: during compilation, during link time, or during program execution.
When binding occurs during compilation or link time, it if known as static binding
(also known as early binding or compile-time binding)[23].

In C++, static binding is the default binding mechanism for most constructs. This
includes function calls, variable accesses, and similar operations. When the compiler
encounters a function call, for example, it decides at compile-time which function
implementation to associate with that call. This is based on the function name, as
well as the number and types of the function arguments (this process is known as
function overloading resolution) [19].

Static binding in C++ provides several advantages:

• Performance: Since the binding is done at compile-time, the associated over-
head is handled before the program’s execution, thus leading to faster runtime
performance.

• Type Checking: The types of variables and expressions are checked at compile-
time, leading to early detection of type mismatch errors.

• Readability and Maintainability: The code is more straightforward to read
and maintain since the binding of variables and functions is determined and
can be traced at compile-time.

The introduction of the C++ concepts in 2020 opened up a field of new opportuni-
ties in mimicking the behavior of dynamic polymorphism at compile-time. Clearly,
true dynamic polymorphism is not possible using this method, since it is an inher-
ently runtime paradigm. But in many cases, reusable code can be implemented with-
out the need for dynamic polymorphism. This is especially the case for embedded
systems, where code written for a specific platform is most likely not compatible
with other platforms.

Listing 5.11 shows how the previous example in Listing 5.9 can be modified to
eliminate all of the runtime penalties presented before. Using concepts, requirements
can be defined for types which are checked at compile-time. The IPin concept in lines
1 through 4 states that a type only satisfies the requirement if it implements a func-
tion called get_pin_number which takes no arguments and returns an std::uint8_t
type. The classes CPinA in lines 6 through 12 and CPinB in lines 14 through 20 both
fulfill this requirement. The HandlePin function in lines 22 through 27 can only han-
dle types that are of type IPin, meaning that they implement the said function. The
code of this function is reusable on every platform without porting by replacing the
required platform-specific pin class, while still being a compile-time paradigm.
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1 template <typename T>
2 concept IPin = requires (T pin) {
3 { pin.get_pin_number () } -> std::same_as <std::uint8_t >;
4 };
5

6 class CPinA {
7 private:
8 std:: uint8_t m_pin;
9 public:

10 CPinA (std:: uint8_t pin) : m_pin(pin) {}
11 std:: uint8_t get_pin_number () const { return m_pin + 1; }
12 };
13

14 class CPinB {
15 private:
16 std:: uint8_t m_pin;
17 public:
18 CPinB (std:: uint8_t pin) : m_pin(pin) {}
19 std:: uint8_t get_pin_number () const { return m_pin - 1; }
20 };
21

22 template <IPin TPin >
23 std:: uint8_t HandlePin (TPin* pin) {
24 std:: uint8_t pin_number = pin ->get_pin_number ();
25 ++ pin_number;
26 return pin_number;
27 }
28

29 int main (void) {
30 volatile std:: uint8_t pin_number;
31

32 CPinA pin_a { GPIO_PIN_6 };
33 pin_number = HandlePin <CPinA >(& pin_a);
34 CPinB pin_b { GPIO_PIN_6 };
35 pin_number = HandlePin <CPinB >(& pin_b);
36

37 while (true) { /* ... */}
38 }

LISTING 5.11: Implementation of polymorphism-like relationship
using static binding.

The size of the text section of the binary reduces back into the expected range,
specifically to 756 bytes, which is only a slight increase when compared to the refer-
ence 744 byte. Note that in Listing 5.11, the variable pin_number is denoted with the
volatile qualifier. This is necessary because the compiler recognizes that the function
calls only change the value of a local variable that is not used afterwards, and hence
it has no effect and can be optimized away. If the variable is optimized away entirely
by the compiler, only an empty main function and the while loop can be found in
the disassembled binary. With the volatile keyword, the compiler can be instructed
not to eliminate the variable during the compilation process. This ensures proper
analysis of the disassembled binary for the specified purpose.

Listing 5.12 shows the main function (Listing 5.11) from the disassembled binary.
When examining the C++ code as a whole, it would be expected for the value of
pin_number to take the following values:
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• First, the HandlePin function is called with CPinA as template parameter. The
function calls the get_pin_number member function on the pin_a object, which
returns GPIO_PIN_6 + 1. Then then pin number is further incremented by
one in the HandlePin function before returning it. Meaning that the value of
pin_number first takes the value GPIO_PIN_6 + 2.

• Then, the HandlePin function is called with CPinB as template parameter. The
function calls the get_pin_number member function on the pin_b object, which
returns GPIO_PIN_6 - 1. Then then pin number is incremented by one in the
HandlePin function before returning it. Meaning that the value of pin_number
takes the value GPIO_PIN_6.

The defined value of GPIO_PIN_6 is 4. The assembly in Listing 5.12 reveals that the
compiler was able to optimize away the function calls and most of the performed
operations. The code snippet performs the following steps:

• First, 8 bytes are allocated on the stack for local data in line 2. This might
be a surprising step, because the pin_number is an std::uint8_t, which should
only take up 1 byte in memory. However, this could have many reasons, for
example that the microcontroller has specific requirements for alignment and
performs better when the stack is 8-byte aligned.

• The value of the current stack pointer is then moved into the r3 register in line
3. This indicates that the r3 register is used as a pointer to the local data on the
stack.

• The next operation stores the immediate value 6 into the r2 register in line 4.
The strb operation stores the value in r2 (which is 6) to the address pointed to
by r3, offset by 7 (line 5). This effectively writes the value 6 to the eighth byte of
the allocated stack space, and hence the value of the local variable pin_number
becomes 6, as expected.

• Then 2 is subtracted from the value in r2 in line 6, resulting in the value 4,
which is then stored in the local variable in line 7.

1 0800019c <main >:
2 800019c: b082 sub sp, #8
3 800019e: 466b mov r3, sp
4 80001a0: 2206 movs r2, #6
5 80001a2: 71da strb r2, [r3, #7]
6 80001a4: 3a02 subs r2, #2
7 80001a6: 71da strb r2, [r3, #7]
8 80001a8: e7fe b.n 80001a8 <main+0xc >

LISTING 5.12: Assembly of the code from Listing 5.11.

As mentioned above, the binary size reduced back into the expected range, be-
ing only a couple of bytes larger than the base firmware. The sections dealing with
exception handling and runtime type information are not present in the binary any-
more. This is due to the fact that only static binding happens in the code, which is re-
solved by the compiler. Runtime error handling is no longer required, because if the
type does not satisfy the type requirement specified by the concept, the compiler will
generate a meaningful error message. Listing 5.13 shows a modified version of the
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CPinB class which does not satisfy the constraint, because it returns an std::uint16_t
instead of the required std::uint8_t. The error message is shown in Figure 5.1. The
error message states that the constraints are not satisfied, and it even specifies that
the problem is that the return type of the get_pin_number function does not match
the type required by the constraint IPin.

1 class CPinB {
2 private:
3 std:: uint8_t m_pin;
4 public:
5 CPinB (std:: uint8_t pin) : m_pin(pin) {}
6 std:: uint16_t get_pin_number () const { return m_pin - 1; }
7 };

LISTING 5.13: Example of a class that does not satisfy the type
constraints.

FIGURE 5.1: Compile-time error message generated for constraint vi-
olation.

This feature can be very useful in certain situations. Most importantly, it can re-
place dynamic polymorphism in hardware-agnostic higher layer constructs. To give
an example, imagine a CLed class, which should be implemented in a hardware-
independent way, so that it can be used on both an ESP32 and an STM32 platform.
The easiest solution before concepts was runtime polymorphism: An IGpio interface
was defined which then was implemented for both platforms. The CLed class can
then operate with the interface. The result is a hardware-independent abstraction
of a blinking LED. This, however, adds unnecessary runtime overhead, as it was
demonstrated in Chapter 5.3.1.

Since it is clearly known at compile-time whether the underlying platform is an
STM32 or an ESP32 microcontroller, by using modern C++ concepts, the compiler
can eliminate the additional runtime overhead. The GPIO concept and CLed class can
be used as shown in Listing 5.14. All of the necessary functions are required by the
concept and are implemented by a hardware-specific GPIO class. This way, the CLed
class can be used on any hardware as long as the GPIO implementations satisfy the
constraints defined by the GPIO concept.
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1 template <typename T>
2 concept GPIO = requires(T gpio) {
3 { gpio.set() } -> std::same_as <void >;
4 { gpio.reset () } -> std::same_as <void >;
5 { gpio.toggle () } -> std::same_as <void >;
6 { gpio.get() } -> std::same_as <bool >;
7 };
8

9 template <GPIO TGpio >
10 class CLed {
11 private:
12 TGpio* m_gpio;
13 public:
14 constexpr CLed (TGpio* gpio) : m_gpio(gpio) {}
15 void turn_on () { m_gpio ->set(); }
16 void turn_off () { m_gpio ->reset (); }
17 void toggle () { m_gpio ->toggle (); }
18 };

LISTING 5.14: Example usage of concepts in firmware applications.

On the flip side, it is important to note that this feature has some disadvantages
when compared to runtime polymorphism. While the virtual interface, shown in
Listing 5.15, can only be implemented by classes that define the pure virtual func-
tion with the identical signature, the concept, shown in 5.16, only checks for the
existence of a func function that can accept an uint32_t parameter and returns void.
For example, this will allow for a function that takes an uint8_t parameter, because
an uint8_t can indeed accept a uint32_t due to integral promotion. Integral promo-
tion is a concept in C++ and several other programming languages that determines
how integer types (i.e., integral types) are handled in various situations. In many
cases, integral types smaller than int or unsigned int are converted or "promoted" to
int or unsigned int before an operation is performed. This conversion process is done
automatically by the compiler in certain circumstances, usually to maximize the ef-
ficiency of operations and to ensure consistent behavior across different hardware
architectures.

1 class IA {
2 public:
3 virtual ~IA() {}
4 virtual void func (std:: uint32_t val) = 0;
5 };

LISTING 5.15: Runtime polymorphism.

1 template <typename T>
2 concept IA = requires (T obj , uint32_t val) {
3 { obj.func(val) } -> std::same_as <void >;
4 };

LISTING 5.16: Polymorphism using static binding.
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I believe that this new feature of C++ solves a long-standing issue in the embed-
ded world: writing reusable code in a hardware agnostic way without paying for
the penalties at runtime and without using complicated configuration steps that use
preprocessor directives to activate and deactivate code segments. This can be a huge
advantage of C++ in contrast to C, which does not give a solution to this problem.
The way C HAL libraries tackle the issue of reusability is by designing the HAL
interfaces of different devices of the same manufacturer similarly, so that the code
written by developers can be easily ported and reused across different families of
their own devices. However, the reusability between platforms of different manu-
facturers is still unresolved. This new C++ feature has the potential to solve this
issue in an elegant and efficient way.

5.3.3 Method Overloading

Method overloading, a significant feature of many object-oriented programming
languages, is a form of compile-time polymorphism. It allows for the existence of
multiple methods within a class that share the same name, but possess different
parameters [24]. This feature enhances code readability and reusability by enabling
the use of a single method name with different quantities or types of arguments.

At the heart of method overloading lies the concept of the method signature,
which combines the method name with the parameter list. Each variant of an over-
loaded method must have a unique method signature. It is crucial to note that the
method’s return type is not considered part of this signature. As such, having two
methods with identical names and parameter lists, but different return types, will
typically trigger a compile error [25].

During compilation, the compiler discerns which method to invoke based on the
number, types, and order of the arguments provided. If it fails to identify an appro-
priate method, it typically results in an error.

By diminishing the need for differently named methods performing similar ac-
tions on varying types or quantities of arguments, method overloading enhances
code readability. It also improves code reusability by presenting a single interface
for executing the same action across diverse types or quantities of arguments.

This feature is not necessarily considered as a type of abstraction, however, for the
sake of completeness, the runtime overhead of this OOP feature is briefly mentioned
as well. Even though it was not explicitly stated at that point, an example code con-
taining function overloading was already examined. In Listing 5.6, the CRegister
class has two set member functions with the same name but different signatures.
One of them only takes a single parameter, the value to be written into the register.
This function overwrites the whole register. On the other hand, the other function
takes not only a value parameter, but also a bitmask parameter. The bitmask param-
eter is used to select the bits in the register that can be modified by the set function.
The two functions implement similar functionalities, therefore it makes sense to use
overloading. As determined in Chapter 5.1, there was no runtime overhead added
to the firmware. The compiler resolves the overloaded methods at compile-time
with no effect on runtime. This feature is not supported by C, function names need
to unique. Even though defining many function with different names is the same
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regarding performance as defining just as many functions with the same name but
different signatures, code readability can be greatly increased through method over-
loading.
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Chapter 6

Results and Practical Evaluation

The goal of this section is to give a summary about the overhead of the previously
discussed C++ language features and programming techniques.

6.1 Measurements of Runtime Overhead Elimination

In Chapter 4, a detailed explanation and analysis was given on how C++ can help
eliminating the unnecessary runtime overhead inherent to software written in C.
Analysis of the disassembled binary files showed that the software written in C++
was more efficient at runtime than its C counterpart. This is due to the following
C++ language features and their consequences:

• templates and concepts (Section 4.3) provide a mechanism to enforce compile-
time evaluation of function parameters. This is especially useful in the area of
embedded systems, where the functionality of a device is known at manufac-
turing and does not change over the device’s lifetime. Compile-time parameter
passing allows for the elimination of runtime function calls, which are inher-
ently expensive operations.

• Type system constraints (Section 4.2) of C++ eliminate the need for function
parameter validity checking at runtime. Developers can pass dedicated enu-
merated values instead of plain integral types, which not only results in a more
efficient runtime execution but helps with code readability as well.

• constexpr if statements (Section 4.4) can be used to push the branching of the
execution from runtime to compile-time. As such, inactive code sections are
excluded from the binary, and therefore the result is a faster and more memory-
efficient binary.

• consteval function calls (Section 4.5) allow for functions to be executed at
compile-time. This is highly usable in embedded systems applications, where
register values are set using bitmask calculations.

Although the thesis mostly focuses on embedded systems applications, the dis-
cussed advantages of C++ apply the same way to applications running on well-
known platforms, such as Linux or Windows.
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6.1.1 Measurement Methodology

It was shown how C++ can eliminate runtime overhead based on the disassem-
bled binary. However, the effects can also be demonstrated during execution and
the conclusions can be verified based on actual measurements.

It is not trivial to perform meaningful measurements of the time it takes to com-
pile and execute a software. Small projects are not suitable for such measurements,
because the time it takes to compile and run them on a modern and powerful PC
is very small and, as such, measurements are very error-prone. Creating a large,
functional code-base takes a lot of time and effort and do not show effect of single
C++ language features. The solution developed involves using Python and the Jinja2
template engine [26] to generate large, functionally equivalent codebases in both C
and C++ in order to allow for meaningful measurements. This includes generating
preprocessor defines, functions, templated functions, enumerated values and even
up to tens of thousands of function calls. The generator and benchmarking toolchain
consists of several shell and python scripts, as well as JSON configuration files and
Jinja2 templates, all of which can be found in Appendix D.

The key variables of the measurements are the following:

• Number of generated functions: if a measurement is performed with twenty
distinctly generated functions, it means, that in the C source code, there are
twenty different functions that can be randomly called from the main function.
Similarly in the C++ version, the same functions are generated as templated
function. In the case of C, every distinct function (which is actually called) is
included in the binary. And in the case of C++, a new template specialization
is generated for every distinct function call, meaning that more function tem-
plates result in more work for the compiler. By changing this variable, it can
be observed how the two compilers handle the increasing load, affecting both
compilation time and binary size.

• number of function calls: if a measurement is performed with the number of
function calls set to ten, then there will be ten randomized function calls gen-
erated in the main file. Tn the case of C++, function calls result in template
specialization, meaning that the compiler need to generate a function for every
distinct function call. The more functions are called, the more functions need
to be generated by the compiler. Similarly for C, functions are only included
in the binary if they are actually called in the source code. This parameter is
also necessary for the runtime performance measurement. By increasing the
number of function calls, the runtime of the applications can be increased into
a range where they can measured with higher accuracy, mitigating the toler-
ances of time measurement.

As illustrated in Figure 6.1, each measurement is performed for a fixed number
of generated functions and a variable number of function calls, increasing with each
iteration. The number of generated functions is changed between measurements.
For better understanding, the following is a summary of how the measurements are
executed.
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• The measurements are performed in a PC running Ubuntu 22.04.1 and not on
an embedded device. There are multiple reasons for this decision. On the one
hand, an embedded device usually has limited available memory, and hence
large binaries do not fit. On the other hand, time measurement is much simpler
using an operating system like Ubuntu. Finally, thousands upon thousands
of automated tests were performed, taking several hours on four dedicated
processor cores, which is simply not feasible on an embedded platform as part
of this work.

• The measurements are done parallel on four dedicated processor cores to speed
up the process. Even so, executing one whole set of measurements takes nearly
up to eight hours. The shell script that runs the testing script on the dedicated
cores is shown included in Appendix D.9.

• The processor cores are isolated to eliminate scheduling effects. This helps
with mimicking the behavior of an embedded system, where processes run on
a single processor without the interference of a scheduler.

• The functionality of the generated C and C++ code is the same. They both
perform operations on an array just as they would on a memory register in
an embedded firmware. The structure of the generated code is similar to that
presented in Chapter 4. The C code performs a number of randomized func-
tion calls with randomized parameters. The functions have runtime decisions
and bitmask calculations, just as they would have on an embedded platform.
The C++ code performs the same randomized function calls with the same pa-
rameters as the C version, however, it uses enum classes, templates, concepts
and consteval functions to achieve the same functionality. The two Jinja tem-
plates can be found in Appendix D.2 and D.4. The generator Python script
that parses the Jinja templates and generates the actual C and C++ files can be
found in Appendix D.6.

• Each measurement generates the source code, compiles, links and executes
the project while measuring the time it takes to execute each step. Figure 6.1
illustrates the measurement process. To eliminate the overhead of program ex-
ecution on a PC platform, the program execution is measured by the programs
themselves using the clock_gettime [27] function starting at the beginning of the
main and ending before the main function returns. This also helps bringing
the measurement closer to that of an actual embedded device. Compile time
and link time are measured by the executing shell script.

• The measurements also measure the size of the binary compared to a base
binary. The base binary contains the array and the code responsible for time
measurement but does not contain the generated functions and function calls.
And as such, the additional overhead of those features are accounted for an
eliminated from the results. The Jinja templates for the C and the C++ base
software can be found in Appendix D.1 and D.3 respectively.

• Compilations are performed using GCC version 11.4.0.

• The script that does the actual measurements can be found in Appendix D.8.
The script writes the results into CSV files which can be plotted using the plot-
ting script from Appendix D.7.



6.1. Measurements of Runtime Overhead Elimination 49

FIGURE 6.1: Measurement flowchart.

The goal of the measurements is to assess not only the execution time but also
the compilation time of the applications. The execution time is expected to be faster
for the C++ code, because many of the computations are pushed to compile-time.
Consequently, it would be expected that the compilation time for the C++ software
is longer, given that the compiler needs to resolve the templates and perform the
calculations during compilation.
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6.1.2 Binary Size

The conclusion derived from the analysis of the disassembled binaries in Chapter
4 directly correlates with the measurement result shown in Figure 6.2. Figure 6.2
shows the size overhead of the binaries in bytes in relation to the number of function
calls in the main function for a single generated function. This means that a single
function was generated by the scripts and called a variable amounts of times, each
time assessing the binary size.

FIGURE 6.2: Binary size overhead for 1 generated function.

As demonstrated in previous chapters, the C binary contains a single instance of
the function. This function is called from the main function each time with different
parameters. However, the C++ compiler has a much higher flexibility, since it works
with templated functions. Analyzing the disassembled binary for different function
call numbers, it shows that if the function is called only a couple of times, the com-
piler eliminates the function call altogether and inlines the operations. However,
when a certain specialization of the templated function is called multiple times, the
compiles decides to generate the function, includes it in the binary and performs
function calls to the function rather than inlining it every time. This is the reason
why up until 300-400 function calls, in Figure 6.2, the binary size of the C++ appli-
cation seems to increase similarly to the C application.

This phenomenon is more visible in Figure 6.3. In this case, there are twenty dif-
ferent function generated by the generator scripts. The C version is straightforward,
it has the twenty functions in the binary, those functions are called each time. It has
a linear relationship to the number of function calls, the more times the functions
are called, the larger the binary grows. On the other hand, the C++ compiler has a
non-linear relationship to the number of function calls. The binary starts the increase
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similarly to C as the compiler starts to generate the code for every function special-
ization. However, when every function is generated, then a C++ function execution
is less expensive than the same C function execution, since the runtime branching is
eliminated at compile-time.

FIGURE 6.3: Binary size overhead for 20 generated functions.

There are cases where the C++ binary size can increase more rapidly than the C
binary size. This occurs due to code bloating, which is discussed in Section 7.1.

These results prove conclusively by the measurements that C++ code can be just
as effective, or even more effective than its C counterpart, when talking about binary
size.

6.1.3 Compilation Time

The conclusions of the compilation time measurements were a surprise to me. I
assumed that the compilation time of the C++ version is going to be higher than the
compilation time of the C source code, since the compiler needs to do far more work
due to template specialization and compile-time bitmask calculations. However, this
is not what the measurements showed. As shown in Figure 6.4, C++ start off with
a slightly higher compilation time, but increases more slowly compared to the C
compilation time. It shows that the compiler performs a lot of work during compila-
tion to generate the specialized code for each template instantiation, however, once
the template is instantiated for a particular type, reusing it does not significantly
increase the compilation time, because the compiler does not need to redo all the
work. On the other hand, C treats each function call more independently, leading to
rapidly increasing compilation time with more calls.
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FIGURE 6.4: Compilation time for 20 generated functions.

With increasing number of function calls, the compilation time of C++ starts to in-
crease similarly to C. For a hundred different generated function and function tem-
plates, the C++ compilation time is only slightly better than that of the C project, as
shown in Figure 6.5.

FIGURE 6.5: Compilation time for 100 generated functions.
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The conclusion of these measurements is that the compilation time of a C++ soft-
ware can be better than that of a C project, even if extensive compile-time calcu-
lations and template specializations are required from the compiler. Pushing oth-
erwise runtime operations to compile-time does not come with large compile-time
overhead, which might be counter-intuitive.

6.1.4 Link Time

The link time measurements are not of high relevance, because the source code is
generated as a single source file. Therefore, linking is not used intensively. How-
ever, for the sake of completeness, it can be concluded that C++ default link time is
higher than that of C. The measurement result for a hundred generated functions is
shown in Figure 6.6. It shows that the C++ compile time increases slightly with the
increasing number of function calls, while the C link time remains fairly constant.
However, both values are insignificant when compared to the compilation time of
these projects.

FIGURE 6.6: Link time for 50 generated functions.

6.1.5 Execution Time

The measurement of execution time is the most important measurement, since this
is the main focus of the thesis. Previously, execution time was inferred based on the
analysis of the disassembled binaries in Chapter 4. These measurements allowed for
the verification of those findings.

Figure 6.7 shows that the measurements for a single generated function, the C++
version runs approximately twice as fast as its C counterpart. Both execution times
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increase linearly with increasing function calls, but the C++ version increases more
slowly due to the fact that each function execution is optimized during compilation.
Runtime decision-makings and bitmask calculations are both eliminated during the
compilation process.

FIGURE 6.7: Execution time for 1 generated function.

The relation does not change drastically even for a hundred distinctly generated
functions, as shown in Figure 6.8.

FIGURE 6.8: Execution time for 100 generated functions.
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The conclusion of this measurement is that execution time can indeed be opti-
mized using modern C++ language features. It also proves that the inferences previ-
ously made on execution time based on purely the disassembled binary were correct.
And since in the context of electronic devices, energy consumption is directly related
to execution time, this shows that using modern C++ instead of C can lead to a more
sustainable product in certain situations.

6.2 Overhead Assessment of Abstractions

In Chapter 5, the runtime overhead of abstractions inherent to object-oriented pro-
gramming languages was shown. It was demonstrated that most abstractions in
C++ come with zero runtime overhead. This section provides a brief summary of
the results of the analysis.

• Encapsulation (Section 5.1) allows developers to organize data and logic into
classes and handle them as objects. As demonstrated, such an abstraction does
not inherently lead to runtime overhead. Objects are compile-time entities and
are not present in the disassembled binary.

• Inheritance (Section 5.2) makes it possible to share certain features between
the base class and its derived classes. As it was demonstrated, in its base form,
meaning without the use of virtual functions, it does not lead to runtime over-
head. The compiler is capable of resolving the inheritance structure at compile
time and does not introduce runtime penalty for using the abstraction.

• Polymorphism (Section 5.3) provides a way to structure code so that a single
common interface can be used to manipulate objects of different types.

– As it was demonstrated, the most well-known form of polymorphism,
namely dynamic polymorphism, does come with inherent runtime over-
head, since runtime type information must be stored and handled at run-
time to achieve the desired functionality. Virtual tables and virtual func-
tion calls introduce runtime overhead as well as binary size increase, al-
though the effects are small.

– Static binding or compile-time polymorphism, on the other hand, forces
the compiler to resolve the inheritance at compile time. This mechanism,
similarly to dynamic polymorphism, allows for writing reusable code that
uses a common interface to handle objects of different types. However,
the interface in this case is a compile-time concept, which makes it pos-
sible to eliminate the need for runtime type information, while it is still
featuring a high degree code reusability.

These abstractions can make a C++ codebase superior to the same project imple-
mented in the conventional way using C. They make the code more readable, main-
tainable and less error-prone. The fact that most of these features come with zero
runtime overhead leaves developers with no excuse for not using them in modern
embedded projects.
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6.2.1 Measurement Methodology

For measuring the overhead of abstractions, a similar method to the one described
in Section 6.1.1 was used. The only difference in this measurement setup is that
the source codes are generated directly using Python, because it offers the neces-
sary flexibility for generating different architectures in the C++ code. The generator
script, the plotting script and the benchmarking script can be found in Appendix
D.10, Appendix D.11 and Appendix D.12 respectively.

To perform a through comparison, the generator script generates the following,
functionally equivalent sources:

• C codebase similar to the one generated and benchmarked in Section 6.1. A
number of functions are generated, which perform randomized register oper-
ations. Function calls are generated in the main file.

• C++ codebase similar to the one generated and benchmarked in Section 6.1. It
uses templated functions, concepts for parameter validation and compile-time
branching.

• A C++ codebase, where the register operations are encapsulated in register
classes. The generated register classes are all derived from the same register
base class, which implements the reading and writing of the actual register.
The registers are further encapsulated in classes representing some kind of
peripheral or device driver. These classes instantiate the registers and set their
values using their presented member functions. The code structure is similar
to the one presented in Listing 5.8 in Section 5.2.

• Another C++ codebase, which introduces static polymorphism to the code,
similarly to the code presented in Listing 5.11 in Section 5.3.2.

• A C++ codebase, which uses dynamic polymorphism similar to the code in
Listing 5.9 in Section 5.3.1.

The goal of the measurements is to assess to overhead of the abstractions com-
pared to each other as well as to the original C code.

6.2.2 Binary Size

The measurement of the binary size substantiates the conclusions made in Chap-
ter 5, namely that using abstractions that can be resolved at compile-time does not
add overhead to the binary. As it is shown in Figure 6.9, the binary size of the com-
piled code that uses runtime polymorphism is far greater than the binary size of the
other projects. However, it is still recognizable even on this larger scale that the sec-
ond greatest binary size is produced by compiling the C source code. The other C++
variants produce very similar binary sizes, meaning that the usage of these abstrac-
tions does not result in a binary size increase.
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FIGURE 6.9: Binary size for 20 generated functions.

6.2.3 Compilation Time

FIGURE 6.10: Compilation time for 20 generated functions.

As shown in Figure 6.10, the compilation time of the C++ sources correlates with
the complexity of the abstractions. The version that does not use any abstractions
has the lowest compile time. It is followed by the version that encapsulates the
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functionalities in classes. The third is the version that adds a further layer of ab-
straction and uses static polymorphism in the code. By far the longest compile time
is measured for the source code that uses runtime polymorphism. However, it is
still comparable with the compilation time of the C project. Although the C version
starts with the best initial compilation time, it increases faster than the compile time
of the C++ projects that use compile-time abstractions.

6.2.4 Link Time

The link times shown in Figure 6.12 are very small compared to the compilation
times shown in Figure 6.10. However, the C++ version that uses runtime polymor-
phism performs tha worst in this measurement as well. The C link time outperforms
the C++ link times. However, it is important to note that the sources are generated
as single files, and as such, the linker is not used extensively.

FIGURE 6.11: Link time for 20 generated functions.

6.2.5 Execution Time

Figure 6.12 shows the measured execution times of the different codebases. Dy-
namic polymorphism, being an inherently runtime paradigm, adds extensive run-
time overhead. However, it also shows that the layers of abstractions added by
the other C++ codebases do not affect the runtime performance. Encapsulation, in-
heritance and static polymorphism are resolved at compile time and thus do not
introduce additional runtime overhead.
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FIGURE 6.12: Execution time for 20 generated functions.

The measurement of execution time substantiates the conclusions of Chapter 5,
namely that many C++ abstractions can be used in resource-constrained environ-
ments, because they do not add runtime overhead. In fact, they can be used to reduce
runtime overhead inherent to C implementations. The measurement also provides
practical evidence for the analysis done in Section 5.3.1, which showed that runtime
polymorphism can greatly affect runtime performance.

6.3 Practical Embedded Example

The goal of the previous subsection was to introduce reproducible results for indi-
vidual measurements using example programs specifically designed with the pur-
pose of getting analyzable results that help assessing the quality of the compiled
code. This section, on the other hand, presents a codebase that features many of
the previously discussed language features and performs a meaningful task on the
target STM32 platform. It will examined how an embedded program, the program
that blinks an LED, preforms when using modern C++. Note that only the necessary
parts of the Hardware Abstraction Layer are implemented to keep the codebase small
enough for a meaningful discussion. Many registers are not modified, because the
reset value is right for the given task.

6.3.1 Project Structure and Testing Environment

The test setup is shown in Figure 6.13. An LED is connected to the PA6 pin of the
microcontroller. The device is programmed using the ST-Link/V2 in-circuit debugger
and programmer over the Serial Wire Debug (SWD) interface of the microcontroller.
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FIGURE 6.13: Test setup.

The firmware was tested on the test board shown in Figure 6.14. The board was
specifically designed for this project, as it is a low-cost and simple device. The PCB
contains the STM32F030F4 microcontroller, operates from either a 5V external power
supply through the on-board voltage regulator or directly from 3.3V.

FIGURE 6.14: Test board layout.

The directory structure of the project is shown in Figure 6.15. The project features a
header-only HAL library implementation, containing the necessary abstractions for



6.3. Practical Embedded Example 61

the GPIO (General Purpose Input/Output) and the RCC (System-Reset and Clock
Control) peripherals. The implementations of these peripherals can be found in the
gpio and the rcc directories respectively. The constants.hpp in the base directory con-
tains the register base addresses of the peripherals. The register.hpp file contains the
generic register class, which implements the generic register operations as mem-
ber functions. The concepts.hpp contains the compile-time interface of a GPIO class,
requiring the necessary functions to be implemented by a hardware-specific imple-
mentation. The led.hpp contains the hardware-independent device driver for an LED
device, which operates with the hardware-independent GPIO type. The codebase
is too large for presenting all of it here, so please refer to Appendix E to find the
source code. For code compilation and for flashing the device, the same linker script,
startup code and makefile were used, which can be found in Appendix B, Appendix
A and Appendix C respectively.

FIGURE 6.15: Project structure of the demo project.

6.3.2 C++ Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) is a crucial concept in the realm of em-
bedded systems and system-level software development. In essence, a HAL is a
layer of programming that allows software to interact with hardware in a way that
is independent of the specifics of the underlying hardware. This abstraction layer
sits between the system’s hardware and software, serving as a bridge that facilitates
interaction between the two.

As previously discussed, the firmware only encompasses the necessary registers
and functionalities required to make the LED blink. Typically, the application would
start with configuring the system clock, establishing the clock’s source and setting
its frequency. Nonetheless, for this example, the default configuration is adequate.
The same is true for certain aspects of the GPIO configuration. A fully-fledged Hard-
ware Abstraction Layer would necessitate the implementation of an extensive array
of registers. However, in this illustrative firmware, many GPIO functions are not em-
ployed and certain other GPIO registers already hold suitable reset values for this
application. Therefore, it was only necessary to implement the following registers:
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• RCC_AHBENR: AHB peripheral clock enable register. Used to enable periph-
eral clock for different peripherals, including the GPIO ports.

• GPIOx_MODER: Controls the mode of the GPIO pins. The reset state of the
register sets most pins to input mode.

• GPIOx_BSRR: GPIO port bit set/reset register. Used to set the logic level of
output GPIO pins.

Figure 6.16 shows the UML diagram of the register classes. The CRegister class
is the abstraction of the generic register concept. It can be used to read and write
a memory-mapped register, either as a whole, or only selectively using bitmasks.
The classes CAhbEnRegister, CBSRRegister and CModeRegister add another layer of
abstraction over the CRegister class and provide meaningful interfaces to handle the
underlying registers as intended.

FIGURE 6.16: UML diagram of the registers.

Figure 6.17 shows the UML diagram of the higher-level abstractions. Note that
strictly speaking the UML diagram is intentionally not entirely correct, because the
CGpio class does not implement the GPIO concept in a conventional way. However,
to my current understanding, UML does not provide a way to represent this kind
of relationship between classes. Similarly to the example shown in Listing 5.11 in
Chapter 5.3.2, the GPIO is defined as a concept to enforce constraints on types. To
keep the example small enough for meaningful analysis, a class is considered a GPIO
class if it implements the following functions:
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• configure: Set the configuration bits in the necessary registers.

• set: Set the pin to logic high.

• reset: Set the pin to logic low.

FIGURE 6.17: UML diagram of the GPIO and LED classes.

The CLed class is a high-level abstraction of a single LED device, and is imple-
mented in a hardware-agnostic way. It accepts types that satisfy the type constraints
defined by the GPIO concept and offers functions to turn on, turn off and to toggle
and LED connected to a GPIO pin. The CGpio class meets the type requirements and
thus can be used as template parameter for the CLed class.

The CLed class can be thought of as a hardware-independent device driver. The
hardware-related implementations are encapsulated in the CGpio class, which means
that the CLed device driver can be ported to any platform without the need to modify
its implementation. Replacing the underlying STM32-specific GPIO class is the only
necessary step in the porting process. This might not seem important at first glance,
because an LED is a fairly simple device which can be implemented in only a couple
of lines of code. However, other external devices can be quite complicated and the
driver implementation can even extend to thousands of lines. Porting such device
drivers to a new hardware can take a lot of work and effort if the device directly
interacts with the hardware or the hardware-specific HAL library.

6.3.3 Main Function

Listing 6.1 shows the implementation of the main function. A brute-force delay
function is implemented in lines 6 through 9 so that the blinking of the LED can
be recognized by the human eye. The CGpio class is instantiated with the required
template parameters. It was mentioned before that in embedded systems, many pa-
rameters of the applications are known at compile-time, and this is a good example
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to support that statement. Pin PA6 is hard-wired to an LED, it is known before the
development of the firmware is started that it is going to operate in output mode.
The decltype specifier in line 17 can be used to explicitly specify the type for the tem-
plate class instantiation, although the compiler is able to deduce it as well.

1 #include <cstdint >
2

3 #include "hal/gpio/gpio.hpp"
4 #include "led.hpp"
5

6 void delay (int cycles) {
7 volatile int i;
8 for (i = 0; i < cycles ;) { i = i + 1; }
9 }

10

11 using namespace hal;
12

13 int main (void) {
14

15 CGpio <gpio_ports ::port_a , gpio_pins ::pin_06 , gpio_modes ::output >
gpio {};

16

17 CLed <decltype(gpio)> led { &gpio };
18

19 while (true) {
20 led.toggle ();
21 delay (200000);
22 }
23 }

LISTING 6.1: main.cpp of the LED blinking example.

6.3.4 Fully Optimized C Code

To better illustrate the efficiency this code is, it is compared to a functionally equiv-
alent C implementation. The C code presented in this section is manually optimized
to an extreme extent, containing only the necessary register operations to blink the
LED. Normally, firmware is not written this way, however, the goal here is to com-
pare the regular C++ implementation to its fully optimized C counterpart.

The following register operations are necessary to blink an LED:

• initialization:

1. Enable the peripheral clock for the GPIO port A by setting the 17th bit in
the RCC_AHBENR register to 1. Without this step, the modifications to
the registers implemented in the source code would not take effect.

2. Set the mode of pin PA6 to output by setting the 13th bit to 0 and the
12th bit to 1 in the GPIOA_MODER register. Setting the pin to output is
necessary for being able to not just read, but even set the voltage of the
pin from the firmware.

3. Set pin PA6 low by setting the 22nd bit to 1 in the GPIOx_BSR register.
This is done to make sure that the pin is in a known state after reset.
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• main loop:

1. Set pin PA6 to high or to low using the GPIOx_BSR register, depending
on its previous state. Setting the pin to high will cause the pin voltage to
increase to 3.3V, turning the LED on. Setting the pin low results in the pin
voltage to drop to 0V and thus turning the LED off.

2. Call the delay function, so that even the human eye can perceive the blink-
ing of the LED.

Listing 6.2 shows a possible implementation of the above described steps. The
code is probably as efficient as it gets, there are no function calls, no indirections,
only simple register operations are performed with manually precalculated addresses,
values and bitmasks. The AHB peripheral bus is enabled in line 17 by flipping the
necessary bit using a simple binary or operation on the register. The code in lines 19
through 22 clear and set the necessary bits in the mode register of port A, making
sure that the pin PA6 is in output mode. In line 24, the pin is set to its default low
state by setting the dedicated bit in the ser-reset register. In the while loop, the LED
is toggled and the delay function is called.

1 #define AHBENR (*(( volatile uint32_t *)0x40021014))
2 #define GPIO_A_MODER (*(( volatile uint32_t *)0x48000000))
3 #define GPIO_A_BSRR (*(( volatile uint32_t *)0x48000018))
4

5 void delay (int cycles) {
6 volatile int i;
7 for (i = 0; i < cycles ;) { i = i + 1; }
8 }
9

10 int main (void) {
11 uint32_t tmp;
12 bool led_on = false;
13

14 AHBENR = AHBENR | 0x00020000;
15

16 tmp = GPIO_A_MODER;
17 tmp &= ~0 x00003000;
18 tmp |= 0x00001000;
19 GPIO_A_MODER = tmp;
20

21 GPIO_A_BSRR = GPIO_A_BSRR | 0x00400000;
22

23 while (1) {
24 if (led_on) {
25 GPIO_A_BSRR = GPIO_A_BSRR | 0x00400000;
26 led_on = false;
27 }
28 else {
29 GPIO_A_BSRR = GPIO_A_BSRR | 0x00000040;
30 led_on = true;
31 }
32 delay (500000);
33 }
34 }

LISTING 6.2: Manually optimized and functionally equivalent C code
for blinking an LED.
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6.3.5 Overhead Assessment and Conclusion

When the code from Listing 6.2 is compiled and the result are compared with
that from Sections 6.3.2 and 6.3.3, it is found that two projects produced nearly the
exact same ELF file and binary. The text size of both projects is 864 bytes (the base
firmware’s text size was 744 bytes), and the binary itself is 976 bytes in both cases.
Comparing the objdump outputs reveals that the two are nearly identical. There is
some minor difference in the delay function, but nothing in the main function.

Given the length of this example, it is not practical to closely examine each and
every assembly instruction. However, a brief look at the main function reveals a lack
of function calls, apart from invoking the delay function in line 11. Listing 6.3 show-
cases the initial and final lines of the main function. This is no surprise for the C
version from Listing 6.2, because the code was manually optimized to an extreme
extent. However, for the C++ project, the compiler achieved the same optimized
binary as was manually accomplished with C. The main in Listing 6.3 function be-
gins by loading the address of the RCC_AHBENR register, 0x40021014, in line 3. In
the C++ code, this operation is performed when the CLed class’s constructor calls the
configure function of the CGpio object. Although this operation is hidden beneath lay-
ers of abstraction, these layers are optimized away by the compiler. Consequently,
all that remains in the main function are simple register operations.

1 080001b4 <main >:
2 80001b4: 2380 movs r3, #128 ; 0x80
3 80001b6: 4a14 ldr r2, [pc, #80] ; (8000208 <

main+0x54 >)
4 80001b8: 029b lsls r3, r3, #10
5 80001ba: 6811 ldr r1, [r2, #0]
6 80001bc: b570 push {r4, r5, r6, lr}
7 80001be: 430b orrs r3, r1
8 80001c0: 2190 movs r1, #144 ; 0x90
9 80001c2: 6013 str r3, [r2, #0]

10 ...
11 80001f6: f7ff ffd1 bl 800019c <_Z5delayi >
12 80001fa: e7f3 b.n 80001e4 <main+0x30 >
13 80001fc: 6823 ldr r3, [r4, #0]
14 80001fe: 2501 movs r5, #1
15 8000200: 4333 orrs r3, r6
16 8000202: 6023 str r3, [r4, #0]
17 8000204: e7f6 b.n 80001f4 <main+0x40 >
18 8000206: 46c0 nop ; (mov r8, r8)
19 8000208: 40021014 .word 0x40021014
20 800020c: ffffcfff .word 0xffffcfff
21 8000210: 48000018 .word 0x48000018
22 8000214: 00030d40 .word 0x00030d40

LISTING 6.3: Parts of the assembly of the compiled project.

Based on the above measurements, it can be concluded that with modern C++ it
is possible to develop firmware with a well-structured architecture and with zero
runtime overhead. The compiled code can be just as efficient as the manually fully
optimized C implementation. Even when the actual register manipulating code sec-
tions are hidden under layers upon layers of abstractions, the compiler is still ca-
pable of collapsing the architecture and producing a highly efficient binary, while
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developers can enjoy the readability, extendability and maintainability of a modern,
well-structured project.
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Chapter 7

Further Considerations

7.1 Code Bloating

In Chapter 4.3, the usage of templates and concepts was discussed with the goal
of runtime overhead reduction. On the flip side, templates are not without draw-
backs. They can often result in an issue commonly referred to as code bloat. Code
bloat happens when the code size becomes significantly larger due to the excessive
use of templates. Since every distinct instantiation of a template generates a new
piece of code, it can quickly lead to a drastic increase in the size of the binary exe-
cutable, particularly when templates are used indiscriminately or without a proper
understanding of their implications. This not only increases the footprint of the ap-
plication, which is a critical issue for memory-constrained embedded systems, but it
can also detrimentally affect the performance of otherwise powerful systems due to
increased cache misses and longer load times [11].

As such, the use of C++ templates in embedded systems is a balancing act. On
the one hand, they provide powerful tools for improving runtime performance and
promoting generic, reusable code. On the other hand, they carry the potential for
significant code bloat if used carelessly. Therefore, developers must tread carefully,
understanding and taking into account both the benefits and potential drawbacks of
templates in their design and coding practices. In this section, the goal is to present
an example when the usage of templates leads to code bloat. It is worth noting that
the compiler optimization can address many of the code bloat issues associated with
templates. A potential source of bloat that may resist optimization is related to large
template classes or functions, as well as excessive template instantiation.

As mentioned above, the compiler is very good at optimizing for code bloat, es-
pecially if the optimization is set for code size. Implementing a single template class
or function is not sufficient to trigger the phenomenon, because these issues occur
in much larger codebases. However, it is possible to enforce that the compiler does
not optimize out function calls by adding the noinline attribute to the function. Note
that the noinline specifier is not standard C++, but a GNU-specific function attribute.
Listing 7.1 shows the example code. A template class is defined in lines 1 through 11
with a member function that is prevented from being considered for inlining (noin-
line attribute in line 6). The class is instantiated for both int and char types in lines 15
and 19 respectively. The init function is called on both objects in lines 16 and 19.
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1 template <typename T>
2 class Example {
3 private:
4 T m_data [10000];
5 public:
6 __attribute__ (( noinline)) void init() {
7 for (int i = 0; i < 10000; i++) {
8 m_data[i] = i;
9 }

10 }
11 };
12

13 int main (void) {
14

15 Example <int > example_int;
16 example_int.init();
17

18 Example <char > example_char;
19 example_char.init();
20

21 while (true) { /* ... */ }
22 }

LISTING 7.1: Example for C++ code bloat.

The compiler generates the function for both types, as shown in Listing 7.2. Ex-
amining the mangled names of the functions in lines 1 and 12 reveals that they
differ in only a single letter and thus it can determined which one is for the inte-
ger type (_ZN7ExampleIiE4initEv in line 1) and which one is for the character type
(_ZN7ExampleIcE4initEv in line 12). The assumption can be verified by analyzing the
assembly code. Line 4 left shifts r3 by 2 bits, effectively multiplying it by 4. This is a
key point because multiplying by 4 suggests that it is indexing an array of integers
(since an int is 4 bytes). Line 15 stores the byte in r3 to an array at the position r3
(offset from base pointer r0). The instruction strb is used for storing a byte, indicat-
ing that this snippet is working with char types. That the compiler specializes the
templated functions for every type it is used with is expected, but it can have more
severe consequences when nested templates or multiple template parameters are
used extensively, and the compiler needs to generate a distinct definition for every
combination of the template parameters.

1 0800019c <_ZN7ExampleIiE4initEv >:
2 800019c: 2300 movs r3, #0
3 800019e: 4a03 ldr r2, [pc, #12] ; (80001ac <

_ZN7ExampleIiE4initEv+0x10 >)
4 80001a0: 0099 lsls r1, r3, #2
5 80001a2: 5043 str r3, [r0, r1]
6 80001a4: 3301 adds r3, #1
7 80001a6: 4293 cmp r3, r2
8 80001a8: d1fa bne.n 80001a0 <_ZN7ExampleIiE4initEv+

0x4 >
9 80001aa: 4770 bx lr

10 80001ac: 00002710 .word 0x00002710
11

12 080001b0 <_ZN7ExampleIcE4initEv >:
13 80001b0: 2300 movs r3, #0
14 80001b2: 4a03 ldr r2, [pc, #12] ; (80001c0 <

_ZN7ExampleIcE4initEv+0x10 >)
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15 80001b4: 54c3 strb r3, [r0, r3]
16 80001b6: 3301 adds r3, #1
17 80001b8: 4293 cmp r3, r2
18 80001ba: d1fb bne.n 80001b4 <_ZN7ExampleIcE4initEv+

0x4 >
19 80001bc: 4770 bx lr
20 80001be: 46c0 nop ; (mov r8, r8)
21 80001c0: 00002710 .word 0x00002710

LISTING 7.2: Assembly result of the code bloat example.

Code bloat was briefly mentioned during the evaluation of the measurements
done in Subsection 6.1.2. The more templated functions are generated into the source
code by the generator script, the more functions the compiler needs to generate in
the binary. For every combination of template parameters that occurs in the main
function where the functions are specialized and called, the compiler generates a
new function with the given signature. This is the reason why, as illustrated by Fig-
ure 7.1, the size of the C++ binary increases rapidly until every possible function
is generated, while the C version increases linearly as the number of function calls
increase.

FIGURE 7.1: Binary size overhead for 100 generated functions.

7.2 Floating-Point Operations

This section discusses an aspect that cannot be left unmentioned when talking
about the runtime performance of embedded systems. This aspect is the usage of
floating-point operations in the source code.
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The FPU, also known as a math coprocessor, is a specialized component of the
CPU designed to carry out operations on floating-point numbers efficiently. When
present, it can perform arithmetic operations like addition, subtraction, multiplica-
tion, division, and more complex operations such as square root and trigonometric
calculations much faster than the CPU can using software routines [28].

However, not all embedded systems feature an FPU, either due to cost, power,
or physical size constraints. In such systems, any floating-point operation must be
performed via software emulation. This emulation is often achieved using complex
routines that convert floating-point operations into a series of integer operations that
the CPU can handle [11]. The runtime overhead of such operations is not dependent
on the language, but rather on the hardware itself.

There are several implications of this. On the one hand, floating-point opera-
tions on devices without an FPU incur a significant runtime overhead. A simple
operation, such as adding two floating-point numbers, can require dozens or even
hundreds of CPU instructions when emulated in software, compared to a single in-
struction on a device equipped with an FPU. This can drastically slow down the
execution of the program and increase power consumption, a critical concern for
battery-operated devices [11].

On the other hand, the absence of an FPU can complicate programming and limit
the use of certain software tools and libraries. Many mathematical libraries and
algorithms are designed with the assumption of hardware floating-point support,
and adapting these for software emulation can be a non-trivial task [29].

Given these considerations, embedded system developers must carefully consider
the impact of floating-point operations on their designs. If high-precision fractional
calculations are necessary, hardware with an FPU should be considered despite the
added cost. Alternatively, problems must be reformulated to minimize the use of
floating-point operations, using fixed-point arithmetic or integer operations where
possible, and ensuring that any necessary floating-point routines are efficiently im-
plemented to mitigate the overhead on FPU-less devices.

Listing 7.3 shows a very simple example code that demonstrates how substantial
the effects of floating-point operations can be. It is simple performing three floating-
point operations in a row, addition, multiplication and division. This couple of lines
of code resulted in a text size of 5696 bytes. As a reminder, the base firmware had
a text size of only 744 bytes, and performing register operations in the previous
examples resulted in only a slight text size increase. The increase happens, because
the compiler introduced the functions for software floating-point operations into the
code, such as __aeabi_dmul, __aeabi_ddiv and __aeabi_dadd. In embedded devices with
limited memory, it might be necessary to avoid floating-point operations altogether.
Even in environments with sufficient memory but with no FPU, it might be worth it
to convert floating-point operations to integer arithmetic with sufficient resolution
for a given application, because it will substantially improve runtime performance.
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1 int main (void) {
2

3 volatile double a = 15.5, b = 20.5, c;
4

5 c = a + b;
6 a = c * b;
7 b = a / c;
8

9 while (true) { /* ... */ }
10 }

LISTING 7.3: Demonstration of the problems with floating-point
operations without hardware support.

7.3 Hidden Dynamic Memory Allocations

Dynamic memory allocation is a fundamental aspect of most computer systems,
allowing for the efficient use of memory resources. It is typically performed us-
ing functions such as malloc and free in C, or operators such as new and delete in
C++. However, in the context of embedded systems, dynamic memory allocation
introduces a number of potential issues that can have significant impacts on system
performance and reliability.

One notable issue is the impact on the binary size of the embedded application.
When dynamic memory allocation functions are used, their code must be included
in the binary executable. This increases the size of the binary significantly, which can
be problematic in resource-constrained embedded systems where memory is lim-
ited. Listing 7.4 shows an example code that demonstrates this issue. The memory
is allocated in line 5 using malloc, it allocates an array of 100 uint32_ts. The text size
increases to 1620 bytes, which is more than two times the size of the base firmware,
which was 744 bytes.

1 #define SOME_REGISTER (*(( volatile uint32_t *)0x22000000))
2

3 int main (void) {
4 volatile uint32_t* arr = NULL;
5 arr = (uint32_t *) malloc (100 * sizeof(uint32_t));
6

7 int index = 0;
8 while (1) {
9 arr[index] = SOME_REGISTER;

10 ++ index;
11 if (index == 100) index = 0;
12 }
13 }

LISTING 7.4: Example of dynamic memory allocation.

An examination of the assembly reveals that functions like _sbrk, _reclaim_reent,
malloc and free were added to the executable by the compiler. In the compilation
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commands, the flag –specs=nano.specs causes arm-none-eabi-gcc to link against newlib-
nano, a smaller variant of newlib, optimized for size. This library includes imple-
mentations for malloc, free, sbrk and many other standard C functions. However,
note that while newlib provides default implementations for these functions, the be-
havior of malloc and sbrk in particular depend on support from the microprocessor.
The STM32CubeIde, for example, provides its own sbrk implementation specifically
designed for ST microcontrollers. Therefore, when working on a bare metal system
and it is unavoidable to use dynamic memory allocation, it is likely necessary to
provide an own sbrk implementation [11].

The use of dynamic memory allocation can also introduce non-deterministic be-
havior into an embedded system. Dynamic memory allocation involves complex
management of memory resources, which can lead to unpredictable delays as the
system searches for a sufficiently large block of free memory. This non-deterministic
behavior can be detrimental in hard real-time applications, where predictable, de-
terministic execution is required to meet strict timing constraints. The unpredictable
delays introduced by dynamic memory allocation can lead to missed deadlines, po-
tentially resulting in system failure [11].

Furthermore, the use of dynamic memory allocation introduces the risk of allo-
cation failure. When a program calls malloc or new, there is always the chance that
the system will not have enough free memory to fulfill the request. In such cases,
malloc and new return a null pointer, indicating the allocation failure. Unfortunately,
many programs fail to check the return value, assuming that the allocation will al-
ways succeed. If the return value is not checked and is subsequently used, it can
lead to a program crash or other undefined behavior, undermining the reliability of
the system.

Insufficient knowledge of the C++ library features can be problematic in the em-
bedded world, because in many cases, dynamic memory allocation can be embed-
ded in a container or algorithm. Software developers for modern operating systems,
such as Linux or Windows, rarely care about the impact of dynamic memory allo-
cation, because it can be considered negligible in those environments. It still can
impact the performance, but the computational power and available memory of a
PC is in a whole other league when compared to a microcontroller.

Listing 7.5 and Listing 7.6 show two examples that demonstrate this issue. The
STL container array used in Listing 7.6 is a static container, it takes the size of the
array as a template parameter. The container vector, used in Listing 7.5, on the other
hand, is a container that has dynamic size and relies on the new operator internally
to allocate the necessary memory. While the two programs seemingly perform the
same action, they have a very different impact on an embedded platform. The code
in Listing 7.5 increases the code size significantly, because all of the code responsi-
ble for dynamic memory allocation is included again. Furthermore, the constructor
of the vector might even throw an exception if the allocation of the memory is not
successful. Similarly, the use of the string class, and many other classes from the
standard library can cause similar problems.
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1 #include <cstdint >
2 #include <vector >
3

4 int main (void) {
5 int index = 0;
6 while (true) {
7 std::vector <int > arr (3);
8 arr [0] = index;
9 arr [3] = arr [2] + 3;

10 }
11 }

LISTING 7.5: Usage of std::vector implies dynamic memory
allocation.

1 #include <cstdint >
2 #include <array >
3

4 int main (void) {
5 int index = 0;
6 while (true) {
7 std::array <int , 3> arr;
8 arr [0] = index;
9 arr [3] = arr [2] + 3;

10 }
11 }

LISTING 7.6: The std::array container has static size, hence it does not
require dynamic memory allocation at runtime.

On the other side, this feature, which might cause unexpected problems to inex-
perienced developers, is one of the biggest advantages of C++ over C. RAII stands
for Resource Acquisition Is Initialization, a programming idiom used in several object-
oriented, statically-typed programming languages like C++. The principle of RAII
is that the acquisition of a resource, which could be memory allocation, a file handle,
a lock, or any other system resource, is tied to the lifetime of an object [30]. Just like
in the example with the vector, when an object is created (initialized), resources are
acquired in the constructor. The resources are then released in the object’s destruc-
tor when the object goes out of scope or is otherwise destroyed. This approach is
designed to provide a convenient and reliable means of resource management. RAII
means that less manual intervention is required in resource cleanup, and it reduces
the chance of errors like memory leaks and dangling pointers.

7.4 References

A reference in C++ is a type of variable that acts as an alias to another object or
value. Conceptually, a reference behaves like a pointer with two key differences: a
reference always refers to an object (it cannot be null), and it cannot be changed to
refer to another object once it is initialized. The mechanism of passing parameters
by references was introduced in C++, providing an additional level of flexibility and
efficiency over C’s pass-by-pointer and pass-by-value mechanisms.
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In the context of function argument passing, references enable the function to
modify the original variables, similar to pointers. However, due to their non-null
and immutable nature, references provide a safer and more user-friendly alternative
to pointers. While pointers may lead to potential issues with null or dangling point-
ers, references alleviate these concerns, promoting safer and more readable code.

Listing 7.7 and Listing 7.8 show the same functionality implemented in C and in
C++ respectively. The noinline attribute is applied to the function in both cases so
that the compiler is forced not to inline the function. The two source codes compile
to exactly the same assembly. The assembly shows that in both cases the address of
the variable is passed to the function, the value is loaded, incremented and stored.
However, the C implementation is not safe, because the function can be called with
a null pointer, which would lead to a segmentation fault or undefined behavior.

1 __attribute__ (( noinline)) void increment(int* value) {
2 ++(* value);
3 }
4

5 int main (void) {
6 int i = 0;
7 while (1) {
8 increment (&i);
9 }

10 }

LISTING 7.7: Example of passing a variable by pointer in C.

1 __attribute__ (( noinline)) void increment(int& value) {
2 ++ value;
3 }
4

5 int main (void) {
6 int i = 0;
7 while (true) {
8 increment(i);
9 }

10 }

LISTING 7.8: Example of passing a variable by reference in C++.
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Chapter 8

Conclusion

I have demonstrated that C++ can indeed be used to build zero-overhead abstrac-
tions. I have observed how the runtime performance of code written in C can be
optimized using modern C++ compile-time constructs. I have examined how struc-
tured projects can be built without adding runtime overhead, how layers upon lay-
ers of abstractions get reduced to a series of register operations by the compiler. The
demonstrated methods provide a basis for writing effective firmware for embedded
systems.

The key conclusion of the thesis is that it is in fact possible and plausible to write
efficient code with zero runtime overhead using modern C++. Even if some fea-
tures, such as dynamic polymorphism, come with inherent runtime overhead, C++
gives flexibility to both the developer and the compiler to choose between compile-
time and runtime constructs, while C forces both the developers and the compiler
to perform most of the operations at runtime without offering any alternatives. Em-
bedded C++ developers, alongside with the C++ compiler, can create firmware that
perfectly balances compile-time and runtime overhead, leading to a faster and more
sustainable product.

I personally cannot see any drawbacks of using C++ in embedded projects, but
can see many of its advantages over C. I hope that by researching the topic in de-
tail, I could provide sufficient evidence for my case for the use of modern C++ in
embedded systems.
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Appendix A

Startup File

1 .syntax unified
2 .cpu cortex -m0
3 .fpu softvfp
4 .thumb
5

6 .global g_pfnVectors
7 .global Default_Handler
8

9 .word _sidata
10 .word _sdata
11 .word _edata
12 .word _sbss
13 .word _ebss
14

15 .section .text.Reset_Handler
16 .weak Reset_Handler
17 .type Reset_Handler , %function
18

19 Reset_Handler:
20 ldr r0 , =_estack
21 mov sp , r0
22 ldr r0 , =_sdata
23 ldr r1 , =_edata
24 ldr r2 , =_sidata
25 movs r3 , #0
26 b LoopCopyDataInit
27

28 CopyDataInit:
29 ldr r4 , [r2 , r3]
30 str r4 , [r0 , r3]
31 adds r3 , r3 , #4
32

33 LoopCopyDataInit:
34 adds r4 , r0 , r3
35 cmp r4 , r1
36 bcc CopyDataInit
37

38 ldr r2 , =_sbss
39 ldr r4 , =_ebss
40 movs r3 , #0
41 b LoopFillZerobss
42

43 FillZerobss:
44 str r3 , [r2]
45 adds r2 , r2 , #4
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46

47 LoopFillZerobss:
48 cmp r2 , r4
49 bcc FillZerobss
50

51 bl __libc_init_array
52 bl main
53

54 LoopForever:
55 b LoopForever
56

57 .size Reset_Handler , .-Reset_Handler
58

59

60

61 .section .text.Default_Handler ,"ax" ,%progbits
62 Default_Handler:
63 Infinite_Loop:
64 b Infinite_Loop
65 .size Default_Handler , .-Default_Handler
66

67

68 .section .isr_vector ,"a" ,%progbits
69 .type g_pfnVectors , %object
70 .size g_pfnVectors , .-g_pfnVectors
71

72 g_pfnVectors:
73 .word _estack
74 .word Reset_Handler
75 .word NMI_Handler
76 .word HardFault_Handler
77 .word 0
78 .word 0
79 .word 0
80 .word 0
81 .word 0
82 .word 0
83 .word 0
84 .word SVC_Handler
85 .word 0
86 .word 0
87 .word PendSV_Handler
88 .word SysTick_Handler
89 .word WWDG_IRQHandler
90 .word 0
91 .word RTC_IRQHandler
92 .word FLASH_IRQHandler
93 .word RCC_IRQHandler
94 .word EXTI0_1_IRQHandler
95 .word EXTI2_3_IRQHandler
96 .word EXTI4_15_IRQHandler
97 .word 0
98 .word DMA1_Channel1_IRQHandler
99 .word DMA1_Channel2_3_IRQHandler

100 .word DMA1_Channel4_5_IRQHandler
101 .word ADC1_IRQHandler
102 .word TIM1_BRK_UP_TRG_COM_IRQHandler
103 .word TIM1_CC_IRQHandler
104 .word 0
105 .word TIM3_IRQHandler
106 .word 0
107 .word 0
108 .word TIM14_IRQHandler
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109 .word 0
110 .word TIM16_IRQHandler
111 .word TIM17_IRQHandler
112 .word I2C1_IRQHandler
113 .word 0
114 .word SPI1_IRQHandler
115 .word 0
116 .word USART1_IRQHandler
117 .word 0
118 .word 0
119 .word 0
120 .word 0
121

122

123 .weak NMI_Handler
124 .thumb_set NMI_Handler ,Default_Handler
125

126 .weak HardFault_Handler
127 .thumb_set HardFault_Handler ,Default_Handler
128

129 .weak SVC_Handler
130 .thumb_set SVC_Handler ,Default_Handler
131

132 .weak PendSV_Handler
133 .thumb_set PendSV_Handler ,Default_Handler
134

135 .weak SysTick_Handler
136 .thumb_set SysTick_Handler ,Default_Handler
137

138 .weak WWDG_IRQHandler
139 .thumb_set WWDG_IRQHandler ,Default_Handler
140

141 .weak RTC_IRQHandler
142 .thumb_set RTC_IRQHandler ,Default_Handler
143

144 .weak FLASH_IRQHandler
145 .thumb_set FLASH_IRQHandler ,Default_Handler
146

147 .weak RCC_IRQHandler
148 .thumb_set RCC_IRQHandler ,Default_Handler
149

150 .weak EXTI0_1_IRQHandler
151 .thumb_set EXTI0_1_IRQHandler ,Default_Handler
152

153 .weak EXTI2_3_IRQHandler
154 .thumb_set EXTI2_3_IRQHandler ,Default_Handler
155

156 .weak EXTI4_15_IRQHandler
157 .thumb_set EXTI4_15_IRQHandler ,Default_Handler
158

159 .weak DMA1_Channel1_IRQHandler
160 .thumb_set DMA1_Channel1_IRQHandler ,Default_Handler
161

162 .weak DMA1_Channel2_3_IRQHandler
163 .thumb_set DMA1_Channel2_3_IRQHandler ,Default_Handler
164

165 .weak DMA1_Channel4_5_IRQHandler
166 .thumb_set DMA1_Channel4_5_IRQHandler ,Default_Handler
167

168 .weak ADC1_IRQHandler
169 .thumb_set ADC1_IRQHandler ,Default_Handler
170

171 .weak TIM1_BRK_UP_TRG_COM_IRQHandler
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172 .thumb_set TIM1_BRK_UP_TRG_COM_IRQHandler ,Default_Handler
173

174 .weak TIM1_CC_IRQHandler
175 .thumb_set TIM1_CC_IRQHandler ,Default_Handler
176

177 .weak TIM3_IRQHandler
178 .thumb_set TIM3_IRQHandler ,Default_Handler
179

180 .weak TIM14_IRQHandler
181 .thumb_set TIM14_IRQHandler ,Default_Handler
182

183 .weak TIM16_IRQHandler
184 .thumb_set TIM16_IRQHandler ,Default_Handler
185

186 .weak TIM17_IRQHandler
187 .thumb_set TIM17_IRQHandler ,Default_Handler
188

189 .weak I2C1_IRQHandler
190 .thumb_set I2C1_IRQHandler ,Default_Handler
191

192 .weak SPI1_IRQHandler
193 .thumb_set SPI1_IRQHandler ,Default_Handler
194

195 .weak USART1_IRQHandler
196 .thumb_set USART1_IRQHandler ,Default_Handler
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Linker Script

1 ENTRY(Reset_Handler)
2

3 _estack = ORIGIN(RAM) + LENGTH(RAM);
4

5 _Min_Heap_Size = 0x200 ;
6 _Min_Stack_Size = 0x400 ;
7

8 MEMORY
9 {

10 RAM (xrw) : ORIGIN = 0x20000000 , LENGTH = 4K
11 FLASH (rx) : ORIGIN = 0x8000000 , LENGTH = 16K
12 }
13

14 SECTIONS
15 {
16 .isr_vector :
17 {
18 . = ALIGN (4);
19 KEEP (*(. isr_vector))
20 . = ALIGN (4);
21 } >FLASH
22

23 .text :
24 {
25 . = ALIGN (4);
26 *(. text)
27 *(. text*)
28 *(. glue_7)
29 *(. glue_7t)
30 *(. eh_frame)
31

32 KEEP (*(. init))
33 KEEP (*(. fini))
34

35 . = ALIGN (4);
36 _etext = .;
37 } >FLASH
38

39 .rodata :
40 {
41 . = ALIGN (4);
42 *(. rodata)
43 *(. rodata *)
44 . = ALIGN (4);
45 } >FLASH
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46

47 .ARM.extab : {
48 . = ALIGN (4);
49 *(. ARM.extab* .gnu.linkonce.armextab .*)
50 . = ALIGN (4);
51 } >FLASH
52

53 .ARM : {
54 . = ALIGN (4);
55 __exidx_start = .;
56 *(. ARM.exidx *)
57 __exidx_end = .;
58 . = ALIGN (4);
59 } >FLASH
60

61 .preinit_array :
62 {
63 . = ALIGN (4);
64 PROVIDE_HIDDEN (__preinit_array_start = .);
65 KEEP (*(. preinit_array *))
66 PROVIDE_HIDDEN (__preinit_array_end = .);
67 . = ALIGN (4);
68 } >FLASH
69

70 .init_array :
71 {
72 . = ALIGN (4);
73 PROVIDE_HIDDEN (__init_array_start = .);
74 KEEP (*( SORT(. init_array .*)))
75 KEEP (*(. init_array *))
76 PROVIDE_HIDDEN (__init_array_end = .);
77 . = ALIGN (4);
78 } >FLASH
79

80 .fini_array :
81 {
82 . = ALIGN (4);
83 PROVIDE_HIDDEN (__fini_array_start = .);
84 KEEP (*( SORT(. fini_array .*)))
85 KEEP (*(. fini_array *))
86 PROVIDE_HIDDEN (__fini_array_end = .);
87 . = ALIGN (4);
88 } >FLASH
89

90 _sidata = LOADADDR (.data);
91

92 .data :
93 {
94 . = ALIGN (4);
95 _sdata = .;
96 *(. data)
97 *(. data*)
98 *(. RamFunc)
99 *(. RamFunc *)

100

101 . = ALIGN (4);
102 _edata = .;
103

104 } >RAM AT > FLASH
105

106 . = ALIGN (4);
107 .bss :
108 {
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109 _sbss = .;
110 __bss_start__ = _sbss;
111 *(. bss)
112 *(. bss*)
113 *( COMMON)
114

115 . = ALIGN (4);
116 _ebss = .;
117 __bss_end__ = _ebss;
118 } >RAM
119

120 ._user_heap_stack :
121 {
122 . = ALIGN (8);
123 PROVIDE ( end = . );
124 PROVIDE ( _end = . );
125 . = . + _Min_Heap_Size;
126 . = . + _Min_Stack_Size;
127 . = ALIGN (8);
128 } >RAM
129

130 /DISCARD/ :
131 {
132 libc.a ( * )
133 libm.a ( * )
134 libgcc.a ( * )
135 }
136

137 .ARM.attributes 0 : { *(. ARM.attributes) }
138 }
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Makefile

C.1 C Makefile

1 all: prog
2

3 prog:
4 arm -none -eabi -gcc -mcpu=cortex -m0 -c -specs=nano.specs -mfloat -

abi=soft -mthumb -o startup.o startup.s
5 arm -none -eabi -gcc -mcpu=cortex -m0 -c -std=gnu11 -Os -ffunction -

sections -fdata -sections -Wall --specs=nano.specs -mfloat -
abi=soft -mthumb -I. -o main.o main.c

6 arm -none -eabi -gcc -mcpu=cortex -m0 -o main.elf main.o startup.o
-T linker_script.ld --specs=nosys.specs --specs=nano.specs
-mfloat -abi=soft -mthumb

7 arm -none -eabi -objcopy -O binary main.elf main.bin
8

9 objdump:
10 arm -none -eabi -objdump -h -S main.elf
11

12 size:
13 arm -none -eabi -size main.elf
14

15 flash:
16 st -flash write main.bin 0x08000000
17

18 reset:
19 st -flash reset
20

21 clean:
22 @if [ -f main.o ]; then rm main.o; fi
23 @if [ -f main.s ]; then rm main.s; fi
24 @if [ -f startup.o ]; then rm startup.o; fi
25 @if [ -f main.elf ]; then rm main.elf; fi
26 @if [ -f main.bin ]; then rm main.bin; fi
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C.2 C++ Makefile

1 all: prog
2

3 prog:
4 arm -none -eabi -g++ -mcpu=cortex -m0 -c -specs=nano.specs -mfloat -

abi=soft -mthumb -o startup.o startup.s
5 arm -none -eabi -g++ -mcpu=cortex -m0 -c -std=c++20 -Os -ffunction -

sections -fdata -sections -Wall --specs=nano.specs -mfloat -
abi=soft -mthumb -I. -o main.o main.cpp

6 arm -none -eabi -g++ -mcpu=cortex -m0 -o main.elf main.o startup.o
-T linker_script.ld --specs=nosys.specs --specs=nano.specs
-mfloat -abi=soft -mthumb

7 arm -none -eabi -objcopy -O binary main.elf main.bin
8

9 objdump:
10 arm -none -eabi -objdump -h -S main.elf
11

12 size:
13 arm -none -eabi -size main.elf
14

15 flash:
16 st -flash write main.bin 0x08000000
17

18 reset:
19 st -flash reset
20

21 clean:
22 @if [ -f main.o ]; then rm main.o; fi
23 @if [ -f main.s ]; then rm main.s; fi
24 @if [ -f startup.o ]; then rm startup.o; fi
25 @if [ -f main.elf ]; then rm main.elf; fi
26 @if [ -f main.bin ]; then rm main.bin; fi
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Appendix D

Benchmark Toolchain

D.1 Base main.c Jinja Template

1 #include <stdint.h>
2 #include <time.h>
3 #include <stdio.h>
4 #include <unistd.h>
5

6 uint32_t m_memory [{{ array_size }}];
7

8 int main (void) {
9

10 struct timespec start , stop;
11 clock_gettime(CLOCK_REALTIME , &start);
12 uint64_t elapsed_ns = 0;
13

14 clock_gettime(CLOCK_REALTIME , &stop);
15

16 elapsed_ns = (stop.tv_sec - start.tv_sec) * (uint64_t)1e9;
17 elapsed_ns += stop.tv_nsec - start.tv_nsec;
18

19 printf("%lu\n", elapsed_ns);
20

21 return 0;
22 }

D.2 main.c Jinja Template

1 #include <stdint.h>
2 #include <time.h>
3 #include <stdio.h>
4 #include <unistd.h>
5

6 uint32_t m_memory [{{ array_size }}];
7

8

9 {% for i in range(array_size) -%}
10 #define ELEM_ {{i}} (*(( volatile uint32_t *)&m_memory [{{i}}]))
11 {% endfor %}
12

13 {% for i in range(num_choices) -%}
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14 #define CHOICE_ {{i}} (( uint16_t){{ "0x%0x" | format(i|int) }})
15 {% endfor %}
16

17 {% for i in range(num_modes) -%}
18 #define MODE_ {{i}} ({{ "0x%0x" | format(i|int) }}U)
19 {% endfor %}
20

21 {% for i in range(num_masks) -%}
22 #define MASK_ {{i}} ({{ "0x%0x" | format(i|int) }}U)
23 {% endfor %}
24

25 #define IS_CHOICE(X) ((X) < 0xFFFF && (X) >= 0)
26 #define IS_MODE(X) ({% for i in range(num_modes) %}((X) == MODE_ {{i}})

{% if not loop.last %} || {% endif %}{% endfor %})
27

28 typedef struct {
29 uint32_t choice ;
30 uint32_t mode ;
31 } A_Struct ;
32

33 {% for func in funcs -%}
34 void DoStuff_ {{func["index"]}}( A_Struct* m_struct) {
35 uint32_t temp;
36

37 if (! IS_CHOICE(m_struct ->choice)) { return; }
38 if (! IS_MODE(m_struct ->mode)) { return; }
39

40 if (m_struct ->mode == MODE_ {{func["mode_index"]}}) {
41 temp = ELEM_ {{func["elem_index_0"]}};
42 temp &= ~( MASK_ {{func["mask_index_0"]}} << (m_struct ->mode * 2u

));
43 temp |= (MASK_ {{func["mask_index_1"]}} << (m_struct ->choice * 2

u));
44 ELEM_ {{func["elem_index_0"]}} = temp;
45

46 temp = ELEM_ {{func["elem_index_1"]}};
47 temp &= ~( MASK_ {{func["mask_index_1"]}} << m_struct ->choice);
48 temp |= ((( m_struct ->mode & MASK_ {{func["mask_index_1"]}}) >> 4

u) << m_struct ->mode);
49 ELEM_ {{func["elem_index_1"]}} = temp;
50 }
51

52 temp = ELEM_ {{func["elem_index_1"]}};
53 temp &= ~( MASK_ {{func["mask_index_1"]}} << (m_struct ->choice * 2u))

;
54 temp |= ((m_struct ->mode & MASK_ {{func["mask_index_1"]}}) << (

m_struct ->choice * 2u));
55 ELEM_ {{func["elem_index_1"]}} = temp;
56 }
57 {% endfor %}
58

59 int main (void) {
60

61 struct timespec start , stop;
62 clock_gettime(CLOCK_REALTIME , &start);
63 uint64_t elapsed_ns = 0;
64

65 {% for st in a_structs -%}
66 {
67 A_Struct m_struct;
68 m_struct.choice = CHOICE_ {{st["choice"]}};
69 m_struct.mode = MODE_ {{st["mode"]}};
70 DoStuff_ {{st["func"]}}(& m_struct) ;
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71 }
72 {% endfor %}
73

74 clock_gettime(CLOCK_REALTIME , &stop);
75

76 elapsed_ns = (stop.tv_sec - start.tv_sec) * (uint64_t)1e9;
77 elapsed_ns += stop.tv_nsec - start.tv_nsec;
78

79 printf("%lu\n", elapsed_ns);
80

81 return 0;
82 }

D.3 Base main.cpp Jinja Template

1 #include <stdint.h>
2 #include <time.h>
3 #include <stdio.h>
4 #include <unistd.h>
5

6 uint32_t m_memory [{{ array_size }}];
7

8 int main (void) {
9

10 struct timespec start , stop;
11 clock_gettime(CLOCK_REALTIME , &start);
12 uint64_t elapsed_ns = 0;
13

14 clock_gettime(CLOCK_REALTIME , &stop);
15

16 elapsed_ns = (stop.tv_sec - start.tv_sec) * (uint64_t)1e9;
17 elapsed_ns += stop.tv_nsec - start.tv_nsec;
18

19 printf("%lu\n", elapsed_ns);
20

21 return 0;
22 }

D.4 main.cpp Jinja Template

1 #include <cstdint >
2 #include <concepts >
3 #include <type_traits >
4 #include <iostream >
5 #include <unistd.h>
6

7 std:: uint32_t m_memory [{{ array_size }}];
8

9

10 {% for i in range(array_size) -%}
11 #define ELEM_ {{i}} (*(( volatile uint32_t *)&m_memory [{{i}}]))
12 {% endfor %}
13

14 enum class choices : std:: uint16_t {
15 {%- for i in range(num_choices) %}
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16 choice_ {{i}} = {{ "0x%0x" | format(i|int) }}{% if not loop.last
%},{% endif %}

17 {%- endfor %}
18 };
19

20 enum class modes : std:: uint32_t {
21 {%- for i in range(num_modes) %}
22 mode_ {{i}} = {{ "0x%0x" | format(i|int) }}{% if not loop.last %},{%

endif %}
23 {%- endfor %}
24 };
25

26 enum class masks : std:: uint32_t {
27 {%- for i in range(num_masks) %}
28 mask_ {{i}} = {{ "0x%0x" | format(i|int) }}{% if not loop.last %},{%

endif %}
29 {%- endfor %}
30 };
31

32 consteval std:: uint32_t calculate_mask_0(masks mask , modes mode) {
33 return static_cast <std::uint32_t >(mask) << (static_cast <std::

uint32_t >(mode) * 2u);
34 }
35

36 consteval std:: uint32_t calculate_mask_1(masks mask , choices choice) {
37 return static_cast <std::uint32_t >(mask) << (static_cast <std::

uint32_t >( choice) * 2u);
38 }
39

40 consteval std:: uint32_t calculate_mask_2(masks mask , choices choice) {
41 return static_cast <std::uint32_t >(mask) << static_cast <std::

uint32_t >( choice);
42 }
43

44 consteval std:: uint32_t calculate_mask_3(masks mask , modes mode) {
45 return (( static_cast <std::uint32_t >(mode) & static_cast <std::

uint32_t >(mask)) >> 4) << static_cast <std::uint32_t >(mode);
46 }
47

48 consteval std:: uint32_t calculate_mask_4(masks mask , modes mode ,
choices choice) {

49 return (static_cast <std::uint32_t >(mode) & static_cast <std::
uint32_t >(mask)) << (static_cast <std::uint32_t >( choice) * 2);

50 }
51

52 template <choices choice >
53 concept is_valid_choice = (static_cast <std::uint16_t >( choice) < 0xFFFF)

;
54

55 template <modes mode >
56 concept is_valid_mode = ({% for i in range(num_modes) %}( mode == modes

:: mode_ {{i}}){% if not loop.last %} || {% endif %}{% endfor %});
57

58 {% for func in funcs -%}
59 template <choices choice , modes mode >
60 requires (is_valid_choice <choice > && is_valid_mode <mode >)
61 void DoStuff_ {{func["index"]}}() {
62 uint32_t temp;
63

64 if constexpr (mode == modes :: mode_ {{func["mode_index"]}}) {
65 temp = ELEM_ {{func["elem_index_0"]}};
66 temp &= ~calculate_mask_0(masks :: mask_ {{func["mask_index_0"]}},

mode);
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67 temp |= calculate_mask_1(masks :: mask_ {{func["mask_index_1"]}},
choice);

68 ELEM_ {{func["elem_index_0"]}} = temp;
69

70 temp = ELEM_ {{func["elem_index_1"]}};
71 temp &= ~calculate_mask_2(masks :: mask_ {{func["mask_index_1"]}},

choice);
72 temp |= calculate_mask_3(masks :: mask_ {{func["mask_index_1"]}},

mode);
73 ELEM_ {{func["elem_index_1"]}} = temp;
74 }
75

76 temp = ELEM_ {{func["elem_index_1"]}};
77 temp &= ~calculate_mask_1(masks :: mask_ {{func["mask_index_1"]}},

choice);
78 temp |= calculate_mask_4(masks :: mask_ {{func["mask_index_1"]}}, mode

, choice);
79 ELEM_ {{func["elem_index_1"]}} = temp;
80 }
81 {% endfor %}
82

83 int main (void) {
84

85 struct timespec start , stop;
86 clock_gettime(CLOCK_REALTIME , &start);
87 uint64_t elapsed_ns = 0;
88

89 {% for st in a_structs -%}
90 {
91 DoStuff_ {{st["func"]}}< choices :: choice_ {{st["choice"]}}, modes

:: mode_ {{st["mode"]}} >();
92 }
93 {% endfor %}
94

95 clock_gettime(CLOCK_REALTIME , &stop);
96

97 elapsed_ns = (stop.tv_sec - start.tv_sec) * (uint64_t)1e9;
98 elapsed_ns += stop.tv_nsec - start.tv_nsec;
99

100 printf("%lu\n", elapsed_ns);
101 return 0;
102 }

D.5 JSON Configuration File Example

1 {
2 "array_size":20,
3 "num_choices":10,
4 "num_modes":10,
5 "num_masks":15,
6 "num_funcs":10,
7 "num_calls":91
8 }

D.6 Generator Script
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1 import jinja2
2 import json
3 import random
4 import sys
5

6 N = sys.argv [1]
7

8 data_file = ’data_ ’ + N + ’.json’
9 base_c = ’c/base_ ’ + N + ’.c’

10 main_c = ’c/main_ ’ + N + ’.c’
11 base_cpp = ’cpp/base_ ’ + N + ’.cpp’
12 main_cpp = ’cpp/main_ ’ + N + ’.cpp’
13

14 data = json.load(open(data_file))
15 array_size = data[’array_size ’]
16 num_choices= data[’num_choices ’]
17 num_modes = data[’num_modes ’]
18 num_masks = data[’num_masks ’]
19 num_calls = data[’num_calls ’]
20 num_funcs = data[’num_funcs ’]
21

22 templateLoader = jinja2.FileSystemLoader(searchpath="./")
23 templateEnv = jinja2.Environment(loader=templateLoader)
24

25 # create functions that use random masks and elements
26

27 funcs = []
28 for i in range(num_funcs) :
29 funcs.append ({
30 "index": i,
31 "mode_index": random.randint(0, num_modes - 1),
32 "mask_index_0" : random.randint(0, num_masks - 1),
33 "mask_index_1" : random.randint(0, num_masks - 1),
34 "elem_index_0" : random.randint(0, array_size - 1),
35 "elem_index_1" : random.randint(0, array_size - 1)
36 })
37

38 # create structs that contain random choices and modes
39

40 a_structs = []
41 for i in range(num_calls) :
42 a_structs.append ({
43 "choice": random.randint(0, num_choices - 1),
44 "mode": random.randint(0, num_modes - 1),
45 "func": random.randint(0, num_funcs - 1)
46 })
47

48 c_template = templateEnv.get_template("c/main.jinja")
49 c_base_template = templateEnv.get_template("c/base.jinja")
50 c_main = c_template.render(
51 array_size=array_size ,
52 num_choices=num_choices ,
53 num_modes=num_modes ,
54 num_masks=num_masks ,
55 a_structs=a_structs ,
56 funcs=funcs
57 )
58 c_base = c_base_template.render(array_size=array_size)
59 with open(main_c , ’w’) as fp:
60 fp.write(c_main)
61 with open(base_c , ’w’) as fp:
62 fp.write(c_base)
63



D.7. Plotting Script 93

64 cpp_template = templateEnv.get_template("cpp/main.jinja")
65 cpp_base_template = templateEnv.get_template("cpp/base.jinja")
66 cpp_main = cpp_template.render(
67 array_size=array_size ,
68 num_choices=num_choices ,
69 num_modes=num_modes ,
70 num_masks=num_masks ,
71 a_structs=a_structs ,
72 funcs=funcs
73 )
74 cpp_base = cpp_base_template.render(array_size=array_size)
75 with open(main_cpp , ’w’) as fp:
76 fp.write(cpp_main)
77 with open(base_cpp , ’w’) as fp:
78 fp.write(cpp_base)

D.7 Plotting Script

1 import matplotlib.pyplot as plt
2 import pandas as pd
3 import numpy as np
4 import sys
5

6 N = sys.argv [1]
7

8 my_dpi =200
9

10 data = pd.read_csv("data_" + N + ".csv")
11

12 fig , axs = plt.subplots (2, 2)
13

14 fig.suptitle(’evaluation ’)
15 fig.set_size_inches (20, 15)
16

17 axs[0, 0]. plot(data[’num_calls ’].values , data[’c_size_o ’].values , label
="C", color=’g’, linestyle=’solid ’, marker=’,’)

18 axs[0, 0]. plot(data[’num_calls ’].values , data[’cpp_size_o ’].values ,
label="C++", color=’r’, linestyle=’solid ’, marker=’,’)

19 axs[0, 0]. set(xlabel=’number␣of␣function␣calls ’, ylabel=’size␣overhead␣
(bytes)’)

20 axs[0, 0]. legend(loc="upper␣left")
21

22 axs[0, 1]. plot(data[’num_calls ’].values , data[’c_comp_t ’].values , label
="C", color=’g’, linestyle=’solid ’, marker=’,’)

23 axs[0, 1]. plot(data[’num_calls ’].values , data[’cpp_comp_t ’].values ,
label="C++", color=’r’, linestyle=’solid ’, marker=’,’)

24 axs[0, 1]. set(xlabel=’number␣of␣function␣calls ’, ylabel=’compilation␣
time␣(s)’)

25 axs[0, 1]. legend(loc="upper␣left")
26

27 axs[1, 0]. plot(data[’num_calls ’].values , data[’c_link_t ’].values , label
="C", color=’g’, linestyle=’solid ’, marker=’,’)

28 axs[1, 0]. plot(data[’num_calls ’].values , data[’cpp_link_t ’].values ,
label="C++", color=’r’, linestyle=’solid ’, marker=’,’)

29 axs[1, 0]. set(xlabel=’number␣of␣function␣calls ’, ylabel=’link␣time␣(s)’
)

30 axs[1, 0]. legend(loc="upper␣left")
31
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32 axs[1, 1]. plot(data[’num_calls ’].values , data[’c_exec_t ’].values , label
="C", color=’g’, linestyle=’solid ’, marker=’,’)

33 axs[1, 1]. plot(data[’num_calls ’].values , data[’cpp_exec_t ’].values ,
label="C++", color=’r’, linestyle=’solid ’, marker=’,’)

34 axs[1, 1]. set(xlabel=’number␣of␣function␣calls ’, ylabel=’execution␣time
␣(ns)’)

35 axs[1, 1]. legend(loc="upper␣left")
36

37

38 #plt.show()
39 plt.savefig(’plt_’ + N + ’.png’, dpi=my_dpi)

D.8 Shell Script for Running Benchmark for a Specific Con-
figuration

1 #!/bin/bash
2

3 export TIMEFORMAT =%3R
4

5 NUM_EPOCHS =5
6

7 ARRAY_SIZE =20
8 NUM_CHOICES =10
9 NUM_MODES =10

10 NUM_MASKS =15
11

12 NUM_FUNCS=$1
13 CSV_FILE="data_$NUM_FUNCS.csv"
14 JSON_FILE="data_$NUM_FUNCS.json"
15

16 BASE_C_SRC="c/base_$NUM_FUNCS.c"
17 BASE_C_BIN="base_c_$NUM_FUNCS"
18 BASE_CPP_SRC="cpp/base_$NUM_FUNCS.cpp"
19 BASE_CPP_BIN="base_cpp_$NUM_FUNCS"
20

21 MAIN_C_SRC="c/main_$NUM_FUNCS.c"
22 MAIN_C_OBJ="main_c_$NUM_FUNCS.o"
23 MAIN_C_BIN="main_c_$NUM_FUNCS"
24

25 MAIN_CPP_SRC="cpp/main_$NUM_FUNCS.cpp"
26 MAIN_CPP_OBJ="main_cpp_$NUM_FUNCS.o"
27 MAIN_CPP_BIN="main_cpp_$NUM_FUNCS"
28

29 echo "num_calls ,c_size_o ,cpp_size_o ,c_comp_t ,cpp_comp_t ,c_link_t ,
cpp_link_t ,c_exec_t ,cpp_exec_t" > $CSV_FILE

30

31 NUM_CALLS =0
32 INCREMENT =0
33 STOP_AT =40000
34

35 while true; do
36

37 NUM_CALLS=$(( NUM_CALLS + INCREMENT))
38 INCREMENT=$(( INCREMENT + 1))
39

40 if [ $NUM_CALLS -gt $STOP_AT ]; then
41 break
42 fi
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43

44 C_COMPILE_TIME_AVG =0
45 C_LINK_TIME_AVG =0
46 C_SIZE =0
47 C_EXEC_TIME_AVG =0
48 BASE_C_SIZE =0
49 CPP_COMPILE_TIME_AVG =0
50 CPP_LINK_TIME_AVG =0
51 CPP_SIZE =0
52 CPP_EXEC_TIME_AVG =0
53 BASE_CPP_SIZE =0
54

55 for i in $(seq 1 $NUM_EPOCHS); do
56

57 printf ’{" array_size ":’ > $JSON_FILE
58 printf $ARRAY_SIZE >> $JSON_FILE
59 printf ’,"num_choices ":’ >> $JSON_FILE
60 printf $NUM_CHOICES >> $JSON_FILE
61 printf ’,"num_modes ":’ >> $JSON_FILE
62 printf $NUM_MODES >> $JSON_FILE
63 printf ’,"num_masks ":’ >> $JSON_FILE
64 printf $NUM_MASKS >> $JSON_FILE
65 printf ’,"num_funcs ":’ >> $JSON_FILE
66 printf $NUM_FUNCS >> $JSON_FILE
67 printf ’,"num_calls ":’ >> $JSON_FILE
68 printf $NUM_CALLS >> $JSON_FILE
69 printf ’}’ >> $JSON_FILE
70

71 python3 generate.py $NUM_FUNCS
72

73 gcc -Os -Wall $BASE_C_SRC -o $BASE_C_BIN
74 BASE_C_SIZE=‘size $BASE_C_BIN | tail -n1 | awk ’{print␣$1}’‘
75

76 g++ -Os -std=c++20 -Wall $BASE_CPP_SRC -o $BASE_CPP_BIN
77 BASE_CPP_SIZE=‘size $BASE_CPP_BIN | tail -n1 | awk ’{print␣$1}’

‘
78

79 C_COMPILE_TIME =‘(time gcc -c -Os $MAIN_C_SRC -o $MAIN_C_OBJ)
2>&1 >/dev/null ‘

80 C_LINK_TIME =‘(time gcc -Os -Wall $MAIN_C_OBJ -o $MAIN_C_BIN)
2>&1 >/dev/null ‘

81

82 C_SIZE=‘size $MAIN_C_BIN | tail -n1 | awk ’{print␣$1}’‘
83

84 C_EXEC_TIME =‘./ $MAIN_C_BIN ‘
85

86

87 CPP_COMPILE_TIME =‘(time g++ -std=c++20 -c -Os $MAIN_CPP_SRC -o
$MAIN_CPP_OBJ) 2>&1 >/dev/null ‘

88 CPP_LINK_TIME =‘(time g++ -std=c++20 -Os -Wall $MAIN_CPP_OBJ -o
$MAIN_CPP_BIN) 2>&1 >/dev/null ‘

89

90 CPP_SIZE=‘size $MAIN_CPP_BIN | tail -n1 | awk ’{print␣$1}’‘
91

92 CPP_EXEC_TIME =‘./ $MAIN_CPP_BIN ‘
93

94

95 C_COMPILE_TIME_AVG=‘echo $C_COMPILE_TIME_AVG + $C_COMPILE_TIME
| bc ‘

96 C_LINK_TIME_AVG=‘echo $C_LINK_TIME_AVG + $C_LINK_TIME | bc ‘
97 C_EXEC_TIME_AVG=‘echo $C_EXEC_TIME_AVG + $C_EXEC_TIME | bc ‘
98 CPP_COMPILE_TIME_AVG=‘echo $CPP_COMPILE_TIME_AVG +

$CPP_COMPILE_TIME | bc ‘
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99 CPP_LINK_TIME_AVG=‘echo $CPP_LINK_TIME_AVG + $CPP_LINK_TIME |
bc ‘

100 CPP_EXEC_TIME_AVG=‘echo $CPP_EXEC_TIME_AVG + $CPP_EXEC_TIME |
bc ‘

101

102 rm $MAIN_C_BIN
103 rm $MAIN_C_OBJ
104 rm $MAIN_CPP_BIN
105 rm $MAIN_CPP_OBJ
106 rm $MAIN_C_SRC
107 rm $MAIN_CPP_SRC
108 rm $BASE_C_SRC
109 rm $BASE_CPP_SRC
110 rm $BASE_C_BIN
111 rm $BASE_CPP_BIN
112 rm $JSON_FILE
113

114 done
115

116 C_COMPILE_TIME_AVG=‘echo $C_COMPILE_TIME_AVG / $NUM_EPOCHS | bc -l‘
117 C_LINK_TIME_AVG=‘echo $C_LINK_TIME_AVG / $NUM_EPOCHS | bc -l‘
118 C_EXEC_TIME_AVG=‘echo $C_EXEC_TIME_AVG / $NUM_EPOCHS | bc -l‘
119 CPP_COMPILE_TIME_AVG=‘echo $CPP_COMPILE_TIME_AVG / $NUM_EPOCHS | bc

-l‘
120 CPP_LINK_TIME_AVG=‘echo $CPP_LINK_TIME_AVG / $NUM_EPOCHS | bc -l‘
121 CPP_EXEC_TIME_AVG=‘echo $CPP_EXEC_TIME_AVG / $NUM_EPOCHS | bc -l‘
122

123 echo "$NUM_CALLS ,$((C_SIZE -BASE_C_SIZE)),$((CPP_SIZE -BASE_CPP_SIZE)
),$C_COMPILE_TIME_AVG ,$CPP_COMPILE_TIME_AVG ,$C_LINK_TIME_AVG ,
$CPP_LINK_TIME_AVG ,$C_EXEC_TIME_AVG ,$CPP_EXEC_TIME_AVG" >>
$CSV_FILE

124

125 done
126

127 python3 plot.py $NUM_FUNCS

D.9 Shell Script for Running the Benchmark

1 #!/bin/bash
2

3 taskset -c 2 ./test.sh 1 &
4 taskset -c 3 ./test.sh 20 &
5 taskset -c 4 ./test.sh 50 &
6 taskset -c 5 ./test.sh 100 &

D.10 Generator Script for Abstraction Overhead Measurements

1 import json
2 import random
3 import sys
4

5 num_functions = int(sys.argv [1])
6 num_calls = int(sys.argv [2])
7

8 MAX_REGISTERS = 20
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9 MAX_MODES = 10
10 MAX_CHOICES = 10
11 MAX_MASKS = 10
12 BRANCHING_THRESHOLD = 0.5
13 STOP_THRESHOLD = 0.3
14

15 def include_header (file , headers) :
16 file.write("/*␣includes␣*/\n")
17 for header in headers :
18 file.write("#include␣<" + header + " >\n")
19 file.write("\n")
20

21 def add_enum_class (file , name , prefix , underlying_type , num_enums) :
22 file.write("/*␣enum␣" + name + "␣*/\n")
23 file.write("enum␣class␣" + name + "␣:␣" + underlying_type + "␣{\n")
24 for i in range(num_enums) :
25 file.write("␣␣␣␣" + prefix + "_" + str(i) + "␣=␣" + str(i))
26 if (i == num_enums - 1) :
27 file.write("\n")
28 else :
29 file.write(" ,\n")
30 file.write("};\n")
31 file.write("template␣<" + name + "␣val >␣concept␣is_valid_" + prefix

+ "␣=␣(")
32 for i in range(num_enums) :
33 file.write("(val␣==␣" + name + "::" + prefix + "_" + str(i) + "

)")
34 if (i < num_enums - 1) :
35 file.write("␣||␣")
36 file.write(");\n\n")
37

38 def add_enum (file , name , prefix , num_enums) :
39 file.write("/*␣enum␣" + name + "␣*/\n")
40 file.write("typedef␣enum␣{\n")
41 for i in range(num_enums) :
42 file.write("␣␣␣␣" + prefix + "_" + str(i) + "␣=␣" + str(i))
43 if (i == num_enums - 1) :
44 file.write("\n")
45 else :
46 file.write(" ,\n")
47 file.write("}␣" + name + ";\n")
48 file.write("#define␣IS_" + name + "(X)␣(")
49 for i in range(num_enums) :
50 file.write("((X)␣==␣" + prefix + "_" + str(i) + ")")
51 if (i < num_enums - 1) :
52 file.write("␣||␣")
53 file.write(")\n\n")
54

55 def define_reg_base_class (file) :
56 file.write("template <std:: uint32_t␣address >\n")
57 file.write("class␣Register␣{\n")
58 file.write("private :\n")
59 file.write("␣␣␣␣void␣set␣(std:: uint32_t␣val)␣const␣{\n")
60 file.write("␣␣␣␣␣␣␣␣*( reinterpret_cast <volatile␣std:: uint32_t␣*>(&

m_memory[address ]))␣=␣val;\n")
61 file.write("␣␣␣␣}\n")
62 file.write("\n")
63 file.write("␣␣␣␣std:: uint32_t␣get␣()␣const␣{\n")
64 file.write("␣␣␣␣␣␣␣␣return␣*( reinterpret_cast <volatile␣std::

uint32_t␣*>(& m_memory[address ]));\n")
65 file.write("␣␣␣␣}\n")
66 file.write("protected :\n")
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67 file.write("␣␣␣␣void␣set␣(std:: uint32_t␣value ,␣std:: uint32_t␣
bitmask)␣const␣{\n")

68 file.write("␣␣␣␣␣␣␣␣std:: uint32_t␣tmp␣=␣this ->get();\n")
69 file.write("␣␣␣␣␣␣␣␣tmp␣&=␣~bitmask ;\n")
70 file.write("␣␣␣␣␣␣␣␣tmp␣|=␣value ;\n")
71 file.write("␣␣␣␣␣␣␣␣this ->set(tmp);\n")
72 file.write("␣␣␣␣}\n")
73 file.write("};\n\n")
74

75 def define_reg_class (file , registers) :
76 for i, reg in enumerate(registers) :
77 file.write("class␣Register_" + str(i) + "␣:␣public␣Register <" +

str(i) + ">␣{\n")
78 file.write("private :\n")
79 file.write("␣␣␣␣static␣consteval␣std:: uint32_t␣calc_set_bits␣(

modes␣mode ,␣choices␣choice)␣{\n")
80 file.write("␣␣␣␣␣␣␣␣return␣static_cast <std::uint32_t >(mode)␣<<␣

static_cast <std::uint32_t >( choice)␣*␣2;\n")
81 file.write("␣␣␣␣}\n")
82 file.write("␣␣␣␣static␣consteval␣std:: uint32_t␣calc_clear_bits␣

(modes␣mode ,␣choices␣choice)␣{\n")
83 file.write("␣␣␣␣␣␣␣␣return␣(static_cast <std::uint32_t >( masks ::

mask_" + str(reg[’mask_id ’]) + ")␣|␣static_cast <std::
uint32_t >(mode))␣<<␣static_cast <std::uint32_t >( choice)␣*␣
2;\n")

84 file.write("␣␣␣␣}\n")
85 file.write("public :\n")
86 file.write("␣␣␣␣template <modes␣mode ,␣choices␣choice >\n")
87 file.write("␣␣␣␣requires␣(is_valid_choice <choice >␣&&␣

is_valid_mode <mode >)\n")
88 file.write("␣␣␣␣inline␣void␣set_mode␣()␣{\n")
89 file.write("␣␣␣␣␣␣␣␣set(calc_set_bits(mode ,␣choice),␣

calc_clear_bits(mode ,␣choice));\n")
90 file.write("␣␣␣␣}\n")
91 file.write("};\n\n")
92

93 def batch_write (string , files) :
94 for file in files :
95 file.write(string)
96

97 c_main = open("main_" + str(num_functions) + ".c", "w")
98 base_c = open("base_" + str(num_functions) + ".c", "w")
99 base_cpp = open("base_" + str(num_functions) + ".cpp", "w")

100 cpp_main = open("main_" + str(num_functions) + ".cpp", "w")
101 cpp_encapsulation = open("main_encapsulation_" + str(num_functions) + "

.cpp", "w")
102 cpp_static_poly = open("main_static_poly_" + str(num_functions) + ".cpp

", "w")
103 cpp_dynamic_poly = open("main_dynamic_poly_" + str(num_functions) + ".

cpp", "w")
104

105 # adding includes
106

107 include_header(base_c , [ "stdint.h", "time.h", "stdio.h", "unistd.h" ])
108 include_header(c_main , [ "stdint.h", "time.h", "stdio.h", "unistd.h" ])
109

110 include_header(base_cpp , [ "cstdint", "concepts", "type_traits", "
iostream", "unistd.h" ])

111 include_header(cpp_main , [ "cstdint", "concepts", "type_traits", "
iostream", "unistd.h" ])

112 include_header(cpp_encapsulation , [ "cstdint", "concepts", "type_traits
", "iostream", "unistd.h" ])
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113 include_header(cpp_static_poly , [ "cstdint", "concepts", "type_traits",
"iostream", "unistd.h" ])

114 include_header(cpp_dynamic_poly , [ "cstdint", "concepts", "type_traits"
, "iostream", "unistd.h" ])

115

116 # adding modes
117

118 num_modes = random.randint(1, MAX_MODES)
119

120 add_enum(c_main , "MODE", "MODE", num_modes)
121 add_enum_class(cpp_main , "modes", "mode", "std:: uint32_t", num_modes)
122 add_enum_class(cpp_encapsulation , "modes", "mode", "std:: uint32_t",

num_modes)
123 add_enum_class(cpp_static_poly , "modes", "mode", "std:: uint32_t",

num_modes)
124 add_enum_class(cpp_dynamic_poly , "modes", "mode", "std:: uint32_t",

num_modes)
125

126 # adding choices
127

128 num_choices = random.randint(1, MAX_CHOICES)
129

130 add_enum(c_main , "CHOICE", "CHOICE", num_choices)
131 add_enum_class(cpp_main , "choices", "choice", "std:: uint16_t",

num_choices)
132 add_enum_class(cpp_encapsulation , "choices", "choice", "std:: uint16_t",

num_choices)
133 add_enum_class(cpp_static_poly , "choices", "choice", "std:: uint16_t",

num_choices)
134 add_enum_class(cpp_dynamic_poly , "choices", "choice", "std:: uint16_t",

num_choices)
135

136 # adding masks
137

138 num_masks = random.randint(1, MAX_MASKS)
139

140 add_enum(c_main , "MASK", "MASK", num_masks)
141 add_enum_class(cpp_main , "masks", "mask", "std:: uint32_t", num_masks)
142 add_enum_class(cpp_encapsulation , "masks", "mask", "std:: uint32_t",

num_masks)
143 add_enum_class(cpp_static_poly , "masks", "mask", "std:: uint32_t",

num_masks)
144 add_enum_class(cpp_dynamic_poly , "masks", "mask", "std:: uint32_t",

num_masks)
145

146 # adding registers
147

148 num_registers = random.randint(1, MAX_REGISTERS)
149

150 c_main.write("uint32_t␣m_memory[" + str(num_registers) + "];\n\n")
151 base_c.write("uint32_t␣m_memory[" + str(num_registers) + "];\n\n")
152 cpp_main.write("std:: uint32_t␣m_memory[" + str(num_registers) + "];\n\n

")
153 base_cpp.write("std:: uint32_t␣m_memory[" + str(num_registers) + "];\n\n

")
154 cpp_encapsulation.write("std:: uint32_t␣m_memory[" + str(num_registers)

+ "];\n\n")
155 cpp_static_poly.write("std:: uint32_t␣m_memory[" + str(num_registers) +

"];\n\n")
156 cpp_dynamic_poly.write("std:: uint32_t␣m_memory[" + str(num_registers) +

"];\n\n")
157

158 for i in range(num_registers) :
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159 c_main.write("#define␣ELEM_" + str(i) + "␣(*(( volatile␣uint32_t *)&
m_memory[" + str(i) + "]))\n")

160 cpp_main.write("#define␣ELEM_" + str(i) + "␣(*(( volatile␣uint32_t *)
&m_memory[" + str(i) + "]))\n")

161

162 define_reg_base_class(cpp_encapsulation)
163 define_reg_base_class(cpp_static_poly)
164 define_reg_base_class(cpp_dynamic_poly)
165

166 registers = []
167 for i in range(num_registers) :
168 registers.append ({
169 "mask_id" : random.randint(0, num_masks - 1)
170 })
171

172

173 cpp_main.write("static␣consteval␣std:: uint32_t␣calc_set_bits␣(modes␣
mode ,␣choices␣choice)␣{\n")

174 cpp_main.write("␣␣␣␣return␣static_cast <std::uint32_t >(mode)␣<<␣
static_cast <std::uint32_t >( choice)␣*␣2;\n")

175 cpp_main.write("}\n")
176

177 cpp_main.write("static␣consteval␣std:: uint32_t␣calc_clear_bits␣(masks␣
mask ,␣modes␣mode ,␣choices␣choice)␣{\n")

178 cpp_main.write("␣␣␣␣return␣(static_cast <std::uint32_t >(mask)␣|␣
static_cast <std::uint32_t >(mode))␣<<␣static_cast <std::uint32_t >(
choice)␣*␣2;\n")

179 cpp_main.write("}\n")
180

181 define_reg_class(cpp_encapsulation , registers)
182 define_reg_class(cpp_static_poly , registers)
183 define_reg_class(cpp_dynamic_poly , registers)
184

185 # C structs
186

187 c_main.write("typedef␣struct␣{\n")
188 c_main.write("␣␣␣␣uint32_t␣choice␣;\n")
189 c_main.write("␣␣␣␣uint32_t␣mode␣;\n")
190 c_main.write("}␣A_Struct␣;\n")
191

192 # static polymorphism
193 cpp_static_poly.write("template␣<typename␣T>\n")
194 cpp_static_poly.write("concept␣IPeripheral␣=␣requires␣(T␣peripheral)␣{\

n")
195 cpp_static_poly.write("␣␣␣␣{␣peripheral.DoStuff ()␣}␣->␣std::same_as <

void >;\n")
196 cpp_static_poly.write("};\n\n")
197

198 cpp_static_poly.write("template␣<IPeripheral␣TPeripheral >\n")
199 cpp_static_poly.write("void␣HandlePeripheral␣(TPeripheral&␣peripheral)␣

{\n")
200 cpp_static_poly.write("␣␣␣␣peripheral.DoStuff ();\n")
201 cpp_static_poly.write("}\n")
202

203 # dynamic polymorphism
204 cpp_dynamic_poly.write("class␣IPeripheral␣{\n")
205 cpp_dynamic_poly.write("public :\n")
206 cpp_dynamic_poly.write("␣␣␣␣virtual␣~IPeripheral ()␣{␣}\n")
207 cpp_dynamic_poly.write("␣␣␣␣virtual␣void␣DoStuff␣()␣=␣0;\n")
208 cpp_dynamic_poly.write("};\n")
209

210 cpp_dynamic_poly.write("void␣HandlePeripheral␣(IPeripheral&␣peripheral)
␣{\n")
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211 cpp_dynamic_poly.write("␣␣␣␣peripheral.DoStuff ();\n")
212 cpp_dynamic_poly.write("}\n")
213

214 # functions
215

216 cpp_class_files = [cpp_encapsulation , cpp_static_poly , cpp_dynamic_poly
]

217

218 for i in range(num_functions) :
219 c_main.write("void␣DoStuff_" + str(i) + "(A_Struct*␣m_struct)␣{\n")
220 c_main.write("␣␣␣␣uint32_t␣temp;\n")
221 c_main.write("\n")
222 c_main.write("␣␣␣␣if␣(! IS_CHOICE(m_struct ->choice))␣{␣return;␣}\n")
223 c_main.write("␣␣␣␣if␣(! IS_MODE(m_struct ->mode))␣{␣return;␣}\n")
224 c_main.write("\n")
225

226 cpp_main.write("template␣<choices␣choice ,␣modes␣mode >\n")
227 cpp_main.write("requires␣(is_valid_choice <choice >␣&&␣is_valid_mode <

mode >)\n")
228 cpp_main.write("void␣DoStuff_" + str(i) + "()␣{\n")
229 cpp_main.write("␣␣␣␣uint32_t␣temp;\n")
230 cpp_main.write("\n")
231

232 batch_write("template␣<choices␣choice ,␣modes␣mode >\n", [
cpp_static_poly , cpp_dynamic_poly ])

233 batch_write("requires␣(is_valid_choice <choice >␣&&␣is_valid_mode <
mode >)\n", [cpp_static_poly , cpp_dynamic_poly ])

234 batch_write("class␣Peripheral_" + str(i) + "␣{\n", [
cpp_encapsulation , cpp_static_poly ])

235 batch_write("class␣Peripheral_" + str(i) + "␣:␣public␣IPeripheral␣
{\n", [cpp_dynamic_poly ])

236 batch_write("public :\n", cpp_class_files)
237 batch_write("␣␣␣␣template␣<choices␣choice ,␣modes␣mode >\n", [

cpp_encapsulation ])
238 batch_write("␣␣␣␣requires␣(is_valid_choice <choice >␣&&␣is_valid_mode

<mode >)\n", [cpp_encapsulation ])
239 batch_write("␣␣␣␣void␣DoStuff ()␣{\n", [cpp_encapsulation ,

cpp_static_poly ])
240 batch_write("␣␣␣␣void␣DoStuff ()␣override␣{\n", [cpp_dynamic_poly ])
241 batch_write("\n", cpp_class_files)
242

243 branching_prob = random.random ()
244 if branching_prob > BRANCHING_THRESHOLD :
245 mode_index = random.randint(0, num_modes - 1)
246 reg_index = random.randint(0, num_registers - 1)
247

248 c_main.write("␣␣␣␣if␣(m_struct ->mode␣==␣MODE_" + str(mode_index
) + ")␣{\n")

249 c_main.write("␣␣␣␣␣␣␣␣temp␣=␣ELEM_" + str(reg_index) + ";\n")
250 c_main.write("␣␣␣␣␣␣␣␣temp␣&=␣~(( MASK_" + str(registers[

reg_index ][’mask_id ’]) + "␣|␣m_struct ->mode)␣<<␣m_struct ->
choice␣*␣2u);\n")

251 c_main.write("␣␣␣␣␣␣␣␣temp␣|=␣m_struct ->mode␣<<␣m_struct ->
choice␣*␣2u;\n")

252 c_main.write("␣␣␣␣␣␣␣␣ELEM_" + str(reg_index) + "␣=␣temp;\n")
253

254 cpp_main.write("␣␣␣␣if␣constexpr␣(mode␣==␣modes :: mode_" + str(
mode_index) + ")␣{\n")

255 cpp_main.write("␣␣␣␣␣␣␣␣temp␣=␣ELEM_" + str(reg_index) + ";\n")
256 cpp_main.write("␣␣␣␣␣␣␣␣temp␣&=␣~calc_clear_bits(masks :: mask_"

+ str(registers[reg_index ][’mask_id ’]) + ",␣mode ,␣choice);\
n")
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257 cpp_main.write("␣␣␣␣␣␣␣␣temp␣|=␣calc_set_bits(mode ,␣choice);\n"
)

258 cpp_main.write("␣␣␣␣␣␣␣␣ELEM_" + str(reg_index) + "␣=␣temp;\n")
259

260 batch_write("␣␣␣␣␣␣␣␣if␣constexpr␣(mode␣==␣modes :: mode_" + str(
mode_index) + ")␣{\n", cpp_class_files)

261 batch_write("␣␣␣␣␣␣␣␣␣␣␣␣{\n", cpp_class_files)
262 batch_write("␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Register_" + str(reg_index) + "␣

reg␣{};\n", cpp_class_files)
263 batch_write("␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣reg.set_mode <mode ,␣choice >();\n",

cpp_class_files)
264 batch_write("␣␣␣␣␣␣␣␣␣␣␣␣}\n", cpp_class_files)
265

266 while (random.random () < STOP_THRESHOLD) :
267 mode_index = random.randint(0, num_modes - 1)
268 reg_index = random.randint(0, num_registers - 1)
269 c_main.write("␣␣␣␣␣␣␣␣temp␣=␣ELEM_" + str(reg_index) + ";\n

")
270 c_main.write("␣␣␣␣␣␣␣␣temp␣&=␣~(( MASK_" + str(registers[

reg_index ][’mask_id ’]) + "␣|␣m_struct ->mode)␣<<␣
m_struct ->choice␣*␣2u);\n")

271 c_main.write("␣␣␣␣␣␣␣␣temp␣|=␣m_struct ->mode␣<<␣m_struct ->
choice␣*␣2u;\n")

272 c_main.write("␣␣␣␣␣␣␣␣ELEM_" + str(reg_index) + "␣=␣temp;\n
")

273

274 cpp_main.write("␣␣␣␣␣␣␣␣temp␣=␣ELEM_" + str(reg_index) + "
;\n")

275 cpp_main.write("␣␣␣␣␣␣␣␣temp␣&=␣~calc_clear_bits(masks ::
mask_" + str(registers[reg_index ][’mask_id ’]) + ",␣mode
,␣choice);\n")

276 cpp_main.write("␣␣␣␣␣␣␣␣temp␣|=␣calc_set_bits(mode ,␣choice)
;\n")

277 cpp_main.write("␣␣␣␣␣␣␣␣ELEM_" + str(reg_index) + "␣=␣temp
;\n")

278

279 batch_write("␣␣␣␣␣␣␣␣␣␣␣␣{\n", cpp_class_files)
280 batch_write("␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Register_" + str(reg_index) +

"␣reg␣{};\n", cpp_class_files)
281 batch_write("␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣reg.set_mode <mode ,␣choice >();\

n", cpp_class_files)
282 batch_write("␣␣␣␣␣␣␣␣␣␣␣␣}\n", cpp_class_files)
283

284 c_main.write("␣␣␣␣}\n")
285 cpp_main.write("␣␣␣␣}\n")
286 batch_write("␣␣␣␣␣␣␣␣}\n", cpp_class_files)
287

288 while (random.random () < STOP_THRESHOLD) :
289 mode_index = random.randint(0, num_modes - 1)
290 reg_index = random.randint(0, num_registers - 1)
291 c_main.write("␣␣␣␣temp␣=␣ELEM_" + str(reg_index) + ";\n")
292 c_main.write("␣␣␣␣temp␣&=␣~(( MASK_" + str(registers[reg_index ][

’mask_id ’]) + "␣|␣m_struct ->mode)␣<<␣m_struct ->choice␣*␣2u)
;\n")

293 c_main.write("␣␣␣␣temp␣|=␣m_struct ->mode␣<<␣m_struct ->choice␣*␣
2u;\n")

294 c_main.write("␣␣␣␣ELEM_" + str(reg_index) + "␣=␣temp;\n")
295

296 cpp_main.write("␣␣␣␣temp␣=␣ELEM_" + str(reg_index) + ";\n")
297 cpp_main.write("␣␣␣␣temp␣&=␣~calc_clear_bits(masks :: mask_" +

str(registers[reg_index ][’mask_id ’]) + ",␣mode ,␣choice);\n"
)

298 cpp_main.write("␣␣␣␣temp␣|=␣calc_set_bits(mode ,␣choice);\n")
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299 cpp_main.write("␣␣␣␣ELEM_" + str(reg_index) + "␣=␣temp;\n")
300

301 batch_write("␣␣␣␣␣␣␣␣{\n", cpp_class_files)
302 batch_write("␣␣␣␣␣␣␣␣␣␣␣␣Register_" + str(reg_index) + "␣reg␣

{};\n", cpp_class_files)
303 batch_write("␣␣␣␣␣␣␣␣␣␣␣␣reg.set_mode <mode ,␣choice >();\n",

cpp_class_files)
304 batch_write("␣␣␣␣␣␣␣␣}\n", cpp_class_files)
305

306 c_main.write("}\n")
307 cpp_main.write("}\n")
308 batch_write("␣␣␣␣}\n", cpp_class_files)
309 batch_write("};\n", cpp_class_files)
310

311

312 # function calls
313

314 all_files = [base_c , c_main , base_cpp , cpp_main , cpp_encapsulation ,
cpp_static_poly , cpp_dynamic_poly]

315

316 batch_write("int␣main␣(void)␣{\n", all_files)
317 batch_write("␣␣␣␣struct␣timespec␣start ,␣stop;\n", all_files)
318 batch_write("␣␣␣␣clock_gettime(CLOCK_REALTIME ,␣&start);\n", all_files)
319 batch_write("␣␣␣␣uint64_t␣elapsed_ns␣=␣0;\n", all_files)
320

321 for i in range(num_calls) :
322 choice_id = random.randint(0, num_choices - 1)
323 mode_id = random.randint(0, num_modes - 1)
324 func_id = random.randint(0, num_functions - 1)
325

326 c_main.write("␣␣␣␣{\n")
327 c_main.write("␣␣␣␣␣␣␣␣A_Struct␣m_struct ;\n")
328 c_main.write("␣␣␣␣␣␣␣␣m_struct.choice␣=␣CHOICE_" + str(choice_id) +

";\n")
329 c_main.write("␣␣␣␣␣␣␣␣m_struct.mode␣=␣MODE_" + str(mode_id) + ";\n"

)
330 c_main.write("␣␣␣␣␣␣␣␣DoStuff_" + str(func_id) + "(& m_struct)␣;\n")
331 c_main.write("␣␣␣␣}\n")
332

333 cpp_main.write("␣␣␣␣{\n")
334 cpp_main.write("␣␣␣␣␣␣␣␣DoStuff_" + str(func_id) + "<choices ::

choice_" + str(choice_id) + ",␣modes :: mode_" + str(mode_id) + "
>();\n")

335 cpp_main.write("␣␣␣␣}\n")
336

337 cpp_encapsulation.write("␣␣␣␣{\n")
338 cpp_encapsulation.write("␣␣␣␣␣␣␣␣Peripheral_" + str(func_id) + "␣

peripheral␣{};\n")
339 cpp_encapsulation.write("␣␣␣␣␣␣␣␣peripheral.DoStuff <choices ::

choice_" + str(choice_id) + ",␣modes :: mode_" + str(mode_id) + "
>();\n")

340 cpp_encapsulation.write("␣␣␣␣}\n")
341

342 cpp_static_poly.write("␣␣␣␣{\n")
343 cpp_static_poly.write("␣␣␣␣␣␣␣␣Peripheral_" + str(func_id) + "<" +

"␣choices :: choice_" + str(choice_id) + ",␣modes :: mode_" + str(
mode_id) + ">␣peripheral␣{};\n")

344 cpp_static_poly.write("␣␣␣␣␣␣␣␣HandlePeripheral <Peripheral_" + str(
func_id) + "<choices :: choice_" + str(choice_id) + ",␣modes ::
mode_" + str(mode_id) + ">>␣(peripheral);\n")

345 cpp_static_poly.write("␣␣␣␣}\n")
346

347 cpp_dynamic_poly.write("␣␣␣␣{\n")
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348 cpp_dynamic_poly.write("␣␣␣␣␣␣␣␣Peripheral_" + str(func_id) + "<" +
"␣choices :: choice_" + str(choice_id) + ",␣modes :: mode_" + str(

mode_id) + ">␣peripheral␣{};\n")
349 cpp_dynamic_poly.write("␣␣␣␣␣␣␣␣HandlePeripheral␣(peripheral);\n")
350 cpp_dynamic_poly.write("␣␣␣␣}\n")
351

352 batch_write("␣␣␣␣clock_gettime(CLOCK_REALTIME ,␣&stop);\n", all_files)
353 batch_write("␣␣␣␣\n", all_files)
354 batch_write("␣␣␣␣elapsed_ns␣=␣(stop.tv_sec␣-␣start.tv_sec)␣*␣(uint64_t)

1e9;\n", all_files)
355 batch_write("␣␣␣␣elapsed_ns␣+=␣stop.tv_nsec␣-␣start.tv_nsec ;\n",

all_files)
356 batch_write("␣␣␣␣\n", all_files)
357 batch_write("␣␣␣␣printf (\"%lu\\n\",␣elapsed_ns);\n", all_files)
358 batch_write("␣␣␣␣return␣0;\n", all_files)
359 batch_write("}\n", all_files)
360

361

362 c_main.close ()
363 base_c.close ()
364 cpp_main.close ()
365 cpp_encapsulation.close ()
366 cpp_static_poly.close ()
367 cpp_dynamic_poly.close ()
368 base_cpp.close ()

D.11 Plotting Script for Abstraction Overhead Measurements

1 import matplotlib.pyplot as plt
2 import pandas as pd
3 import numpy as np
4 import sys
5

6 N = sys.argv [1]
7

8 my_dpi =200
9

10 data = pd.read_csv("data_" + N + ".csv")
11

12 fig , axs = plt.subplots (2, 2)
13

14 fig.suptitle(’evaluation ’)
15 fig.set_size_inches (20, 15)
16

17 axs[0, 0]. plot(data[’num_calls ’].values , data[’c_size_o ’].values , label
="C", color=’g’, linestyle=’solid ’, marker=’,’)

18 axs[0, 0]. plot(data[’num_calls ’].values , data[’cpp_size_o ’].values ,
label="C++", color=’r’, linestyle=’solid ’, marker=’x’)

19 axs[0, 0]. plot(data[’num_calls ’].values , data[’cpp_encapsulation_size_o
’].values , label="C++␣(encapsulation)", color=’b’, linestyle=’solid
’, marker=’v’)

20 axs[0, 0]. plot(data[’num_calls ’].values , data[’cpp_static_poly_size_o ’
].values , label="C++␣(static␣polymorphism)", color=’y’, linestyle=’
solid ’, marker=’.’)

21 axs[0, 0]. plot(data[’num_calls ’].values , data[’cpp_dynamic_poly_size_o ’
].values , label="C++␣(dynamic␣polymorphism)", color=’m’, linestyle=
’solid ’, marker=’s’)

22 axs[0, 0]. set(xlabel=’number␣of␣function␣calls ’, ylabel=’size␣overhead␣
(bytes)’)
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23 axs[0, 0]. legend(loc="upper␣left")
24

25 axs[0, 1]. plot(data[’num_calls ’].values , data[’c_comp_t ’].values , label
="C", color=’g’, linestyle=’solid ’, marker=’,’)

26 axs[0, 1]. plot(data[’num_calls ’].values , data[’cpp_comp_t ’].values ,
label="C++", color=’r’, linestyle=’solid ’, marker=’x’)

27 axs[0, 1]. plot(data[’num_calls ’].values , data[’cpp_encapsulation_comp_t
’].values , label="C++␣(encapsulation)", color=’b’, linestyle=’solid
’, marker=’v’)

28 axs[0, 1]. plot(data[’num_calls ’].values , data[’cpp_static_poly_comp_t ’
].values , label="C++␣(static␣polymorphism)", color=’y’, linestyle=’
solid ’, marker=’.’)

29 axs[0, 1]. plot(data[’num_calls ’].values , data[’cpp_dynamic_poly_comp_t ’
].values , label="C++␣(dynamic␣polymorphism)", color=’m’, linestyle=
’solid ’, marker=’s’)

30 axs[0, 1]. set(xlabel=’number␣of␣function␣calls ’, ylabel=’compilation␣
time␣(s)’)

31 axs[0, 1]. legend(loc="upper␣left")
32

33 axs[1, 0]. plot(data[’num_calls ’].values , data[’c_link_t ’].values , label
="C", color=’g’, linestyle=’solid ’, marker=’,’)

34 axs[1, 0]. plot(data[’num_calls ’].values , data[’cpp_link_t ’].values ,
label="C++", color=’r’, linestyle=’solid ’, marker=’x’)

35 axs[1, 0]. plot(data[’num_calls ’].values , data[’cpp_encapsulation_link_t
’].values , label="C++␣(encapsulation)", color=’b’, linestyle=’solid
’, marker=’v’)

36 axs[1, 0]. plot(data[’num_calls ’].values , data[’cpp_static_poly_link_t ’
].values , label="C++␣(static␣polymorphism)", color=’y’, linestyle=’
solid ’, marker=’.’)

37 axs[1, 0]. plot(data[’num_calls ’].values , data[’cpp_dynamic_poly_link_t ’
].values , label="C++␣(dynamic␣polymorphism)", color=’m’, linestyle=
’solid ’, marker=’s’)

38 axs[1, 0]. set(xlabel=’number␣of␣function␣calls ’, ylabel=’link␣time␣(s)’
)

39 axs[1, 0]. legend(loc="upper␣left")
40

41 axs[1, 1]. plot(data[’num_calls ’].values , data[’c_exec_t ’].values , label
="C", color=’g’, linestyle=’solid ’, marker=’,’)

42 axs[1, 1]. plot(data[’num_calls ’].values , data[’cpp_exec_t ’].values ,
label="C++", color=’r’, linestyle=’solid ’, marker=’x’)

43 axs[1, 1]. plot(data[’num_calls ’].values , data[’cpp_encapsulation_exec_t
’].values , label="C++␣(encapsulation)", color=’b’, linestyle=’solid
’, marker=’v’)

44 axs[1, 1]. plot(data[’num_calls ’].values , data[’cpp_static_poly_exec_t ’
].values , label="C++␣(static␣polymorphism)", color=’y’, linestyle=’
solid ’, marker=’.’)

45 axs[1, 1]. plot(data[’num_calls ’].values , data[’cpp_dynamic_poly_exec_t ’
].values , label="C++␣(dynamic␣polymorphism)", color=’m’, linestyle=
’solid ’, marker=’s’)

46 axs[1, 1]. set(xlabel=’number␣of␣function␣calls ’, ylabel=’execution␣time
␣(ns)’)

47 axs[1, 1]. legend(loc="upper␣left")
48

49 plt.savefig(’plt_cpp_v_cpp ’ + N + ’.png’, dpi=my_dpi)

D.12 Benchmarking Script for Abstraction Overhead Mea-
surements
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1 #!/bin/bash
2

3 export TIMEFORMAT =%3R
4

5 NUM_EPOCHS =5
6

7 NUM_FUNCS=$1
8

9 CSV_FILE="data_$NUM_FUNCS.csv"
10 JSON_FILE="data_$NUM_FUNCS.json"
11

12 BASE_C_SRC="base_$NUM_FUNCS.c"
13 BASE_C_BIN="base_c_$NUM_FUNCS"
14 BASE_CPP_SRC="base_$NUM_FUNCS.cpp"
15 BASE_CPP_BIN="base_cpp_$NUM_FUNCS"
16

17 MAIN_C_SRC="main_$NUM_FUNCS.c"
18 MAIN_C_OBJ="main_c_$NUM_FUNCS.o"
19 MAIN_C_BIN="main_c_$NUM_FUNCS"
20

21 MAIN_CPP_SRC="main_$NUM_FUNCS.cpp"
22 MAIN_CPP_OBJ="main_cpp_$NUM_FUNCS.o"
23 MAIN_CPP_BIN="main_cpp_$NUM_FUNCS"
24

25 MAIN_ENCAPSULATION_CPP_SRC="main_encapsulation_$NUM_FUNCS.cpp"
26 MAIN_ENCAPSULATION_CPP_OBJ="main_cpp_encapsulation_$NUM_FUNCS.o"
27 MAIN_ENCAPSULATION_CPP_BIN="main_cpp_encapsulation_$NUM_FUNCS"
28

29 MAIN_STATIC_POLY_CPP_SRC="main_static_poly_$NUM_FUNCS.cpp"
30 MAIN_STATIC_POLY_CPP_OBJ="main_cpp_static_poly_$NUM_FUNCS.o"
31 MAIN_STATIC_POLY_CPP_BIN="main_cpp_static_poly_$NUM_FUNCS"
32

33 MAIN_DYNAMIC_POLY_CPP_SRC="main_dynamic_poly_$NUM_FUNCS.cpp"
34 MAIN_DYNAMIC_POLY_CPP_OBJ="main_cpp_dynamic_poly_$NUM_FUNCS.o"
35 MAIN_DYNAMIC_POLY_CPP_BIN="main_cpp_dynamic_poly_$NUM_FUNCS"
36

37 printf "num_calls ," > $CSV_FILE
38 printf "c_size_o ,cpp_size_o ,cpp_encapsulation_size_o ,

cpp_static_poly_size_o ,cpp_dynamic_poly_size_o ," >> $CSV_FILE
39 printf "c_comp_t ,cpp_comp_t ,cpp_encapsulation_comp_t ,

cpp_static_poly_comp_t ,cpp_dynamic_poly_comp_t ," >> $CSV_FILE
40 printf "c_link_t ,cpp_link_t ,cpp_encapsulation_link_t ,

cpp_static_poly_link_t ,cpp_dynamic_poly_link_t ," >> $CSV_FILE
41 printf "c_exec_t ,cpp_exec_t ,cpp_encapsulation_exec_t ,

cpp_static_poly_exec_t ,cpp_dynamic_poly_exec_t\n" >> $CSV_FILE
42

43 NUM_CALLS =0
44 INCREMENT =0
45 STOP_AT =20000
46

47 while true; do
48

49 NUM_CALLS=$(( NUM_CALLS + INCREMENT))
50 INCREMENT=$(( INCREMENT + 1))
51

52 if [ $NUM_CALLS -gt $STOP_AT ]; then
53 break
54 fi
55

56 C_COMPILE_TIME_AVG =0
57 C_LINK_TIME_AVG =0
58 C_SIZE =0
59 C_EXEC_TIME_AVG =0
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60 BASE_C_SIZE =0
61 CPP_COMPILE_TIME_AVG =0
62 CPP_LINK_TIME_AVG =0
63 CPP_SIZE =0
64 CPP_EXEC_TIME_AVG =0
65 BASE_CPP_SIZE =0
66 CPP_ENCAPSULATION_COMPILE_TIME_AVG =0
67 CPP_ENCAPSULATION_LINK_TIME_AVG =0
68 CPP_ENCAPSULATION_SIZE =0
69 CPP_ENCAPSULATION_EXEC_TIME_AVG =0
70 CPP_STATIC_POLY_COMPILE_TIME_AVG =0
71 CPP_STATIC_POLY_LINK_TIME_AVG =0
72 CPP_STATIC_POLY_SIZE =0
73 CPP_STATIC_POLY_EXEC_TIME_AVG =0
74 CPP_DYNAMIC_POLY_COMPILE_TIME_AVG =0
75 CPP_DYNAMIC_POLY_LINK_TIME_AVG =0
76 CPP_DYNAMIC_POLY_SIZE =0
77 CPP_DYNAMIC_POLY_EXEC_TIME_AVG =0
78

79 for i in $(seq 1 $NUM_EPOCHS); do
80

81 python3 generate.py $NUM_FUNCS $NUM_CALLS
82

83 gcc -Os -Wall $BASE_C_SRC -o $BASE_C_BIN
84 BASE_C_SIZE=‘size $BASE_C_BIN | tail -n1 | awk ’{print␣$1}’‘
85

86 g++ -Os -std=c++20 -Wall $BASE_CPP_SRC -o $BASE_CPP_BIN
87 BASE_CPP_SIZE=‘size $BASE_CPP_BIN | tail -n1 | awk ’{print␣$1}’

‘
88

89 C_COMPILE_TIME =‘(time gcc -c -Os $MAIN_C_SRC -o $MAIN_C_OBJ)
2>&1 >/dev/null ‘

90 C_LINK_TIME =‘(time gcc -Os -Wall $MAIN_C_OBJ -o $MAIN_C_BIN)
2>&1 >/dev/null ‘

91 C_SIZE=‘size $MAIN_C_BIN | tail -n1 | awk ’{print␣$1}’‘
92 C_EXEC_TIME =‘./ $MAIN_C_BIN ‘
93

94

95 CPP_COMPILE_TIME =‘(time g++ -std=c++20 -c -Os $MAIN_CPP_SRC -o
$MAIN_CPP_OBJ) 2>&1 >/dev/null ‘

96 CPP_LINK_TIME =‘(time g++ -std=c++20 -Os -Wall $MAIN_CPP_OBJ -o
$MAIN_CPP_BIN) 2>&1 >/dev/null ‘

97 CPP_SIZE=‘size $MAIN_CPP_BIN | tail -n1 | awk ’{print␣$1}’‘
98 CPP_EXEC_TIME =‘./ $MAIN_CPP_BIN ‘
99

100 CPP_ENCAPSULATION_COMPILE_TIME =‘(time g++ -std=c++20 -c -Os
$MAIN_ENCAPSULATION_CPP_SRC -o $MAIN_ENCAPSULATION_CPP_OBJ)
2>&1 >/dev/null ‘

101 CPP_ENCAPSULATION_LINK_TIME =‘(time g++ -std=c++20 -Os -Wall
$MAIN_ENCAPSULATION_CPP_OBJ -o $MAIN_ENCAPSULATION_CPP_BIN)
2>&1 >/dev/null ‘

102 CPP_ENCAPSULATION_SIZE=‘size $MAIN_ENCAPSULATION_CPP_BIN | tail
-n1 | awk ’{print␣$1}’‘

103 CPP_ENCAPSULATION_EXEC_TIME =‘./ $MAIN_ENCAPSULATION_CPP_BIN ‘
104

105 CPP_STATIC_POLY_COMPILE_TIME =‘(time g++ -std=c++20 -c -Os
$MAIN_STATIC_POLY_CPP_SRC -o $MAIN_STATIC_POLY_CPP_OBJ)
2>&1 >/dev/null ‘

106 CPP_STATIC_POLY_LINK_TIME =‘(time g++ -std=c++20 -Os -Wall
$MAIN_STATIC_POLY_CPP_OBJ -o $MAIN_STATIC_POLY_CPP_BIN)
2>&1 >/dev/null ‘

107 CPP_STATIC_POLY_SIZE=‘size $MAIN_STATIC_POLY_CPP_BIN | tail -n1
| awk ’{print␣$1}’‘
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108 CPP_STATIC_POLY_EXEC_TIME =‘./ $MAIN_STATIC_POLY_CPP_BIN ‘
109

110 CPP_DYNAMIC_POLY_COMPILE_TIME =‘(time g++ -std=c++20 -c -Os
$MAIN_DYNAMIC_POLY_CPP_SRC -o $MAIN_DYNAMIC_POLY_CPP_OBJ)
2>&1 >/dev/null ‘

111 CPP_DYNAMIC_POLY_LINK_TIME =‘(time g++ -std=c++20 -Os -Wall
$MAIN_DYNAMIC_POLY_CPP_OBJ -o $MAIN_DYNAMIC_POLY_CPP_BIN)
2>&1 >/dev/null ‘

112 CPP_DYNAMIC_POLY_SIZE=‘size $MAIN_DYNAMIC_POLY_CPP_BIN | tail -
n1 | awk ’{print␣$1}’‘

113 CPP_DYNAMIC_POLY_EXEC_TIME =‘./ $MAIN_DYNAMIC_POLY_CPP_BIN ‘
114

115 C_COMPILE_TIME_AVG=‘echo $C_COMPILE_TIME_AVG + $C_COMPILE_TIME
| bc ‘

116 C_LINK_TIME_AVG=‘echo $C_LINK_TIME_AVG + $C_LINK_TIME | bc ‘
117 C_EXEC_TIME_AVG=‘echo $C_EXEC_TIME_AVG + $C_EXEC_TIME | bc ‘
118 CPP_COMPILE_TIME_AVG=‘echo $CPP_COMPILE_TIME_AVG +

$CPP_COMPILE_TIME | bc ‘
119 CPP_LINK_TIME_AVG=‘echo $CPP_LINK_TIME_AVG + $CPP_LINK_TIME |

bc ‘
120 CPP_EXEC_TIME_AVG=‘echo $CPP_EXEC_TIME_AVG + $CPP_EXEC_TIME |

bc ‘
121 CPP_ENCAPSULATION_COMPILE_TIME_AVG=‘echo

$CPP_ENCAPSULATION_COMPILE_TIME_AVG +
$CPP_ENCAPSULATION_COMPILE_TIME | bc ‘

122 CPP_ENCAPSULATION_LINK_TIME_AVG=‘echo
$CPP_ENCAPSULATION_LINK_TIME_AVG +
$CPP_ENCAPSULATION_LINK_TIME | bc ‘

123 CPP_ENCAPSULATION_EXEC_TIME_AVG=‘echo
$CPP_ENCAPSULATION_EXEC_TIME_AVG +
$CPP_ENCAPSULATION_EXEC_TIME | bc ‘

124 CPP_STATIC_POLY_COMPILE_TIME_AVG=‘echo
$CPP_STATIC_POLY_COMPILE_TIME_AVG +
$CPP_STATIC_POLY_COMPILE_TIME | bc ‘

125 CPP_STATIC_POLY_LINK_TIME_AVG=‘echo
$CPP_STATIC_POLY_LINK_TIME_AVG + $CPP_STATIC_POLY_LINK_TIME
| bc ‘

126 CPP_STATIC_POLY_EXEC_TIME_AVG=‘echo
$CPP_STATIC_POLY_EXEC_TIME_AVG + $CPP_STATIC_POLY_EXEC_TIME
| bc ‘

127 CPP_DYNAMIC_POLY_COMPILE_TIME_AVG=‘echo
$CPP_DYNAMIC_POLY_COMPILE_TIME_AVG +
$CPP_DYNAMIC_POLY_COMPILE_TIME | bc ‘

128 CPP_DYNAMIC_POLY_LINK_TIME_AVG=‘echo
$CPP_DYNAMIC_POLY_LINK_TIME_AVG +
$CPP_DYNAMIC_POLY_LINK_TIME | bc ‘

129 CPP_DYNAMIC_POLY_EXEC_TIME_AVG=‘echo
$CPP_DYNAMIC_POLY_EXEC_TIME_AVG +
$CPP_DYNAMIC_POLY_EXEC_TIME | bc ‘

130

131 rm $MAIN_C_SRC
132 rm $MAIN_C_OBJ
133 rm $MAIN_C_BIN
134 rm $MAIN_CPP_SRC
135 rm $MAIN_CPP_OBJ
136 rm $MAIN_CPP_BIN
137 rm $MAIN_ENCAPSULATION_CPP_SRC
138 rm $MAIN_ENCAPSULATION_CPP_OBJ
139 rm $MAIN_ENCAPSULATION_CPP_BIN
140 rm $MAIN_STATIC_POLY_CPP_SRC
141 rm $MAIN_STATIC_POLY_CPP_OBJ
142 rm $MAIN_STATIC_POLY_CPP_BIN
143 rm $MAIN_DYNAMIC_POLY_CPP_SRC
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144 rm $MAIN_DYNAMIC_POLY_CPP_OBJ
145 rm $MAIN_DYNAMIC_POLY_CPP_BIN
146 rm $BASE_C_SRC
147 rm $BASE_C_BIN
148 rm $BASE_CPP_SRC
149 rm $BASE_CPP_BIN
150

151 done
152

153 C_COMPILE_TIME_AVG=‘echo $C_COMPILE_TIME_AVG / $NUM_EPOCHS | bc -l‘
154 C_LINK_TIME_AVG=‘echo $C_LINK_TIME_AVG / $NUM_EPOCHS | bc -l‘
155 C_EXEC_TIME_AVG=‘echo $C_EXEC_TIME_AVG / $NUM_EPOCHS | bc -l‘
156 CPP_COMPILE_TIME_AVG=‘echo $CPP_COMPILE_TIME_AVG / $NUM_EPOCHS | bc

-l‘
157 CPP_LINK_TIME_AVG=‘echo $CPP_LINK_TIME_AVG / $NUM_EPOCHS | bc -l‘
158 CPP_EXEC_TIME_AVG=‘echo $CPP_EXEC_TIME_AVG / $NUM_EPOCHS | bc -l‘
159 CPP_ENCAPSULATION_COMPILE_TIME_AVG=‘echo

$CPP_ENCAPSULATION_COMPILE_TIME_AVG / $NUM_EPOCHS | bc -l‘
160 CPP_ENCAPSULATION_LINK_TIME_AVG=‘echo

$CPP_ENCAPSULATION_LINK_TIME_AVG / $NUM_EPOCHS | bc -l‘
161 CPP_ENCAPSULATION_EXEC_TIME_AVG=‘echo

$CPP_ENCAPSULATION_EXEC_TIME_AVG / $NUM_EPOCHS | bc -l‘
162 CPP_STATIC_POLY_COMPILE_TIME_AVG=‘echo

$CPP_STATIC_POLY_COMPILE_TIME_AVG / $NUM_EPOCHS | bc -l‘
163 CPP_STATIC_POLY_LINK_TIME_AVG=‘echo $CPP_STATIC_POLY_LINK_TIME_AVG

/ $NUM_EPOCHS | bc -l‘
164 CPP_STATIC_POLY_EXEC_TIME_AVG=‘echo $CPP_STATIC_POLY_EXEC_TIME_AVG

/ $NUM_EPOCHS | bc -l‘
165 CPP_DYNAMIC_POLY_COMPILE_TIME_AVG=‘echo

$CPP_DYNAMIC_POLY_COMPILE_TIME_AVG / $NUM_EPOCHS | bc -l‘
166 CPP_DYNAMIC_POLY_LINK_TIME_AVG=‘echo

$CPP_DYNAMIC_POLY_LINK_TIME_AVG / $NUM_EPOCHS | bc -l‘
167 CPP_DYNAMIC_POLY_EXEC_TIME_AVG=‘echo

$CPP_DYNAMIC_POLY_EXEC_TIME_AVG / $NUM_EPOCHS | bc -l‘
168

169 printf "$NUM_CALLS ," >> $CSV_FILE
170 printf "$((C_SIZE -BASE_C_SIZE)),$((CPP_SIZE -BASE_CPP_SIZE)),$((

CPP_ENCAPSULATION_SIZE -BASE_CPP_SIZE)),$(( CPP_STATIC_POLY_SIZE -
BASE_CPP_SIZE)),$(( CPP_DYNAMIC_POLY_SIZE -BASE_CPP_SIZE))," >>
$CSV_FILE

171 printf "$C_COMPILE_TIME_AVG ,$CPP_COMPILE_TIME_AVG ,
$CPP_ENCAPSULATION_COMPILE_TIME_AVG ,
$CPP_STATIC_POLY_COMPILE_TIME_AVG ,
$CPP_DYNAMIC_POLY_COMPILE_TIME_AVG ," >> $CSV_FILE

172 printf "$C_LINK_TIME_AVG ,$CPP_LINK_TIME_AVG ,
$CPP_ENCAPSULATION_LINK_TIME_AVG ,$CPP_STATIC_POLY_LINK_TIME_AVG
,$CPP_DYNAMIC_POLY_LINK_TIME_AVG ," >> $CSV_FILE

173 printf "$C_EXEC_TIME_AVG ,$CPP_EXEC_TIME_AVG ,
$CPP_ENCAPSULATION_EXEC_TIME_AVG ,$CPP_STATIC_POLY_EXEC_TIME_AVG
,$CPP_DYNAMIC_POLY_EXEC_TIME_AVG\n" >> $CSV_FILE

174

175 done
176

177 python3 plot.py $NUM_FUNCS
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Appendix E

Led Blinking

E.1 hal/base/constants.hpp

1 #pragma once
2

3 #include <cstdint >
4

5 namespace hal {
6

7 /* Peripheral base address in the alias region */
8 constexpr std:: uint32_t PERIPH_BASE_ADDR = UINT32_C (0 x40000000);
9

10 /* Peripheral memory map */
11 constexpr std:: uint32_t AHB1PERIPH_BASE_ADDR = PERIPH_BASE_ADDR +

UINT32_C (0 x00020000);
12 constexpr std:: uint32_t AHB2PERIPH_BASE_ADDR = PERIPH_BASE_ADDR +

UINT32_C (0 x08000000);
13

14 } /* namespace hal */
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E.2 hal/gpio/constants.hpp

1 #pragma once
2

3 #include <cstdint >
4 #include <concepts >
5

6 #include "hal/base/constants.hpp"
7

8 namespace hal {
9

10 constexpr std:: uint32_t GPIOA_BASE_ADDR = AHB2PERIPH_BASE_ADDR +
UINT32_C (0 x0000);

11 constexpr std:: uint32_t GPIOB_BASE_ADDR = AHB2PERIPH_BASE_ADDR +
UINT32_C (0 x0400);

12 constexpr std:: uint32_t GPIOC_BASE_ADDR = AHB2PERIPH_BASE_ADDR +
UINT32_C (0 x0800);

13 constexpr std:: uint32_t GPIOD_BASE_ADDR = AHB2PERIPH_BASE_ADDR +
UINT32_C (0 x0C00);

14 constexpr std:: uint32_t GPIOF_BASE_ADDR = AHB2PERIPH_BASE_ADDR +
UINT32_C (0 x1400);

15

16 constexpr std:: uint32_t MODER_OFFSET = UINT32_C (0x00); /* GPIO
port mode register , Address offset: 0x00 */

17 constexpr std:: uint32_t OTYPER_OFFSET = UINT32_C (0x04); /* GPIO
port output type register , Address offset: 0x04 */

18 constexpr std:: uint32_t OSPEEDR_OFFSET = UINT32_C (0x08); /* GPIO
port output speed register , Address offset: 0x08 */

19 constexpr std:: uint32_t PUPDR_OFFSET = UINT32_C (0x0C); /* GPIO
port pull -up/pull -down register , Address offset: 0x0C */

20 constexpr std:: uint32_t IDR_OFFSET = UINT32_C (0x10); /* GPIO
port input data register , Address offset: 0x10 */

21 constexpr std:: uint32_t ODR_OFFSET = UINT32_C (0x14); /* GPIO
port output data register , Address offset: 0x14 */

22 constexpr std:: uint32_t BSRR_OFFSET = UINT32_C (0x18); /* GPIO
port bit set/reset register , Address offset: 0x18 */

23 constexpr std:: uint32_t LCKR_OFFSET = UINT32_C (0x1C); /* GPIO
port configuration lock register , Address offset: 0x1C */

24 constexpr std:: uint32_t AFRL_OFFSET = UINT32_C (0x20); /* GPIO
alternate function registers , Address offset: 0x20 */

25 constexpr std:: uint32_t AFRH_OFFSET = UINT32_C (0x24); /* GPIO
alternate function registers , Address offset: 0x24 */

26 constexpr std:: uint32_t BRR_OFFSET = UINT32_C (0x28); /* GPIO
port bit reset registers , Address offset: 0x28 */

27

28 template <std:: uint32_t GPIOx_BASE_ADDR >
29 concept is_valid_gpio_base_address = (( GPIOx_BASE_ADDR ==

GPIOA_BASE_ADDR) ||
30 (GPIOx_BASE_ADDR ==

GPIOB_BASE_ADDR) ||
31 (GPIOx_BASE_ADDR ==

GPIOC_BASE_ADDR) ||
32 (GPIOx_BASE_ADDR ==

GPIOD_BASE_ADDR) ||
33 (GPIOx_BASE_ADDR ==

GPIOF_BASE_ADDR));
34

35 enum class gpio_ports : std:: uint8_t {
36 port_a ,
37 port_b ,
38 port_c ,
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39 port_d ,
40 port_f
41 };
42

43 template <gpio_ports port >
44 concept is_valid_gpio_port = ((port == gpio_ports :: port_a) ||
45 (port == gpio_ports :: port_b) ||
46 (port == gpio_ports :: port_c) ||
47 (port == gpio_ports :: port_d) ||
48 (port == gpio_ports :: port_f));
49

50 template <gpio_ports port >
51 requires (is_valid_gpio_port <port >)
52 consteval std:: uint32_t port_to_base_address () {
53 if (port == gpio_ports :: port_a) return GPIOA_BASE_ADDR;
54 else if (port == gpio_ports :: port_b) return GPIOB_BASE_ADDR;
55 else if (port == gpio_ports :: port_c) return GPIOC_BASE_ADDR;
56 else if (port == gpio_ports :: port_d) return GPIOD_BASE_ADDR;
57 else return GPIOF_BASE_ADDR;
58 }
59

60 enum class gpio_pins : std:: uint8_t {
61 pin_00 = 0,
62 pin_01 = 1,
63 pin_02 = 2,
64 pin_03 = 3,
65 pin_04 = 4,
66 pin_05 = 5,
67 pin_06 = 6,
68 pin_07 = 7,
69 pin_08 = 8,
70 pin_09 = 9,
71 pin_10 = 10,
72 pin_11 = 11,
73 pin_12 = 12,
74 pin_13 = 13,
75 pin_14 = 14,
76 pin_15 = 15
77 };
78

79 } /* namespace hal */
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E.3 hal/gpio/gpio.hpp

1 #pragma once
2

3 #include <cstdint >
4

5 #include "hal/gpio/constants.hpp"
6 #include "hal/gpio/registers.hpp"
7 #include "hal/rcc/registers.hpp"
8

9 namespace hal {
10

11 template <gpio_ports port ,
12 gpio_pins pin ,
13 gpio_modes mode >
14 class CGpio {
15 public:
16 bool configure () const {
17 CModeRegister <port > mode_register {};
18 CAhbEnRegister ahb_en_register {};
19

20 ahb_en_register.enable_gpio_clock <port >();
21 mode_register.template set_mode <pin , mode >();
22 reset ();
23

24 return true;
25 }
26

27 void set () const {
28 CBSRRegister <port > bsrr_register {};
29 bsrr_register.template set_pin <pin >();
30 }
31

32 void reset () const {
33 CBSRRegister <port > bsrr_register {};
34 bsrr_register.template reset_pin <pin >();
35 }
36 };
37

38 } /* namespace hal */
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E.4 hal/gpio/registers.hpp

1 #pragma once
2

3 #include <cstdint >
4

5 #include "hal/gpio/constants.hpp"
6 #include "hal/register.hpp"
7

8 namespace hal {
9

10 /* GPIOx_MODER */
11

12 enum class gpio_modes : std:: uint32_t {
13 input = 0b00 ,
14 output = 0b01 ,
15 alt_func = 0b10 ,
16 analog = 0b11
17 };
18

19 template <gpio_ports port >
20 requires (is_valid_gpio_port <port >)
21 class CModeRegister : public CRegister <port_to_base_address <port >() +

MODER_OFFSET > {
22 private:
23 template <gpio_pins pin , gpio_modes mode >
24 static consteval std:: uint32_t calculate_value () {
25 return static_cast <std::uint32_t >(mode) << static_cast <std::

uint32_t >(pin) * 2;
26 }
27

28 template <gpio_pins pin , gpio_modes mode >
29 static consteval std:: uint32_t calculate_bitmask () {
30 return static_cast <std::uint32_t >(0 b11) << static_cast <std::

uint32_t >(pin) * 2;
31 }
32 public:
33 template <gpio_pins pin , gpio_modes mode >
34 inline void set_mode () {
35 this ->set(calculate_value <pin , mode >(), calculate_bitmask <pin ,

mode >());
36 }
37 };
38

39 /* GPIOx_BSRR */
40

41 template <gpio_ports port >
42 requires (is_valid_gpio_port <port >)
43 class CBSRRegister : public CRegister <port_to_base_address <port >() +

BSRR_OFFSET > {
44 public:
45 template <gpio_pins pin >
46 inline void set_pin () {
47 this ->set_bits(static_cast <std::uint32_t >(1) << static_cast <std

::uint32_t >(pin));
48 }
49

50 template <gpio_pins pin >
51 inline void reset_pin () {
52 this ->set_bits(static_cast <std::uint32_t >(0 x10000) <<

static_cast <std::uint32_t >(pin));
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53 }
54 };
55

56 } /* namespace hal */
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E.5 hal/rcc/constants.hpp

1 #pragma once
2

3 #include <cstdint >
4 #include <concepts >
5

6 #include "hal/base/constants.hpp"
7

8 namespace hal {
9

10 constexpr std:: uint32_t RCC_BASE_ADDR = AHB1PERIPH_BASE_ADDR + UINT32_C
(0 x1000);

11

12 constexpr std:: uint32_t RCC_AHBENR_OFFSET = UINT32_C (0x14);
13

14 constexpr std:: uint32_t RCC_AHBENR_ADDR = RCC_BASE_ADDR +
RCC_AHBENR_OFFSET;

15

16 } /* namespace hal */
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E.6 hal/rcc/registers.hpp

1 #pragma once
2

3 #include <cstdint >
4

5 #include "hal/rcc/constants.hpp"
6 #include "hal/gpio/constants.hpp"
7 #include "hal/register.hpp"
8

9 namespace hal {
10

11 /* RCC_AHBENR */
12

13 class CAhbEnRegister : public CRegister <RCC_AHBENR_ADDR > {
14 public:
15 template <gpio_ports port >
16 requires (is_valid_gpio_port <port >)
17 inline void enable_gpio_clock () {
18 if constexpr (port == gpio_ports :: port_a) set_bits (0 x00020000);
19 else if constexpr (port == gpio_ports :: port_b) set_bits (0

x00040000);
20 else if constexpr (port == gpio_ports :: port_c) set_bits (0

x00080000);
21 else if constexpr (port == gpio_ports :: port_d) set_bits (0

x00080000);
22 else set_bits (0 x00400000);
23 }
24 };
25

26 } /* namespace hal */
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E.7 hal/register.hpp

1 #pragma once
2

3 #include <cstdint >
4

5 namespace hal {
6

7 template <std:: uint32_t address >
8 class CRegister {
9 public:

10 inline void set (std:: uint32_t value) const {
11 *( reinterpret_cast <volatile std:: uint32_t *>(address)) = value;
12 }
13

14 inline std:: uint32_t get () const {
15 return *( reinterpret_cast <volatile std:: uint32_t *>(address));
16 }
17

18 inline void set (std:: uint32_t value , std:: uint32_t bitmask) const
{

19 std:: uint32_t tmp = get();
20 tmp &= ~bitmask;
21 tmp |= value;
22 set(tmp);
23 }
24

25 inline void set_bits (std:: uint32_t bitmask) const {
26 *( reinterpret_cast <volatile std:: uint32_t *>(address)) = *(

reinterpret_cast <volatile std:: uint32_t *>(address)) |
bitmask;

27 }
28

29 inline void clear_bits (std:: uint32_t bitmask) const {
30 *( reinterpret_cast <volatile std:: uint32_t *>(address)) = *(

reinterpret_cast <volatile std:: uint32_t *>(address)) & ~
bitmask;

31 }
32

33 inline bool is_set (std:: uint32_t bitmask) const {
34 return static_cast <bool >(*( reinterpret_cast <volatile std::

uint32_t *>(address)) & bitmask);
35 }
36

37 inline std:: uint32_t get_bits (std:: uint32_t bitmask) const {
38 return *( reinterpret_cast <volatile std:: uint32_t *>(address)) &

bitmask;
39 }
40 };
41

42 } /* namespace hal */
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E.8 hal/concepts.hpp

1 #pragma once
2

3 #include <concepts >
4

5 namespace hal {
6

7 template <typename T>
8 concept GPIO = requires (T pin) {
9 { pin.configure () } -> std::same_as <bool >;

10 { pin.set() } -> std::same_as <void >;
11 { pin.reset () } -> std::same_as <void >;
12 };
13

14 } /* namespace hal */
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E.9 hal/led.hpp

1 #pragma once
2

3 #include "hal/concepts.hpp"
4

5 template <hal::GPIO TGpio >
6 class CLed {
7 private:
8 bool m_state { false };
9 TGpio* m_gpio { nullptr };

10 public:
11 CLed () = delete;
12 CLed (TGpio* gpio) : m_gpio(gpio) {
13 m_gpio ->configure ();
14 }
15

16 void turn_on () {
17 m_state = true;
18 m_gpio ->set();
19 }
20

21 void turn_off () {
22 m_state = false;
23 m_gpio ->reset ();
24 }
25

26 void toggle () {
27 if (m_state) {
28 turn_off ();
29 }
30 else {
31 turn_on ();
32 }
33 }
34 };
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E.10 hal/main.cpp

1 #include <cstdint >
2

3 #include "hal/gpio/gpio.hpp"
4 #include "led.hpp"
5

6 void delay (int cycles) {
7 volatile int i;
8 for (i = 0; i < cycles ;) { i = i + 1; }
9 }

10

11 using namespace hal;
12

13 int main (void) {
14

15 CGpio <gpio_ports ::port_a , gpio_pins ::pin_06 , gpio_modes ::output >
gpio {};

16

17 CLed <decltype(gpio)> led { &gpio };
18

19 while (true) {
20 led.toggle ();
21 delay (200000);
22 }
23 }
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