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Kurzfassung

Mikroelektromechanische Systeme (MEMS) sind weit verbreitet in unserem Alltag,
von Sensoren in Smartphones bis hin zu Anwendungen in der Industrie. Bistabile
MEMS, eine Untergruppe von MEMS, können durch externe Anregung von einem
stabilen Zustand in einen anderen umgeschaltet werden. Mit zunehmend kleineren
Geometrien steigt der Einfluss von Rauschen. Experimente mit bistabilen MEMS-
Platten haben stochastisches Verhalten in Bezug auf ihre endgültige Ablenkung
nach einer definierten Anzahl von Anregungsimpulsen gezeigt. In dieser Arbeit
erweitern wir ein bestehendes von-Karman-Plattenmodell um Rauschterme, um die
Auswirkungen von Temperatur und durch eine Piezoschicht verursachtem Rauschen
zu berücksichtigen, die als Aktuator dient. Wir präsentieren die Theorie der sto-
chastischen Differentialgleichungen sowie Methoden zu ihrer numerischen Lösung.
Außerdem untersuchen wir die Eigenschaften solcher bistabilen Systeme. Unsere
Untersuchungen zeigen, dass bei Platten in der Größe der derzeit in Experimenten
untersuchten der Einfluss von temperaturbedingtem Rauschen nicht signifikant ist.
Durch Modellierung des Rauschens in der Piezolage zeigt unser Modell eine höhere
Robustheit gegenüber Rauschen bei höheren mechanischen Vorspannungen. Die
endgültige Ablenkung der Platte, die durch eine endliche Anzahl von Impulsen
angeregt wird, hängt nicht nur deterministisch von der Anregungsfrequenz und
-amplitude ab, sondern ist auch ein stochastischer Prozess. Die Ergebnisse zeigen,
dass der Einfluss von Rauschen in einem bestimmten Bereich von Parametern
höher ist und gleichzeitig Bereiche bietet, die robuster gegenüber Rauschen sind
als andere. Wir untersuchen auch die stochastische Resonanz der Platte und be-
stimmen die mittlere Fluchtrate. Bei der Untersuchung, ob sich der Zustand der
Platte nach einer Anregung für verschiedene Amplituden und Frequenzen geändert
hat, zeigt sich, dass Rauschen hauptsächlich entlang der Grenze zwischen den
Bereichen sichtbar ist, in denen ein Zustandswechsel stattfindet oder nicht. Diese
Grenzfläche dehnt sich bei höheren Rauschintensitäten aus. Wir zeigen auch, wie
die klar definierten Bereiche bei zunehmender Anzahl von Impulsen kleiner werden,
was einen gewünschten, rauschrobusten Betrieb deutlich erschwert.
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Abstract

Micro-Electro-Mechanical Systems (MEMS) are widely spread in our lives, ranging
from sensor appliances in smartphones to appliances in industry. Bistable MEMS,
a subset of MEMS, can be switched from one stable state to another by external
excitation. As geometries become smaller and smaller, the influence of noise rises.
Experiments on bistable MEMS plates have shown stochastic behaviour concerning
their final deflection after a defined amount of excitation pulses. Here, we expand
a existing von Karman plate model with noise terms to account for the effects
of temperature and noise induced by a piezo layer, which acts as an actuator.
We present the theory of stochastic differential equations, including methods to
numerically solve them. We also look into the properties of such bistable systems.
This work finds for plates as large as those currently investigated in experiments
that the impact of temperature induced noise is not significant. Modelling noise
in the piezo layer, our model shows higher robustness against noise for higher
pre-stresses. The final deflection of the plate, excited by a finite number of pulses,
depends not only deterministically on the excitation frequency and amplitude but
is also a stochastic process. The results show that the influence of noise is higher
for a specific range of parameters, in the contrary offering areas which are more
noise robust than others. We also investigate stochastic resonance of the plate and
determined the mean escape rate. When exploring whether the state of the plate
changed after an excitation for various amplitudes and frequencies, results show
that noise is primarily visible along the boarder between the areas of a state change
happening or not, with the boarder area expanding for higher noise intensities.
We also demonstrate how the clearly defined areas get smaller for an increasing
number of pulses, making a wanted noise robust operation much more challenging.
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Chapter 1

Introduction

MEMS (Micro-Electro-Mechanical Systems) are widely spread in our lives, ranging
from sensor appliances in smartphones to appliances in industrial sectors. Bistable
MEMS, a subset of MEMS, have two stable static deflection states at the same
time. An example for these types of MEMS are buckled clamped plates. During
fabrication processes, permanent static compressive stress is induced, resulting in
the plate having at least two stable buckling states - either buckling up or down. A
key objective in bistable MEMS is the efficient initiation of snap-throughs, switching
the plate from one stable state to another. The mechanical deflection up to tens of
micrometers during this snap-through process greatly exceeds typical oscillation
amplitudes below one micrometer of conventional resonant MEMS. What is more,
snap-through can be achieved by integrating a piezoelectric thin film, enabling to
induce stress into the structure which initiates a snap-through.

Recently, noise has gained attention in studies of bistable MEMS, particularly the
case in the field of energy harvesters [4, 20]. Additionally, numerical methods have
been further developed, opening the use of stochastic methods for applied sciences
[18].

Concerning bistable MEMS with two-dimensional plate geometries, experimental
data of exciting plates via a piezo layer have been published [2]. A model based on
the von Karman plate model has been presented to describe the static and dynamic
behaviour of bistable MEMS [3].

Measurements have shown that plates exhibit a stochastic behaviour, which raises
questions about the role of noise and its influence. Measurement results are shown
in figure 1.1. The results show the number of observed snap-throughs in a series of
ten measurements. In each of the measurements the plate was excited by the same
finite voltage pulse train characterized by an excitation amplitude and frequency.
Even though the starting position of the plates and the excitation signal is each
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1. Introduction

Figure 1.1: Measured number of state changes after an excitation out of ten runs as
a function of the piezo-voltage amplitude and frequency. The number of excitation
pulses is the same for each frequency. [13]

time the same, the final deflection, described as snap-through, varies [13]. In the
paper, the term snap-through is used to describe a state change after an excitation,
but in this work we will define it as every time the plate changes its deflection
state. In these situations, noise can be especially important, as this state changes
are highly nonlinear.

Regarding the influence of noise in geometrically small systems, a cantilever beam
can serve as a motivational example. Considering a cantilever beam (figure 1.2)
mounted at x = 0 with its width w much smaller than its length L, its spring
constant k is calculated by

k = Ewt3

4L3 (1.1)

with Young’s module E and its thickness t.

At finite temperatures the system is subject to thermal noise which is quantified
by the equipartition theorem. May the deflection w(x, t) be

w(x, t) =
�

i

xi(t)ϕi(x) (1.2)
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Figure 1.2: Cantilever beam

with the mode coefficients xi and basis functions ϕi. Considering only the first
mode and assuming its spring constant k1 = k, the equipartition theorem relates
the temperature T of the system to the average potential energy of the first mode

1
2k1⟨x2

1⟩ = kBT

2 (1.3)

with the Boltzmann constant kB. To understand the influence of thermal noise on
the dynamics, we study how the relative magnitude of the thermal noise in the
system changes as the system size is changed. Scaling the dimensions of the beam
with the factor λ

L′ = L/λ, w′ = w/λ, t′ = t/λ (1.4)
results in the scaled spring constant of

k′
1 = k1

λ
. (1.5)

Inserting equation 1.5 in 1.3, for constant temperatures, the mean square displace-
ment scales by

⟨x2
1⟩′ = λ⟨x2

1⟩. (1.6)
This means that for smaller geometries, the temperature induced movement grows
accordingly. Used parameters and results are shown in tables 1.1 and 1.2. It is an
example for why temperature induced noise is much more significant for MEMS
and the reason for this thesis.

3



1. Introduction

L[m] t[m] w[m] E[GPa] T [K]
1 0.01 0.1 169 293

Table 1.1: Used parameters to describe the cantilever beam.

λ k1 ⟨x2
1⟩

1 4225 9.57e-25
1 × 103 4.225 9.57e-22
1 × 106 4.225e-3 9.57e-19
1 × 109 4.225e-6 9.57e-16

Table 1.2: Average movement ⟨x2
1⟩ of cantilever beam using different scaling factors

λ. Lower dimensions lead to lower stiffness k1 and result therefore in higher average
movement.

In order to ensure the desired behaviour of the MEMS plate, noise has to be taken
into account.

The goal of this work is to investigate the effect of noise on the bistable MEMS
plate. To achieve this, we introduce a framework to simulate the plate’s behaviour
under the influence of noise. The implemented model is based on a previously
presented Galerkin approach that solves the von Karman plate model. In this
thesis, the model is further developed by considering noise, including noise induced
by temperature and noise in the piezo layer, which effectively changes the stress
induced by an excitation. We discuss equations with additional terms describing
noise, called stochastic differential equations. Different numerical methods to solve
the resulting stochastic differential equations are presented and validated. Further-
more, the bistability of the plate is investigated and analysed by taking means
of stochastic measures. Finally, we discuss the path moving forward concerning
real-life experiments and proposing interesting new measurements, which include
investigating whether the state of the plate changes after a low number of pulses
and what impact noise has on this process.

4



Chapter 2

Theoretical Basics

2.1 Stochastic Differential Equations (SDEs)
In order to analyse the dynamic behaviour of bistable MEMS actuators under the
influence of noise, we need certain tools to describe that influence. A well known
tool is the Stochastic Differential Equation (SDE). A rather simple example of an
SDE is the Langevin equation [5]

dx

dt
= a(x, t) + b(x, t)ξ(t) (2.1)

where x is the position variable. The function a(x, t) represents a function dependent
on x and t, as is function b(x, t), but with the speciality of its multiplication with a
time dependent noise term ξ(t). The noise term are random fluctuations, resulting
of incremental changes of a random variable. For b(x, t) = 0, the equation is purely
deterministic and solutions are obtained by standard integration techniques. In
contrast, with the whole equation in question, a way of integrating the stochastic
term has to be defined. This leads to the stochastic integral, which will be
investigated in 2.1.2. But first we will investigate the noise term ξ(t).

2.1.1 Brownian Motion
Looking into the noise term, it is further described as a Wiener process with the
following characteristics [7]: The standard Wiener process over the time interval
[0, T ] is a random variable W (t) that depends continuously on t ∈ [0, T ] and satisfies
the following conditions

• W0 = W (0) = 0

5



2. Theoretical Basics

• The random variable W (t) describing the increments W (ti+1) − W (ti) is
normally distributed with mean zero and variance ∆t = ti+1 − ti

• For 0 ≤ s < t < u < v ≤ T , the increments W (t) − W (s) and W (v) − W (u)
are statistically independent. This means that W (ti+1) can not be determined
based on its previous values, W (t), t < i + 1.

As the Random variable W (t) is normally distributed, the probability density of
the increment W (ti+1) − W (ti) = ∆W is

P (∆W ) = 1√
2π∆t

e−(∆W )2/2∆t. (2.2)

It should be noted that the results of the SDE are then also normally distributed.

An important aspect of the Wiener process and vital for Stochastic differential
equations is the concept of sample paths. A sample path is a particular realization
of each of the increments of the random variable W (t). Three sample paths with
different ∆t are shown in figure 2.1. As listed in the second condition above, the
random variable has a variance of ∆t. This means that the resulting sample paths
fluctuate on every timescale, as the increments scale with ∆t. This is shown in
figures 2.2a and 2.2b. Looking at one sequence of random variables, independent
of what time steps one uses for calculation, the resulting distribution of random
steps is always ∈ σ(0, ∆t). Based on the statistical independence of the increments
of W (t), the values change randomly, and therefore the random paths are not
differentiable.

With the noise term defined, we can now look at how to calculate a stochastic
integral.

6



2.1. Stochastic Differential Equations (SDEs)
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Figure 2.1: Sample paths of a Wiener process for different ∆t

2.1.2 Stochastic Integral
Approximating an integral by Riemann sum, we consider the following form [5, 7]	 t

t0
G(t′)dW (t′) = lim

N→∞

N−1�
j=0

G(tj)(W (tj+1) − W (tj)) (2.3)

which can be interpreted as the integral of a function G(t) being multiplied with
the small changes made in the Brownian motion. This is the definition of the Ito
integral. Another often used definition is the Stratonovich integral, with its main
difference lying in where the function to be integrated is evaluated [7],

	 t

t0
S(t′)dW (t′) = lim

N→∞

N−1�
j=0

S


tj + tj+1

2


(W (tj+1) − W (tj)). (2.4)

The consequences of this different calculation are described in the following section.

2.1.3 Ito Stochastic Differential Equation
Following the definition of the Ito Integral, the Ito SDE is presented in the following.
A stochastic quantity x(t) obeys an Ito SDE, written as [9]

dx(t) = A[x(t), t]dt + B[x(t), t]dW (t), (2.5)

7
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∆t=[0.1, 0.316, 1].
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2.1. Stochastic Differential Equations (SDEs)

where A(x, t) and B(x, t) are dependent on position and time, if for all t and
t0 = t(0)

x(t) = x(t0) +
	 t

t0
A[x(t′), t′]dt′ +

	 t

t0
B[x(t′), t′]dW (t′). (2.6)

An alternative to the Ito SDE is the Stratonovich SDE which is based on the
previously presented Stratonovich integral. As already shown, its main difference
is the definition of where the function is evaluated. The consequences are most
importantly that the Stratonovich integral is no Martingale, which is taken into
account to preserve the standard chain rule for the respective SDE. Therefore, the
decision on what to use often reduces on what SDE has the more convenient math-
ematical properties for the given task. Practically, both SDEs can be transformed
into each other with identical solutions.
In the next section, we will introduce the Fokker-Planck equation, which describes
the time evolution of the probability density function.

2.1.4 Fokker-Planck Equation
So far, by solving an SDE, a probability density function of the stochastic process is
obtained based on Monte Carlo simulation. A large number of random paths allows
the approximation of the probability density function. An alternative method is to
derive a partial differential equation based on the SDE and solve it.
The Fokker-Planck equation describes the time evolution of the probability density
function for stochastic processes being driven by Gaussian noise. In one dimension,
the Fokker-Planck equation takes the form [5]

∂f(x, t)
∂t

= − ∂

∂x
[A(x, t)f(x, t)] + 1

2
∂2

∂x2 [B(x, t)f(x, t)]. (2.7)

where f(x, t) is the probability density function.
Its solution is equivalent to the solution of the Ito SDE

dx(t) = A[x(t), t]dt +
�

B[x(t), t]dW (t). (2.8)

A mayor disadvantage of presenting the process in this form in contrast to an SDE
is the lack of direct information. A SDE allows for computing individual paths,
whereas the Fokker-Planck equation does not.
The Fokker-Planck equation is rather used to calculate steady-state probability
densities or, depending on the complexity, obtain the time evolution of the proba-
bility density function.

The next section presents numerical methods that are used to solve stochastic
differential equations.

9



2. Theoretical Basics

2.2 Numerical Methods to Solve SDEs
To apply numerical methods, discretization has to be done. Looking at the time
interval [0, T ], let the time step ∆t = T/N with N being the amount of steps. That
leads to τj = j∆t. The numerical approximation of X(τj) will be noted as Xj . The
noise increments are generally calculated with W (τj) − W (τj−1).
Before presenting numerical methods to solve SDEs, metrics to compare the differ-
ent methods are shown [7].

Strong order of convergence
A method is said to have strong order of convergence of order γ, if a constant C
exists such that

E|Xn − X(τ)| ≤ C∆tγ (2.9)
for any fixed τ = n∆t ∈ [0, T ] and ∆t sufficiently small. E stands for the expected
value

E =
∞�

i=1
xipi. (2.10)

In words, the above expression measures the rate of decay of the mean of the errors.

Weak order of convergence
A method is said to have weak order of convergence of order γ, if a constant C
exists such that for all functions p

|Ep(Xn) − Ep(X(τ))| ≤ C∆tγ (2.11)

for any fixed τ = n∆t ∈ [0, T ] and ∆t sufficiently small.
In words, the above expression measures the rate of decay of the error of the means.

Summarizing, weak convergence approximates the solution of the SDE in dis-
tribution, and the strong convergence approximates the solution of the SDE in
the mean-square sense. Usually, the weak order of convergence is higher than the
strong order of convergence, resulting in a higher importance of the strong order
of convergence. In the following, we introduce three selected numerical methods
in the order of their accuracy, starting with the simplest but also most inaccurate
one, the Euler-Maruyama method.

2.2.1 Euler-Maruyama Method
The most basic approach is the Euler-Maruyama method. Discretising the SDE,
the following form can be noted [7]:

Xj = Xj−1 + A(Xj−1)∆t + B(Xj−1)(W (τj) − W (τj−1)) (2.12)

10



2.2. Numerical Methods to Solve SDEs

Consider that setting the function B = 0 results in the well known Euler method.
Investigating the convergence of the Euler Maruyama method, a strong order of
convergence with γ = 1/2 and a weak order of convergence γ = 1 can be noted.

2.2.2 Improved Euler Method
A possibility to improve the Convergence of the Euler-Maruyama method is the use
of the Milstein method - or improved Euler method. Its main point is to raise the
strong order of convergence by adding a correction term to the function multiplied
with the noise increment [7].

Xj = Xj−1 + A(Xj−1)∆t + B(Xj−1)(W (τj) − W (τj−1))

+1
2B(Xj−1)B′(Xj−1)((W (τj) − W (τj−1))2 − ∆t)

(2.13)

This leads to a strong order of convergence of 1.

2.2.3 Runge Kutta 2nd Order
The last numerical methods to be listed here are the Runge Kutta like methods.
As in the case of ordinary differential equations, there is a wide range possible
implementations known, most notably varying in their complexity and computation
cost [18]. We will keep it simple by looking at a second order Runge Kutta scheme:

K1 = A(tj−1, Xj−1)∆t + B(tj−1, Xj−1)(∆W − Sk

√
∆t) (2.14)

K2 = A(tj, Xj−1 + K1)∆t + B(tj, Xj−1 + K1)(∆W + Sk

√
∆t) (2.15)

Xj = Xj−1 + 1
2(K1 + K2) (2.16)

where ∆W = W (τj) − W (τj−1) and Sk = ±1 each with a probability of 0.5. This
method results in a strong and weak convergence of one [15].

We have now investigated what stochastic differential equations are and how to
solve them. In the following, we will focus on the characteristics of the structures
we want to apply this theory on.

11



2. Theoretical Basics

2.3 Bistable Systems
As we investigate bistable MEMS plates, we will look at the properties of such
bistable systems. The Duffing oscillator will hand as an example for the following
sections. It is described by [14]:

ẍ + dẋ + ω2x + βx3 = fsin(ωt) + Dξ(t), ⟨ξ(t), ξ(s)⟩ = δ(t − s) (2.17)

with x as the position, fsin(ωt) as an external force, the noise intensity D and the
noise term ξ(t). A common approach to analyse the oscillator is to investigate its
potential. We define the potential V (x) as

∂V

∂x
= −ω2x − βx3 (2.18)

The duffing oscillator itself is not a bistable system automatically, its bistability
is dependent on the parameters ω and β. As shown in figure 2.3, the system is
bistable for ω > 1 and β < 0. The potential shows two wells - which results in the
name double-well potential. Without any external force or noise, the system is
always in one of these wells. If the noise intensity or the external force get high
enough, the system can jump from one well to the other. A term often used in this
context is the stochastic resonance, which will be explained in the next section.

2.3.1 Stochastic Resonance
Consider a bistable system driven by a weak periodic force of frequency f . The
amplitude of the external driving force is so small that there is no cross-well motion.
When noise is added to the system, then at an appropriate noise intensity, a periodic
switching between the two wells takes place. This noise-induced phenomenon is
called stochastic resonance [14].
In figure 2.4, time series of the Duffing oscillator for different noise intensities are
shown. For the first picture, the noise intensity is still too low and therefore does
not lead to well switching. However, in the second figure, the noise intensity is
high enough and therefore leads to periodic switching between the wells.

Additional metrics to describe bistable systems are the mean first passage time and
the Kramer’s escape rate. They are described in the following sections.
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2.3.2 Mean First Passage Time
The definition of the first-passage time varies in literature, the interpretations
include:

• The first time a sample path reaches a specific value

• For a particle to leave a given region

• Reaching one of the ends of a given interval

Based on the Fokker-Planck equation and its unknown probability density function
f , the listed meanings can be noted mathematically.

Noting the corresponding Fokker-Planck equation of the stochastic differential
equation of the Duffing oscillator

∂tp(x, t) = ∂x[U ′(x)p(x, t)] + D∂2
xp(x, t) (2.19)

with U ′(x) as the double well potential U(x) = 1
2ω2

0x2 + 1
4βx4.

Taking the first interpretation, we define the first passage time as

τM = inf{t > 0, Xt > M, x0} (2.20)

with M as the boarder the process should pass and x0 as the initial condition. The
result τM is a stochastic process by itself, fully defined by X.

The result can now be obtained by solving the Fokker-Planck equation:	 M

−∞
p(x, t|x0, 0)dx (2.21)

This is the probability that the particle is still in the domain after the time t. The
searched result is then calculated by taking the opposite in respect to time.

2.3.3 Kramer’s Escape Rate
In general, the Kramers escape rate is the characteristic escape rate from a stable
state of the potential without any external added force apart from noise.
So when the external force of the Duffing oscillator f = 0, Kramer’s time is given
by the mean first passage time.

There are various approximations available, with one of them described in the

14
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following [6]: For 1D homogenous processes, a theoretical result for the mean first
passage time is

E[τm] = 1
D

	 M

−1
dxeV (x)/D

	 x

−∞
e−V (y)/Ddy. (2.22)

In the small noise limit D → 0, a saddle-point approximation can be done: V (y)
is at its minimum at y0, which means that the first derivation in the Taylor
approximation can be left out. The resulting Gaussian integral can then be
evaluated. This yields the Eyring-Kramers formula

E[τM ] ≈ 2π�
|V ′′(0)V ′′(−1)|

e∆V/D (2.23)

with the barrier height ∆V in the exponent divided by the noise intensity D, which
is often modelled as the thermal energy kBT . The Kramers rate r is now obtained
by the inverse of the above term

r ≈ 1
2π

�
|V ′′(0)V ′′(−1)| e−∆V/D (2.24)

Concluding the theoretical basics, we introduced stochastic differential equations,
described Brownian motion, presented numerical methods and described bistable
systems. In the next chapter, we examine the model we use to describe the dynamic
plate behaviour and introduce stochastic terms to model noise in the system.
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Chapter 3

Model

Our model to describe the dynamic plate behaviour is based on [3, 13]. Thin
rectangular microplates of planar dimensions Lx and Ly with a width h are de-
scribed by using the von Karman’s Plate theory based on the Kirchhoff hypothesis.
Furthermore, the plate is clamped along its edges to the rest of the silicon wafer.
The following assumptions are made:

• The plate is made of isotropic material

• The plate is made of homogeneous linear elastic material

• In-plane displacements in x and y are neglected

• Initial pre-stress and piezo-stress are constant over the whole plate

• Shear components of stresses are zero

3.1 Galerkin Method on the von Karman Plate
Equation

The von Karman plate model resulting of above assumptions

µw′′ + µκw′ + D∇4w − (Nxxw,xx + Nyyw,yy + 2Nxyw,xy) = 0 (3.1)

with w as the plate defection, the areal mass density µ = ρh, the damping rate κ
and the flexure rigidity D. The prime indicates differentiation in respect to time,
and the comma differentiation with respect to the spatial coordinates after the
comma. The in-plane stresses N can be decomposed into

Nµ(t, x, y) = N (b)
µ (t, x, y) + N (0)

µ (x, y) + N (p)
µ (t, x, y), µ ∈ {xx, yy, zz} (3.2)
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3. Model

with the stress resulting of the bending stress N (b), pre stress N (0) and the piezo
stress N (p). Stress resultants are calculated as

Nµ(t, x, y) =
	 h/2

−h/2
σµ(t, x, y, z)dz, µ ∈ {xx, yy, zz}. (3.3)

We introduce a Airy stress function defined as

F,xx = Nyy, F,yy = Nxx, F,xy = −Nxy. (3.4)

Introducing the following non-dimensional quantities

x̄ = x
Lx

, ȳ = y
Ly

, T =
�

µL4
x

D
t̄ = t

T
, w̄ = w

h
, κ̄ = Tκ,

F̄ = F
D

, N̄ (0)
µ = L2

µN
(0)
µ

D
, N̄ (p)

µ = L2
µN

(p)
µ (T t̄)
D

, Θ̄ = Θ
D

(3.5)

with the temperature Θ results in the equation system

¨̄w + κ̄ ˙̄w + ∇̄4w̄ −
�

Lx

Ly

�2

(F̄,ȳȳw̄,x̄x̄ + F̄,x̄x̄w̄,ȳȳ − 2F̄,x̄ȳw̄,x̄ȳ) = 0 (3.6)

and the corresponding compatibility equation

∇4F = Eh(w2
,xy − w,xxw,yy) (3.7)

with the Young’s modulus E. To obtain an approximate solution, a Galerkin
approach is used. Note the Einstein summation convention

w̄(x̄, ȳ, t̄) ≈
N�

j=1
qj(t)ϕj(x, y). (3.8)

Using the basis functions by Murphy [12]

ϕi(x, y) = (cos ((ix̄ − 1)πx̄) − cos ((ix̄ + 1)πx̄))
× (cos ((iȳ − 1)πȳ) − cos ((iȳ + 1)πȳ)) (3.9)

with
iy = (i − 1) mod(

√
N), ix =

�
i − 1√

N

�
(3.10)

using the Floor function ⌊·⌋, N ∈ [2, 4, 16, ..] and i ∈ [1, ..N ].
That leads to the final equation system

Mij q̈j + κ̄

µ
Mij q̇j + Kijqj +



N̄ (0) + N̄ (p)(t)


Cijqj + Gijklqjqkql = 0. (3.11)

The needed coefficients are listed in SDE Coefficients.
As will be described later, for the most part of this thesis only the first four modes
are used. This results in a simplified equation system.
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3.2. Building the SDE – Studying the Impact of Temperature

3.2 Building the SDE – Studying the Impact of
Temperature

Having obtained the system of differential equations describing the dynamic be-
haviour of the plate, the influence of noise - the force noise, can now be studied.
Our first step is to model the temperature induced noise on the structure. We do
this by including an additive noise term Fnoise(x),

¨̄w + κ̄

µ
˙̄w + ∇̄4w̄ −

�
Lx

Ly

�2

(F̄,ȳȳw̄,x̄x̄ + F̄,x̄x̄w̄,ȳȳ − 2F̄,x̄ȳw̄,x̄ȳ) = Fnoise(x, t). (3.12)

Applying the Galerkin Method as presented in section 3.1, the following short
notation is used: 	

Fnoise(x)ϕi(x) = F̂i. (3.13)

This results in the final equation system

Miiq̈i + κ̄

µ
Miiq̇i + ∇Vi(q) = F̂i. (3.14)

with the potential gradient

∇Vi(q) = Kijqi +


N̄ (0) + N̄ (p)(t)


Cijqi + Gijklqjqkql. (3.15)

The noise term is noted in the following manner, utilizing a common notation in
the context of SDEs and Fokker-Planck equations [4]:

F̂i =
�

2D̄i η(t̄) (3.16)

While η(t) is already introduced as W (t) in section 2.1.1, the noise intensity D̄i is
to be defined yet.
A well known concept from classical statistical mechanics is the equipartition
theorem. It gives the total average kinetic energy for a system at a given temperature.
Based on this theorem, the noise intensity of the SDE has to follow a certain
relationship with the temperature. For a system with one degree of freedom it is
described by

⟨Ekin⟩ =
�

mv2

2

�
= 1

2kBT, (3.17)

with the system’s mass m, its velocity v, the Boltzmann constant kB and the
temperature T [8].
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An equation with an equivalent form to equation 3.14 is the Klein-Kramers equation,
which obeys the equipartition theorem (eq. 3.17) [5].

m
d2x

dt2 = −ξm
dx

dt
− ∇V (x) +

�
2mξkBT η(t). (3.18)

Comparing the coefficients of equations 3.14 and 3.18, the temperature (Θ) induced
noise intensity of our SDE results in

D̄i = Mi
κ̄

µ
· kBΘ̄ (3.19)

This approach ensures compliance with the equipartition theorem. In the next
section, we will consider noise in the piezo-layer.

3.3 Building the SDE - Noise on the Piezo
Besides the force noise we added to the stochastic differential equation, it is also
possible to study noise in the form of voltage on the piezo-layer that induces stress
on the plate. For now, an applied voltage is part of the potential function Vi in
the form of the stress resultants. As applying noise would be an additive part, we
exclude this additional part of the potential function Vi and multiply it with a new
noise term η2

Miq̈i = −Mi
κ̄

µ
q̇i − ∇Vi(q) +

�
2Mi

κ̄

µ
kBΘ̄ · η1(t) + N̄noiseCiqi · η2(t). (3.20)

Nnoise is a scaling parameter, being multiplied with the same coefficients an applied
voltage in the potential term Vi(q) is. The appearance of a generalized coordinate
qi in the noise intensity term is an important change to the form of our SDE. As
noted in the theory section (2.2) concerning numerical methods to solve SDEs, this
linearity in q leads to higher inaccuracy if just the Euler-Maruyama method is
applied. In contrast, the Milstein method includes an additional term leading to a
higher strong convergence.

3.4 Approximations
In general, the first four modes are considered in this thesis. Due to the nature of
the equations, which have a first and second derivative of the generalized coordinate
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3.4. Approximations

q, an 8-dimensional stochastic differential equation is obtained (SDE1).

q̇1 = v1
q̇2 = v2
q̇3 = v3
q̇4 = v4

M1v̇1 = − κ̄
µ
M1v1 − ∇V1(q) + D1η(t)

M2v̇2 = − κ̄
µ
M2v2 − ∇V2(q) + D2η(t)

M3v̇3 = − κ̄
µ
M3v3 − ∇V3(q) + D3η(t)

M4v̇4 = − κ̄
µ
M4v4 − ∇V4(q) + D4η(t)

(3.21)

To simplify the notation, the noise terms introduced in the previous sections are
shortened by the expressions

Diη(t) =
�

2D̄i η1(t̄) + N̄noiseCiqi · η2(t). (3.22)

As described in section 2.3, we will examine the potential function of the system in
the following.

3.4.1 Effective Potential
Analysing the model, we examine the potential. Since the first mode dominates, we
look at the potential function V1. As shown in Figure 3.1, the system exhibits clear
bistability for pre-stresses greater than 1.0ncr, with the critical stress ncr defined as

ncr =
−48π4DL4

x − 32π4DL2
xL2

y − 48π4DL4
y

12π2L2
xL2

y(L2
x + L2

y) . (3.23)

To induce a snap-through, the barrier between the two wells must be overcome.
Although this plot helps to gain a qualitative understanding of the plate’s behaviour,
it is a simplification as only the first mode is considered. We will look into possible
approximations in the next section.

3.4.2 Fokker-Planck Equation
Following the process presented in section 2.1.4, we obtain the corresponding
Fokker-Planck equation:

∂f(x, t)
∂t

=
N�

i=1
− ∂

∂xi

[Ai(x, t)f(x, t)] + 1
2

N�
i=1

N�
j=1

∂2

∂xi∂xj

[Bij(x, t)f(x, t)]. (3.24)
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Figure 3.1: Potential function of mode 1 for different pre-stresses. Used parameters
are listed in table 5.1. For the evaluation, all time derivatives are set to zero.

where f(x, t) is the probability density function and x = (q1, q2, q3, q4, v1, v2, v3, v4)T

The matrices A and B are

A⊺ =



v1
v2
v3
v4

− 1
M1



κ̄
µ
M1v1 + ∇V1(q)


− 1

M2



κ̄
µ
M2v2 + ∇V2(q)


− 1

M3



κ̄
µ
M3v3 + ∇V3(q)


− 1

M4



κ̄
µ
M4v4 + ∇V4(q)



���������������
(3.25)

B =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 D2

1/2 0 0 0
0 0 0 0 0 D2

2/2 0 0
0 0 0 0 0 0 D2

3/2 0
0 0 0 0 0 0 0 D2

4/2

�������������
. (3.26)
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Due to the complexity of this equation (x has 8 dimensions), solving it for a proba-
bility density function is computationally demanding. An approach to overcome
this problem is to make approximations regarding the number of modes considered.
We will examine two variations:

• Approximation 1 (SDE2): We consider only mode 1 and disregard the impact
of any other modes. This leads to a two-dimensional SDE.

q̇1 = v1 (3.27a)

M11v̇1 = − κ̄M11

µ
v1 − ∂V1(q1, t)

∂q1
+ D1η1(t) (3.27b)

• Approximation 2 (SDE3): Further inspecting Approximation 1, the damping
force could be greater than the inertia (κM11

µ
> M11). As a result, dropping

the first term leads to the special case of overdamped dynamics.

κ̄M11

µ
q̇1 = −∂V (q1, t)

∂q1
+ D1η1(t) (3.28)

We will later analyse the differences in results and compare them with the ones
obtained from Monte Carlo simulations.

3.5 Converting Voltages Into Stresses
An important aspect when comparing simulations with measurement results is
converting voltages applied on the piezo-layer into stresses that we use in the theo-
retical model. The stress-change induced by applying a voltage can be calculated
by

∆σAIN =
�

1
2

C2
13

C33
− C11 − C12

�
d31E3 (3.29)

with ∆σAIN as the change of stress in the aluminium nitride (AlN) piezo-layer and
E3 as the resulting electric field along the z-axis [2]. The values of the entries of
the elasticity tensor C and the piezoelectric coefficient d31 are listed in table 3.1.

Table 3.1: Mechanical and piezoelectric parameters of aluminium nitride to calculate
the stress change resulting of an applied voltage [2]

C11[GPa] C12[GPa] C13[GPa] C33[GPa] d31[pm V−1]
410 149 99 389 −1.36
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3. Model

Finally, the stress resultants Nxx, Nyy, Nxy, Nnoise are calculated as described in
equation 3.3. This leads to the following final equation to calculate the stress
resultants

Nnoise = Up

h ·



1
2

C2
13

C33
− C11 − C12


d31

hAlN

(3.30)

with the thickness of the AlN layer hAlN and the thickness of the plate h.

In this chapter, we described the used model and added stochastic terms. Further-
more, we introduced approximations which could ease solving the Fokker-Planck
equation. Finally, we investigated the connection between induced stresses and
applied voltage. In the next chapter, the framework built in context of this thesis
will be presented.
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Chapter 4

Implementation

The framework utilized in this thesis is implemented in C. The following sections
will present the general structure, important code snippets and finally the scope of
implemented functions.

4.1 Structure
Figure 4.1 illustrates the primary structure of the implemented code. The first step
is to initialize the structures. These include the model (listing 4.1) which implements
parameters describing the geometries of the structure under investigation as well
as the properties of its materials. The second structure is responsible for describing
the simulation (listing 4.2). In addition to the starting and ending times of the
simulation, it also includes the step size, the initialization vector and the method
used to solve the SDE. The final structure encompasses the excitation signal
parameters (listing 4.3).

The subsequent step involves executing the solver. After initializing the values, the
next step is calculated by executing the chosen method. Afterwards, the results
are saved and, if necessary, used to update the values for the next step. Once all
desired steps are done, the values are saved in a file.

This concludes the description of the general structure of the solver. In the next
section, important code snippets will be presented.
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Set parameters

Initialize modes

Calculate step

Save new values

Save results

Figure 4.1: Flow Chart showing the code structure

1 struct param_mod {
2 double Lx;
3 double Ly;
4 double E;
5 double h;
6 double nu_num;
7 double n_cr;
8 double kappa;
9 double mu;

10 double M[4];
11 double C[8];
12 double K[4];
13 double G[17];
14 double D;
15 double sigma_max[4];
16 double T_norm;
17 };

Listing 4.1: Model Structure

1 struct param_sim {
2 double t_start;
3 double t_end;
4 double step;
5 int amount_step;
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6 double init[8];
7 char path_save[40];
8 int method;
9 };

Listing 4.2: Simulation Structure

1 struct param_exc {
2 int excitation_type;
3 double n0;
4 double np0;
5 double npoffset;
6 double f;
7 double start;
8 double amount_periods;
9 double dutycycle;

10 double D_bar[4];
11 double P[4];
12 double T;
13 };

Listing 4.3: Excitation Structure

4.2 Important Code Snippets
As the implementation is an integral part of this thesis, we will look at some
important code snippets.

4.2.1 Implementation of Algorithms
We start with the implementation of the solvers. Listing 4.4 shows the Code used
to implement the Euler Maruyama scheme for the one-dimensional SDE. As shown
in section 2.2, this scheme has the following form:

Xj = Xj−1 + A(Xj−1)∆t + B(Xj−1)(W (τj) − W (τj−1)). (4.1)

Line 1 is used to calculate the function value based on the previous step (A(Xj−1))
and line 3 shows the appliance of the Euler Maruyama method.

1 k1_0 = - (((K11) + (stress_term * C11)) * q1) - (G11 * pow(q1,3));
2
3 q1_new = q1 + ((k1_0 * Dt) + (S1 * W1))* 1/(kappa / mu * M1);

Listing 4.4: Code Snippet 1D SDE
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Listing 4.5 presents the implementation of the two-dimensional SDE, again with
the Euler Maruyama method. In contrast to the previous code, the two added
lines are rather simple, as they are just used to sum up the velocity and therefore
calculate the absolute deflection of the plate.

1 k1_0 = v1;
2 k1_1 = - (kappa / mu * M1 * v1) - (((K11) + (stress_term * C11)) * q1

) - (G11 * pow(q1,3)) ;
3 q1_new = q1 + (k1_0 * Dt);
4 v1_new = v1 + (k1_1 * Dt) + (S1 * W1);

Listing 4.5: Code Snippet 2D SDE

Furthermore, listing 4.6 shows the whole eight-dimensional SDE. As the full
potential is calculated, a method is used to structure the code. Other than that,
the code just scaled based on the previously shown snippets.

1 k1_0 = v1/M1;
2 k1_1 = v2/M2;
3 k1_2 = v3/M3;
4 k1_3 = v4/M4;
5 k1_4 = g_f(1, t, q1, q2, q3, q4, v1/M1, v2/M2, v3/M3, v4/M4, stress,

s1, e1);
6 k1_5 = g_f(2, t, q1, q2, q3, q4, v1/M1, v2/M2, v3/M3, v4/M4, stress,

s1, e1);
7 k1_6 = g_f(3, t, q1, q2, q3, q4, v1/M1, v2/M2, v3/M3, v4/M4, stress,

s1, e1);
8 k1_7 = g_f(4, t, q1, q2, q3, q4, v1/M1, v2/M2, v3/M3, v4/M4, stress,

s1, e1);
9

10 q1_new = q1 + (k1_0 * Dt);
11 q2_new = q2 + (k1_1 * Dt);
12 q3_new = q3 + (k1_2 * Dt);
13 q4_new = q4 + (k1_3 * Dt);
14 v1_new = v1 + (k1_4 * Dt) + (S1 * W1);
15 v2_new = v2 + (k1_5 * Dt) + (S2 * W2);
16 v3_new = v3 + (k1_6 * Dt) + (S3 * W3);
17 v4_new = v4 + (k1_7 * Dt) + (S4 * W4);

Listing 4.6: Code Snippet 8D SDE

Listing 4.7 highlights the implementation of the Milstein method. The most interest-
ing is line 8, which starts with the terms already seen in the Euler implementation
but adds terms to achieve the higher strong convergence, as also shown in section
2.2,

Xj = Xj−1 + A(Xj−1)∆t + B(Xj−1)(W (τj) − W (τj−1))

+1
2B(Xj−1)B′(Xj−1)((W (τj) − W (τj−1))2 − ∆t).

(4.2)
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1 k1_0 = v1/M1;
2 ...
3 k1_4 = g_f(1, stress, t, q1, q2, q3, q4, v1/M1, v2/M2, v3/M3, v4/M4,

s1, e1);
4 ...
5
6 q1_new = q1 + (k1_0 * Dt);
7 ...
8 v1_new = v1 + (k1_4 *Dt) + (S1 * W1) + (P1 * C11 * q1 * W1) + (0.5 *

P1 * C11 * q1 * C11 * ((W1 * W1)-Dt));
9 ...

Listing 4.7: Implementation of Milstein method

Finally, we also look at the implementation of the RK2 method in listing 4.8,

K1 = A(tj−1, Xj−1)∆t + B(tj−1, Xj−1)(∆W − Sk

√
∆t), (4.3)

K2 = A(tj, Xj−1 + K1)∆t + B(tj, Xj−1 + K1)(∆W + Sk

√
∆t), (4.4)

Xj = Xj−1 + 1
2(K1 + K2). (4.5)

1 k1_0 = v4/M1;
2 k1_4 = g_f(1, excit_k1, t_k1, q1, q2, q3, q4, v1/M1, v2/M2, v3/M3, v4

/M4, s1, e1);
3
4 q1_1 = (k1_3 * Dt);
5 v1_1 = (k1_4 * Dt) + (D_bar[0] + (P1 * C11 * q1))*(W1-(S_k1*sqrt(Dt))

);
6
7 k1_0 = (v4+q1_1)/M1;
8 k1_4 = g_f(1, excit_k2, t_k2, q1+q1_1, q2+q2_1, q3+q3_1, q4+q4_1, (v1

+v1_1)/M1, (v2+v2_1)/M2, (v3+q3_1)/M3, (v4+q4_1)/M4, s1, e1);
9

10 q1_2 = (k1_0 * Dt);
11 v1_2 = (k1_4 * Dt) + (D_bar[0] + (P1 * C11 * (q1+q1_1)))*(W1+(S_k2*

sqrt(Dt)));
12
13 q1_new = q1 + (0.5*(q1_1+q1_2));
14 v1_new = v1 + (0.5*(v1_1+v1_2));

Listing 4.8: Implementation of RK2

4.2.2 Obtaining a Time Series
For a better understanding of the code, we will examine how a time series of the
plate deflection is simulated by applying a specific excitation. Listing 4.9 illustrates
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the definition and initialization of the structs. Subsequently, the get_time_series
method is invoked to manage the calculations.

This method is presented in parts in listing 4.10. First, the data vector is initialized
with the parameters stored in the simulation struct. Then, for each desired time
step, the corresponding excitation value is obtained, and the implemented solver
(in this case the Euler Maruyama) is called. Finally, the structs and the results
can be saved.

1 struct param_mod s1;
2 struct param_sim m1;
3 struct param_exc e1;
4
5 init_values_model(&s1);
6 init_values_sim(&m1, 0., 400e-6, 1e-10, 0, &s1);
7 init_values_exc(0,1.1, 0.3, 0.,+1,5,0.5,0.000,280e3, 0., &e1, &s1);
8
9 get_time_series(&s1, &m1, &e1, 0, 1);

Listing 4.9: Obtaining a time series 1 - Initialisation

1 double q_old[8];
2 double q_new[8];
3
4 for(int i=0; i<8; i++)
5 {
6 q_old[i] = m1->init[i];
7 }
8 ...
9 for(int i=1; i<m1->amount_step; i++)

10 {
11 double t = i*m1->step;
12 double excit = get_excitation(t, s1, m1, e1);
13
14 if(method==0)
15 {
16 step_euler(q_old, q_new, excit, t, m1->step, s1, e1, r);
17 }
18 ....
19
20 for(int i=0; i<8; i++)
21 {
22 q_old[i] = q_new[i];
23 }
24 save_result(...);
25 }
26 save_exc(e1, filepath);
27 save_sim(m1, filepath);
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28 save_model(s1, filepath);

Listing 4.10: Obtaining a time series 2 - get_time_series method

4.3 Scope of Functions
After examining the implementation of numerical methods, we will now explore
the entire framework and its offerings. The implemented functions consist of:

• A straightforward solver for computing a single time series

• Verification of compliance with the equipartition theorem

• Assessment of the convergence of various solvers

• Generation of various maps to evaluate multiple time series

With the used framework presented, we can look at the results of this thesis, which
will be done in the next chapter.
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Chapter 5

Results

Before presenting the results of this work, we first define the parameters used for
simulations. As long as not noted otherwise, the following values are used for all
shown experiments [3].

Table 5.1: Used parameters and its values

Side lengths Lx, Ly 700 µm
Thickness h 3.5 µm
Poisson’s ratio ν 0.22
Young’s module E 165 GPa
Damping rate κ 700 kg m−2 s−1

Density ρ 2330 kg m−3

5.1 Numerical Methods
We start our investigation by examining the performance of the employed numerical
methods. First, we demonstrate the convergence in absence of noise, thereby
evaluating the methods’ suitability for ordinary differential equations. Afterwards,
we analyse stochastic differential equations for which we determine the weak and
strong convergence.

5.1.1 Convergence in the Absence of Noise
To evaluate the convergence of the numerical methods employed, we calculate the
snap-through time for a specific scenario. We apply a sinusoidal excitation with
an amplitude of 0.3 Ncr with a frequency of f = 280 kHz. The initial pre-stress is
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1.1 Ncr. Figure 5.1 displays one time series, where the snap-through time is defined
by the time from the start of the excitation until the first mode passing zero. In
this example, the snap-through time is approximately 218 ms.

Figure 5.2a illustrates the snap-through time for different step times and solver
methods. As expected, the Runge Kutta method of second order (RK2) performs
much better than the Euler Maruyama method. The Milstein method is not shown
in this graph, as the results would be the same as those of the Euler Maruyama
method. With no noise term considered, both methods result in the same equation
system (see section 3.4.2).

Figure 5.2b is based on the same values used in the left picture, with the addition
of calculating the relative error to the previous step size for every shown point.
This is done by

errorrel = Ts,previous − Ts

Ts,previous
. (5.1)

It can be observed that the error is significantly lower for the RK2 method than the
Euler Maruyama method. Further analysis of solving the equation system without
noise can be found in [3].
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Figure 5.1: Displacement in µm. Example time series of convergence simula-
tions. Parameters: N0 = 1.1 Ncr, Np0 = 0.3 Ncr, f = 280 kHz. Solved with Euler
Maruyama method and ∆t = 0.1 ns.
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Figure 5.2: Performance evaluation without considering noise. N0 = 1.1 Ncr,
Np0 = 0.3 Ncr, f = 280 kHz

35



5. Results

After having investigated the general convergence of the equation system, our focus
shifts to assessing the influence of noise.

5.1.2 Convergence in the Presence of Noise
As previously explained in theory (section 2.2), a crucial measure for assessing
the performance of numerical methods in the context of stochastic differential
equations is the weak and strong convergence. The lack of an analytic solution
for our equation system poses a significant challenge. According to the definition
of convergence metrics, such a solution would be required. However, literature
suggests that it can be approximated by considering the solution of half the time
step instead of the exact solution [16].

We begin with weak convergence. Since the mean of the noise is zero, regardless
of the noise type, the exact mean result is approximated by using low time steps.
The resulting weak convergence is then expressed as

|Ep(Xn) − Ep(X(τ))| ≤ C∆tγ (5.2)

with E as the mean value, the real value X(τ), the approximated value Xn and
the weak convergence γ. This means in words that we investigate the error of the
means.

The strong convergence is more complicated, as it necessitates the calculation of
the errors of individual random paths. So the first step is to define the random
paths, which corresponds to the seeding of the random process in programming
terms. The values are not evaluated based on half the time step, but based on
the lowest and therefore most accurate ∆t0. For every calculation, 10 values are
summed when having a time step of 10 · ∆t. Then the errors for every random
path are computed, and their mean yields the strong convergence, as shown in the
following equation

E|X(τ, ∆t)) − X(τ, ∆t0)| ≤ C∆tγ. (5.3)
In other words, we investigate the mean of the errors.

The weak and strong convergence have been calculated for each implemented
method, as illustrated below. To determine the order of convergence, the respective
fitting has been performed, and the resulting values are presented in the figures.
The results for the Euler Maruyama and the Milstein method align with expec-
tations. As the mean of the noise is zero, we expected the results for the weak
convergence of the Euler and Milstein method to be the same. The additional term
of the Milstein method results in a higher value for the strong convergence. The
errors for the calculation of weak and strong convergence of the RK2 method are
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5.1. Numerical Methods

not rising for the used step sizes, which makes a fitting impossible. In comparison
with the other methods, the values are much lower for higher step sizes, which is
as expected. To obtain the theoretical results of the weak and strong convergence,
we would need to look at a rather simple time series without highly discontinuous
events like a snap-through. We still investigated this behaviour because of the
importance of snap-throughs in this work.

Concluding this section examining the numerical methods, for low timesteps, RK2
performed the best for the weak convergence. Concerning the strong convergence,
the Milstein method outperformed the RK2 method, which can be explained with
the additional term added to the Euler Maruyama method. Looking forward to
the simulations, for very small step sizes, the performance difference would not be
that high. If computational time should be reduced, the RK2 method would be
the method to use.

Table 5.2: Performance Evaluation of Implemented Numerical Methods

Weak convergence Strong convergence
Euler Maruyama 0.915 0.751
Milstein 0.915 0.915
RK2 - -
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Figure 5.3: Convergence of Euler Maruyama method. The blue dots indicate the
simulation results. The dashed red line shows the fitting of the function C∆tγ.
Nnoise = 0.01, Np0 = 1.1 Ncr.

5.2 Non-Excited Plate Analysis

5.2.1 Static Analysis

Besides the possibility of applying an external excitation on the plate, the pre-stress
can be modified. Depending on the pre-stress, we expect the plate to behave
differently. For example, for a higher pre-stress, we would expect the plate to
have a higher deflection. We can investigate this behaviour by performing a static
analysis. Therefore, all derivations in the equation system are set zero and the
deflections are initialised with a low value to induce movement towards stable
points. The results are shown in figure 5.6. Firstly, there is no stable solution
other than zero before the pre-stress equals the critical stress, which is basically
how the critical stress is defined. After that, the deflection of the first mode rises
continuously. Modes 2 and 3 show the same behaviour because of them just being
mirrored, gaining stable solutions at approximately 2.4 Ncr. Additionally, mode 4
gains stable solutions from 3.03 Ncr onwards.
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Figure 5.4: Convergence of Milstein method. The blue dots indicate the simulation
results. The dashed red line shows the fitting of the function C∆tγ . Nnoise = 0.01,
Np0 = 1.1 Ncr.
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Figure 5.5: Convergence of RK2. The blue dots indicate the simulation results.
Nnoise = 0.01, Np0 = 1.1 Ncr.
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Figure 5.6: Deflection of modes versus pre-stress. Solid lines indicate stable
solutions, dashed lines indicate unstable solutions.

5.2.2 Comparing Approximations With Full Model
As highlighted in section 3.4.2, solving the problem for the first four modes yields
an eight-dimensional stochastic differential equation (SDE1, 3.21). To reduce
computational costs, we introduced two approximations – one with two dimensions
(SDE2, 3.27) and another one with one dimension (SDE3, 3.28). In this section,
we compare the behaviour of the different versions, starting with a simple time
series. This demonstrates the behaviour when the plate is not deflected at all,
allowing us to observe the system settling into a stable state. Investigating figure
5.7, there is indeed a difference noticeable. The neglection of inertia in the one-
dimensional SDE3 is evident in the lack of harmonics. Even though the result for
the two-dimensional SDE2 is much more similar to the eight-dimensional SDE1, it
still lacks accuracy. As the potential function of all three versions is pretty much
the same (Modes two, three, and four do not play a big role for the potential of
the eight-dimensional SDE), the steady-state solutions are identical.

Figure 5.8 compares the probability density functions for the deflection of the first
mode after 2.8 µs obtained by solving the 2D Fokker-Planck equation [17] with the
simulation results of SDE1 and SDE2. The first mode is initialized with a uniform
distribution. The stable states are highlighted in every graph with the red vertical
lines. The most significant difference is the higher maximum deflection observed
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Figure 5.7: Comparison of the presented SDEs. Nnoise = 1.1 Ncr

for the eight-dimensional SDE1. Figure 5.10 depicts the same after 5.6 µs. An
interesting difference are the second maxima at approximately −5 µm and 5 µm,
which are not yet visible for the eight-dimensional SDE1. Further investigating this
second maxima, we can look at the results shown in figure 5.10. For both SDEs, 50
time series are presented. In general, we can see that the observed second maxima
appears because of the chosen time. Choosing 4 µs would result in opposite roles.
Finally, we investigate the same for the Fokker-Planck equation based on the
one-dimensional SDE (eq. 3.28) in figures 5.11, 5.12 and 5.13. The bars represent
the simulation result, while the lines show those obtained from the Fokker-Planck
equation [6]. As can be seen for t = 0 in figure 5.11, we start with a normal
distribution highlighted in blue. As expected, for later time steps, the distribution
moves towards the two stable positions. Although the one-dimensional simulation
results match the Fokker-Planck ones very well, the 8-dimensional SDE results (eq.
3.21) exhibit significant differences. As can be observed for t = 0.02, the movement
towards the stable states appears much slower, which can be attributed to the
neglect of mass.
Concluding this section, the results show that these approximations can work for
static situations, but dealing with highly nonlinear processes such as snap-throughs,
they are not accurate enough to be a real alternative.
In the next section, we will investigate the first passage time and the Cramer’s
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Figure 5.8: Numerical results of Fokker-Planck equation based on 2D SDE versus
2D and 8D SDE simulation results for t = 2.8 µs, N0 = 1.1 Ncr.
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Figure 5.9: Numerical results of Fokker-Planck equation based on 2D SDE versus
2D and 8D SDE simulation results for t = 5.6 µs, N0 = 1.1 Ncr.

rate.
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Figure 5.10: Multiple single time series of the 2D and 8D SDE for t = 5.6 µs,
N0 = 1.1 Ncr.
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Figure 5.11: Compare Fokker-Planck result for 1D SDE (lines) with simulation
results of 1D and 8D SDE (bars) for t̄ = 0, N0 = 1.1 Ncr.
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Figure 5.12: Compare Fokker-Planck result for 1D SDE (lines) with simulation
results of 1D and 8D SDE (bars) for t̄ = 0.02, N0 = 1.1 Ncr.
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Figure 5.13: Compare Fokker-Planck result for 1D SDE (lines) with simulation
results of 1D and 8D SDE (bars) for t̄ = 0.18, N0 = 1.1 Ncr.

5.2.3 First Passage Time
To further analyse the behaviour of the plate, particularly the stochastic component
of it, we examine the first passage time, which is a typical quantity used to describe
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stochastic systems. Therefore, the system is initialized in a stable state. The escape
rate is now defined as the probability of the system transitioning to the other stable
state within one second and is calculated as shown in section 2.3.3.

E[τm] = 1
D

	 M

−1
dxeV (x)/D

	 x

−∞
e−V (y)/Ddy. (5.4)

The Kramers rate is calculated by

r ≈ 1
2π

�
|V ′′(0)V ′′(−1)| e−∆V/D. (5.5)

Figure 5.14 shows all the results. Firstly, the calculations are based on the one-
dimensional SDE (eq. 3.28), which leads to the simulation of the one-dimensional
SDE fitting the best. Secondly, as previously described in the theory, the Kramers
rate is an approximation for low noise intensities. This can be observed on figure
5.14b, which shows an excellent fit for low noise intensities.

Until this point, we did not apply any excitation to the plate. We are going to
change that in the next section, studying stochastic resonance.
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Figure 5.14: Escape Rate of theory vs Kramer’s rate vs Monte Carlo Simulation.
Only the temperature induced noise is considered. (b) shows the results of (a) for
low noise intensities D̄. N0 = 1.1 Ncr.
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5.3 Excited Plate Analysis - Stochastic
Resonance

In this section, we investigate the stochastic resonance of our system. The first step
is to visualize this phenomenon in a simple time series. To recap, we defined the
stochastic resonance the following way (section 2.3): Consider a bistable system
driven by a weak periodic force of frequency f . The amplitude of the external
driving force is so small that there is no cross-well motion. When noise is added to
the system, then at an appropriate noise intensity, a periodic switching between
the two wells takes place.
This exact behaviour is shown on our system in figure 5.15. The most important
realization we gain from this experiment is that the influence of the temperature
induced noise is not that high. To achieve the shown switching, temperatures,
much higher than ever reachable, are needed.
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Figure 5.15: Example time series to show stochastic resonance of the plate. N0 =
1.1 Ncr, Np0 = 0.145, 2 kHz, Temperature Θ = 1.5 × 1010 K.

A term we are going to need in the following is the residency time. For the
previously presented time series fig. 5.15, we can see the plate in the lower state
for two periods before moving back towards the upper state, which makes the
residency time two.

This single measurement can be repeated for different frequencies and figure 5.16
can be constructed [1]. The depicted data sets illustrate the number of pulses to
remain in the same state successively. The likelihood indicates the probability off
how many pulses the system remains in the same state after a state switch. This
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has been calculated for each frequency by

likelihoodi = Ai

Atotal
· 100% (5.6)

with Ai describing the amount of residency times of i pulses, and Atotal as the
total amount of observations made in simulation for that specific frequency. As
only the mean residency times of 1 to 5 is displayed, the sum of the displayed
probabilities is lower than 100%. Interestingly, for lower and higher frequencies,
the mean residency time of one dominates in comparison to higher residency times.
The reason for the higher frequencies is not stochastic resonance, as starting with
approximately 12 kHz, the snap-throughs happen even when no noise is added. So
the rise of switching action for the higher frequencies shown in the plot happens
because of the excitation itself getting closer to induce a snap-through by itself.
Other than that, the distributions seem quite regular. In the next section, we will
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Figure 5.16: Mean Residency Time for different excitation frequencies. 500 runs
per frequency, kBΘ̄ = 1.5 × 10−3, N0 = 1.1 Ncr, Np0 = 0.98 Ncr.

further investigate the plate’s behaviour under the influence of noise.
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5.4 Influence of noise on the plate behaviour
In this section, we will explore the overall impact of noise on plate behaviour,
particularly when combined with excitations. We will begin by examining excitation
with a sine function, followed by a rectangular excitation signal, and finally, we
will provide an outlook on what could be interesting to investigate in the future.

5.4.1 Sinusoidal Excitation
Beginning with the investigation of sine excitations, we utilize the signal

N (p)(t) = Np0 sin(2πft) θ(t). (5.7)

Here, Np0 is the amplitude, f represents the excitation frequency and θ is the
Heaviside function, that defines the start of the signal at t = 0. An interesting
parameter of the system under this excitation is the snap-through time, which is
the time it takes for the system to change its buckled state after the excitation
starts. As we only investigate low pre-stresses for now, only mode one is stable.
Therefore, the snap-through time Ts is defined as the time mode one deflection
passes zero: w1(Ts) = 0.

As shown in literature, the resulting map at 1.1 Ncr is separated into three distinct
tongues (figure 5.17a)[3]. The first tongue starts to appear at an excitation
amplitude Np0 = 0.04 Ncr at f = 25.5 kHz. In comparison to the other tongues,
the snap-through times are quite low, with the steps indicating that the root of
this tongue lies at about 200 kHz. The other tongues appear at Np0 = 0.25 Ncr and
f = 297 kHz and at Np0 = 0.28 Ncr and f = 489 kHz.

After observing these results, we can add noise by considering noise in the piezo
layer (as presented in section 3.3). Figure 5.17 shows the results for different noise
intensities. It is important to note that these results are based on sample runs, so
only show tendencies. As can be observed in 5.17b, the snap-through times for the
second and third tongues decrease rapidly for still low noise intensities. Only for
higher intensities (5.17c and 5.17d), the snap-through free regions are considerably
impacted by the noise, and snap-throughs appear all over the place. Additionally,
the first tongue’s really low snap-through time segments start to crawl into the
second tongue.
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Figure 5.17: Snap-through maps for sinusoidal excitation and different noise
intensities. N0 = 1.1 Ncr.

To investigate how the influence of noise changes for different pre-stresses, we
applied the same sine excitation signals while varying the pre-stress from 1.1 Ncr
up to 3.5 Ncr. We still keep the simplification of only considering mode 1 for the
snap-through time. We can observe in figure 5.18 that the influence of noise on the
areas that were snap-through free beforehand are getting less changed for higher
pre-stresses.
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We can explain this by thinking about the stress term. As the modelled noise
intensity is independent of the pre-stress but an absolute value, the share of the
noise on the resulting stress gets lower with higher pre-stress. This means that, at
least for how we modelled the noise, the plate gets more robust against noise for
higher pre-stresses.
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Figure 5.18: Snap-through times for different pre-stresses. Nnoise = 0.6.
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5.4.2 Rectangular Excitation
Another interesting excitation form is the rectangular signal. In contrast to si-
nusoidal excitations, a rectangular signal or pulses are a more intuitive approach
concerning lab measurements and real applications. Additionally, first measure-
ments of rectangular excitation of plates have already been published [2]. We define
this excitation as

N (p)(t) = N
(p)
0 rect(2πft) (5.8)

with
rect(2πft) =

�
+1, if sin(2πft) ≥ 0
−1, if sin(2πft) < 0 .

This type of excitation has already been investigated in literature [3]. We want
to further examine the dynamics of the plate and the reasoning behind it. We
therefore inspect the two simple time series shown in figure 5.19. A sinusoidal
excitation and a rectangular one are each shown on the left, and the bifurcation
diagram is shown on the right. Both signals have the same amplitude, which is
0.78 Ncr. The interesting thing about the applied signal is how it changes the
effective stress. The stress in the plate is based on the pre-stress, the parametric
stress induced by the excitation, and finally, the stress induced by noise. The blue
line in the figures illustrates the stress change based on the applied excitation. The
positively displayed pulses make the effective stress higher, thereby getting closer
to other modes achieving stable states. The negative pulses, on the other hand,
push the effective stress below the critical stress and, therefore, result in no modes
having stable states other than zero deflection whatsoever. This can be observed
in the graphs as the first mode moves around the stable state. Depending on the
momentum with which the deflection of the mode ends up when switching back to
the negative wave, the mode gets into a stable state again.

Lastly, we examine a snap-through map of the rectangular excitation (figure 5.20).
Compared to the results of the sinusoidal excitation, the snap-throughs appear to
occur more quickly. Other than that, the general form of the map with three main
tongues and the frequencies are quite similar. Additionally, the influence of noise
seems to be the same.
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Figure 5.19: Time series of rectangular and sinusoidal excitation versus bifurcation
diagram. The blue horizontal lines in the bifurcation diagrams indicate the ampli-
tudes of stress reached by the external excitation. The negative pulse leads to a
stress of under 0.5, which leads to the first mode having no stable deflection other
than zero.
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Figure 5.20: Snap-through maps for rectangular excitation and different noise
intensities. N0 = 1.1 Ncr

5.4.3 Comparison With Measurement Results - An
Outlook

Moving forward, the next steps will be to further analyse the stochastic behaviour
of bistable MEMS plates by making real-life experiments. As shown in literature
[2], measurements have already been taken on circular plates. Therefore, adjusting
the model’s geometry would be needed to try to compare the measured behaviour
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with simulation.

Concerning the work done in this thesis, an interesting aspect for future measure-
ments would be analysing the stochastic behaviour of the plates. To achieve this,
a specific amount of pulses could be applied, and the final deflection could be
measured, similar to the approach taken in [2]. Repeating these measurements
multiple times would result in a probability distribution, that highlights the stochas-
tic behaviour of the MEMS plates. Such a result has already been shown in the
introduction in figure 1.1.

The following figures illustrate examples from simulations. Figure 5.21 shows the
probability of the plate having changed its state after having applied one sine pulse
for different noise intensities. This probability is based on ten simulation runs, which
only provides us a qualitative understanding. Remembering the influence of the used
noise term, as shown in section 3.3, Nnoise is multiplied with the random variable
and therefore changes its variance. To get a feeling of how high the considered noise
is, we follow the approach presented in section 3.5. Nnoise = 1 = 1.5 × 10−2 Ncr
results in a voltage of 0.154 V. Comparing the stress resultants with the ones used
in the previous sections, they are about a thousand times smaller.

As expected, there are areas with a 100% probability of either switching or not.
There are smaller areas that show the influence of the considered noise. This is
particularly visible on the edges, which grow regarding their occupied area for
higher noise intensities. This meets expectations, as it is more probable for noise
to change the outcome when just slightly altering the excitation amplitude leads
to a different result. Noise-robust operation would have to take place in the 100%
areas as far away from the edges as possible. Additionally, these noisy areas grow
for higher noise intensities, merging not only into the areas no snap happens, but
also making these 100% areas smaller.

Furthermore, figure 5.22 shows the same for a different amount of pre-stresses.
Although a change in the structure is clearly visible, the impact of noise itself does
not seem to play a highly significant role. Based on the results for the snap-through
time, we concluded that the influence of noise decreased for higher pre-stress.
Comparing figures 5.22a and 5.22d, a difference can be seen at higher frequencies.

Finally, figure 5.23 illustrates the percentage of state switching for a different
amount of pulses. The results demonstrate how the complexity of the behaviour
increases with a higher number of pulses. With more complex behaviour, the
changes induced by the stress also rise accordingly. With the noise impact rising
that fast, noise-robust operation is only possible for a very low number of periods.

In conclusion, we investigated the behaviour of noise on the final deflection after
a defined amount of excitation pulses. Our results indicate how the influence of

55



5. Results

noise is shown on the boarders of a final state change or not. This noise induced
areas on the boarders grow for higher noise intensities. However, big changes in the
impact of noise can not be seen for different pre-stresses. As the complexity of the
resulting map rises for a higher number of pulses, the impact of noise also grows.
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Figure 5.21: Maps showing the state change percentage for a different amount of
noise with varying frequency and amplitude. N0 = 1.1 Ncr, 1 pulse.
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Figure 5.22: Maps showing the state change percentage for a different amount of
pre-stress with varying frequency and amplitude. 1 pulse, Nnoise = 0.2.
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Figure 5.23: Maps showing the state change percentage for a different amount of
pulses with varying frequency and amplitude. N0 = 2.5 Ncr, Nnoise = 0.2.
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Chapter 6

Conclusion and Outlook

In this study, we examined the influence of noise on the dynamic behaviour of
bistable MEMS plates. We extended an existing model by adding noise terms,
resulting in a stochastic differential equation. We introduced two noise terms into
the model: noise induced by the environment temperature and noise in the piezo
layer, which affects the mechanical stress in the plates. We developed a framework
using different numerical solvers to obtain results for the snap-through time. We
further investigated approximations of the four mode SDE model by comparing
single-shot solutions and numerical results of the Fokker-Planck equation with those
resulting of the Monte Carlo simulation. The results showed the reduction in needed
computations does not outweigh the resulting inaccuracy. We also investigated the
stochastic resonance of the plates and determined the mean escape rate. Finally,
we explored how noise affects attempts of switching the plate state by using a small
amount of excitation pulses.
Our results indicate that environment temperature does not play a significant role in
the dynamics of the plates for the considered geometry. The structures would need
to be much smaller to be significantly influenced by temperature. Therefore, the
stochastic behaviour previously seen in measurements may have other reasons. Our
model shows higher robustness against noise for higher pre-stresses when exploring
snap-through times for various excitation frequencies and amplitudes. Noise not
only alters the resulting snap-through times, but can also lead to snap-throughs in
areas that first appear to be relatively clear of them.
We also discussed how to further develop the model for comparison with experi-
mental data, and what measurements would be of interest in relation to this work.
This involves repeated measurements to observe the stochastic behaviour of the
bistable plates. When investigating whether the state of the plate changed after
excitation for varying excitation amplitude and frequency, results show that noise
is primarily visible on the border between the areas with and without snap-through.
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For higher noise intensities, this border area grows, expanding into both directions.
We also demonstrate that the areas which posses high certainty of either switching
or not get smaller for an increasing number of pulses, making a wanted noise robust
operation much more challenging.

Looking at the future work in a more general view, artificial intelligence (AI) has
a significant role in the field of dynamical systems. AI has been used to solve
Fokker-Planck equations using Deep Learning [21], up to predicting noise-induced
critical transitions and discovering escape probabilities from raw data [10, 19].
Another interesting approach is the use of noise as a diagnostic tool for quality and
reliability of MEMS, abandoning the view of noise as a bad side effect [11].
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Appendix

SDE Coefficients
Needed coefficients:

Mij =
	

Ω
ϕiϕjdΩ (1)

Kij =
	

Ω
ϕi

ϕj,x̄x̄x̄x̄ +
�
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Ly

�4
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�
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�2 	
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Gijkl = −
�

Lx

Ly

�2
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