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Abstract

This thesis investigates the application of reinforcement learning (RL), a machine learning
paradigm that learns from experience, to automate a specific task in timber harvesting -
grasping a log with a grapple. RL’s potential to learn optimal solutions without explicit
models makes RL a promising method for forest machine automation. The thesis comprises
three key chapters: an overview of the theoretical foundations of RL, an investigation of the
application of RL to an inverted pendulum system on a cart, and a specific investigation
of the automation of forestry cranes. In the first chapter, the general introduction to
RL including popular approaches is presented. Then, the inverted pendulum on a cart
system is used to test RL’s capabilities and demonstrate RL’s adaptability in different
problem domains. The final chapter designs a learning-based control strategy for forestry
cranes. It focuses on efficiently picking up a log of different diameters from a random
initial configuration and aims to simplify the tasks for operators among the challenges
posed by the forest environment.
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Kurzzusammenfassung

Diese Arbeit befasst sich mit der Anwendung von bestärkendem Lernen (Englisch: Rein-
forcement Learning), einer Disziplin des maschinellen Lernens, die von Ehrfahrung lernt,
in der Automatisierung der Holzernte - das Greifen eines Stammes mit einer Zange. Das
Potential des bestärkenden Lernens, eine optimale Lösung zu generieren ohne ein explizi-
tes Modell zu verwenden, machen das bestärkende Lernen zu einer vielversprechenden
Methode für die Automatisierung von Holzerntemaschinen. Die Arbeit ist in drei Kapitel
aufgeteilt: ein Überblick der theoretischen Grundlagen des bestärkenden Lernens, eine
Untersuchung der Anwendung des bestärkenden Lernens auf ein inverses Pendel auf einem
Wagen und der Untersuchung der Automatisierung eines Forstkrans. Im ersten Kapitel
wird das Problem des bestärkenden Lernens formal beschrieben und Algorithmen zu
dessen Lösung präsentiert. Das inverse Pendel-Wagen System wird verwendet, um die
Fähigkeiten des bestärkenden Lernens auszutesten und die Anpassungsmöglichkeiten an
unterschiedliche Arten von Problemen zu demonstrieren. Das finale Kapitel handelt vom
Design einer Regelungsstrategie für Forstkräne. Der Fokus liegt dabei auf dem effizienten
Aufsammeln von Baumstämmen mit unterschiedlichen Durchmessern und aus zufälligen
Positionen und zielt darauf ab, die Aufgaben der Maschinisten im Wald zu vereinfachen.
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1 Introduction

Wood, a renewable resource, is one of mankind’s most valuable commodities. While the
importance of this resource has not changed over time, the methods of timber harvesting
have changed considerably in recent decades. Until the 1950s, trees were felled using pull
saws, and pulling the trunks with horses out of the forests was common practice in Austria.
Then tractors began to replace horses and the introduction of the chainsaw made the
work of the loggers easier. Nowadays, two types of machines that became popular in the
1990s dominate the wood harvesting process [1]. The first machine is the harvester. This
is a motorized vehicle with a chainsaw unit mounted on a hydraulic crane. This enables it
to chop down trees, limb them, and cut the trunks into transportable sizes. The resulting
logs can then be transported by the second machine, the forwarder. The forwarder is a
type of truck that is specialized for the rough terrain in the forests and is equipped with
a grapple mounted on the crane that picks up the logs and loads them onto its loading
platform. Its job is to take the logs from the forest to the roads, where regular trucks
equipped with a similar crane can load the logs and transport them to their destination.

The use of these sophisticated machines significantly reduces the amount of work involved
in timber harvesting. However, operating these machines is physically demanding and
requires highly skilled operators. Therefore, full or even partial automation of these
machines could simplify the tasks for the operators. With the exception of the hydraulics,
the cranes mounted on top of these machines are very similar to industrial robots, which are
usually fully automated. The difference that makes the automation of forestry machines
a challenge is that they do not operate in a well-defined environment but in the harsh
environment of a forest. Several attempts to automatically control forestry cranes have
been investigated, ranging from model-based control to model-free data-driven methods.
This thesis explores how reinforcement learning (RL) can be used to solve a skilled task
in the timber harvesting process. This task involves grasping a tree log with the grapple,
which is relevant for both forwarders and log carriers.

RL is a domain of machine learning. Compared to other domains such as supervised
learning, where labeled data is used, or unsupervised learning, where unlabeled data is
used, reinforcement learning learns from experience. The RL agent learns from interactions
with the actual environment for which it is being trained, or with a representation, such
as a simulation of the environment. For control tasks, RL can find optimal solutions
without providing exemplary solutions, as is necessary for supervised learning. This is
achieved since optimality for RL is defined by a reward function and the learning process
aims to maximize this reward. Conceptually, this is similar to optimal control, where a
cost function is minimized. The difference is that RL can work completely model-free by
collecting all the necessary information through interaction.
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1 Introduction 2

This thesis consists of three main parts:

• The first part is a brief introduction to the theoretical foundations of RL, including
basic algorithms as well as state-of-the-art RL algorithms.

• In the second part, the capabilities of RL are investigated on a well-known system,
the inverted pendulum on a cart, to gather information about different algorithms
and possible reward function structures. It also investigated how to combine several
problems to solve them at once with RL, showing that exploring the full state space
can be advantageous for the resulting control strategy. The resulting control strategy
is demonstrated on a real system to show the transfer from simulation to reality.

• The last chapter focuses on the automation of a forestry crane. The objective is to
develop a solution that enables a crane to effectively pick up a tree log of different
diameters from any initial configuration.



2 Reinforcement Learning

Lewis and Vrabie gave a description of reinforcement learning (RL):

“Reinforcement learning refers to an actor or agent that interacts with its
environment and modifies its actions, or control policies, based on stimuli
received in response to its actions. This is based on evaluative information from
the environment and could be called action-based learning. RL implies a cause
and effect relationship between actions and reward or punishment. It implies
goal directed behavior at least insofar as the agent has an understanding of
reward versus lack of reward or punishment” [2, p. 33].

Since we are in a stochastic setting, it is important to understand the basics of probability
theory. We use sans-serif letters such as x, x, and X to represent random variables (scalars,
vectors and matrices) and serif letters such as x, x, and X to represent the corresponding
deterministic variables or events.

2.1 Markov Decision Process
A Markov Decision Process (MDP) is used to formally describe the reinforcement learning
(RL) problem. In a MDP, there are two elements that interact with each other, as shown
in Figure 2.1. The agent makes a decision and performs an action u, based on the state x
and reward signal r received from the environment. The environment responds to this
action in accordance with its internal dynamics by returning to the state to which it has
been changed and by giving the reward.

The response of the environment can then be used by the agent to improve future decisions
and maximize the reward. A MDP is said to be finite [3, p. 48] if the set of states X , the
set of actions U , and the set of rewards R are all finite.

This interaction results in a sequence of states

X[0:N ] = {x0, ..., xN } (2.1)

and a sequence of actions
U[0:N−1] = {u0, ..., uN−1} , (2.2)

where N is the horizon length of an episode. Together they form the trajectory (also
called an episode).

τ = {X[0:N ], U[0:N−1]} . (2.3)

There are two settings for learning and optimization:

3



2 Reinforcement Learning 2.1 Markov Decision Process 4

Agent

Environment

r x u

Figure 2.1: Interaction of agent and Environment in a Markov decision process.

• The episodic/sequential setting, where the experience is broken up into a series of
episodes/sequences. It is our goal to maximize the cumulative reward within a single
episode.

• The continuing setting, where the task doesn’t have clear episode boundaries. It
is our goal to maximize the cumulative reward over an infinite or very long time
horizon, i.e. N = ∞.

To measure the quality of a trajectory, the environment creates a sequence of rewards for
every time step

r[0:N ] = {r0, ..., rN } . (2.4)

2.1.1 The Environment
The environment can either be deterministic or stochastic. In the deterministic case, its
dynamics can be described as

xk+1 = f(xk, uk) , k = 0, ..., N − 1 . (2.5)

While in control theory stochastic systems are handled by introducing a stochastic variable
wk to the right side of equation (2.5), in RL, stochastic systems are described with a
conditional probability distribution, where the next state is sampled depending on the
previous state and action according to

xk+1 ∼ p(xk+1|xk, uk) , k = 0, ..., N − 1 . (2.6)
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For the latter case also the first state x0 of an episode is sampled from a distribution as
well with

x0 ∼ p0(x0) , (2.7)

and so are the rewards

rk ∼ pr(rk|xk, uk) , k = 0, ..., N − 1
rN ∼ pr(rN |xN ) .

(2.8)

With this construction, the system defined by (2.6) satisfies the Markov property, stating
that xk+1 depends only on quantities of the previous time step k, i.e.

p(xk+1|xk, uk) = p(xk+1|x0, u0, ..., xk, uk) , k = 0, ..., N − 1 . (2.9)

Using those probability distributions, the probability of observing an N -step trajectory τ
under a policy π is

p(τ ) = p0(x0)
N−1�
k=0

p(xk+1|xk, uk) . (2.10)

2.1.2 The Agent
The law that the agent follows to choose its actions is called the policy and can be either
deterministic or stochastic. In the deterministic case, the action can be calculated from a
function with

uk = π(xk) , (2.11)

for the stochastic case again a probability distribution

uk ∼ π(uk|xk) (2.12)

is used, see [4, p. 13]. For a finite MDP, the policy can be organized as lookup tables.

With (2.10) and (2.12), the probability of observing an N -step trajectory τ under a policy
π reads as

pπ(τ ) = p(x0)
N−1�
k=0

p(xk+1|xk, uk)π(uk|xk) . (2.13)

The agent employs an environmental state to determine actions through its policy, con-
currently utilizing the reward signal to enhance the policy. For N -step trajectories, the
return is the cumulative weighted reward from step k to N , represented by

Rk(τ ) =
N�

k′=k

γk′−krk′ . (2.14)

The discounting factor γ ∈ (0, 1) is used. The smaller γ is chosen, the lower future rewards
in rk will be weighted, thereby giving more significance to immediate rewards. Conversely,
rewards received for high occupancies in the future are weighted more heavily. Thus, this
parameter essentially represents the distance of foresight into the future.
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Since a stochastic environment and policy can be used, improving the policy is equivalent
to finding the policy that maximizes the expected return by solving the optimization
problem.

π∗ = arg max
π

Eπ{R(τ )} , (2.15)

where Eπ{R(τ )} describes the expected return, given that all the actions are sampled
from policy π. The resulting policy π∗ is an optimal policy.

Figure 2.2 shows in detail how the agent and environment interact with each other. In
the environment, the conditional probabilities for the next state xk+1 and the reward rk

define how the environment reacts to the action uk provided by the agent based on the
policy π. The learner tries to solve the RL problem by maximizing (2.15).

Once an optimal policy is found, only the inner control loop (dotted square labeled in
Figure 2.2) is needed for deployment. To put this in the context of control theory, the
policy then acts as a state feedback controller to stabilize the dynamics of the environment.

RL Algorithm

Agent

Control Loop

Environment

π(uk|xk)

rk xk uk

p(xk+1|xk, uk)

pr(rk|xk, uk)

xk+1

π

Figure 2.2: Agent-environment interaction model.

2.1.3 Value Functions
Because of the Markov property, the future after visiting a particular state depends only
on that particular state. Therefore, the probabilities of the trajectories are the same for
each visit to a state. This causes the expected return after each visit to a state to be
constant, given the same policy.
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The mapping of expected returns is called the state value function of the policy π and is
defined as

V π(x) = Eπ{Rk(τ )|xk = x} . (2.16)

The same assumption holds true in addition to the starting state, the first action is fixed
and afterwards policy π is followed. This gives the action value function

Qπ(x, u) = Eπ{Rk(τ)|xk = x, uk = u} , (2.17)

see [3, p. 58].

We can infer the state value function from the action value function via

V π(x) = E
u∼π(u|x)

{Qπ(x, u)} . (2.18)

In contrast, the inverse relation requires knowledge of the environment, since

Qπ(x, u) = E
r∼pr(r|x,u)

{r} + γ E
x′∼p(x′|x,u)

{V π(x′)} . (2.19)

The latter relations are known as Bellman expectation equations, which are derived next.

2.1.4 Bellman Expectation Equations
By splitting the return in the definitions of the value functions (2.16) and (2.17) into
the immediate reward and the return of the following state, the Bellman expectation
equations can be derived. For the state value function V π(x) this derivation reads as

V π(x) = Eπ{Rk(τ )|xk = x}
= Eπ{rk + γRk+1(τ )|xk = x}
= E

u∼π(u|x)
{rk|xk = x, uk = u} + γEπ{Rk+1(τ )|xk = x}

= E
u∼π(u|x)

{ E
r∼pr(r|x,u)

{r} + γ E
x′∼p(x′|x,u)

{Eπ{Rk+1(τ )|xk+1 = x′}}}

= E
u∼π(u|x)

{ E
r∼pr(r|x,u)

{r} + γ E
x′∼p(x′|x,u)

{V π(x′)}}

(2.20)

and for Qπ(x, u) it reads as

Qπ(x, u) = Eπ{Rk(τ )|xk = x, uk = u}
= Eπ{rk + γRk+1(τ )|xk = x, uk = u}
= E{rk, |xk = x, uk = u} + Eπ{γRk+1(τ )|xk = x, uk = u}
= E

r∼pr(r|x,u)
{r} + γ E

x′∼p(x′|x,u)
{ E

u′∼π(u′|x′)
{Eπ{Rk+1(τ )|xk+1 = x′, uk+1 = u′}}}

= E
r∼pr(r|x,u)

{r} + γ E
x′∼p(x′|x,u)

{ E
u′∼π(u′|x′)

{Qπ(x′, u′)}} ,

(2.21)

see [3, p. 59].
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2.1.5 Bellman Optimality Equations
If the inequality

V π′(x) ≥ V π(x) ∀x , (2.22)

holds true, then π′ is a better policy than π. This definition implies that an optimal
policy has the highest values for all states and that only one unique value function can be
optimal. For state values the optimal value function is defined as

V ∗(x) = max
π

V π(x) (2.23)

and for action values, it is defined as

Q∗(x, u) = max
π

Qπ(x, u) . (2.24)

Using (2.20) and (2.23) the Bellman equation for V ∗(x) can be derived with

V ∗(x) = max
π

E
u∼π(u|x)

{r(x, u) + γ E
x′∼p(x′|x,u)

{V π(x′)}}

= max
u

{r(x, u) + γ E
x′∼p(x′|x,u)

{max
π

V π(x′)}}

= max
u

{r(x, u) + γ E
x′∼p(x′|x,u)

{V ∗(x′)}}
. (2.25)

Similarly, this derivation can be done for the action value function with

Qπ(x, u) = max
π

{r(x, u) + γ E
x′∼p(x′|x,u)

{ E
u′∼π(u′|x′)

{Qπ(x′, u′)}}}

= r(x, u) + γ E
x′∼p(x′|x,u)

{max
u′ {max

π
Qπ(x′, u′)}}

= r(x, u) + γ E
x′∼p(x′|x,u)

{max
u′ Q∗(x′, u′)} ,

(2.26)

using (2.21) and (2.24), see [3, p. 62f]. Those equations for the optimal value functions
are called Bellman Optimality Equations.

2.2 Value Based Methods
Under the assumption that the optimal action-value function is known, an optimal policy
can always be derived by

π∗(x) = arg max
u

Q∗(x, u) . (2.27)

This shows that it is sufficient to calculate value functions and create policies for the
concept of value-based methods.
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2.2.1 Generalized Policy Iteration
The term generalized policy iteration is used for the repeated process of evaluating a
policy to a certain extent and then improving the policy based on this evaluation of the
old policy [3, p. 86].

Equation (2.27) shows how to get the optimal policy from an optimal value function, but
the same method can be applied to the value function of the current policy. Applying

π′(x) = arg max
u

Qπ(x, u) , (2.28)

always chooses the action with the highest value according to the old policy. The policy
is made “greedy” with respect to the value function. This method always improves the
policy, with the exception that the policy is already optimal. Then the new policy is
also optimal according to (2.27) and its value function satisfies the Bellman Optimality
Equation. This method is called policy improvement and can similarly be done with
the state value function, but with the downside that knowledge from the environment is
necessary as (2.28) with the conversion (2.19) shows [3, p. 76-79].

The algorithm for the policy evaluation part can be freely chosen. Model-based dynamic
programming or model-free Monte Carlo methods are just some examples.

2.2.2 Dynamic Programming
Are the dynamics of the environment fully known, dynamic programming can be used to
evaluate policies, by turning Bellman equations into update rules. Combining this with
the idea of generalized policy iteration results in methods to calculate an optimal policy
[3, p. 73f].

Policy Iteration

Using the Bellman expectation equations as an update rule for the action value function
reads as

Q̂π(x, u) ← r(x, u) + γ E
x′∼p(x′|x,u)

{ E
u′∼π(u′|x)

{Q̂π(x′, u′)}} . (2.29)

Q̂π(x, u) represents the current estimate of the action value function for following policy
π and can be initialized arbitrarily. The calculation of the expectation values is only
possible if the environment’s dynamics are known. For a finite set of states and actions,
the expectations can be calculated with

E
y∼p(y|z)

{f(y)} =
�

y

p(y|z)f(y) . (2.30)

Using this equation to evaluate the policy until convergence and iterate alternately with
policy improvement gives policy iteration, see [3, p. 80].
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Value Iteration

Value iteration is when policy improvement follows after just one step of the iterative
policy evaluation. The so-created update rule

Q̂π(x, u) ← r(x, u) + γ E
x′∼p(x′|x,u)

{Q̂π(x′, arg max
u′ Q̂π(x′, u′))}

← r(x, u) + γ E
x′∼p(x′|x,u)

{max
u′ Q̂π(x′, u′)}

(2.31)

is equal to using the Bellman Optimality Equation as an update [3, p. 82f].

2.2.3 Monte Carlo Methods
If the dynamics of the environment are unknown, Monte Carlo methods can be used
for policy evaluation. The principle of these methods is to sample trajectories using the
current policy. The value of a state can then be estimated with the mean over the actual
returns following visits to this particular state. By the law of large numbers this mean
converges to the expectation of the return and therefore to the value [5].

A formal description of this method can be given using n different sampled trajectories
τ (i). Then the action value function can be calculated with

Qπ(x, u) =
�n

i=1
�N(i)

k=0 1[x(i)
k = x, u(i)

k = u]Rk(τ (i))�n
i=1

�N(i)
t=0 1[x(i)

k = x, u(i)
k = u])

, (2.32)

where the expression 1[·] becomes one if the equations in the brackets are true and is zero
otherwise. Using this formula every visit of a state contributes to the mean. therefore
this method is called every-visit Monte Carlo. Together with generalized policy iteration,
(2.32) can be used to find optimal policies for episodic environments.

2.2.4 Temporal-Difference (TD) Learning
Temporal-difference methods combine sampling transitions like Monte Carlo methods
and update value functions based on old estimates as in dynamic programming. The big
difference to Monte Carlo methods is that observed transition data (xk, rk, xk+1) can be
instantly used to update the current value function estimate. This is done using a value
function approximation table V̂ π(x), where the current state value estimates are stored.
For the simplest version of TD, the approximation table is then updated for just one state
according to

V̂ π(xk) ← V̂ π(xk) + α[rk + γV̂ π(xk+1) − V̂ π(xk)] . (2.33)
The update is towards the TD target rk + γV̂ π(xk+1), which is an estimation of the return
[3, p. 119f].

The learning rate α ∈ [0, 1] specifies the balance between using the old estimate and the
new estimate consisting of the sampled reward and the discounted value of the sampled
next state. For infinite visits of every state, the approximation table converges to the
value function.
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SARSA

TD learning can also be used similarly for estimating action-value functions. In this case,
the current and following action have to be added to the used data (xk, uk, rk, xk+1, uk+1).
The resulting algorithm updates its estimates with

Q̂π(xk, uk) ← Q̂π(xk, uk) + α[rk + γQ̂π(xk+1, uk+1) − Q̂π(xk, uk)] (2.34)

and is named SARSA because of this data sequence used for calculation (state, action, re-
ward, state, action). Using action values allows model-free policy improvement. Therefore
SARSA can not only be used for policy evaluation, but for the whole policy iteration, and
therefore it can solve MDPs without any knowledge of the environment [3, p. 129].

Q-learning

Another algorithm also using action values is Q-learning [6]. The update rule

Q̂∗(xk, uk) ← Q̂∗(xk, uk) + α[rk + γ max
u

Q̂∗(xk+1, u) − Q̂∗(xk, uk)] (2.35)

is similar to that used for SARSA, with the exception, that instead of the estimate of the
action value of the occurring state-action pair, the maximum of all possible action value
estimates is used. With this construction, Q-learning directly approximates the optimal
value function, regardless of the policy used.

2.3 Policy Based Methods
Policy-based methods do not rely on value functions to create policies but calculate policies
directly. Therefore the policy is parameterized with a parameter vector θ. The so created
policy is denoted πθ. To improve the policy gradient ascent,

θ ← θ + α∇θJ(πθ) , (2.36)

can be used, updating the parameter vector in the direction of the gradient of some
objective function J(πθ), with the step size parameter α [3, p. 321].

2.3.1 Policy Gradient Theorem
To calculate the gradient, the objective function has to be defined. For this objective
function, different definitions can be used. It can be an average reward, an average value,
or the value of the starting state [5]. A very compact derivation is possible using the last
of those objective functions and considering only episodic tasks.

The value of the starting state is by definition equal to the expected return after the
starting state and therefore the expected return of the full trajectory, because the trajectory
starts in the starting state. This can be denoted as

J(πθ) = E
x0∼p0(·)

{V πθ (x0)} = Eπ{R(τ )} , (2.37)
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using the probability a trajectory occurs under the parameterized policy

pθ(τ ) = p(x0)
N−1�
k=0

p(xk+1|xk, uk)πθ(uk|xk) . (2.38)

The gradient of the objective function can then be calculated with

∇θJ(πθ) = ∇θEπ{R(τ )}
=

�
τ

∇θpθ(τ )R(τ )

= Eπθ
{∇θ log pθ(τ )R(τ )}

= Eπθ
{

N−1�
k=0

∇θ log πθ(uk|xk)R(τ )}

(2.39)

using the identity
∇θ log pθ(τ ) = ∇θpθ(τ )

pθ(τ ) (2.40)

and the logarithm rules to use the reformulation

log pθ(τ ) = log p(x0) +
N−1�
k=0

log p(xk+1|xk, uk) + log πθ(uk|xk) . (2.41)

The parts not dependent on θ are eliminated by the gradient [7].

According to (2.39) the probability of every action is changed proportional to the return
of the whole episode, although actions at the end of an episode cannot influence rewards
at the beginning because of causality. Therefore it is reasonable to replace the full return
with the partial return Rk(τ ) starting at step k. The policy gradient then changes to

∇θJ(πθ) = Eπθ
{

N−1�
k=0

∇θ log πθ(uk|xk)Rk(τ )} , (2.42)

and can be used in this form for the Reinforce algorithm [8].

2.3.2 Reinforce
The Reinforce algorithm [9] uses Monte Carlo sampling to create an estimate of the policy
gradient. Using only the experience from the latest sampled trajectory τ gives an unbiased
sample of (2.42). Therefore

∇θJ(πθ) ≈
N−1�
k=0

∇θ log πθ(uk|xk)Rk(τ ) (2.43)

is an approximation of the policy gradient. This approximation can be used for one
gradient ascent update of the parameter vector θ, then the new policy πθ is used to gather
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the next trajectory. Reinforce can only use data gathered by the same policy, that the
improvement is done for.

Although (2.43) gives an unbiased estimate of the policy gradient, the estimate has high
variance, because the return can change heavily from one episode to another. This variance
can be reduced by introducing a baseline b(xk) that can depend on the state but not
on the action. Subtracting that baseline from the return gives the new policy gradient
estimate

∇θJ(πθ) ≈
N−1�
k=0

∇θ log πθ(uk|xk)[Rk(τ ) − b(xk)] . (2.44)

The obvious choice for a state-dependent function is the state value function V π(xk), but
a constant baseline like the mean return over the actual trajectory is also a viable option
for a baseline [10, p. 32f].

2.4 Actor Critic Methods
If the principles of value and policy-based methods are combined the resulting algorithms
are classified as Actor-Critic methods. Similarly to Reinforce, the policy gradient is used
to update a parameterized policy, but instead of updating proportional to the return of
the sampled episode, the critic is used for this update. One option for the critic is to learn
the action value function. Plugging this into (2.44) and using the state value function as
a baseline gives

∇θJ(πθ) ≈
N−1�
k=0

∇θ log πθ(uk|xk)Aπ(xk, uk) . (2.45)

as policy gradient to update the actor, with

Aπ(xk, uk) = Qπ(xk, uk) − V π(xk) . (2.46)

as the advantage function [10, p. 135].

2.4.1 Proximal Policy Optimization (PPO)
Gradient ascent updates the parameter vector θ. Therefore the step size parameter α
influences the amount θ changes. However, the subject of interest is the resulting policy
πθ, and the amount the policy changes is not proportional to the change in θ. Therefore,
it is possible that even a small step size parameter causes a big drop in the performance
of the new policy because it has changed too much compared to the old policy.

Trust region policy optimization (TRPO) [11] is a method to ensure the new policy changes
are not too much. Therefore a modified objective is introduced. Instead of generating the
parameter vector from the maximization problem

arg max
θ

Eπθ
{log πθ(uk|xk)Aπθ (xk, uk)} , (2.47)
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as the gradient ascent algorithm seeks to do with the gradient approximation (2.46), the
new optimization problem reads as

arg max
θ

Eπθ

�
Aπθold (xk, uk) πθ(uk|xk)

πθold
(uk|xk)

�
s.t.Eπθ

{DKL(πθ(uk|xk)||πθold
(uk|xk))} ≤ δ ,

(2.48)

where θold is the parameter before the optimization step. The Kullback-Leibler divergence,

DKL(p(y)||q(y)) = E
y∼p(y)


log p(y)

q(y)

�
, (2.49)

gives a measure of the difference between the new and the old policy, so the amount the
new policy deviates from the old one can be bound with the parameter δ.

Proximal policy optimization (PPO) [12] introduces two methods to efficiently solve the
TRPO problem. The first one is to reformulate the constraint into a penalty and the
second one uses a clipped objective function. Because the second version is superior in
terms of simplicity and performance the penalty version is neglected here. Maximizing
the clipped objective function reads as

arg max
θ

Eπθ
{min(Aπθold (xk, uk)C, Aπθold (xk, uk)Cclip)} . (2.50)

Using the abbreviation
C = πθ(uk|xk)

πθold
(uk|xk) , (2.51)

the first part under the minimization is the TRPO objective. In the second part, the
difference is that the multiplication is done with the clipped ratio

Cclip = clip


πθ(uk|xk)
πθold

(uk|xk) , 1 − ϵ, 1 + ϵ

�
, (2.52)

that bounds the probability ratio C in the neighborhood around 1 specified by ϵ. Depending
on the sign of Aπθold , the minimization uses either 1 − ϵ as the lower bound or 1 + ϵ as
an upper bound for the ratio C in the objective function. Keeping the ratio C around 1
is equal to a small change from the old to the new probability and therefore guarantees
small changes in the policy.

In this form, the PPO algorithm is simple to use with just a few parameters to tune. It
generates good results on different sorts of problems and the sensitivity to its parameters
is low compared to other algorithms. Therefore, it is currently a state-of-the-art algorithm
in RL and is one of the used algorithms in this thesis.



3 RL Application: Control Single Inverted
Pendulum on Cart

For several years, the inverted pendulum has been a popular benchmark for research in
nonlinear control and reinforcement learning, see, e.g., [13, 14]. Inverted pendulums with
increasingly complex kinematics were published, such as the single pendulum [15], the
triple pendulum on a cart [16], and the spherical pendulum [17]. Although it features
a simple structure, the pendulum on a cart is an underactuated nonlinear system. In
addition, it has a non stable equilibrium point and shows non-minimum phase behavior
[17]. Thus, it represents a challenging task in nonlinear control.

Recently in the field of RL, scholars have been trying to close the gap between learning in
simulation and application in the real world. Of course, the inverted pendulum remains a
common benchmark. In [18], the swing-up and stabilizing of an inverted pendulum on a
cart with Deep Deterministic Policy Gradient (DDPG) [19] are investigated. It is shown
that the learned policy is robust and can be easily adapted to the changed environment
by retraining. An integration between an RL approach and classical control is presented
in [20]. Therein, the swing-up action is performed with Deep Q-Learning [21] and the
stabilization is controlled by a PID controller. This chapter is primarily concerned with
designing a policy that can

• swing-up or swing-down the inverted pendulum on a cart,

• do stabilization,

• and move the cart to a pre-defined position,

at the same time.

Simulation and experimental results show the efficiency of the trained RL policy.

3.1 Modelling
The schematic of the considered inverted pendulum on a cart is shown in Figure 3.1. This
system is identical to the real-world system presented in the previous thesis [22]. The
system consists of two degrees of freedom, qT = [x, θ]. The linear joint x moves the cart
and is actuated by a motor. The rotary joint θ, where the pendulum is mounted onto the
cart, is not actuated. To move the cart, a force is applied by the motor. Since a cascaded
PI-controller [22] is designed for the considered system, the acceleration u of the actuated

15
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joint is considered to be the control input instead of the force action on the cart. Using
the Euler-Lagrange formalism [23], the equations of motion are in the form


ẋ
v̇

θ̇
ω̇

 =


v
0
ω

gma sin(θ)−dω
a2m+J

 +


0
1
0

ma cos(θ)
a2m+J

u , (3.1)

x and v are the cart’s position and velocity, respectively. θ and ω are the pendulum’s
angle and angular velocity, respectively. J, m, a are the moment of inertia, the mass of
the pendulum, and the distance from the hinge joint to the pendulum’s center of mass
(CoM). More details on this setup can be obtained in [22]. Parameters of this system are
presented in Table 3.1

g
θ

a
u

x

Figure 3.1: Schematic representation of the inverted pendulum on a cart.

Table 3.1: Parameters of the considered system.
Label Description Value Unit

m Mass of the pendulum 0.3553 kg
a Distance from the hinge to the pendulum’s CoM 0.42 m
J Moment of inertia of the pendulum 0.03614 Nms2

d Friction coefficient of the hinge joint 0.005 Nms



3 RL on the Single Inverted Pendulum 3.2 RL Environment and Agent 17

3.2 RL Environment
Since balancing the inverted pendulum on a cart is a popular benchmarking problem in
RL, there are already implementations of an RL environment for this problem. OpenAI
provides the Gym [24] for setting up the environment. Different from other RL packages,
OpenAI Gym provides an interface to communicate with several state-of-the-art RL
algorithms. This helps to quickly build an RL environment for specific tasks and to train
with different existing baselines. In general, for setting up an RL environment using
the OpenAI Gym package, there are the following important functions. Firstly, the init
function is used to randomize all the states of the system for the beginning of an episode.
Secondly, by using the equations of motion of the system (3.1) together with an action
input, the step function computes the next states of the system in a fixed time step of
20 ms. In this chapter, the Runge–Kutta 45 is utilized for the step function. Thirdly, the
observation function is built to gather input data for computing the action of the agent.
Note that in this chapter, the network architecture of the agent consists of two hidden
layers. Each layer has 128 neurons. Different to the standard Open AI gym environment
for the pendulum on a cart, the observations are extended, see Table 3.2. This extension
helps to achieve the three goals mentioned earlier. Finally, the termination function defines
stopping criteria for an episode. The episodes are terminated either after 500-time steps
or when the cart reaches its left or right limit. During training, we randomly initialize the
states of the pendulum in valid ranges of the system states. In the following, more details
on the observation function and the design of the reward function are introduced.

3.2.1 Observations and Actions
For the balancing or swing-up problem, only the physical states of the inverted pendulum
are used as observations. If the goal is to learn to position the cart at an arbitrary position
along the runway, this is no longer sufficient and an additional observation is necessary. In
this case, the desired position of the cart xd is introduced. During training, this new state
is initialized with a random constant value for each episode so that the agent can learn
to minimize the difference between the actual position and this desired position. After
training, this target state can be used to give the agent a target value for the position
of the cart, which can be set arbitrarily independent of the inverted pendulum system.
Similarly, since the agent wants to learn both swing-up and swing-down, a new observation
od is introduced. This observation has only two values, i.e., 1 for the swing-up action and
−1 for the swing-down action. Table 3.2 summarizes the used observations. Note that
due to the interlocking representation of the pendulum angle between 0 and 2π, sine and
cosine functions are utilized to ensure the continuity of this state.

3.2.2 Reward Function
In RL, the reward function determines the behavior of the agent which can maximize this
function. In the presented pendulum environment, the episode is terminated prematurely
when the cart moves beyond its limits. This is to encourage the agent to avoid these condi-
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Table 3.2: Observations and actions of the system.
Label Description Range Unit

x Position of the cart [−0.65, 0.65] m
v Velocity of the cart [−∞, ∞] m/s

cos(θ) Cosine of the pendulum angle [-1,1]
Observations sin(θ) Sine of the pendulum angle [-1,1]

ω Angular velocity of the pendulum [−∞, ∞] rad/s
xd Desired position of the cart [-0.65,0.65] m
od Desired pendulum configuration {−1, 1}

Actions u = ẍ Acceleration of the cart -10...10 m/s2

tions, as no more rewards can be collected after termination. In the used reward function,
only positive rewards are considered to avoid complications from early termination.

To learn a strategy for swinging up and positioning depending on the desired cart position
xd and the desired orientation state od, the reward function embeds multiple instructions
for the agent. To realize this, the reward function r is constructed from two parts. First,
rx is used to reward the agent when the cart reaches the desired position xd

rx =
�

1 − |x − xd|
sx

�2
(3.2)

Second, for the desired orientation, the reward part reads as

rθ =
�

1 − |θ − θd|
sθ

�2
, (3.3)

with

θd =
�

π, if od = −1
0, if od = 1 .

(3.4)

The restriction θ ∈ (−π, π] is automatically fulfilled by calculating θ from its sine and
cosine representation. To keep the rewards positive for all valid state configurations,
scaling parameters are used. User-defined parameters are listed in table 3.3. Each part

Table 3.3: User-defined parameters of the reward function.
Label Value Unit

sx 1.3 m
sθ π rad

can be used to solve the respective sub-tasks.

To solve both sub-tasks simultaneously, a combination of the two reward parts is employed
in the form

r = rxrθ . (3.5)
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3.3 Results
In this section, the simulation and experimental results for training the RL agent are
presented. First, statistical results for training the RL agent using common state-of-the-art
RL approaches, i.e., baselines, are presented. Then, the best trained RL agent is used in
the real model of the system to validate the sim2real gap.

3.3.1 Training performances of the RL baselines
To this end, the open-source package Stable-Baselines3 [25] is utilized. It offers implemen-
tations of state-of-the-art RL approaches, i.e., Advantage Actor-Critic (A2C) (2.45), Deep
Deterministic Policy Gradient (DDPG) [26], Proximal Policy Optimization (PPO) [12],
Soft Actor-Critic (SAC) [27] and Twin Delayed DDPG (TD3) [28].

Training performance for the first reward term rx

For this first statistical result, only the reward term rx for driving the cart to the desired
position xd is employed in the training process. Instead of using (3.2), the exponential
formulation of rx is applied in the form

rx = e−|x−xd| . (3.6)

Note that the initial value of the pendulum angle θ is set to zero, with the addition of the
small initialization noise in the range of 0.05 rad. Additionally to the other termination
criteria, an episode is terminated when θ falls out of the safe range of [−45◦, 45◦]. Thus, in
this simulation, both placing the cart at xd position and stabilizing are considered. Figure
3.2 shows the results of various RL baselines together with their default settings from the
Stable-Baselines3 package. If the cart is at the desired location xd from the beginning,
the cumulative reward can reach a maximum of 500. This is because the reward value
of 1 is given at each step for the total maximum of 500 steps. Thus, a final cumulative
reward value of ≈ 400 is considered a good result in this case.

As presented in Table 3.2, all baselines achieve a cumulative reward over 400. However,
the training time for each RL baseline is different. The A2C and PPO methods are much
faster than others in the training times. While A2C, PPO, and SAC approaches achieved
good results in every trial, the DDPG and TD3 approaches did not converge every time.

Training performance for the second reward term rθ

For this second statistical result, only the reward term rθ (3.3) is utilized in the training
process. Note that, for only considering the swing-up action of the pendulum, the following
modified rθ is used

rθ = 1 − |θ|
sθ

. (3.7)

The statistical results are collected three times, only the best trial is presented in Figure
3.3. Figure 3.3 shows that after 105 training steps, four of the algorithms, i.e., DDPG,
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Figure 3.2: Training results of 105 learning steps of RL baselines for the first reward term
rx.
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Figure 3.3: Training results of 105 learning steps of RL baselines for the second reward
term rθ.
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Figure 3.4: Results for learning to swing the inverted pendulum (rθ) until a reward above
350 is achieved.

PPO, SAC, and TD3, can achieve a significant gain, while A2C could not improve the
strategy in any trial. Note that TD3 could not create a good policy in every trial, while
DDPG, PPO and SAC created good results consistently.

So far, only PPO and SAC perform robustly on these statistical tests without the need
for fine-tuning. To further compare these two algorithms, the training was repeated with
more training steps. Additionally, when a reward of 350 was reached, the training was
aborted. Figure 3.4 shows the ratio between training time and collected reward which is
similar for these two algorithms. Only the number of calculated time steps differs greatly.
While PPO requires 880e3 training steps, SAC is finished after 80e3 training steps.

Statistical results of different reward formulations of rx

The shape of a reward function is an important factor affecting the performance of an RL
algorithm. To further investigate which form of reward functions is best suited for the
balance and positioning problem, PPO is used to train the system with eight different
reward functions of rx for 105 training steps. The mean square error of the position of the
cart at the end of an episode w.r.t. the target position xd over 103 episodes is considered
for the evaluation process. To mitigate the effects of random initial conditions during
training, the RL agent is trained 3 times and the best policy is chosen.

All functions used are described in Figure 3.5c and are illustrated in Figure 3.5a for a
target xd of 0.5. The exponential function guarantees non-negativity. A linear and a
quadratic argument of the exponential function, marked by the blue and orange color
in Figure 3.5c, are considered. Scaled versions of these two functions are also employed,
marked by the green and red colors in Figure 3.5c. Therein, an offset of 0.1 is added
since this scaled exponential function returns a value very close zero when the cart is near
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Figure 3.5: Evaluation of reward shapes for positioning the cart while balancing the
pendulum.

the limits. This can hinder the learning process. Additionally, a linear decay function
and a squared version, marked by the yellow and purple color in Figure 3.5c, are also
investigated in this statistical test.

The results are shown in Figure 3.5b. Five of the six continuous reward functions result in
an average accuracy of less than 1 cm. The main difference is that the smooth exponential
functions are outperformed by their non-smooth counterparts as well as by the linear
decay functions. With sparse rewards, marked by the violet and brown color in Figure
3.5c, choosing the right threshold is crucial for obtaining good results.

3.3.2 Experimental results for the combined reward function
In the previous statistical results, PPO and SAC were the two algorithms with the best
performance. For the combined reward function r in (3.5), SAC is chosen since this
algorithm is more sample-efficient than PPO [29]. For the training process, the default
parameters are used. The size of the network is reduced to two hidden layers with 128
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neurons in each layer. This helps to realize the learned policy in a real hardware system,
i.e.,Dspace Microlabbox 1202, of the single pendulum on a cart [22].

While the training is performed with fully observable states without any noise, the velocity
of the cart and the angular velocity of the pendulum cannot be measured directly in the
real system. Thus, they are obtained from the derivative of the cart position x. This
position data is determined using rotary encoders, which involve quantization noise. By
using the derivative, this noise is amplified and it must be checked if the agent trained on
the idealized system can handle this noise, before applying it to the real system.

Figure 3.6 shows the results of applying the policy in a MATLAB/SIMULINK simulation
of the system without quantization noise. The system starts at −0.5 m with the pendulum
hanging down and is commanded to transit to 0.5 m with the pendulum in the up-right
position. The results of the simulation, where the quantization noise is added as in the
real system, are shown in Figure 3.7. The most obvious difference is that the acceleration
calculated from the policy is sensitive to noise. Especially when the pendulum is in its
unstable position. Although this sensitivity has a significant impact on the trajectory, the
cart makes some additional movements and reaches its target point. Next, the policy is
applied to the real system. For comparison, the same commands, previously used for the
simulation, are applied to the real system, resulting in the trajectory shown in 3.8. The
measured trajectory is very close to the one simulated with noise, the only difference is in
the acceleration.

To test how the agent reacts to an external disturbance, the pendulum is disturbed with
a stick near its end. A trajectory is recorded, as shown in Figure 3.9, with a strong and a
small disturbance. After the first strong disturbance, the agent drops the pendulum and
swings it up again on the other side with the momentum that the pendulum gained when
it fell. With the second smaller disturbance, the deviation of the pendulum angle is kept
small and the pendulum comes back into balance without falling. More experiments are
recorded at https://www.acin.tuwien.ac.at/en/8b92/.

3.4 Conclusion
The statistical simulation results of the different RL algorithms in Section 3.3.1 have shown
that PPO and SAC are the most reliable of the algorithms implemented in Stable-Baselines3
for this task. Given the fact that these algorithms were introduced to outperform the
older algorithms such as A2C and DDPG, this is a plausible result. Only the performance
of TD3 is below average, considering that it is the latest of these algorithms. This could
be due to inappropriate parameters, however, no parameter tuning was performed for the
other algorithms either.

Regarding the reward function, the results in Section 3.3.1 have shown the general
feasibility of positive rewards in combination with early termination. The need for positive
rewards everywhere is emphasized by the fact that an offset must be introduced when the
reward function goes somewhere near zero to ensure that the agent learns to balance the
pendulum. With this offset modification, all presented reward functions can be used to

https://www.acin.tuwien.ac.at/en/8b92/
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Figure 3.6: Simulation results without quantization noise for the swing-up when the cart
is shifted by 1 m.
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Figure 3.7: Simulation results with quantization noise for the swing up when the cart is
shifted by 1 m.
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Figure 3.8: Measurement of the swing-up when the cart is displaced by 1 m on the real
system.
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solve the balance problem. In addition, the positioning accuracy is reasonable, especially
for the continuous reward functions. For the non-continuous rewards, i.e., sparse reward
functions, there seems to be an exploration problem when the high-reward region is too
small, resulting in higher positioning errors. However, with the right size of the high
reward area, the positioning accuracy comes close to that of continuous rewards.

Section 3.3.2 shows that a policy can learn to swing the inverted pendulum up or down
on a cart and also learn to position the cart while balancing the pendulum. The design of
reward helps to learn all tasks with one strategy. This avoids the problem where we have
to switch strategies, but comes at the cost of increasing training time. The interesting
aspect of this strategy is that it can collect data anywhere in the state space of the system.
Therefore, the learned policy can counteract strong disturbances. In combination with
the initialization of the episodes with values from the entire state space, the strategy has
learned how to quickly bring the pendulum into the desired state. The experiments show
that if the disturbance is weak, the pendulum can be balanced without falling. When the
disturbances are strong, the policy can lean on the momentum of the system to achieve
an immediate swing-up, after the pendulum fells. This behavior is observed in the real
system, where the agent decides whether to let the pendulum fall or not depending on the
disturbance.



4 RL Application: Log-grasping of a Forestry
Crane

In this section, an RL application for grasping a log with a forestry crane is presented.
In doing so, a physically based system dynamics of the forestry crane is computed using
AGX Dynamics [30]. A brief introduction is given below to provide an overview of this
chapter.

4.1 Introduction
Forestry cranes are used to load wood logs from a pile or from the forest floor onto the
bed of a truck. The loading cycle consists of moving the grapple over one or several wood
logs, grasping them, moving the crane back to the truck bed, and placing the logs there.

In literature, a model-based [31], [32] and a learning-based approach [33] for controlling
forestry cranes are investigated. In [34], [35], path planning approaches for the crane
grapple are presented for moving from the initial configuration to the grasping position.
Recently, Andersson et al. [36] presented an RL-based solution for the half-loading cycle,
i.e. moving the crane to the log and grabbing the log. In [36], a small log next to a
forwarder on the ground is considered. Additionally, the position and rotation of the log
are random, however, the size of the log is constant.

Experienced operators use different strategies for grasping logs depending on the en-
vironment and log diameter. When grasping a log, the safest strategy is to wrap the
gripper jaws around the log and then close the gripper. This helps to firmly lock the
wood log in place, as shown in Figure 4.1a. Given the gripper design with the interlocking
jaws, logs with diameters down to about 10 cm can be tightly grasped using this method.
Additionally, smaller logs can be handled, as they can then only escape from the side of
the gripper. The grapple in Figure 4.1a can also handle logs larger than the jaws can
fully enclose. In this case, if the jaws can enclose more than half of the log, it can be held
safely.

Another way to grasp small and light logs is to clamp them with the jaws from both
sides instead of enclosing them completely, as shown in Figure 4.1b. This method works,
however, it relies only on the clamping pressure of the jaws. Therefore, the log can be
damaged and the grip is not very secure, especially if the gripper is not exactly over the
center of gravity of the log.

Aditionally, the movements required to bring the log into the closed position in the grapple

29
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(a) Secure grasp on a medium-sized log. (b) Pinch grasp on a small log.

Figure 4.1: Different ways to grasp a log.

can vary depending on the environment. If the log is lying flat on the ground, an upward
motion is required when closing the grapple after lowering the boom tip over the log to
prevent the grapple from colliding with the ground. This movement can be seen in the
sequence of images in Figure 4.2.

Figure 4.2: Graspig a log from the ground.

A simpler strategy can be applied if the log is supported on either side, as the bottom
row in typical log piles is. In this scenario, shown in Figure 4.3, the upward motion is not
necessary. The jaws can be closed after placing the grapple on top of the log without any
extra movement.

While small and medium logs can be completely enclosed by the grapple, this is not
possible for large logs. Therefore, the strategy for large logs is similar to that for supported
logs. Place the open grapple on the log and close it to wrap the jaws around the log as
much as possible and grip it tightly. In this scenario, the grapple cannot collide with the
ground because the grapple jaws are too short compared to the log diameter. Given the
above overview of the complexity of the grasping task, it is difficult to solve this task using
only standard control strategies. One could combine task scheduling approaches with
different control strategies. Another option is to use RL to train an agent in a synthetic
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Figure 4.3: Grasping a log on supports.

environment with different log sizes and contact models.

In this chapter, an RL method is applied to solve the task in combination with a model
simulated by a physics engine. The following scenario is considered. The jaw gripper
is placed somewhere above the wood log, the RL-trained agent is utilized to perform
the grasping task. Different diameters of a wood log are investigated to find a universal
solution for this task.

4.2 Modeling
Figure 4.4 illustrates the schematic of the timber crane. In real-world applications, this
crane is often attached to a truck to perform the loading of wood logs in the forest industry.
The considered crane has a total of 10 joints. Since there are two synchronized joints at q4
for extending the arm length and q8 for grasping action, the total considered joints of the
timber crane model are reduced to 8. Overall, the timber crane has a total of eight degrees
of freedom (DoFs) qT = [qT

A, qT
U ] consisting of six actuated DoFs qT

A = [q1, q2, q3, q4, q7, q8]
and two non actuated joints qU = [q5, q6]. The first joint q1 is the swivel joint for rotating
the whole crane. The joints q2 and q3 can be used to raise and lower the first and second
boom. The next joint q4 is used for extending the telescopic boom. Additionally, q5 and
q6 are unactuated joints that are used to ensure the center of mass of the log remains
below the boom tip. The pivot joint q7 allows the grapple to rotate endlessly to match
the rotation of the log. The last joint q8 is utilized for opening and closing the grapple.
Note that only q4 is a translational DoF while all others are rotational DoFs.

4.2.1 Kinematics
The kinematics of the forestry crane is described by transformations from a coordinate
Frame Fi attached to joint i to a coordinate frame Fi−1 attached to joint i − 1

Hi
i−1 =

�
Ri

i−1 di
i−1

0T 1

�
∈ SE(3) (4.1)
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Figure 4.4: Schematic of the forestry crane.

where Ri
i−1 ∈ SO(3) is a three-dimensional rotation matrix and di

i−1 ∈ ❘3 is a three-
dimensional translation vector. The coordinate frames are illustrated in Figure 4.4 selected
according to the Denavit-Hartenberg (DH) convention, see, e.g., [23]. Note that frame F11
is defined by DH convention w.r.t. frame F8 instead of F10 due to the kinematic structure
depicted in Figure 4.4. Hence, homogeneous transformations Hi

i−1, i = 1, . . . , 10, 12 and
H11

8 can be described using four DH parameters θi, di, ai and αi as

Hi
i−1 = HRz(θi)HT z(di)HT x(ai)HRx(αi) , (4.2)

where HRi is a pure rotation around the i-axis and HT i is a pure translation in direction
of the i-axis. The transformation from Fj to Fi, 0 ≤ i < j can be computed using

Hj
i =


�j

l=i+1 Hl
l−1 , for j ≤ 10 �8

l=i+1 Hl
l−1

�
H11

8 Hj
11 , for 11 ≤ j ≤ 12

, (4.3)

where �j
l=i+1 Hl

l−1 being the identity for j ≤ i. The DH parameters for the crane are
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Table 4.1: Characteristic of the timber crane’s joints.
Coordinate Name Actuated Range Unit

q1 slewing joint ✓ [-3.71, 3.71] rad
q2 boom joint ✓ [-1.2, 1.56] rad
q3 arm joint ✓ [-0.91, 4.6] rad
q4 telescopic boom ✓ [0, 4.47] m
q5 tip joint [-1.57, 1.57] rad
q6 tilt joint [-0.79, 2.36] rad
q7 rotate joint ✓ [−∞, ∞] rad
q8 grapple jaws ✓ [0, 3] rad

Table 4.2: Denavit-Hartenberg parameters of the timber crane.
i θi [rad] di [m] ai [m] αi [rad]
1 q1 2.425 0.1800 π/2
2 q2 0 3.4931 0
3 q3 0 -0.3925 π/2
4 0 q4 + 3.157 0 0
5 0 q4 0 −π/2
6 q5 0 -0.2130 −π/2
7 q6 0 0 −π/2
8 q7 0.578 0 0
9 −π/2 0 0.3402 π/2
10 π/2 0 0.8566 0
11 π/2 0 0.3248 π/2
12 π/2 0 0.8566 0
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Figure 4.5: The forestry crane in AGX Dynamics simulator.

given in Table 4.2. Using the above kinematic relations, the wrist position of the grapple,
dT

g = [gx, gy, gz], is taken from

H8
0 =

�
R8

0 dg

0T 1

�
. (4.4)

4.2.2 Simulator
A physics-based simulation is created using a commercial physic engine AGX Dynamics
[30] which supports real-time simulation of multibody systems of nonsmooth contact
dynamics and deformable terrain.

In AGX Dynamics, the dynamical system is comprised of multiple heterogeneous subsys-
tems with stiff dynamics and unpredicted events where the connectivity and number of
variables suddenly change. In this type of system, in addition to differential-algebraic
equations of motion [23], the velocity of a physical body may change discontinuously with
respect to a specific impact law, e.g., [37, 38], which can be expressed in terms of com-
plementarity conditions and inequality. The system dynamics is solved by a non-smooth
discrete element method [39]. Additionally, the contact forces are modeled using impact
laws and kinematics constraints for unilateral contacts and friction.

A snapshot of the simulated environment is illustrated in Figure 4.5. The assembled model
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Table 4.3: Properties of the log.
4D Pose Label Description Initial Range Unit

lr distance (polar coordinate) [5, 7] m
Displacement lθ angle (polar coordinate) [-0.26, 0.26] rad

lz height 0.2 + d/2 m
Rotation lϕ rotation along the vertical axis [−π/2, π/2] rad

of the forestry crane (including the truck) consists of 38 rigid bodies and 10 active joints
(two pairs of the joints are synchronized). The total operating weight of the forestry crane
is ≈ 1981 kg. To create a realistic scenario, Young’s modulus of the contact model between
the six tires and the ground is set to 5.105 while the contact between two mounting
supports (at the truck’s cabin and at the back) with the ground is set to 108. Additionally,
rotary joints are driven with velocity-controlled rotary motors while the telescopic boom
joint q4 is driven by a linear motor.

4.3 RL Environment
The training environment is created using OpenAI’s Gym library [24]. In this environment,
a 4 m long cylindrical log with a random diameter d ranging from 20 cm to 80 cm is
considered. This log is placed on two supported bars, as illustrated in Figure 4.5. We
assume that the location and orientation of the center of mass (CoM) of the log are given.
Using the given pose of the log, the polar displacement lr and the rotation angle of the
log’s CoM w.r.t. the origin of the frame F0 are computed. The use of polar coordinates is
chosen because of the rotationally symmetrical workspace of the crane.

The vertical displacement w.r.t. the ground of the log’s CoM lz is considered. Additionally,
the rotation angle of the log w.r.t. the world coordinate is taken into account. This
augmented input, i.e., 4D pose of the log [lr, lθ, lz, lϕ], enriches the information which
helps the agent to make a correct decision. For instance, if the grapple is not aligned
correctly w.r.t. the log, no grabbing is possible. Thus, the rotation of the log along the
vertical axis lϕ is an important property.

The 4D pose of the log is summarized in Table 4.3. Note that randomizing the log’s pose
and its diameter is very useful since we can compute a very general policy that can handle
different log sizes in different situations. Note that, to focus on the grabbing action, the
grapple is initially located above the log in close proximity.

The slewing joint q1 is used to initially place the grapple close to the log by matching the
angle lθ. Additionally, a random offset in the range of [-10◦, 10◦] is added to the initial
state of q1. Without this random part in the initialization, there would be no incentive for
the RL agent to move the slewing joint because it would be already correctly aligned. In
Table 4.4, the initial configuration of the crane is summarized. An example of the initial
configuration is depicted in 4.6.
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Figure 4.6: Example of an initial setup of the crane environment.

Table 4.4: Initial values of the crane joints.
Joint Coordinate Initial Value Unit

q1 π/2 − lθ + rand() rad
q2 0.31 rad
q3 0.79 rad
q4 0.25 m
q5 0.47 rad
q6 π/2 rad
q7 π/2 rad
q8 1 rad

4.3.1 Actions and Observations
The used model of the crane is speed controlled, therefore, the actions are speed set points
for every actuated joint. The speed set points for the actuated joints qA are combined
in the vector uT = [u1, u2, u3, u4, u7, u8]. In the RL environment, observations are what
the agent perceives after executing an action. First, all joint angles are included in the
observation set, as well as the 4D pose of the log.

Additionally, we utilize the relative 4D pose in the observation set which helps to simplify
the agent’s task. This is based on the following reason: “The agent can only learn a useful
grabbing strategy if the grapple is close enough to the log and is sufficiently aligned”.
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Table 4.5: Summarizing of the observations and actions.
Observations Actions

Joints

q1 u1
q2 u2
q3 u3
q4 u4
q5
q6
q7 u7
q8 u8

4D Log Pose

lr
lθ
lz
lϕ

Relative 4D Pose

δx

δy

δz

δϕ

Thus, the relative 4D pose vector is computed

δ =


δx

δy

δz

δϕ

 =


gx − lx
gy − ly

gz + gzoff
− lz

gϕ − lϕ

 , (4.5)

the grapple rotation along the vertical axis gϕ is in the form

gϕ = q1 − q7 , (4.6)

[gx, gy, gz] are taken from (4.4). Because of the symmetric structure of the grapple and
the wood log, two possible configurations are possible for grabbing a log. To indicate both
configurations as valid options, the restriction of δϕ ∈ [−π/2, π/2] can be achieved with
a modulo operation. The user-defined parameter gzoff , see Table 4.6, is used to specify
the target position of the wood log w.r.t the grapple in a way that a stable grasp can be
achieved when this position is reached. Since the log’s diameter d can be varied in the
range of [0.2, 0.8] m, gzoff can be used to shift the target position up or down w.r.t. the
grapple position dg to adapt to the log diameter. Table 4.5 summarizes observations and
actions for this RL environment.

4.3.2 Episode Termination
Each training episode has a limitation of 103 time steps. In the following, termination
criteria are listed in detail.
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• To teach the agent to avoid joint limits, an episode is terminated early if one of the
joint limits is violated.

• Another case that triggers termination is when the log is more than 8 meters away
from the grapple, which can happen when the crane tries to push the log.

4.3.3 Reward Function
To gradually teach the forestry crane to grasp a wood log, five terms are combined to
build the reward function

r = rc + rd + ro + rt + rl . (4.7)

These terms are explained in the following using the positive weights w□ and the scaling
parameters s□

• The first term rc is a constant value to encourage exploration and avoid early
termination. This value rc = 0.1 is chosen to be negligible once the forestry crane
gains reward from other terms.

• The second term
rd = wde−sd|δ| , sd > 0 , (4.8)

with δ defined in (4.5), is utilized to teach the forestry crane to align the grapple to
the log’s yaw angle and to minimize the distance between the grapple position dg

(4.4) and the log’s CoM.

• To perform the grasping action, the grapple has to be opened while moving down to
the target location. Then the forestry crane starts closing the grapple. Thus, the
third reward term is given by

ro = wo

�
(1 + q8

so
) if |δ| < ϵ

(1 − q8
so

) if |δ| ≥ ϵ
, so > 0 . (4.9)

This reward term returns the highest value for an open gripper if |δ| is larger than
a threshold. When |δ| becomes smaller, which means that the grapple is close and
is well-aligned to the wood log, closing the grapple is most rewarded.

• The next reward term rt is given if the grapple touches the wood log. The grapple
consists of three parts. The first and second parts are the two jaws. The third part
is the upper plate where two jaws are mounted. This reward function is defined as

rt = wt

�
(t1 + t2 + stt3) if |δ| < ϵ

0 otherwise
, st ≥ 0 , (4.10)

with t1, t2, and t3 are three binary variables that are set to 1 if the log is touched
by the corresponding parts of the grapple.
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• The final term is used to reward the goal of lifting the log and simultaneously
penalize the action u, i.e., the motor speed setpoints when the log is already lifted
from the ground in the form

rl =
�

wle
−|u| if lz > lz0 + sl

0 otherwise
, sl > 0 . (4.11)

Note that using only this function for the total reward (4.7) can also lead to a
successful grasp. This intuitively allows the robot to try out all actions that could
lead to mastering the grasping task. However, other terms, e.g. rd, ro, rt, can be
considered as curricula [40] that could teach the robot to accomplish the task in a
faster computation time and in a more robust way.

By selecting different user-defined parameters, two policies are designed for the grasping
task. The parameters for these two policies, A and B, are presented in Table 4.6. In order
to lift the log, contacts between the two jaws and the log are necessary. The contact
between the log and the upper plate of the grapple is optional, although it is an indicator
of a good grasp. Different values of st for two policies are selected to adjust the importance
of this factor in the total reward function. Note that the final goal is to grasp the log
and lift it from the ground. Thus, the parameter wl is set to be dominant over other
parameters in both policies.

The main difference between the two policies is the contact reward rt (4.10). Policy B
takes into account the contact point between the log and the upper part of the gripper,
while policy A neglects this factor, i.e., st = 0. Additionally, the parameter gzoff is
differently defined for the two policies. For policy A, a constant offset gzoff = 0.5 is used
for all log sizes such that they all fit into the grapple. For policy B, the target position
of the log in the grapple is adjusted so that it only has to touch the upper part of the
gripper, taking into account the given log diameter, gzoff = 0.125 + d/2.

Table 4.6: Parameters of the reward function.
Policy A Policy B

wd 1 1
wo 1 1
wt 1 1
wl 10 5
sd 4 4
so 3 3
st 0 0.5
sl 0.1 0.1
ϵ 0.5 0.5

gzoff 0.5 0.125 + d/2
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Figure 4.7: Success results of Policy A for different log diameters.

4.4 Simulation results
The AGX 2.26.1.5 package is used to create the environment of the forestry crane, see
Figure 4.5. We utilize PPO [12], an on-policy algorithm, for training two policies A
and B in an Intel i9 12000K CPU with 64 GB of RAM memory. The agent, i.e., the
decision-making module, consists of two hidden fully connected layers. Each layer has 256
neurons. Each policy is trained over 25e6 steps by using an Adam [41] optimizer.

To evaluate two policies, the following criteria are considered. First, a successful grasp
is counted if the log is lifted 10 cm above the ground. Another criterion is that not only
the successful grasp is achieved, but also that a secure grip is executed. In this case, a
successful episode is counted when the log is lifted and all three parts of the grapple touch
the log. Evaluations are statistically reported over 103 episodes.

4.4.1 Policy A
The evaluation of policy A results in an overall success rate of 68.7%. For policy A,
there is no direct information about the log’s diameter in the observations or the reward
function. Therefore, one can assume that the results are independent of the log’s diameter.
However, the success rates vary for different log diameters. To analyze this, the evaluation
is performed for different fixed diameters. The result of this test is shown in Figure 4.7.
Policy A shows the best performance for small to medium logs, i.e., d ∈ [20, 40] cm while
the performance decreases for larger logs.

A successful grasp on a large log can be seen in Figure 4.8. Therein, the jaws close
around the log and create a secure grip. Another example of grasping a small log can be
seen in Figure 4.9. In this example, the agent performs the pinch grasp, see Figure 4.1.
Indeed, the use of the relative 4D pose (4.5) in the reward rd (4.8) gives incentives for the
agent to minimize the distance between the log’s CoM and the fictive point under the
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Figure 4.8: Snapshot of a successful grasp of a big log using Policy A.

grapple defined by the grapple position dg (4.4) and gzoff = 0.5. For large logs, the offset
gzoff matches roughly the radius of the log, whereas for small logs, the constant value
of gzoff encourages a gap between the log and the grapple. The agent responds to this
incentives, by facilitating the pinch grasp on small logs. To obtain quantitative results on
how often the problem is solved with a secure grip, policy A is tested with the second
success criterion, resulting in a success rate of 16.7%.

4.4.2 Policy B
In policy B, the reward function is modified to increase the successful rate of the second
criterion, i.e., secure grasp. Since the constant offset between the grapple and the center of
the log makes a secure grasp difficult with small logs, a variable distance gzoff = 0.125+d/2
is introduced. This distance depends on the diameter of the log and defines the reference
point at which the log must be located in order to be gripped securely. This addition
means that the observations contain a certain amount of information about the trunk
diameter, although this information is not given directly.

Training with this modified reward function leads to policy B, which achieves an overall
success rate of 66.8%, close to the performance of policy A. With a total number of secure
grasps of 36.4%, this strategy can significantly improve performance in terms of safe grasps
using the modified reward function. The ratio of secure grasps over successful grasps is
54.5%.

While policy A shows a slight drop in performance for larger logs, the same correlation
is even higher for policy B, as can be seen in Figure 4.10. For small to medium-sized
logs, this policy performs much better than policy A, which could be a direct result of



4 RL Application: Log-grasping of a Forestry Crane 4.4 Simulation results 42

Figure 4.9: Successful grasp of a small log using policy A.
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Figure 4.10: Success results of policy B for different log diameters.
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Figure 4.11: Successful grasp of a small log using policy B.

the grasping strategy for smaller logs. Policy B does not demonstrate the pinch grasp
for small logs. Instead, secure grasps are mostly applied, see Figure 4.11. For larger
diameters, the performance of policy B decreases rapidly. An example of a successful
grasp on a large log is illustrated in Figure 4.12.

4.4.3 Discussion
Although the scenario with the log supported on the ground is common in reality, a
scenario with the log lying flat on the ground is even more common. The latter is
particularly interesting for applications in which the logs are collected directly from the
forest floor. Since the two policies were trained for the supported log, the question arises
as to how they can be transferred to a scenario with the log lying on the ground. The
tests for this scenario result in an overall success rate of 58.9 % for policy A and 44.5 %
for policy B. In this case, using the pinch grip on small logs could be advantageous. This
is because it is easier to pinch the log than to place the jaws exactly between the ground
and the log to ensure a secure hold. Figure 4.13 shows an example of how the forestry
crane picks up the log in this scenario in the event of a successful grasp.

Policy B performs very poorly with the largest logs. A common behavior of the crane,
when it fails, is that the grapple is not open wide enough to enclose the large circumference
of large logs. In this case, the system tries to push the grapple down onto the log, which
is not possible due to the collision between the jaws and the log and gets stuck in this
position. An example of this is shown in Figure 4.14. This behavior could be due to the
fact that the information about the diameter is only indirectly included in the observations
and the gripper would be open wide enough for smaller logs.
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Figure 4.12: Successful grasp of a big log using policy B.

Figure 4.13: Successful grasp of a log from the ground using policy B.
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Figure 4.14: Failed grasp attempt: The grapple did not open wide enough.

Another type of failure is shown in Figure 4.15. The crane has successfully approached
the log, opened the jaws wide enough, and even achieved a good grip by closing the jaws,
but still remains stuck in this position instead of simply lifting the grapple together with
the log. One reason for this behavior could be that the gripper is not exactly where it
should be due to the relative 4D position. In this case, the grapple is already clamped to
the log and the crane movement can no longer improve the relative position error, so the
agent stops moving.

The third method of failure depends on the approach. If the grapple is not lowered onto
the log from above, it could push the log away from the side as it approaches. Once the
log is rolled off the supports, it is in a largely unexplored position from which the agent
cannot recover, as shown in Figure 4.16. However, if the log remains on the supports,
there is a chance that the agent can still successfully grab the log after a slight push from
the side

4.5 Conclusion
The success of policy A shows the general feasibility of applying RL to the problem of
grasping tree logs. The resulting policy is able to grasp logs with different diameters.
Although the grasping strategy for large logs is similar to those used by expert operators,
this is not the case for small logs.

With changes to the reward function, the grasping skills are altered, as shown by the
results of policy B. By rewarding contact between the log and all three parts of the gripper,
the agent is encouraged to use the closed grasp. Changing the calculation of the relative
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Figure 4.15: Failed grasp attempt: The crane did not lift the log, although it grasped it.

Figure 4.16: Failed grasp attempt: The grapple pushed the log away.
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4D position to a diameter-dependent version removes the incentive to position the gripper
in relation to the log in such a way that the pinch grasp is the best option for small logs.
This changes the grasping strategy for small logs so that the pinch grasp is no longer used.

While strategy A is completely independent of log diameter, strategy B is not. In order
to obtain a strategy that is independent of log diameter and behaves like strategy B in
terms of the grasping strategy for small stems, a possible solution could be to use the
touch reward for all grasping parts and keep the reward depending on the relative 4D
appearance low compared to the other rewards.

Changing the parameters in the reward function for policy B could potentially improve
the success rate for large wood logs. Setting these parameters could help the agent to
overcome positions where the gripper cannot reach the log due to partially closed jaws or
where the crane stops after grasping the log.
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