
institute of
telecommunications

Master Thesis

Neural Networks for Mixed Image
Classification

Valon JASHARI
01634834

December 2023

Supervisor:
Univ.Prof. Dipl.-Ing. Dr.-Ing. Norbert GÖRTZ

This thesis has been submitted in compliance with the requirements for the degree of
Diplom-Ingenieur at

Technische Universität Wien

Faculty of Electrical Engineering and Information Technology

Institute of Telecommunications

I confirm that this master thesis is my own work and I have documented all sources
and material used.

Ich versichere, dass ich diese master thesis selbstständig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

Vienna, December 2023 Valon JASHARI

Acknowledgments

I would like to thank my advisor, Georg Pichler, very much for the enjoyable work
we’ve done together, his endless enthusiasm, his helpful suggestions, and the stimu-
lating conversations we’ve had throughout this project. He gave me his unwavering
support and was always available when I needed guidance, and his comments were
crucial to finishing my thesis.

Professor Norbert Görtz deserves special thanks for inviting me to participate in
this research project and for his insightful remarks and constructive feedback. His
guidance and encouragement were invaluable to me at every step.

Finally, I want to thank my family, especially my wife, Festina, for always being
there for me and supporting me. I also want to thank my friends Fares, Pajtim,
and Petrit for always having my back. Their love and support have helped me stay
inspired and on track with my goals, and I’m thankful for that. I would not have
been able to do it without your love and support.

Sincere appreciation goes out to everyone who helped in any way with this research.
Thank you for your unwavering support and encouragement throughout this journey.

Abstract

Convolutional Neural Networks (CNNs) are specialised Neural Networks (NNs)
that are particularly well-suited to image recognition tasks.

Therefore, this thesis investigates how to combine digits in an image and then
recognise them using a CNN trained on a dataset of images containing digit combi-
nations.

For the Initial Model (M1), the results of a trained CNN for the classification of
single-digit images when fed with mixed input images. Then, image recognition
experiments are performed both with images containing the single digits for which
the CNNs were trained and with mixed images, and the recognition results are
evaluated numerically.

In addition, the new concept of Improved Model (M2) (this combinations model
used to have 55 outputs), in which overlayed images of two digits are randomly
combined, is used to train the CNN for recognising two digits in overlayed images
and thus improve its performance in recognising mixed images.

In the end, we compare M1 single-digit and multi-digit results to M2 results.

Key words: CNNs, single-digit, multi-digits, models (M1 and M2).

iv

Kurzfassung

Konvolutionäre Neuronale Netzwerke (Konvolutionäre Neuronale Netzwerkes (KNNs))
sind spezialisierte NN, die besonders gut für Bilderkennungsaufgaben geeignet sind.
Daher untersucht diese These, wie man Ziffern in einem Bild kombiniert und sie
dann mithilfe eines KNNs erkennt, das auf einem Datensatz von Bildern mit Ziffer-
kombinationen trainiert wurde.

Für das Initial Model (M1) werden die Ergebnisse eines trainierten KNNs zur
Klassifizierung von einzelnen Bildern ausgewertet, wenn es mit gemischten Eingangs-
bildern versorgt wird. Dann werden Bilderkennungsexperimente sowohl mit Bildern
durchgeführt, die die einzelnen Ziffern enthalten, für die die KNNs ausgebildet
wurden, als auch mit gemischten Bildern. Die Ergebnisse der Erkennung werden
numerisch ausgewertet.

Zusätzlich wird das Konzept des Verbesserten Modells (M2) verwendet, bei dem
mehrere Ziffern zufällig kombiniert werden, um das KNN darauf zu trainieren,
doppelte Ziffern zu erkennen und somit die Leistung bei der Erkennung von gemis-
chten Bildern zu verbessern. Darüber hinaus wird das neue Konzept von M2 (dieses
Kombinationsmodell wird 55 Ausgänge haben), bei dem überlagerte Bilder von zwei
Ziffern zufällig kombiniert werden, verwendet, um die KNN für die Erkennung
von zwei Zahlen in überlagerten Bildern zu schulen und so ihre Leistung bei der
Erkennung gemischter Bilder zu verbesser

Abschließend werden die Ergebnisse von M1 für Einzelziffern und Mehrfachziffern
mit den Ergebnissen von M2 verglichen.

Schlüsselwörter: KNNs, Einzelziffer, Mehrfachziffern, Modelle (M1 und M2).

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1. Introduction 1
1.1. Problem Statement . 1
1.2. Thesis overview . 2

2. Neural Networks Fundamentals 3
2.1. Background . 3
2.2. Artificial Intelligence . 3

2.2.1. Applications of AI . 4
2.3. Machine Learning . 4

2.3.1. Applications of ML . 4
2.3.2. Types of Machine Learning . 5

2.4. Deep learning . 6
2.4.1. Applications . 6

2.5. Logistic Regression . 7
2.5.1. Notation of Logistic Regression 7

2.6. Types of Loss Function . 8
2.6.1. Mean Square Error . 8
2.6.2. Cross-Entropy . 8

2.6.2.1. Binary Cross-Entropy 9
2.6.2.2. Categorical Cross-Entropy 9

2.6.3. Cost Function . 9
2.6.4. Gradient Descent . 10

2.7. Neural Networks . 11
2.7.1. Basics of Neural Networks . 11
2.7.2. How neural networks works . 11
2.7.3. Neural Networks Output and Computing 12
2.7.4. Data Representation - Tensors 13

vi

Contents

2.7.5. Activation Function . 13
2.7.5.1. Sigmoid Function . 13
2.7.5.2. Rectified Linear Unit Function 14
2.7.5.3. Softmax Activation Function 14

2.8. Types of Neural Networks . 15
2.8.1. Artificial Neural Networks . 15
2.8.2. Perceptron . 15
2.8.3. Convolutional Neural Networks 15

3. Convolutional Neural Networks Fundamentals 17
3.1. From deep neural networks to CNNs 17
3.2. Convolution . 18
3.3. Pooling . 18

3.3.1. Max pooling . 18
3.4. Fully Connected Layer . 19

4. Single vs. Multi-Digit Classification 20
4.1. Dataset . 20
4.2. Training Procedure . 20

4.2.1. One Digit Model (M1) . 21
4.2.1.1. Architecture . 21
4.2.1.2. Training model with one digit 21

4.2.2. Two Digits Model (M1) . 22
4.2.2.1. Architecture of two digits model 22
4.2.2.2. Training model with two digits 23

4.2.3. Training model with parameters 24
4.2.4. Proposed Concept (M2) . 24

4.2.4.1. Architecture of combinations model 24
4.3. Evalution Procedure . 25

5. Experiments and Results 27
5.1. Experimental setup . 27

5.1.1. Evaluation Environment . 27
5.2. Results of Training Procedure . 28

5.2.1. Single Digit Performance with M1 28
5.2.2. Multi-Digit Classification Performance with M1 28
5.2.3. Multi-Digit Classification Performance with M2 29
5.2.4. Parameter Performance with M1 29
5.2.5. Loss Function Computation . 30

vii

Contents

5.3. Outcomes of Testing Procedure . 31
5.3.1. Single Digit Classification Performance (M1) 31

5.4. Multi-Digit Classification Performance with Initial Model (M1) 32
5.5. Multi-Digit Classification Performance with Improved Model (M2) . . 33
5.6. Threshold Evaluation with Initial Model (M1) 33

6. Conclusion 35
6.1. Conclusion . 35
6.2. Future Work . 35

A. General Addenda 36
A.1. Backward Propagation Example . 36
A.2. Example of Computation Graph . 37
A.3. Linear Activation Function . 38

A.3.1. Why Non-linear Activation Functions 39
A.4. Example of convolution in CNN . 39
A.5. Example of max pooling . 40

List of Figures 41

List of Tables 42

Listings 43

Acronyms 44

Bibliography 46

viii

1. Introduction

Recently, interest in Artificial Intelligence (AI) and Machine Learning (ML) has
increased. Global tech giants such as Microsoft, Google, Amazon, Netflix and
Facebook are optimising the use of AI or ML in healthcare, logistics, finance, music,
revenue generation, real estate and communications

The classification of images in computer vision is an important topic of Deep
Learning (DL), focusing on NNs and CNNs. DL algorithms produce NNs that map
high-dimensional input data (such as images) to low-dimensional output vectors
that can be used to classify image content. In this thesis, we use CNNs for image
recognition tasks [1].

1.1. Problem Statement

The problem is what classification results CNNs provide when they are trained
with image databases containing certain single digits (e.g., the handwritten numbers
0, 1,..., 9) in each image of a training database such as Modified National Institute of
Standards and Technology (MNIST), and then mixed images (e.g., the numbers "1"
and "2" in an image) are fed into the network for recognition. The training process
for CNNs is designed so that after several pooling steps, the final fully connected
recognition network produces a large output in a particular vector component and
small outputs in all others for each element to be recognised (i.e. 10-dimensional
output vectors for the classification of the handwritten characters 0, 1,..., 9).

The main motivation in this thesis is what results a CNNs trained to classify single
digits produces when fed with mixed input images. Subsequently, CNNs are trained
for both mixed images containing single digits and multi-digit images with the aim
of evaluating the recognition results for single digits and multi-digit images.

New images are generated by using a CNN trained on single-digit digits to
recognise single-digit and then two-digit digits with the initial model (M1). Then,
using an improved approach (M2), the multi-digits are used to train a CNN to
recognise multi-digits (a new concept two-digit combination-generating method
produced 55 pairings)

Thus, in this thesis, simulations and reports on the results for single-digit recogni-
tion are performed. Concepts are developed to use a CNN trained on single-digit

1

1. Introduction

digits and extended for multi-digit digits, and the new concept is compared with the
performance of CNNs trained on multi-digits [2].

In this thesis, we were interested in combining digits and determining their accuracy
after training and testing the models. We also experimented with different network
parameters, CNN layers and approaches to improve the accuracy of the models.

1.2. Thesis overview

This thesis is organised into six chapters.

• Chapter 2 gives a brief introduction to the basics of NNs types, applications,
architecture, components, loss and activation functions of neural networks.

• Chapter 3 introduces the basics of CNNs, such as convolutional operations,
pooling, max-pooling and fully connected layers.

• Chapter 4 introduces the classification approaches, starting with single-digit
classifications, then multi-digit classifications with M1, briefly explaining the
methods used to train CNNs to recognise single and multi-digit images, and
the use of parameters (epochs, batch size and threshold). The final part of this
chapter looks in more detail at the combination model (M2), where randomly
combined multi-digits are used to train CNNs to recognise multi-digits.

• In chapter 5, we discuss the accuracy and performance results for both single-
digit and multi-digits with M1 and new concepts (M2).

• Last but not least, in chapter 6, conclusions based on the outcomes of chapter 5
and an outlook for future work.

2

2. Neural Networks Fundamentals

2.1. Background

This chapter presents the basic concepts of AI technologies used in this thesis, such
as ML, DL, NNs, tensors, and data transformation techniques.

2.2. Artificial Intelligence

The relationships between AI, ML, DL and NN are shown in figure 2.1. Each of
these components is a constituent aspect of the previous method. NNs serves as a
basic framework for deep DL algorithms, which in turn represent subdomains within
the broader domain of ML. In addition, ML itself is a subdomain within the larger
domain of AI.

Artifical
Intelligence

Deep
Learning Neural

Networks

Machine
Learning

Figure 2.1.: Relation of AI, ML, DL and NN

AI encompasses learning, reasoning, perception, language intelligence, problem
solving and the adaptation of new solutions to the system that intelligently facilitates

3

2. Neural Networks Fundamentals

user learning, demonstration and consultation. AI refers to modern machines that can
perform complex functions and do muscle work in an "intelligent" way, sometimes
defined as a discipline of computer science that creates "intelligent" smart machines
that can perform tasks [3].

2.2.1. Applications of AI

AI has applications for corporate intelligence, data science, cybersecurity, health
plans and patient care. Drug research, clinical trials, speech recognition, hospital-
ity advertising, marketing automation, entertainment, etc. They are also used in
autonomous vehicles, robots, financial research and trading, virtual assistants and
personalised recommendation systems. Agriculture, education and environmental
monitoring use AI to improve efficiency and decision-making [4].

2.3. Machine Learning

ML enables computers to learn on their own by using training or sample data to
create mathematical models that enable decision making without scripting. Comput-
ers in ML learn autonomously from interactions and actions so that they can learn
from experience [5].

ML takes a unique approach to input elements compared to traditional program-
ming. In a training phase, exact answers are collected from labeled data and trained
with other data to obtain an answer. In the second phase, the model ML uses the
rules from the first phase and new data, as shown in 2.2 [6].

Training
Inference

Data

Answers

Training Phase

Answer
Rules

New data

Inference Phase

Model architecture

Figure 2.2.: Machine Learning model

2.3.1. Applications of ML

The applications of ML are wide-ranging, such as image and speech recognition,
natural language processing, medical diagnosis, characterization of physical objects,

4

2. Neural Networks Fundamentals

etc. ML revolutionises problem solving and assessment in various fields. Its versatility
and social impact can be seen in applications in banking, cyber security and driverless
cars, also in many other areas [7].

• Agriculture, Chemistry, Mathematics, Physics

• Cognitive Modeling and Computer programming

• Education, Music, Game playing (chess, checkers, etc)

• Image and Speech Recognition, Natural Language Processing

• Medical Diagnoses, Physical Object Characterizations

• Expert Systems (AI programs, high-performance systems)

2.3.2. Types of Machine Learning

The classes of ML algorithms are based on the training method and the availability
of results during training. The first category we used is explained along with three
others [8].

1. Supervised Learning (SL) is one of the most popular methods to learn from
multiple examples. The function SL is used to train a mapping function to
estimate y from the input parameter x. Table 2.1 lists the applications of SL,
including the categorization of images based on this thesis. CNNs is used for
image data, as explained in the chapter 3, Hybrid Neural Networks (HNNs) are
used in autonomous driving and Recurrent Neural Networks (RNNs) used for
speech recognition and machine translation [9].

Input(x) Output(y) Application Type of NN

Home features Price Real Estate Standard NN

Ad, user info Click on add? Online Advertising Standard NN

Image Object (1,...,100) Classification CNN

Audio Text transcript Speech recognition RNN

English German Machine translation RNN

Image, Radar info Connected cars Autonomous driving HNN

Table 2.1.: Supervised Learning Applications

5

2. Neural Networks Fundamentals

2. Unsupervised Learning (USL) uses a statistical approach to derive rules from
input data that identifies transformations of pre-existing patterns without know-
ing the targets or outputs.

3. Semi-Supervised Learning (SSL) is an unique algorithm that combines USL and
SL, where in the first case all observations have output labels and in the second
none. This paradigm works well when some parameters are labelled but most
of the data is not.

4. Reinforcement Learning (RL) is one of the three core paradigms of ML, an
intermediate learning approach that allows agents to gather environmental
information, perform actions and maximise rewards..

Data models in SL applications have two basic types of data [10].

1. Structured Data (SD) - represents clearly defined data, similar to a database.

2. Unstructured Data (USD) - No database is defined or maintained; this type also
includes music and images as "data"; text or image pixels are used as input.
Table 2.1 shows that USD are more common than SD, even though they are
more difficult to train; this type of data is used in this thesis [11].

2.4. Deep learning

DL, a subset of AI, applies multiple layers to extract features from input to output,
mimicking the data processing process of the human brain. Within a few days or
hours, DL can analyse huge amounts of unstructured data that would take humans
decades [12]. It automates processes using Artificial Neural Network (ANN), a
non-linear approach resembling the human brain’s network of neural nodes, which
allows for faster and more efficient decision-making.

2.4.1. Applications

The component DL is a state-of-the-art solution that can be applied to many
different domains. Although it uses hierarchical methods and has a large number of
layers to analyse, it has found wide application in many areas [13].

• Computers and machine vision

• Speech and audio recognition

• Social network filtering and natural language translation

6

2. Neural Networks Fundamentals

• Medical research and biometrics

• Image processing and aerospace engineering

Autonomous vehicles and robotics have also found applications for DL, especially
in the areas of object recognition and path planning.

2.5. Logistic Regression

Logistic Regression (LR) or a logit model is a statistical approach used for classifi-
cation and prediction analysis to estimate the probability of an event (belonging to
one or two classes). It predicts binary outcomes. It is used to SL models. [14].

2.5.1. Notation of Logistic Regression

The estimated ŷ represents the probability that a cat image is represented in a
picture, expressed as ŷ = P(y = 1|x) 0 ≤ ŷ ≤ 1, (x is a ηx dimensional vector)[15].

The output ŷ indicates the probability that a cat is present in the image, using
two parameters w and b, where w is a dimensional vector (w ∈ Rηx) and b is a real
number (b ∈ R), respectively. The formula for calculating ŷ is expressed in equation
2.1, which is intended to ensure that ŷ is equal to 1, as shown in figure 2.3. The
symbol σ(z) stands for the sigmoid function, as explained earlier in this chapter. It is
used as a σ(z), while the LR has a core function, the logistic function, exhibiting an
S-shaped curve, and transforms input values into probabilities within the range 0 to
1.

ŷ = a = σ(wTx + b) = σ(z). (2.1)

x1

x2

x3

ŷ = a

z = Wx + b a = S(z) L(a,y)

x

w

b

Figure 2.3.: Logistic regression overview

In figure 2.3, the expression a = S(z) represents the application of the sigmoid
activation function to the output ŷ , while L represents the loss function L(a,y).

7

2. Neural Networks Fundamentals

2.6. Types of Loss Function

The Loss Function (LF) measures the error per observation by measuring the error
between the predicted value of the model and the actual value in that sample. It has
two values: y the true label and ŷ the prediction of the model. Only the error per
sample is calculated. If the difference between the predicted result and the target
value is very small (the performance of the trained model is better if the predictions
are closer to the target values), then the loss value is also small, otherwise the loss
value is very high.

In my thesis, I discuss various LFs for faster image training, including Mean Square
Error (MSE) and Cross-Entropy (CE) functions, which are better suited to Tensorflow
and Keras, to minimize the difference between actual and expected output [16]. In
classification problems, there are three types. In this thesis, different LFs for faster
image training are discussed, including MSE and CE functions, which are more
suitable for Tensorflow and Keras to minimize the difference between actual and
expected output [16]. Two categories of classification problems are used in this thesis.

• Binary classification: only two class labels, for example [1], [0]. The task of
binary classification is to predict one of two class labels.

• Multi-class classification: more than two class labels are in the target, but only
one class label is assigned to an input, for example [010], [001], [100]. Multi-class
classification uses the task of predicting one of more than two class labels. The
categorical cross-entropy is used in this classification task.

2.6.1. Mean Square Error

MSE is a regression method that computes the difference between expected and
estimated values, squares this difference, and then calculates the mean of the squared
differences, as represented in equation 2.2, where ’n’ denotes the number of data
points [17].

MSE(x) =
1
n

n

∑
i=1

(yi − ŷi)
2 (2.2)

The Root Mean Square Error (RMSE) is a derivative of the MSE, which is the square

root of the MSE’s scalar value, expressed as RMSE =
√

MSE = ∑N
i=1(yi−ŷi)2

N .

2.6.2. Cross-Entropy

The CE, also known as the logistic loss function, is mostly used for classification
tasks. It calculates the difference between two probability distributions, expressed as

8

2. Neural Networks Fundamentals

in equation 2.3, where p(x) is the probability of a true event, q(x) is the probability of
an estimated event, and N is the number of classes. Categorical and binary CE are
used in this thesis.

Cross-Entropy (p,q) = −
N

∑
x=1

[p(x)log(q(x))] (2.3)

2.6.2.1. Binary Cross-Entropy

In binary CE, the target class label is binary (0 or 1), which represents the loss
function for the binary classification task [18].

Binary Cross-Entropy (p,q) = −[p(x) log(q(x)) + (1 − p(x))log(1 − q(x))] (2.4)

It is a special type of categorical CE, applicable when there are only two classes. It is
commonly used with a sigmoid activation function in the output layer, as expressed
by equation 2.4 and illustrated in the two cases below, where L represents the loss
function for this type of CE [19].

1 p(x) = 1 → L(q, p) = − log(q), with q optimized to be as large as possible.

2 p(x) = 0 → L(q, p) = − log(1 − q), with q optimized to be as small as possible.

In the above two cases, the objective of the binary CE loss is aligned by minimizing
the loss when the estimated probability (q(x)) matches the true class label (p(x)).

2.6.2.2. Categorical Cross-Entropy

Categorical CE is used for classification tasks with multiple classes. This is a special
case of CE where the target is a one-hot vector (1 is only in one place, the rest is 0) and
the loss is calculated only for the hot class (N=1), which means that the probability
distribution of a true event is 1 (denoted as p(x)=1), expressed as in equation 2.5 [20].

Categorical Cross-Entropy (p,q) = −
N

∑
x=1

[p(x)log(q(x))] = −log(q(x)) (2.5)

2.6.3. Cost Function

The Cost Function (CF) calculates the average of the loss functions over a training
dataset to optimize model performance by aggregating these values and adjusting the
model parameters (w and b) during training and to determine the performance of the

9

2. Neural Networks Fundamentals

NN over the entire dataset [21]. The cost function determines the optimal parameters
of the NN as expressed by equation 2.6, where m is the number of training examples.

J(w, b) =
1
m

m

∑
i=1

L(q(x), p(x)) = − 1
m

m

∑
i=1

[p(x) log(q(x)) + (1 − p(x)) log(1 − q(x))]

(2.6)

2.6.4. Gradient Descent

The gradient descent aims to find the global best value for parameters w and b (the
goal is to minimise the CF). These parameters are shown by partial derivatives and
learning rate (α), as shown in equation 2.7 [22].

w ← w − α
∂J(w, b)

∂w
& b ← b − α

∂J(w, b)
∂b

(2.7)

NN calculations are organised into forward and backward propagation steps, with
the first computing the NN’s output, with the calculation from left to right, and the
second calculating gradients (derivatives), with the calculation from right to left (red
arrow in figure 2.4).

Figure 2.4.: Calculating gradient for one training example

The main equations for determining gradient descent for LR on a single training
example involve changing parameters w and b to lower loss. Appendix A.1 provides
an example of backward propagation, whereas A.2 shows a computation graph (see
picture A.1). Equation 2.8 shows the steps for forward propagation.

Z = w1x1 + w2x2 + b ⇒ ŷ = a = σ(z) ⇒ L(a, y) (2.8)

10

2. Neural Networks Fundamentals

2.7. Neural Networks

NNs, inspired by the human brain, are ML models with interconnected artificial
neurons and the perceptron as their output generator. AI applications benefit from
NN’s ability capacity to learn from and incoming data [23]. The main components
include the input layer, hidden layers, and output layer.

NNs are effective in constructing functions that precisely map from input (x) to
output (y), particularly useful in supervised learning environments where input is
mapped to output, as illustrated in the figure 2.5.

x1

x2

x3

x4

Input Layer Hidden Layers Output Layer

y

Figure 2.5.: Basic ANNs

2.7.1. Basics of Neural Networks

The basic building block is a perceptron, which takes multiple input values, applies
weights, sums them up, and passes the result through an Activation Function (AF)
to produce an output. The depth of the ANNs model depends on its layers, which
transform data using weights and replicate a linear regression twice. In Figure 2.5, a
simple ANNs has one input layer, two hidden layers, and one output layer [24].

2.7.2. How neural networks works

In NNs, layers are used to map inputs to targets, with the weight of the layer being
the most important transformation element. The goal is to determine the weight
values for the layers that effectively map examples from input to target, but this is
not possible when thousands of layers are used. The optimizer uses the loss value as
a feedback signal and updates the weights to minimise the LF [25]. A training loop
that modifies the values for each run weight and lowers the loss value follows the
initial random assignment of weights (see figure 2.6).

11

2. Neural Networks Fundamentals

 Layer

 (data transformation)

 Layer

 (data transformation)

 Predictions

 Y'

 Loss
 function

 Loss function

 Loss score

 True targets

 Y'

Weights

Weights

Figure 2.6.: Weight, loss and optimizer

2.7.3. Neural Networks Output and Computing

NNs work similarly to LR, except that the calculations are repeated twice. It uses
the feature x and the parameters W and b, calculates z = WTx + b and a = σ(z) twice
for each layer, and uses the sigmoid function a = σ(z) to calculate the loss L(a,y). The
formula for one layer stands for layers one and two (superscript [1] and [2]), and the
round superscript x[i] stands for the i-th training example, as shown in figure 2.7.

x3

x1

x2

[1]

[2] x(i)

z[1] = W[1]x + b[1] a[1] = S(z[1]) L(a[2],y)

x

w[1]

b[1]

z[2] = W[2]a[1] + b[2] a[2] = S(z[2])

w[2]

b[2]

a[2]

ŷ = a[2]

Figure 2.7.: Neural networks overview

In NNs, calculate the linear equations of z[1], a[1], z[2] and a[2] using equations below.

12

2. Neural Networks Fundamentals

Then calculate the loss L(a[2], y) [26].

• z[1] = W [1]x + b[1], a[1] = σ(z[1])

• z[2] = W [2]a[1] + b[2], a[2] = σ(z[2])

2.7.4. Data Representation - Tensors

The ML data is represented using a tensor, which is an N-Dimensional (D) data con-
tainer for generalisations of N-D space matrices, in particular the matrix (2D tensor).
Tensors are more than just data containers; they include true linear transformations
between tensors, such as cross products and dot products. The number of axes of a
tensor reflects its rank. The tensors used in NNs range from 0D to 4D, with the 3D
tensor (height, width, and colour) representing the Google images I included in this
thesis [27].

2.7.5. Activation Function

AF, or the transfer function, defines neuron output before LF. The non-linearity
properties of AF optimize NNs and CNNs performance, enabling complex computa-
tions in hidden layers, a crucial aspect of CNNs.

Non-Linear Functions (NLFs) are popular because they are utilized by NNs with a
non-linearity feature at the network’s final output. Their differentials (derivatives)
and monotonic functions are very helpful. According to the derivative (the slope of
the changes in the x and y axes with respect to each other), a monotonic function is
one whose value does not change over time [28].

2.7.5.1. Sigmoid Function

Figure 2.8 depicts the S-shaped sigmoid function’s curve, and equation 2.9 repre-
sents its formula.

σ(z) =
1

1 + e−z (2.9)

As a nonlinear function, the sigmoid function (σ(z)) gives probabilities between 0
and 1. This makes it useful for predicting probabilities in different models, as the
AF of an output layer in NN, and for both binary and multi-label classification tasks.
Its slope can be found between any two points and is monotonic. The two most
commonly used cases are when z is very large positive (z → ∞), approximated to 1
(z ≈ 1), and when z is very small (z → −∞), close to zero (z ≈ 0) [29].

13

2. Neural Networks Fundamentals

−6 −4 −2 0 2 4 6

0.5

1

σ(x)
σ (x)

Figure 2.8.: Sigmoid Function

2.7.5.2. Rectified Linear Unit Function

Rectified Linear Unit Function (ReLU) has a slope derivative of one for positive
x and zero for negative x, eliminating vanishing gradient problems as noticed by
equation 2.10. Equation 2.10 shows that ReLU has a slope derivative of one for
positive x and zero for negative x, which eliminates problems with vanishing gradient
issues. Its fastest computation without exponentials or divisions gives it a major
advantage over sigmoid for training and prediction, as shown in figure 2.9, making it
more effective and efficient [30].

ReLU = max (0, x) ≡ xi for xi ≥ 0
0 for xi < 0

(2.10)

2.7.5.3. Softmax Activation Function

The softmax AF is used in the output layer to calculate the probability distribution
from a vector of real values. The output probabilities range from 0 to 1, and their
sum is equal to 1, as expressed in equation 2.11. Since the target class has the highest
probability, softmax is commonly used for multi-class classification [31].

Softmax(xi) =
exp(xi)

∑j exp(xj)
(2.11)

14

2. Neural Networks Fundamentals

−6 −4 −2 2 4 6

1

2

3

4

5

x

y

Figure 2.9.: ReLU Function

2.8. Types of Neural Networks

NNs) are used for various tasks, including classification, regression, image pro-
cessing, natural language processing and computer vision. Common types include
CNNs, RNNs, ANNs and HNNs. The choice of neural network architecture depends
on the type of data and the requirements of the task.

2.8.1. Artificial Neural Networks

ANNs are indeed designed to mimic the structure and behavior of biological
neurons, with a particular focus on the human brain. The organization into layers
(input, hidden, and output) and the presence of artificial neurons (interconnected
nodes) are key components of them.

2.8.2. Perceptron

A perceptron is a type of NN with one layer and no hidden layer, limiting its ability
to approximate linear problems. It has multiple inputs (x1, x2, ...xn), a single output
(y), bias input, and weights (w0, w1, ..., wn), as shown in figure 2.10. The perceptron
calculates the weighted sum of inputs and applies an AF [32].

2.8.3. Convolutional Neural Networks

Image processing technologies known as CNNs utilize convolutional layers to
automatically and adaptively learn spatial hierarchies of features [33]. I’ve written

15

2. Neural Networks Fundamentals

σ(z) y
.
..

b

x0

x1

xn

w0

w1

w2
wn

Perceptron

Figure 2.10.: Perceptron

extensively about CNNs in chapter 3.

16

3. Convolutional Neural Networks
Fundamentals

In this chapter, the layers (convolution, pooling, max pooling, ReLU, and fully
connected layers), training, and types of CNN are introduced, along with other basic
components of CNN. The creation of a functional CNN model relies heavily on these
concepts, which are essential for the model’s capacity for learning and prediction
accuracy, as shown in Figure 3.1.

3.1. From deep neural networks to CNNs

CNNs are a NN type commonly used in image-related tasks such as image
classification, semantic segmentation, and object recognition [34].

As mentioned in chapter 2, CNN uses the convolution feature to find patterns
around images. This allows the network to learn and extract higher and higher-level
models of what is present in an image, starting with its primary pixel data. Using
filters and building layers, CNN can identify edges, shapes, and textures in images.
Because of this, they are beneficial for tasks like classifying images, as shown in figure
3.1.

Conv2D + ReLU Max pooling Conv2D + ReLU Max pooling Fully connected layersInput Feature map

Output

Figure 3.1.: Structure of CNN

17

3. Convolutional Neural Networks Fundamentals

3.2. Convolution

After the input layer, the next layer in a CNN is typically the convolution layer.
This layer is responsible for identifying features in the input images and calculating
matched feature points. The convolution layer filters the images, allowing only
relevant features to pass through to the subsequent layers.

The convolution operation makes CNN’s ability to extract features from images
possible. To do this, convolutional layers are used, which are optimized for finding
and extracting patterns from pictures, as shown in figure 3.2 [35].

The convolution operation is used to compute a convolved feature (output feature
map) by sliding a convolution filter over the tiles of the input feature map pixel by
pixel extracting each tile, and computing the feature.

Input Feature map Convolution Filter Output Feature map

Figure 3.2.: Convolution in CNN

3.3. Pooling

The next layer in a typical CNN is pooling, a downsampling process that reduces
the dimensions of the output feature maps while retaining the most relevant features.
This thesis uses max pooling as a technique for this purpose.

3.3.1. Max pooling

It is used max pooling to reduce input data dimensionality while keeping funda-
mental properties. By sliding over the input feature map and removing tiles, max
pooling reduces output feature map dimensions while retaining the most essential
information. The new feature map receives the maximum tile value. Figure 3.3 shows
the filter size of 2x2 pixels and stride 2 (shifting input matrix tile extraction by 2),
while appendix A.5 shows the maximum pooling calculation [36].

18

3. Convolutional Neural Networks Fundamentals

8

Input Feature map

Max pooling

Max pooling filter Output Feature map

Figure 3.3.: Max pooling

3.4. Fully Connected Layer

A fully connected layer means that every node in the first layer is connected to
every node in the second one (also called the dense layer), used to translate filtered
images into categories with labels. In CNNs the previous layers generate features for
the fully connected layer to classify images.

19

4. Single vs. Multi-Digit Classification

4.1. Dataset

Datasets are the coal-steam engine behind DL’s successful story. The MNIST dataset
includes images of handwritten digits in grayscale and consists of a three-dimensional
tensor of 8-bit integers and an array of 60000 matrices of 28-by-28 integers.

Figure 4.1 displays a plot of nine randomly selected photos from the dataset using
Python code. There are 70,000 28x28-pixel square pictures, 60,000 of which are
training data and 10,000 test data. Using this dataset, models were trained and
tested for recognising handwritten digits. The models are able to accurately identify
handwritten digits with high precision.

Figure 4.1.: An image plot of a subset of the MNIST dataset’s records.

4.2. Training Procedure

This section details the training methodology that was used. Models of one-digit,
overlayed images of digits and combinations are used in the network’s training
process.

20

4. Single vs. Multi-Digit Classification

The next sections detail the architecture of implementing those procedures for
CNNs, where either a single image or a mixture of images are fed into the network
for detection.

4.2.1. One Digit Model (M1)

After developing the CNN model for the one-digit model, it was able to recognise
a single digit. Using layer manipulation, the accuracy of identifying single items was
improved. The network is trained on a single image and overlayed images, and it is
also evaluated for its performance on a single image. [37].

4.2.1.1. Architecture

For a one-digit model, a three-layer sequential model of CNN was created, taking
a 28x28 pixel image and producing a 10-length vector as output. . In the first layer,
convolution is used (Conv2D with 32 filters and a 3x3 convolution filter with a stride
of 1), where ReLU is applied as AF and the input shape is 28x28 pixels with one
channel. Following that, 2D max pooling was applied using a 2x2 filter and a stride of
2. Next, a fully connected layer with 100 neurons and the same AF as the preceding
layer was employed.

In the third layer, a dense layer was used, but unlike the first two layers, 10 neurons
and Softmax were used as the AF, as stated in listing 4.1.

def one_digit_model(optimizer=’adam’, loss=’categorical_crossentropy’):
model = Sequential()
model.add(Conv2D(32, (3, 3), activation=’relu’, input_shape=(28, 28,

1)))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(100, activation=’relu’))
model.add(Dense(10, activation=’softmax’))
model.compile(optimizer=optimizer, loss=loss, metrics=[’accuracy’])
return model

Listing 4.1: Define model with one digit

4.2.1.2. Training model with one digit

For handwritten digit recognition, training a network with one digit is crucial. On
one digit, the trained network performed very well; the findings are in the following

21

4. Single vs. Multi-Digit Classification

chapter 5. The following example of code trains a network with one digit as shown
in listing 4.2.

def train_one_digit_model(X_train, y_train, X_test, y_test, model):
history = model.fit(X_train, y_train, epochs=opt.epochs,

batch_size=opt.batchSize, validation_data=(X_test, y_test),
verbose=1)

return history, model
#Train a model with one digit
if opt.task == ’1’:

first build a model
model = common_model(loss=opt.loss)
if opt.use_common
else one_digit_model(loss=opt.loss)

train the previous model
history, model = train_one_digit_model(X_train, y_train, X_test,

y_test, model)
Save the model

model.save(’{}_{}_{}.h5’.format(int(time.time()), opt.task,
opt.loss))

Listing 4.2: Training a model with one digit

4.2.2. Two Digits Model (M1)

Another key part of this thesis is training a network to identify two digits. Combin-
ing images and accurately detecting two digits was the goal. The model architecture
and training are shown below. A minimum of 50% two-digit matching is expected
for detection.

The goal was to train the network using a pair of images and check for one-digit
matches, two-digit matches, and no matches at all. A very high detection rate was
excepted for both one and two digits and an extremely low match rate for no match
accuracy [38].

4.2.2.1. Architecture of two digits model

To find two digits, the same architecture as for one-digit models was used, except
that the binary cross-entropy loss type was used. Also, the sigmoid function was
applied to the last layer, identified as AF, as shown in the listing 4.3.

def two_digit_model(optimizer=’adam’, loss=’binary_crossentropy’):

22

4. Single vs. Multi-Digit Classification

model = Sequential()
model.add(Conv2D(32, (3, 3), activation=’relu’, input_shape=(28, 28,

1)))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(100, activation=’relu’))
model.add(Dense(10, activation=’sigmoid’))
model.compile(optimizer=optimizer, loss=loss, metrics=[’accuracy’])
return model

Listing 4.3: Define model with two digits

4.2.2.2. Training model with two digits

Training a network with two digits in a way to generate a new image by combining
two digits. Additionally, the combination shown in listing for training a model with
two digits was used in subsequent listing 4.4.

def train_two_digit_model(X_train, y_train, X_test, y_test, model):
X_train_combinations, y_train_combinations =

generate_combinations(X_train, y_train, n=X_train.shape[0])
X_test_combinations, y_test_combinations =

generate_combinations(X_test, y_test, n=X_test.shape[0])

y_train_combinations_binary = np.zeros((len(y_train_combinations),
10))

y_test_combinations_binary = np.zeros((len(y_test_combinations), 10))

for i, j in enumerate(y_train_combinations):
for digit in j:

y_train_combinations_binary[i, digit] = 1

for i, j in enumerate(y_test_combinations):
for digit in j:

y_test_combinations_binary[i, digit] = 1

history = model.fit(X_train_combinations,
y_train_combinations_binary, epochs=opt.epochs,
batch_size=opt.batchSize, validation_data=(X_test_combinations,
y_test_combinations_binary), verbose=1)

23

4. Single vs. Multi-Digit Classification

return history, model

Listing 4.4: Training a model with two digits

4.2.3. Training model with parameters

The NN model has been evaluated using various parameters, including batch size
and epochs, as detailed in chapter 5. Training with varying batch sizes and epochs
maximised accuracy. The batch size is the amount of data utilised in one epoch to
train a neural network. It affects model quality, training time per epoch, and overall
training time [39].

A batch size of 64 has been chosen, and it is expected to observe fluctuations in
loss and accuracy, as shown in table 5.4, for varying numbers of epochs.

4.2.4. Proposed Concept (M2)

Another model named the combination model (M2), has been applied in this thesis.
Within a combination model, a model has been created that produces 55 outputs.
Training in the overlapping images generated 55 potential pairs and a unique vector
for each pair was received [40].

4.2.4.1. Architecture of combinations model

In this model, as seen in listing 4.5, the same architecture as in the two-digit model
was used, with the exception that an extra layer of 100 neurons was added, and
softmax was used at the final layer.

def combinations_model(mapping, optimizer=’adam’,
loss=’binary_crossentropy’):
generate a model that has 55 outputs
model = Sequential()
model.add(Conv2D(32, (3, 3), activation=’relu’, input_shape=(28, 28,

1)))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(100, activation=’relu’))
model.add(Dense(100, activation=’relu’))
model.add(Dense(len(mapping), activation=’softmax’))
model.compile(optimizer=optimizer, loss=loss, metrics=[’accuracy’])
return model

24

4. Single vs. Multi-Digit Classification

Listing 4.5: Defining combinations model

To outperform 55 pairs of combinations, a training model may aim to produce a
function with no duplicates (such as [0,1], [0,2], [0,3],... [0.2]) and no repetitions of
the same digit (such as [1,1]). The expectation was that no repetitions or occurrences
of the same digit would be encountered during the training of this model. After
training, the model provides the combinations and list of labels ([[1,0], [2,1],... [3,4],
[5,6],...]). The default weights for combining in this generation are 0.5 for picture 2
and 0.5 for picture 2, as shown in listing 4.6.

def generate_combinations(X, y, n=10000, weights=[0.5, 0.5]):
define size of output
X_out = np.zeros((n, 28, 28, 1))
defined the list of labels
labels = []
possibilities = list(range(X.shape[0]))
for i, c in enumerate(range(n)):

get two number randomely
index_1, index_2 = random.sample(possibilities, 2)
while np.argmax(y[index_1]) == np.argmax(y[index_2]):

index_1, index_2 = random.sample(possibilities, 2)
X_out[i,:,:,:] = weights[0]*X[index_1] + weights[1]*X[index_2]
labels.append([np.argmax(y[index_1]), np.argmax(y[index_2])])

return X_out, labels

Listing 4.6: Generating combinations model

4.3. Evalution Procedure

In this thesis, multiple test modules have been used, which will be elaborated on
in the following items.

• Test a model with one digit: The NN model is tested by using only one digit,
as shown in listing 4.7, and the expected result was to check how accurate the
model is at detecting one digit.

• Test a model with overlayed images of digits (two digits): The NN model is
evaluated also by utilizing mixed images of two digits, as depicted in listing 4.7.
The expected outcome was to determine the accuracy of detecting two digits
[41].

25

4. Single vs. Multi-Digit Classification

def main():
X_train, y_train, X_test, y_test =

load_dataset(which=opt.dataset)
X_train, X_test = normalize(X_train, X_test)
model = load_model(opt.model)

#test a model with one digit
if opt.task == ’1’:

evaluate_one_digit_model(X_train, y_train, X_test, y_test,
model)

#test a model with two digits
if opt.task == ’2’:

evaluate_two_digit_model(X_train, y_train, X_test, y_test,
model)

#test a model with the new outputs method
if opt.task == ’combinations_model’:

mapping = generate_mapping(10)
evaluate_combinations_model(X_train, y_train, X_test, y_test,

model, mapping)

Listing 4.7: Test Combinations /One & two digits

• Test a model with one picture: After the network was trained on the single
image using one or two digits, it is tested on a single image, using two types of
evaluation, one is the naive evaluation and the other one is threshold evaluation
as shown in the chapter 5.

• Test a model with two pictures: After the network was trained on the double
images using one or two digits, it has to come to testing this network on two
images, using two types of evaluation, the naive evaluation and threshold
evaluation [42].

• Test a model with all possible combinations: The NN model is tested also with
pairs of combinations (55 outputs are generated).

26

5. Experiments and Results

In this chapter, the experimental setting used for this thesis has been shown. The
results of the training and testing procedures are briefly explained, along with the
accuracy percentages for single-digit, multi-digit and combination model classifica-
tions. Also, results of other parameters, such as batch size, epochs and thresholds,
are presented. It is shown that these parameters have a significant impact on the
accuracy of models.

5.1. Experimental setup

Several pieces of hardware and software were used to complete this thesis. A
MacBook(OS:MacOS Big Sur, Processor:i7-10750H CPU @2.60GHz (12 CPUs)) was
used. Through a remote connection to the institute of telecommunications at Vienna
University of Technology (TUW) was able to run simulations with a large number
of features and combinations. In addition, Python 3.7, Keras, and the TensorFlow
framework have been used.

The Graphics Processing Unit (GPU) (NVIDIA GeForce RTX 3060 (12GB)) was
used to speed up calculations and analyses. The GPU has substantially reduced
the processing time of the data and enabled more complicated computations to be
conducted. Other packages used include NumPy and Pandas for data analysis and
manipulation, along with Matplotlib for visual representation.

5.1.1. Evaluation Environment

The effectiveness of model training and testing in this evaluation environment
has been demonstrated. First, models were evaluated during training, including
single-digit using M1. By using CNN and layer modifications we got over 90%
detection accuracy. Playing with epochs, batch sizes, and predictions to find single
images, blended images (overlaying images of two digits using this model (M1))
are performed. A new suggested approach was again trained using model M2 for
mixed images of two digits (blended images). Additionally, models were trained
with various LFs. Several parameter combinations were tried to improve the model’s
performance.

27

5. Experiments and Results

A second approach involves the evaluation of single-digit images. Also, when digits
are combined (such as combining the digits "1" and "2" in one image), then a new
image is generated through the combination of two digits (representing multi-digit
classification) using models M1 and M2.

M1 was tried for images with single-digit analysis. Without same digit detection
in a new image, the accuracy of one match, two matches and zero matches were
identified. The same model (M1) was applied to test the accuracy detection when
overlayed images of two digits and found the accuracy of one match, two matches
and zero matches were identified. This same procedure of overlaying images of two
digits was repeated 10 and 100 times to check how accuracy changed. Nex, multi-
digit classification using the proposed approach (M2) was explored and compared to
random guessing for identifying two digits in a blended image. In the end, models
are tested with various values. The curiosity lies in seeing if the proposed approach
detects two digits in an overlayed image better than random guessing.

5.2. Results of Training Procedure

In the next parts, the outcomes of single-digit and multi-digit classification model
training evaluation, epochs and batch size are presented.

5.2.1. Single Digit Performance with M1

Refer to table 5.1 for single-digit training results. As displayed, single-digit detec-
tion accuracy is 97.8%, and loss is 0.0033. Results show that the basic features of
CNNs are effective in identifying individual digits

Accuracy Val_accuracy Loss Val_loss

0.9510 0.9780 0.0075 0.0033

Table 5.1.: Single-digit with an initial model

5.2.2. Multi-Digit Classification Performance with M1

The same model (M1) was trained with two digits, as illustrated in table 5.2.
Training the original model M1 yields a 55.24% accuracy in identifying digits in
overlayed images.

28

5. Experiments and Results

Accuracy Val_accuracy Loss Val_loss

0.5524 0.5138 0.0429 0.0263

Table 5.2.: Multi-digit with an initial model

5.2.3. Multi-Digit Classification Performance with M2

Table 5.3 shows a mixed-image evaluation of the new concept, or upgraded model
(M2), called the combinations model. Two-digit detection accuracy is 71.30%, which
is better than the baseline model. Loss is also substantially decreased. These findings
show that M2 is more accurate than glsm1a.

Accuracy Val_accuracy Loss Val_loss

0.7130 0.8409 0.0269 0.0156

Table 5.3.: Multi-digit with an improved model

5.2.4. Parameter Performance with M1

The first model (M1) was trained with multiple parameters for the highest level of
precision. The accuracy and loss difference while adjusting epochs and batch sizes
was elaborated, especially for 100 epochs and 64 batch sizes. Table 5.4 shows 99.9%
accuracy and 0.002 loss in recognising one digit. Modifying those settings to identify
a single image was a good approach.

Epochs Batch size Accuracy val_accuracy Loss

100 64 0.9990 0.9892 0.0020

Table 5.4.: Adjustable single-digit parameters (M1)

As numerous predictions and epochs were tested, it was found that prediction 4
of epoch 6 gave the best outcomes, as shown in table 5.5. For both predictions and
epochs, this led to the best accuracy, at 99.16% and 0.0271 loss, respectively. In terms
of accuracy and loss, prediction 4 of epoch 6 performed best. These data show that
the specified parameters provide good prediction model performance.

6,000 epochs were tested using that prediction and epoch. Table 5.6 shows an
accuracy of 99.12% accuracy and 0.028 loss. This suggests that adding epochs beyond
6,000 did not increase model performance. In this dataset, prediction 4 of epoch 6

29

5. Experiments and Results

Epoch loss accuracy

1/6 0.1434 0.9559

2/6 0.0467 0.9859

3/6 0.0350 0.9891

4/6 0.0271 0.9916

5/6 0.0218 0.9929

6/6 0.0174 0.9946

Table 5.5.: Outcomes for particular predictions and epochs

Epoch Test loss Test accuracy

6000/6000 0.0280 0.9912

Table 5.6.: Epoch-based accuracy loss

resulted in the highest accuracy and lowest loss among all other combinations.

5.2.5. Loss Function Computation

The model was trained using three loss functions in this thesis.
The loss functions trained were MSE as given in table 5.7, then binary cross-

entropy loss, and finally categorical cross-entropy. Accuracy and loss results were
then compared. Table 5.7 shows that categorical cross-entropy loss has the highest
accuracy and MSE the lowest loss. This shows that MSE loss may work better in
certain instances. However, MSE accuracy may not always be ideal. Thus, loss
function selection can significantly affect model performance.

Type_Loss Accuracy Val_accuracy Loss Val_loss

MSE 0.9489 0.9746 0.0079 0.0038

Binary 0.9514 0.9803 0.0277 0.0114

Categorical 0.9540 0.9770 0.1559 0.0681

Table 5.7.: Loss function accuracy and loss

30

5. Experiments and Results

5.3. Outcomes of Testing Procedure

This thesis focuses on CNN model testing to ensure better classification perfor-
mance. This section presents the results of different methods and models.

5.3.1. Single Digit Classification Performance (M1)

The outcomes of testing the M1 with a single digit, a key study goal and accuracy
for recognising one digit are shown in table 5.8. Testing with one digit in the image
outputs high accuracy, as seen in table 5.8 at 94.94%.

loss accuracy val_loss val_accuracy

0.0077 0.9494 0.0036 0.9745

Table 5.8.: Single-digit outcomes for the initial model M1

The averaged outcomes for detecting one match, two matches, and no matches at
all after running 500,000 times are presented in 5.1 below.

Figure 5.1.: Single-digit outcomes for n-runs

Avoiding the same digits during the testing process. By eliminating the same
pictures, it was able to make more accurate results. Table 5.9 shows that the prediction
for two matches has gone up by 50%, the prediction for zero matches has gone
down by 50% (which means we have fewer losses, which is better accuracy), and
the prediction for one match has gone down by about 22%. This shows that my
predictions are better accurate now than they were before.

31

5. Experiments and Results

Zero match One match Two matches

Avoid 0.0307 0.5122 0.4569

Not Avoid 0.0608 0,6334 0.3056

Table 5.9.: Avoid the same digits

5.4. Multi-Digit Classification Performance with Initial
Model (M1)

Testing M1 with two digits was another important part of this thesis. By experi-
menting with M1 with two pictures, we found out how well it could find a single
digit, two digits, or no match. According to the results, the M1 model was good at
finding two digits (58.01%), and it had a low rate of zero matches (1.34%). Table 5.10
shows the average accuracy of finding two digits.

Zero match One match Two matches

0.0134 0.4065 0.5801

Table 5.10.: Mutli-digit’s outcomes with M1

In the same way, M1 was examined 10 times to see how much the average
accuracy finding would change. The accuracy testing results for finding one match,
two matches, and no match are shown in the table 5.11. They are almost the same as
the average accuracy found by running the multi-digit M1 recognition methods just
once.

Zero match One match Two matches

0.0153 ± 0.182 0.3991 ± 0.336 0.5854 ± 0.379

Table 5.11.: Running 10-times multi-digit M1.

The M1 was run with multi-digits 100 times to get the average accuracy for each
type of match. It turned out that there wasn’t a big difference between this evaluation
and the previous multi-digit M1, run one and ten times, as shown in table 5.12.

32

5. Experiments and Results

Zero match One match Two matches

0.0155 ± 0.112 0.4007 ± 0.49 0.5836 ± 0.496

Table 5.12.: Running 100-times multi-digit M1

5.5. Multi-Digit Classification Performance with
Improved Model (M2)

The probability of detecting two digits with the new model M2, which contains
combinations, was investigated. After running the M2 model, the average accuracy
of two-digit detection was 84.92%. This represents the best two-picture detection
outcome till now. Random guessing accuracy of recognising multi-digits was at
2.650%. M2 multi-digit detection surpasses 32 times the average accuracy of random
guessing. This demonstrates the superiority of the M2 model in recognising overlayed
images with multi-digit.

5.6. Threshold Evaluation with Initial Model (M1)

Outcomes of testing M1 with different threshold values are shown in table 5.13.
When using a threshold, the average accuracy for identifying digits is high for
no match and one match but lower for two. This shows that the threshold value
significantly affects the model’s accuracy.

n Zero match One match Two matches

0.10 26.82 39.17 34.01

0.13 16.69 50.03 33.28

0.15 12.26 55.51 32.23

0.175 8.62 60.8 30.58

0.20 5.62 66.76 27.62

0.25 5.39 74.29 20.32

0.75 64.44 35.56 0.0

Table 5.13.: Different threshold’s percentage values

Figure 5.2 shows that the highest effective results occur at the 25% threshold and

33

5. Experiments and Results

the least effective occur at the 75% threshold when no two matches are found. This
shows a lower threshold value improves model performance.

Figure 5.2.: Results for threshold value 0.25

34

6. Conclusion

6.1. Conclusion

An improved model (M2) during training shows better accuracy than the initial
model (M1) for overlayed images of multi-digit classification performance. Depending
on the task, the loss function can be chosen as it will work best for particular results.

The prediction for zero matches has gone down by 50% (indicating fewer losses,
which is good accuracy) and the prediction for two matches has gone up by 50%,
which means we have better accuracy in recognising two digits in overlayed images
and fewer losses by avoiding the same pictures.

Tables 5.10 and 5.11 show that the accuracy difference between running ten times
and running one time is almost the same. We got nearly the same result for no match,
one match, and two matches. These results proved that the software is reliable and
accurate in its predictions. Also, by running M1 100 times, we got almost the same
averaged accuracy for matches.

Results with M2 model for detecting overlayed images of two-digits show that they
are 32 times better than those achieved through random guessing.

6.2. Future Work

In this thesis, several cases of CNNs applications are conducted in MNIST database.
If time permits, future work will include many other datasets and classifications, such
as.

1. Compare the same models with CIFAR-10 dataset.

2. Compare the same models with CIFAR-100 dataset.

3. Compare the same models with ImageNet dataset.

4. Compare the same models with EMNIST (Extended MNIST) dataset.

5. Use Single-digit classification performance with improved model M2.

6. Run the multi-digit with M2 for 10 and 100 times, then compare those results
with the multi-digit with M1.

35

A. General Addenda

In this chapter, additional information and examples from the above chapters of
this thesis are .

A.1. Backward Propagation Example

Using 2.6.4, figure 2.4 and equation 2.4, this section demonstrates the backward
propagation step calculation. This example shows how gradient descent updates
neural network weights during training. Calculate backwards to compute derivatives,
first computing the derivative of LF with respect to a.

• Calculate LF’s derivative of a as dL(a,y)
da = − y

a +
1−y
1−a .

• The derivative of a with respect to Z is da
dZ = dL(a,y)

da
da

dσ(z) = (− y
a +

1−y
1−a)

[a(1−a)]2
a−y =

a(1 − a).

• LF derivative with respect to Z is calculated as dz = dL
dZ = L(a,y)

dz = dL
da

da
dz =

(− y
a +

1−y
1−a)a(1 − a) = a − y

Calculate the derivatives of w1, w2 & b, using 2.7 to determine w and b changes.

• Derivative of b is the same as dz → db = dz

• Derivative of w1 as dw1 = dL
dw1

= x1dz

• Derivative of w2 as dw2 = dL
dw2

= x2dz

Update equation 2.7. After computing the derivatives of w1, w2 & b, the updated
equation will incorporate derivative values.

• b ← b − αdb

• w1 ← w1 − αdw1

• w2 ← w2 − αdw2

36

A. General Addenda

A.2. Example of Computation Graph

In this section, a computation graph is shown using formulas 2.4 and 2.6. In figure
A.1, the red arrow represents the backward propagation step from right to left, and
the corresponding derivatives are calculated in the formulas below.

• Calculating the derivative of CF over v (dJ
dv) for u = 6, v = 11, & J = 3v = 33.

The derivative of final output variable over the derivative of v is dJ
dv = 3 when

v-value is shifted from v = 11 → v = 11.001.

• Calculating dJ
da = dJ

dv
dv
da , nudging a with 0.001, a = 5 → 5.001, v = 11 →

11.001, & J = 33 → 33.003, and J’s derivative over a’s derivative is dJ
da = dJ

dv
dv
da = 3.

Nudging a affects v and J (a→v→J), so the amount nudging an is the product
of how much v changes and how much CF changes.

• Using the nudging method (u = 0.01), calculate dJ
du for u = 6u = 6.001, v =

11.001, & J = 3J = 33.003. Nudging u with 001, the impact CF is dJ
du = dJ

dv
dv
da = 3.

• Determine dJ
db by increasing b-value: b = 3 → 3.001, u = 6 → 6.002, v =

11 → 11.002, & J = 33 → 33.006. CF’s impact on b-value nudging with 001 is
dJ
db = dJ

du
du
db = 3 · 2 = 6.

• Calculate dJ
dc by increasing c-value: c = 2 → 2.001, u = 6 → 6, 003, v = 11 →

11.00, & J = 33 → 33.009. The impact of CF on c-value nudging by 001 is
dJ
dc = dJ

du
du
dc = 3 · 3 = 9. Therefore, CF changed 9.

u = bc v = a + u J = 3v

a=5

b=3

c=2

Figure A.1.: Example of computation graph.

37

A. General Addenda

A.3. Linear Activation Function

Also known as identity AF. The output neuron is linearly identical to the input.
Figure A.2 shows that the neural network output is linear, regardless of data com-
plexity, using the equation y = f (x) = x. Thus, neural network output is proportional
to the input.

linear (x) 0
2

4

6

8

-2

-4

-6

-8

x
-8 -6 -4 -2 0 2 4 6 8

Linear Function

Figure A.2.: Linear Activation Function

38

A. General Addenda

A.3.1. Why Non-linear Activation Functions

When using linear AF, NNs only outputs a linear function of the input, regardless
of hidden layer count or parameter changes. See figure A.3. The equations for
NNs are z[1] = W [1]x + b[1] and a[1] = z[1]. The output layer equations are z[2] =
W [2]x + b[2] and a[2] = z[2] = W [2]a[2] + b[1]. For the equation a[2] = W []x + b[].
Output equals input for the network, so the network is linear.

x3

x1

x2

[1]

[2] x(i)

ŷ

Figure A.3.: Why we need Non-linearity

A.4. Example of convolution in CNN

The convolution filter extracts tiles from the input feature map (an image) by
iteratively sliding over each tile, one pixel at a time (assuming no other feature, such
as padding or stride, is added). The CNNs first processes the features of the input
image by multiplying the filter matrix one element at a time for each filter-tile pair.
This makes the convolved feature output (output feature map). This is performed on
a 5x5 input matrix to generate a 3x3 feature map for each filter-tile pair. This feature
map is then put through additional analysis and processing. To create a convolved
feature output, this is done for every filter-tile pair in the input matrix, as shown in
figure A.4.

3 5 2 8 1

9 7 5 4 3

2 0 6 1 6

6 3 7 9 2

1 4 9 5 1

1 0 0

1 1 0

0 0 1

25 18 17

18 22 14

20 15 23

Input Feature map Convolution Filter Output Feature map

Figure A.4.: Convolution in CNNs

39

A. General Addenda

In order to extract crucial features, such as textures, edges, and forms, the CNNs
learns autonomously the ideal value for the convolution filter matrices. Adding more
filters during training allows for a greater number of features to be extracted from
the input but also extends the total training time. So, it’s important to acquire as
many functions as you can. Only a few filters are needed to extract features for use
in categorization images. The number of filters and training time must be balanced
for accurate and effective image classification.

A.5. Example of max pooling

In this thesis is used max pooling. CNNs use max pooling, which includes choosing
the highest value from each tile. This method reduces input data dimensionality while
keeping key properties. Max pooling creates translation-invariant representations,
making it suitable for image classification. Max pooling captures the most essential
characteristics by sliding the filter over the picture, like convolution. For each tile,
the new output feature map uses just the maximum value. These procedures have a
stride and a maximum pooling filter size of 2x2 pixels. Figure A.5 shows that a stride
of 2 places the following tile 2 pixels forward. The output is a 2x2 feature map from
a 4x4 input feature map with a 2x2 max pooling filter.

0 1 2 3 4

6 7 8 9 0

2 3 4 5 6

8 9 0 1 2

5 4 9 8 7

Input Feature map

5

1

7

3

6

6 9 5

9 5 7

9 9 8

9 7 5 3 8 2

Max pooling

Max pooling filter Output Feature map

Figure A.5.: Max pooling example in CNNs

40

List of Figures

2.1. Relation of AI, ML, DL and NN . 3
2.2. Machine Learning model . 4
2.3. Logistic regression overview . 7
2.4. Calculating gradient for one training example 10
2.5. Basic ANNs . 11
2.6. Weight, loss and optimizer . 12
2.7. Neural networks overview . 12
2.8. Sigmoid Function . 14
2.9. ReLU Function . 15
2.10. Perceptron . 16

3.1. Structure of CNN . 17
3.2. Convolution in CNN . 18
3.3. Max pooling . 19

4.1. An image plot of a subset of the MNIST dataset’s records. 20

5.1. Single-digit outcomes for n-runs . 31
5.2. Results for threshold value 0.25 . 34

A.1. Example of computation graph. 37
A.2. Linear Activation Function . 38
A.3. Why we need Non-linearity . 39
A.4. Convolution in CNNs . 39
A.5. Max pooling example in CNNs . 40

41

List of Tables

2.1. Supervised Learning Applications . 5

5.1. Single-digit with an initial model . 28
5.2. Multi-digit with an initial model . 29
5.3. Multi-digit with an improved model . 29
5.4. Adjustable single-digit parameters (M1) 29
5.5. Outcomes for particular predictions and epochs 30
5.6. Epoch-based accuracy loss . 30
5.7. Loss function accuracy and loss . 30
5.8. Single-digit outcomes for the initial model M1 31
5.9. Avoid the same digits . 32
5.10. Mutli-digit’s outcomes with M1 . 32
5.11. Running 10-times multi-digit M1. 32
5.12. Running 100-times multi-digit M1 . 33
5.13. Different threshold’s percentage values 33

42

Listings

4.1. Define model with one digit . 21
4.2. Training a model with one digit . 22
4.3. Define model with two digits . 22
4.4. Training a model with two digits . 23
4.5. Defining combinations model . 24
4.6. Generating combinations model . 25
4.7. Test Combinations /One & two digits 26

43

Acronyms

AF Activation Function. 11, 13–15, 21, 22, 38, 39

AI Artificial Intelligence. 1, 3–6, 11, 41

ANN Artificial Neural Network. 6, 11, 15, 41

CE Cross-Entropy. 8, 9

CF Cost Function. 9, 10, 37

CNN Convolutional Neural Network. iv, 1, 2, 5, 13, 15–19, 21, 27, 28, 31, 35, 39–41

D Dimensional. 13, 21

DL Deep Learning. 1, 3, 6, 7, 20, 41

GPU Graphics Processing Unit. 27

HNN Hybrid Neural Network. 5, 15

KNN Konvolutionäre Neuronale Netzwerke. v

LF Loss Function. 8, 11, 13, 27, 36

LR Logistic Regression. 7, 10, 12

M1 Initial Model. iv, v, 1, 2, 27–29, 31–33, 35

M2 Improved Model. iv, v, 1, 2, 24, 27–29, 33, 35

ML Machine Learning. 1, 3–6, 11, 13, 41

MNIST Modified National Institute of Standards and Technology. 1, 20, 35, 41

MSE Mean Square Error. 8, 30

NLF Non-Linear Function. 13

44

Acronyms

NN Neural Network. iv, v, 1–3, 5, 10–13, 15, 17, 24–26, 39, 41

ReLU Rectified Linear Unit Function. 14, 21

RL Reinforcement Learning. 6

RMSE Root Mean Square Error. 8

RNN Recurrent Neural Network. 5, 15

SD Structured Data. 6

SL Supervised Learning. 5–7

SSL Semi-Supervised Learning. 6

TUW Vienna University of Technology. 27

USD Unstructured Data. 6

USL Unsupervised Learning. 6

45

Bibliography

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied
to document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information process-
ing systems 25 (2012).

[3] E. B. Hunt. Artificial intelligence. Academic Press, 2014.

[4] A. Pannu. “Artificial Intelligence and its Application in Different Areas”. In:
Artificial Intelligence 4.10 (2015).

[5] J. Alzubi, A. Nayyar, and A. Kumar. “Machine learning from theory to al-
gorithms: an overview”. In: Journal of physics: conference series. Vol. 1142. IOP
Publishing. 2018, p. 012012.

[6] A. L. Samuel. “Some studies in machine learning using the game of checkers”.
In: IBM Journal of Research and Development 44.1.2 (2000), pp. 206–226. doi:
10.1147/rd.441.0206.

[7] M. Mohammed, M. B. Khan, and E. B. M. Bashier. Machine learning: algorithms
and applications. Crc Press, 2016.

[8] N. Sandhya and K. Charanjeet. “A review on machine learning techniques”. In:
International Journal on Recent and Innovation Trends in Computing and Communi-
cation 4.3 (2016), pp. 451–458.

[9] R. E. Baker, J.-M. Pena, J. Jayamohan, and A. Jérusalem. “Mechanistic models
versus machine learning, a fight worth fighting for the biological community?”
In: Biology letters 14.5 (2018), p. 20170660.

[10] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell. “Machine learning: A
historical and methodological analysis”. In: AI Magazine 4.3 (1983), pp. 69–69.

[11] Z.-H. Zhou. Machine learning. Springer Nature, 2021.

[12] L. R. Ramiro Vargas Amir Mosavi. Deep Learning: A Review, Advances in Intelligent
Systems and Computing. 2017.

[13] F. Chollet. Deep Learning with Python. Manning Publications Co., 2018, pp. 1–240.

46

https://doi.org/10.1147/rd.441.0206

Bibliography

[14] Q. Dong, X. Zhu, and S. Gong. “Single-label multi-class image classification
by deep logistic regression”. In: Proceedings of the AAAI conference on artificial
intelligence. Vol. 33. 01. 2019, pp. 3486–3493.

[15] W. Cheng and E. Hüllermeier. “Combining instance-based learning and logistic
regression for multilabel classification”. In: Machine Learning 76 (2009), pp. 211–
225.

[16] R. Yu, Y. Wang, Z. Zou, and L. Wang. “Convolutional neural networks with
refined loss functions for the real-time crash risk analysis”. In: Transportation
research part C: emerging technologies 119 (2020), p. 102740.

[17] A. Noor, Y. Zhao, R. Khan, L. Wu, and F. Y. Abdalla. “Median filters combined
with denoising convolutional neural network for Gaussian and impulse noises”.
In: Multimedia Tools and Applications 79 (2020), pp. 18553–18568.

[18] U. Ruby and V. Yendapalli. “Binary cross entropy with deep learning technique
for image classification”. In: Int. J. Adv. Trends Comput. Sci. Eng 9.10 (2020).

[19] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. “Loss functions for neural networks
for image processing”. In: arXiv preprint arXiv:1511.08861 (2015).

[20] P. Murugan. “Implementation of deep convolutional neural network in multi-
class categorical image classification”. In: arXiv preprint arXiv:1801.01397 (2018).

[21] V. Nasteski. “An overview of the supervised machine learning methods”. In:
Horizons. b 4 (2017), pp. 51–62.

[22] S. Ruder. “An overview of gradient descent optimization algorithms”. In: arXiv
preprint arXiv:1609.04747 (2016).

[23] C. C. Aggarwal et al. “Neural networks and deep learning”. In: Springer 10.978
(2018), p. 3.

[24] B. Yegnanarayana. Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

[25] A. Nandy, M. Biswas, A. Nandy, and M. Biswas. “Neural Network Basics”. In:
Neural Networks in Unity: C# Programming for Windows 10 (2018), pp. 1–26.

[26] I. A. Basheer and M. Hajmeer. “Artificial neural networks: fundamentals, com-
puting, design, and application”. In: Journal of microbiological methods 43.1 (2000),
pp. 3–31.

[27] R. A. Cohen, H. Choi, and I. V. Bajić. “Lightweight compression of neural net-
work feature tensors for collaborative intelligence”. In: 2020 IEEE International
Conference on Multimedia and Expo (ICME). IEEE. 2020, pp. 1–6.

[28] H.-x. WANG, J.-q. ZHOU, C.-h. GU, and H. LIN. “Design of activation function
in CNN for image classification”. In: Journal of Zhejiang University (Engineering
Science) 53.7 (2019), pp. 1363–1373.

47

Bibliography

[29] B. Ding, H. Qian, and J. Zhou. “Activation functions and their characteristics in
deep neural networks”. In: 2018 Chinese control and decision conference (CCDC).
IEEE. 2018, pp. 1836–1841.

[30] G. Lin and W. Shen. “Research on convolutional neural network based on
improved Relu piecewise activation function”. In: Procedia computer science 131
(2018), pp. 977–984.

[31] M. Jogin, M. Madhulika, G. Divya, R. Meghana, S. Apoorva, et al. “Feature
extraction using convolution neural networks (CNN) and deep learning”. In:
2018 3rd IEEE international conference on recent trends in electronics, information &
communication technology (RTEICT). IEEE. 2018, pp. 2319–2323.

[32] M. L. Minsky and S. A. Papert. Perceptrons: expanded edition. 1988.

[33] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou. “A survey of convolutional neural
networks: analysis, applications, and prospects”. In: IEEE transactions on neural
networks and learning systems (2021).

[34] S. Albawi, T. A. Mohammed, and S. Al-Zawi. “Understanding of a convolutional
neural network”. In: 2017 international conference on engineering and technology
(ICET). Ieee. 2017, pp. 1–6.

[35] S. Sharma, S. Sharma, and A. Athaiya. “Activation functions in neural net-
works”. In: Towards Data Sci 6.12 (2017), pp. 310–316.

[36] V. Christlein, L. Spranger, M. Seuret, A. Nicolaou, P. Král, and A. Maier. “Deep
generalized max pooling”. In: 2019 International conference on document analysis
and recognition (ICDAR). IEEE. 2019, pp. 1090–1096.

[37] D. M. Pelt and J. A. Sethian. “A mixed-scale dense convolutional neural network
for image analysis”. In: Proceedings of the National Academy of Sciences 115.2 (2018),
pp. 254–259.

[38] N. Sharma, V. Jain, and A. Mishra. “An analysis of convolutional neural net-
works for image classification”. In: Procedia computer science 132 (2018), pp. 377–
384.

[39] Y. Sun, B. Xue, M. Zhang, and G. G. Yen. “Evolving deep convolutional neu-
ral networks for image classification”. In: IEEE Transactions on Evolutionary
Computation 24.2 (2019), pp. 394–407.

[40] A. A. M. Al-Saffar, H. Tao, and M. A. Talab. “Review of deep convolution
neural network in image classification”. In: 2017 International conference on radar,
antenna, microwave, electronics, and telecommunications (ICRAMET). IEEE. 2017,
pp. 26–31.

48

Bibliography

[41] B. B. Traore, B. Kamsu-Foguem, and F. Tangara. “Deep convolution neural
network for image recognition”. In: Ecological informatics 48 (2018), pp. 257–268.

[42] W. Wang, Y. Yang, X. Wang, W. Wang, and J. Li. “Development of convolutional
neural network and its application in image classification: a survey”. In: Optical
Engineering 58.4 (2019), pp. 040901–040901.

49

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Problem Statement
	Thesis overview

	Neural Networks Fundamentals
	Background
	Artificial Intelligence
	Applications of AI

	Machine Learning
	Applications of ML
	Types of Machine Learning

	Deep learning
	Applications

	Logistic Regression
	Notation of Logistic Regression

	Types of Loss Function
	Mean Square Error
	Cross-Entropy
	Binary Cross-Entropy
	Categorical Cross-Entropy

	Cost Function
	Gradient Descent

	Neural Networks
	Basics of Neural Networks
	How neural networks works
	Neural Networks Output and Computing
	Data Representation - Tensors
	Activation Function
	Sigmoid Function
	Rectified Linear Unit Function
	Softmax Activation Function

	Types of Neural Networks
	Artificial Neural Networks
	Perceptron
	Convolutional Neural Networks

	Convolutional Neural Networks Fundamentals
	From deep neural networks to CNNs
	Convolution
	Pooling
	Max pooling

	Fully Connected Layer

	Single vs. Multi-Digit Classification
	Dataset
	Training Procedure
	One Digit Model (M1)
	Architecture
	Training model with one digit

	Two Digits Model (M1)
	Architecture of two digits model
	Training model with two digits

	Training model with parameters
	Proposed Concept (M2)
	Architecture of combinations model

	Evalution Procedure

	Experiments and Results
	Experimental setup
	Evaluation Environment

	Results of Training Procedure
	Single Digit Performance with M1
	Multi-Digit Classification Performance with M1
	Multi-Digit Classification Performance with M2
	Parameter Performance with M1
	Loss Function Computation

	Outcomes of Testing Procedure
	Single Digit Classification Performance (M1)

	Multi-Digit Classification Performance with Initial Model (M1)
	Multi-Digit Classification Performance with Improved Model (M2)
	Threshold Evaluation with Initial Model (M1)

	Conclusion
	Conclusion
	Future Work

	General Addenda
	Backward Propagation Example
	Example of Computation Graph
	Linear Activation Function
	Why Non-linear Activation Functions

	Example of convolution in CNN
	Example of max pooling

	List of Figures
	List of Tables
	Listings
	Acronyms
	Bibliography

