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Abstract

Bayesian nonparametric models have emerged as a flexible tool for learning patterns and struc-
tures in complex data. A well-known Bayesian nonparametric model is the Dirichlet process
mixture (DPM) model. The DPM model extends the Bayesian mixture model with a finite num-
ber of mixture components to a Bayesian mixture model with a countably infinite number of
mixture components while permitting the use of efficient Bayesian inference methods. Thereby,
it becomes possible to cluster data and estimate unknown parameters without specifying the
number of clusters and unknown parameters a priori. Practical Bayesian inference methods for
DPM models include Markov chain Monte Carlo (MCMC) and variational inference (VI) meth-
ods. In this thesis, we focus on the VI methodology and provide a detailed derivation of the
coordinate ascent variational inference (CAVI) algorithm for DPM models. Subsequently, we
apply the CAVI algorithm to a Gaussian estimation problem that involves noisy observations of
object features modeled by a DPM with Gaussian mixture components. We present simulation
results that compare the improvement of the estimation accuracy of the object features due to
clustering achieved by our CAVI algorithm and by a previously proposed MCMC algorithm.
Our simulation results demonstrate to which extent we have to sacrifice estimation accuracy
when opting for the less accurate but more efficient CAVI algorithm as opposed to the MCMC
algorithm.
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1 Introduction

In this chapter, we explain the motivation behind this thesis and provide an overview of related
work. Additionally, we outline the contributions and structure of the thesis and define the
mathematical notation to be used.

1.1 Motivation and Contribution

Modern statistical analysis methods rely on complex statistical models for which intractable
probability distributions are approximated. A prominent example is Bayesian inference [1],
which has become a crucial component of probabilistic machine learning [2] and statistical
signal processing [3]. The central object of interest in Bayesian inference is the posterior distri-
bution, because it allows us to estimate unknown random parameters of the statistical model
from observed data. Unfortunately, it is not possible to calculate the exact posterior distribu-
tion for many statistical models (e.g., Bayesian mixture models, state-space models, Bayesian
neural networks), and thus we must resort to using approximate inference techniques. This is
especially true in the case of high-dimensional statistical models which are suited to large-scale
applications.

In this thesis, we consider the Dirichlet process mixture (DPM) model [4], which is a Bayesian
nonparametric model, i.e., a statistical model of infinite dimension. More specifically, the DPM
model is a Bayesian mixture model (BMM) that consists of a countably infinite number of
mixture components, where each component itself is parameterized by a finite or infinite set of
parameters. The DPM is obtained by using the Dirichlet process (DP) as the prior distribution
of the parameters of the mixture model. The main advantage of the DPM model is that the
task of selecting the number of mixture components, which arises in the conventional finite case,
is removed. Consequently, the number of clusters in the data (components of the mixture on
which the data actually depends) can be jointly inferred along with the cluster assignments and
cluster parameters and does not need to be constrained to a prespecified value.

For DPM models, obtaining the posterior distribution involves integrating over an infinite
number of parameters, which makes the direct calculation of the posterior distribution in-
tractable. Thus, we use approximate inference methods. The two most widely used approaches
to approximate inference are Markov chain Monte Carlo (MCMC) [5] and variational inference
(VI) [6]. In the MCMC approach, the posterior distribution is approximately represented by a
set of samples, which is generated using a mechanism involving a Markov chain. The desired
estimates can then be approximated by empirical estimates constructed from the generated sam-
ples. For an increasing number of samples, this approximation converges to the true posterior
distribution. On the other hand, the convergence can be slow and difficult to diagnose. The VI
methodology is a deterministic, optimization-based approach. Its principle is to approximate
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1 Introduction

the posterior distribution by a tractable distribution by minimizing a divergence measure be-
tween the posterior distribution and the tractable distribution. Compared to MCMC methods,
VI methods tend to be faster but also tend to obtain less accurate results since they may suffer
from oversimplified approximations of the posterior distribution.

This thesis centers around the VI approach. We present a detailed derivation, based on
[7], of a VI method called coordinate ascent variational inference (CAVI) for DPM models with
conjugate priors and component distributions from the exponential family. The CAVI algorithm
approximates the posterior distribution of a DPM model in an iterative manner, seeking the
best-fitting distribution within a predefined family of distributions. Additionally, we specialize
the DPM of exponential family distributions to the DPM of Gaussians and develop an estimation
method based on the CAVI algorithm for the Gaussian estimation problem proposed in [8]. This
Gaussian estimation problem considers object features that are modeled according to a DPM
of Gaussians, and estimated from noisy observations of the object features. As was shown
in [8], by implicitly clustering the observations and estimating the parameters of the clusters,
the accuracy of the estimates of the object features is improved compared to a conventional
estimation that does not use clustering. This improvement is referred to as the clustering gain.

The Gaussian estimation problem was solved in [8] using an MCMC method known as the
Gibbs sampler. We experimentally compare the estimation accuracy and clustering gain ob-
tained using the CAVI algorithm and the Gibbs sampler. For our simulations, we use synthetic
data generated by a DPM of Gaussians with values for the hyperparameters that match the
values chosen in [8]. Moreover, we investigate the impact of different initialization procedures on
the convergence of the CAVI algorithm and compare the case where the DPM hyperparameters
conform to those underlying the data with the case where they do not.

1.2 Related Work

As mentioned above, we consider a specific type of BMM called the DPM model. A treatment
of BMMs including DPM models is provided in [9]. A more detailed view on the DP and
DPM models as well as a general discussion of inference for Bayesian nonparametric models are
given in [10]. Further work considers representations of the DPM model and related statistical
processes, namely the stick-breaking process [11], the Blackwell-MacQueen Urn Scheme [12],
and the Chinese restaurant process [13]. These representations are important for the derivation
of the CAVI algorithm for DPM models and for generating data from a DPM model.

A review of VI methods is given in [6], and recent advances in VI are discussed in [14]. A
VI method for DPM models based on CAVI is introduced in [7]. Later works [15]–[21] discuss
various improvements of CAVI for DPM models in terms of estimation accuracy, efficiency,
scalability for large data sets, and the adaptation of VI methods to streaming data.

For a review of MCMC methods we refer to [5] and [22]. Various methods for DPM models
based on Gibbs sampling are presented in [23]–[28]. The works [8], [22], [29] use the DPM model
and MCMC methods to improve the estimation of model parameters and object features by an
implicit clustering of the data. As previously mentioned, we will compare our simulation results
to those of [8], which where obtained using a Gibbs sampler.

2



1 Introduction

1.3 Thesis Outline

Following this introductory chapter, Chapter 2 presents an introduction to BMMs and the
exponential family. In particular, the chapter discusses the estimation of the parameters of a
BMM from observed data.

In Chapter 3, we focus on the DP and DPM models. We explain different representations
of the DP and define a DPM model with component distributions from the exponential family.
This model forms the basis for the statistical models considered in later chapters.

In Chapter 4, we describe the VI method and the CAVI algorithm. We derive the CAVI algo-
rithm for DPM models and discuss practical considerations like initialization and convergence.

In Chapter 5, we focus on a Gaussian estimation problem and specialize the CAVI algorithm
of Chapter 4 to a DPM with Gaussian components. We present and discuss simulation results
obtained with the CAVI algorithm and compare them to results obtained with Gibbs sampling
in [8]. Furthermore, we compare the performance gain due to clustering achieved by the two
methods.

Finally, Chapter 6 concludes this thesis by summarizing the main results and suggesting
future research directions.

1.4 Notation

This section summarizes the mathematical notation used throughout the remaining chapters
of this thesis. Scalar-valued quantities are denoted by lowercase letters, e.g., x, vectors by
lowercase boldface letters, e.g., x, and matrices by uppercase boldface letters, e.g., X. Our
notation does not distinguish between a random variable and a realization drawn from its
distribution. To indicate the distribution of a continuous random variable x, we write x ∼ f(x);
e.g., x ∼ N (

x; µx, σ2
x

)
means that the random variable x has a Gaussian probability distribution

with mean µx and variance σ2
x. A summary of our mathematical notation is given in Table 1.1.

3



1 Introduction

N natural numbers
R real numbers

∆K (K − 1)-dimensional probability simplex
x scalar
x vector

X matrix
x1:N N column vectors xn, n = 1, . . . , N stacked into a column vector, i.e.,

x1:N =
(
xT

1 · · · xT
N

)T

x∼m vector x without the m-th entry, i.e., x∼m = (x1 · · · xm−1 xm+1 · · · xM )T

1M all-ones vector of dimension M × 1
IM M × M identity matrix
✶(·) indicator function
ln(·) natural logarithm
Ψ(·) digamma function
δ(x) Dirac delta function

det(·) determinant
tr(·) trace
·−1 inverse

dim(·) vector/matrix dimension
·T vector/matrix transpose

x⊥⊥y independence of two random variables x and y
x⊥⊥y | z conditional independence of two random variables x and y given z

E(f(x)){·} expectation with respect to the pdf f(x)
µx, µx mean, mean vector
σ2

x, σx variance, standard deviation
Σx covariance matrix

f(x), f(x) probability density function (pdf)
p(x), p(x) probability mass function (pmf)

f(x|θ), f(x|θ) conditional probability density function
p(x|θ), p(x|θ) conditional probability mass function

q(x) variational approximation of a probability distribution
G(θ) discrete mixing distribution

B( · ; α, β) beta distribution with shape parameters α and β

D( · ; α) Dirichlet distribution with parameter vector α = (α1 · · · αK)T

DP( · ; α, G0) Dirichlet process with concentration parameter α and base distribution G0
GEM( · ; α) GEM distribution with concentration parameter α
N ( · ; µ, σ2)

univariate Gaussian distribution with mean µ and variance σ2

N ( · ; µ, Σ) multivariate Gaussian distribution with mean vector µ and covariance
matrix Σ

C( · ; π) categorical distribution with event probabilities π = (π1 · · · πK)T

Table 1.1: Summary of notation.
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2 Bayesian Mixture Models and the
Exponential Family

In this chapter, we provide an introduction to Bayesian mixture models (BMM), which involve
considering the parameters of a mixture model as random variables. Furthermore, we review
the exponential family (EF) of probability distributions and Bayesian estimation. We will first
define BMMs and two equivalent ways to represent them. Following that, we will proceed to
define the EF and introduce the concept of conjugate priors. Lastly, we will outline two popular
Bayesian estimators, i.e., the minimum mean square error (MMSE) and maximum a-posterior
(MAP) estimators, and address the problem of estimating the unknown parameters of a BMM
given observed data. Our objective is to help readers become acquainted with the relevant
theory, terminology, and notation while establishing a solid foundation for the remainder of the
thesis.

2.1 Bayesian Mixture Models

Mixture models [9], [30], [31] provide a flexible and parametric framework for statistical modeling
of a wide variety of random phenomena, especially when sampling from a population that
consists of a number of subpopulations. Examples are image processing where mixture models
can be used to segment an image into different regions or objects [32], modeling the mixture
of topics within a collection of text documents [33], and modeling the geographical distribution
of disease occurrence [34]. Mixture models assume that the observed data is generated by a
superposition of underlying component distributions (also called mixands), with their respective
contributions governed by proportions called the mixing proportions. In a Bayesian approach
we model the parameters of the component distributions and the mixing proportions as random
variables with prior distributions that represent our initial beliefs about these values. We
therefore refer to such models as BMMs. In what follows, we will first define a BMM and then
present two alternative representations that are important for the remaining chapters of this
thesis.

2.1.1 Definition

Consider a random vector x = (x1 · · · xM )T ∈ RM of dimension M ∈ N and K ∈ N component
distributions f(x|θ∗

k), k = 1, . . . , K, with random parameter vectors θ∗
k = (θ∗

1 · · · θ∗
p)T ∈ Rp.

The component distributions (mixands) are conditional probability density functions (pdfs) from
the same parametric family, which is represented by the set of functions {f(x|θ∗

k) | θ∗
k ∈ Rp},

and each component distribution is indexed by its respective component parameter θ∗
k. We

5



2 Bayesian Mixture Models and the Exponential Family

say that x is distributed according to a mixture distribution with K components when the pdf
f(x|π, θ∗

1:K) is a convex combination of the K component distributions f(x|θ∗
k), i.e.,

f(x|π, θ∗
1:K) =

K∑
k=1

πkf(x|θ∗
k). (2.1)

Here, θ∗
1:K =

(
θ∗

1
T · · · θ∗T

K

)T is a vector containing the parameters θ∗
k, k = 1, . . . , K and

π = (π1 · · · πK)T is a vector containing random mixing proportions πk ∈ [0, 1], also called the
mixing weights or the mixing probabilities.

The fact that (2.1) is a convex combination means the proportions πk have to satisfy the
constraints πk ≥ 0 for all k = 1, . . . , K and ∑K

k=1 πk = 1. Additionally, this guarantees that
(2.1) is a valid probability distribution, i.e., integrating f(x|π, θ∗

1:K) over the domain RM results
in 1. Thus, the random vector π exists in the (K − 1)-dimensional probability simplex defined
by

∆K =
{

π ∈ [0, 1]K
||||| πk ≥ 0 and

K∑
k=1

πk = 1
}

, (2.2)

which is a (K − 1)-dimensional object that lies in the K-dimensional space [0, 1]K . Each vector
π ∈ ∆K can be thought of as a probability mass function (pmf) with probabilities πk, for
k = 1, . . . , K, i.e., πk is the probability that a vector x arises from the k-th mixture component
f(x|θ∗

k). We assume the unknown vector π to be distributed according to a prior distribution
f(π) and, therefore, f(π) is a distribution over a distribution, specifically a distribution over the
pmf with probabilities πk for k = 1, . . . , K. Typical choices for f(π) are the beta distribution,
the Dirichlet distribution, and, in the case of K = ∞, the GEM [35] distribution. The choices
for the prior distribution f(π) will be discussed in more detail in Chapter 3. Furthermore,
we assume that the parameter vectors θ∗

k are independent and identically distributed (i.i.d.)
according to a prior distribution f(θ∗) and that θ∗

k and π are statistically independent, i.e.,

θ∗
k ⊥⊥π, for all k = 1, . . . , K. (2.3)

We summarize the BMM described above as

π ∼ f(π), (2.4a)

θ∗
k

i.i.d.∼ f(θ∗
k), (2.4b)

x|π, θ∗
1:K ∼ f(x|π, θ∗

1:K) =
K∑

k=1
πkf(x|θ∗

k), (2.4c)

for all k = 1, . . . , K. Note that we consider the vectors π and θ∗
1:K to be hidden (unknown)

parameters of the BMM which determine the statistical behavior of the random vector x.

6



2 Bayesian Mixture Models and the Exponential Family

2.1.2 Representation Using Random Indicator Variables

We now consider multiple conditionally i.i.d. observations xn, n = 1, . . . , N , of the random
vector x, where we will refer to x1:N =

(
xT

1 · · · xT
N

)T as the observed data. An equivalent
way of generating an observation xn that is distributed according to the K-component mixture
f(xn|π, θ∗

1:K) given by (2.1) is as follows. Let zn be a categorical random variable taking on the
values k = 1, . . . , K with probabilities π1, . . . , πK . We will refer to zn as indicator variable and
use it to indicate which component of the mixture model is responsible for generating the n-th
observation xn. Similar to the observations x1, . . . , xN being conditionally i.i.d., we assume
the variables zn to be i.i.d. conditioned on the mixing proportions π. First, zn ∈ {1, . . . , K} is
realized from the categorical distribution

p(zn|π) = C(zn|π) =
K∏

k=1
π
✶(zn=k)
k = πzn , (2.5)

where ✶(·) represents the indicator function that takes a condition as its input and returns 1 if
the condition is satisfied and 0 if the condition is not satisfied. Then, conditioned on zn and the
component parameters θ∗

1:K , the observation xn is realized from the corresponding component
distribution, i.e.,

f(xn|θ∗
1:K , zn) =

K∏
k=1

f(xn|θ∗
k)✶(zn=k) = f

(
xn

||θ∗
zn

)
. (2.6)

Incorporating the hidden indicator variables zn into the BMM in (2.4) yields the following
hierarchical representation:

π ∼ f(π), (2.7a)

θ∗
k

i.i.d.∼ f(θ∗
k), (2.7b)

zn|π i.i.d.∼ C(zn|π), (2.7c)

xn|θ∗
1:K , zn ∼ f

(
xn

||θ∗
zn

)
, (2.7d)

for k = 1, . . . , K and n = 1, . . . , N , with conditional or unconditional independence relations
among the parameters, indicator variables, and observations given by

θ∗
k ⊥⊥π, for all k = 1, . . . , K, (2.8a)

θ∗
k ⊥⊥zn | π, for all k = 1, . . . , K and n = 1, . . . , N , (2.8b)

xn ⊥⊥π, zn′ , xn′ | θ∗
1:K , zn, where n, n′ = 1, . . . , N with n ̸= n′. (2.8c)

This representation of the BMM again gives a mixture distribution in the form of (2.1),
because by marginalizing the indicator variables zn from the conditional joint distribution
f(xn, zn|θ∗

1:K , π) we obtain

f(xn|π, θ∗
1:K) =

K∑
zn=1

f(xn, zn|π, θ∗
1:K)

7



2 Bayesian Mixture Models and the Exponential Family

=
K∑

zn=1
f(xn|zn, π, θ∗

1:K)p(zn|π)

=
K∑

zn=1
πznf

(
xn

||θ∗
zn

)
. (2.9)

Note that the set of hidden parameters also includes the indicator variables z1:N = (z1 · · · zN )T

in this representation. The mixing proportions π and the component parameters θ∗
1:K are

“global” parameters that determine the shape of the mixture distribution. The count of the
global parameters increases with the number of components K in the mixture model. The
indicator variables z1:N are “local” parameters in that each zn associates the corresponding
data point xn with a certain component k. Thus, the dimension of z1:N increases with the
number N of observed data points x1:N .

Based on the indicator variables z1:N , the observed data x1:N can be organized into L ≤ K

groups which we will refer to as clusters. Clusters are formed by indicator variables zn that
share the same value k. All data points xn that are associated with indicator variables zn of the
same cluster are considered to be part of that cluster. Assuming that we know z1:N (or have
an estimate thereof), we can count the number of observations xn generated by component k

with

Nk =
N∑

n=1
✶(zn = k), (2.10)

and determine the number of clusters L, i.e., the number of mixture components used to generate
the observed data, by

L =
K∑

k=1
✶(Nk > 0). (2.11)

Note that the number of observations N is reobtained from

K∑
k=1

Nk =
N∑

n=1

K∑
k=1

✶(zn = k) =
N∑

n=1
1 = N . (2.12)

Furthermore note that, L may be smaller than K, which means that not every one of the
K components was used to generate a data point xn. This is trivially true if the number of
observed data points N is smaller than the number of components K. For N > K, this means
at least two xn belong to the same cluster. Still it can happen that L < K, i.e., when there are
components in the mixture model with a small mixing proportion πk, that is, components that
are not likely to generate a sample xn.

2.1.3 Representation Using a Mixing Distribution

Recall that the mixture proportions π represent a probability distribution because π is an
element of the (K − 1)-dimensional probability simplex defined by (2.2). This distribution can
be defined over the component parameters θ∗

1:K using a sum of weighted Dirac delta functions,

8
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i.e.,

G(θ) ≜
K∑

k=1
πkδ(θ − θ∗

k), (2.13)

where we associate the probability πk with the event θ = θ∗
k. Note that G(θ) is a random pdf

because it includes the random vectors π and θ∗
1:K of the BMM (2.4). In the context of mixture

models, G(θ) is referred to as the mixing distribution (cf. [9]). We can represent the BMM for
N conditionally independent observations x1, . . . , xN using the mixing distribution G(θ) and
local parameters θn ∈ {θ∗

1, . . . , θ∗
K}, n = 1, . . . , N , that associate each data point xn with a

certain component k, in the following hierarchical manner:

π ∼ f(π), (2.14a)

θ∗
k

i.i.d.∼ f(θ∗
k), (2.14b)

G(θ|π, θ∗
1:K) =

K∑
k=1

πkδ(θ − θ∗
k), (2.14c)

θn|G i.i.d.∼ G(θn|π, θ∗
1:K), (2.14d)

xn|θn ∼ f(xn|θn), (2.14e)

for k = 1, . . . , K and n = 1, . . . , N . A realization of G(θ) is determined by sampling from the
prior distributions f(π) and f(θ∗). Given the mixing distribution G(θ|π, θ∗

1:K), we consider
N samples θ1, . . . , θN that are conditionally i.i.d. according to this mixing distribution (see
(2.14d)). This means that

f(θn|G) = G(θn|π, θ∗
1:K). (2.15)

Because of the discrete nature of G(θ|π, θ∗
1:K) in (2.14c), each sample θn is equal to a component

parameter θ∗
k with probability πk, i.e., Pr(θn = θ∗

k | π, θ∗
1:K) = πk. By using the conditional pdf

f(xn|θn) in (2.14e) we associate the n-th sample θn with the n-th observation xn and determine
from which component distribution f(xn|θ∗

k) each data point xn is realized. We assume that
the n-th observation xn statistically depends on θn but not on the random pdf G and not on
any other local parameter θn′ with n′ ̸= n, i.e.,

xn ⊥⊥G, θn′ | θn where n, n′ = 1, . . . , N with n′ ̸= n.

Hence, we have

f(xn|θ1:N , G) = f(xn|θn, G) = f(xn|θn). (2.16)

The mixture distribution (2.1) can be formally rewritten as f(xn|G). Indeed,

f(xn|G) =
∫
Rp

f(xn|θn, G)f(θn|G) dθn

=
∫
Rp

f(xn|θn)G(θn|π, θ∗
k) dθn

9
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=
∫
Rp

f(xn|θn)
(

K∑
k=1

πkδ(θn − θ∗
k)

)
dθn

=
K∑

k=1
πk

∫
Rp

f(xn|θn)δ(θn − θ∗
k) dθn

=
K∑

k=1
πkf(xn|θ∗

k), (2.17)

where we have used (2.16) and (2.15) in the first step. Thus, f(xn|G) is equal to (2.1), i.e.,
f(xn|G) = f(x|π, θ∗

1:K). This means that the set of hidden parameters π and θ∗
1:K is equivalent

to the mixing distribution G(θ).
The representation (2.14) of a BMM also allows us to determine the clustering structure of

the data x1:N . Similar to the indicator variables zn taking on L ≤ K distinct values 1, . . . , L

for n = 1, . . . , N , the local parameters θn take on L ≤ K distinct values θ′
l, l = 1, . . . , L. Each

θ′
l is equal to one of the parameters θ∗

1, . . . , θ∗
K . The number of times θ∗

k appears in θ1:N , which
is equal to the number of observations xn generated by component k (cf. (2.10)), is given by

Nk =
N∑

n=1
✶(θn = θ∗

k). (2.18)

This again determines the number of clusters L by evaluating (2.11).
Finally, we note that the number of components K in a mixture model does not have to be

finite. Countably infinite mixtures with mixing distribution G(θ) = ∑∞
k=1 πkδ(θ − θ∗

k) are well-
defined and often used in practice when it is difficult to choose K in advance. Using a mixture
model with an infinite number of components and observing a finite data set x1:N means there
will always be “inactive components,” i.e., components k for which θn ̸= θ∗

k for all n = 1, . . . , N

or, equivalently, zn ̸= k for all n = 1, . . . , N . A prominent example of an infinite mixture is
the Dirichlet process mixture, which will be discussed in Chapter 3. A different approach is to
consider the number of components K to be random according to a prior distribution f(K).
Such models are called mixture of finite mixtures [36], [37] and are outside the scope of this
thesis.

2.2 Exponential Family

Throughout this thesis our focus will be on mixtures consisting of component distributions
belonging to the exponential family (EF), i.e., a set of parameterized probability distributions
with a certain mathematical structure. An important example is constituted by mixtures of
multivariate Gaussian distributions. Therefore, we will now provide a concise introduction to the
EF. Many of the commonly used distributions, e.g. Gaussian, Poisson, binomial, exponential,
and gamma, belong to the EF. When the parameters of a distribution belonging to the EF are
considered to be random variables, such distributions are conditional probability distributions
or, when viewed as a function of the parameters, they can be interpreted as likelihood functions
involving observed data. In the Bayesian context, likelihood functions can be combined with
conjugate priors to obtain posterior distributions that have the same functional form as the

10
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prior distribution. The concept of conjugate priors is important because it allows for an easy
determination of the posterior distribution and, thereby, an efficient inference of the parameters.
In this regard, we will see that likelihood functions belonging to the EF always have conjugate
priors. A more detailed introduction to the EF and its properties can be found in [2], [38], [39].

2.2.1 Definition

A conditional pdf f(x|θ∗) with M -dimensional vector x ∈ RM and p-dimensional parameter
vector θ∗ ∈ Rp is element of an EF if it is of the following form [2]:

f(x|θ∗) = h(x) exp
(
η∗T(θ∗)t(x) − a(η∗(θ∗))

)
. (2.19)

Here, h(x) ≥ 0 is called the base measure, η∗(θ∗) =
(
η∗

1(θ∗) · · · η∗
p(θ∗)

)T is a p-dimensional
vector consisting of p parameter functions, t(x) =

(
t1(x) · · · tp(x)

)T is a p-dimensional vector
called the sufficient statistic, and a(η∗(θ∗)) is a real function called the log-partition function.
If we consider the parameter in (2.19) to be η∗ = η∗(θ∗) rather than θ∗, the EF is said to be in
canonical form and η∗ = (η∗

1 · · · η∗
p)T is referred to as canonical or natural parameter. Here,

(2.19) reduces to

f(x|η∗) = h(x) exp
(
η∗Tt(x) − a(η∗)

)
. (2.20)

The log-partition function a(η∗) ensures that the pdf is normalized, which means it is auto-
matically determined by the functions h(x) and t(x). Integrating (2.20) yields∫

RM
f(x|η∗) dx = exp(−a(η∗))

∫
RM

h(x) exp
(
η∗Tt(x)

)
dx = 1,

and thus

exp(a(η∗)) =
∫
RM

h(x) exp
(
η∗Tt(x)

)
dx,

or equivalently

a(η∗) = ln
(∫

RM
h(x) exp

(
η∗Tt(x)

)
dx

)
. (2.21)

For the practically important case of observing a sequence of data x1:N , where xn is condi-
tionally i.i.d. given η∗ and individually distributed according to (2.20), the likelihood function
is obtained as

f(x1:N |η∗) =
N∏

n=1
f(xn|η∗)

=
N∏

n=1
h(xn) exp

(
η∗Tt(x) − a(η∗)

)
=

(
N∏

n=1
h(xn)

)
exp

(
η∗T

N∑
n=1

t(xn) − Na(η∗)
)

11
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= h′(x1:N ) exp
(
η∗Tt′(x1:N ) − a′(η∗)

)
, (2.22)

which is again an EF pdf with the same parameter vector η∗ and

h′(x1:N ) =
N∏

n=1
h(xn), (2.23)

t′(x1:N ) =
N∑

n=1
t(xn), (2.24)

a′(η∗) = Na(η∗). (2.25)

Examples of distributions used in this thesis that belong to the EF include the Gaussian,
beta, Dirichlet, and categorical distributions. Although a product of distributions belonging to
the EF also belongs to the EF (see (2.22) for example), a mixture of distributions belonging to
the EF, e.g. a mixture of Gaussian distributions, does not necessarily belong to the EF [38].

2.2.2 Conjugate Prior

In what follows we assume the EF distribution to be in canonical form (see (2.20)). An im-
portant property of the EF is that all of its members have a conjugate prior, i.e., for every EF
likelihood function f(x|η∗) there exists a prior f(η∗) that is conjugate to the likelihood f(x|η∗).
Conjugacy of the prior f(η∗) and likelihood f(x|η∗) means that the posterior f(η∗|x) has the
same functional form as the prior f(η∗). This simplifies Bayesian inference of the parameters
η∗ because it leads to closed-form solutions of the posterior distributions where otherwise an
approximation may be necessary.

Let us consider N observations x1, . . . , xN that are conditionally i.i.d. and individually dis-
tributed according to (2.20), so that the likelihood function of x1:N is of the form (2.22). Then,
the corresponding conjugate prior can be written as

f(η∗) = b(λ) exp
(
λT

1 η∗ − λ2a(η∗)
)
, (2.26)

where b(λ) ∈ R+ is a normalization coefficient given by

b(λ) = 1∫
Rp exp

(
λT

1 η∗ − λ2a(η∗)
)

dη∗ . (2.27)

The hyperparameters λ =
(
λT

1 λ2
)T, with λ1 ∈ Rp and λ2 ∈ R, represent our prior belief about

η∗, and a(η∗) is the same function as appears in (2.20) and (2.21).
Through Bayes’ theorem, the posterior f(η∗|x1:N ) is obtained by updating the prior (2.26)

with information summarized by the likelihood function (2.22), i.e.,

f(η∗|x1:N ) = f(x1:N |η∗)f(η∗)
f(x1:N ) (2.28)

∝ f(x1:N |η∗)f(η∗) (2.29)

∝ exp
(
η∗Tt′(x1:N ) − a′(η∗)

)
exp

(
λT

1 η∗ − λ2a(η∗)
)

(2.30)

12
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∝ exp

()(
λ1 +

N∑
n=1

t(xn)
)T

η∗ − (λ2 + N)a(η∗)

)), (2.31)

where (2.24) and (2.25) were used and the symbol ∝ denotes equality up to a normalization
factor that does not depend on η∗. Equivalently, we have

f(η∗|x1:N ) = b(τ ) exp
(
τ T

1 (x1:N )η∗ − τ2a(η∗)
)

(2.32)

with updated hyperparameters τ =
(
τ T

1 (x1:N ) τ2
)T given by

τ1(x1:N ) = λ1 +
N∑

n=1
t(xn), (2.33a)

τ2 = λ2 + N , (2.33b)

and normalization constant b(τ ) = 1/
∫
Rp exp

(
τ T

1 (x1:N )η∗ − τ2a(η∗)
)

dη∗. Comparing (2.32)
with (2.26), we recognize that the posterior pdf f(η∗|x1:N ) is of the same functional form as
the prior pdf f(η∗), thus confirming conjugacy; however the hyperparameters λ are updated
according to (2.33). This update relation can be interpreted as an augmentation of our prior
beliefs, represented by λ, by the information provided by the data x1:N , represented by the sum∑N

n=1 t(xn) and the sample size N .

2.3 Bayesian Estimation of Mixture Models

Throughout the thesis, we will summarize all hidden parameters of a statistical model in a
vector denoted by w ∈ RP . For the BMM (2.4), we have w =

(
πT θ∗T

1:K
)T with

P = dim(w) = dim(π) + dim(θ∗
1:K) = K + Kp, (2.34)

and for the BMM (2.7) including the indicator variables z1:N , we have w =
(
πT zT

1:N θ∗T
1:K

)T

with

P = dim(w) = dim(π) + dim(z1:N ) + dim(θ∗
1:K) = K + N + Kp. (2.35)

Here, the operator dim(·) takes a vector as argument and returns its dimension, and P denotes
the number of scalar parameters contained in w.

Bayesian estimation is a statistical approach to obtaining an estimate of the unknown param-
eter vector w based on both prior knowledge and observed data [40]. An estimator ŵ = ŵ(x1:N )
is said to be a Bayes estimator if it minimizes the posterior expected value of a loss function (or
cost function), which means it involves the posterior pdf f(w|x1:N ) and a function that takes
into account the estimation error e = ŵ − w. Compared to the prior pdf f(w), the posterior
pdf f(w|x1:N ) describes the distribution of w after the data x1:N has been observed.

For a BMM defined by (2.4), and for x1, . . . , xN conditionally i.i.d. and individually dis-
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tributed according to (2.1), the prior is given by

f(w) = f(π, θ∗
1:K) = f(π)

K∏
k=1

f(θ∗
k), (2.36)

where (2.3) and (2.4b) were used. Furthermore, by using Bayes’ rule, the posterior is obtained
as

f(w|x1:N ) = f(π, θ∗
1:K |x1:N ) = f(x1:N |π, θ∗

1:K)f(π, θ∗
1:K)

f(x1:N ) . (2.37)

Here, the constant f(x1:N ) is known as the evidence, and

f(x1:N |π, θ∗
1:K) =

N∏
n=1

f(xn|π, θ∗
1:K) =

N∏
n=1

K∑
k=1

πkf(xn|θ∗
k) (2.38)

represents a likelihood function called the mixture likelihood. Inserting (2.38) and (2.36) into
(2.37) yields

f(θ∗
1:K , π|x1:N ) ∝

(
N∏

n=1

K∑
k=1

πkf(xn|θ∗
k)

)
f(π)

K∏
k=1

f(θ∗
k). (2.39)

For a given posterior distribution (and loss function), various Bayesian estimators can be
obtained, the two most popular being the minimum mean square error (MMSE) estimator and
the maximum a-posteriori (MAP) estimator. The MMSE estimator is equal to the posterior
expectation or mean of w, i.e., the expectation of w with respect to the posterior:

ŵMMSE(x1:N ) = E(f(w|x1:N )){w} =
∫
RP

wf(w|x1:N ) dw. (2.40)

The MAP estimator is the posterior mode, i.e., the position of the global maximum of the
posterior pdf f(w|x1:N ):

ŵMAP(x) = arg max
w∈RP

f(w|x1:N ). (2.41)

Since any positive constant factor will not change the position of the maximum, the MAP
estimator is also obtained by

ŵMAP(x) = arg max
w∈RP

{f(x1:N |w)f(w)}, (2.42)

where we used (2.37) (with w in place of π and θ∗
1:K) and the fact that f(x1:N ) is a positive

constant with respect to the parameter w.
Even though explicit derivations of the Bayesian estimators considered above may be formally

available when using conjugate priors, the representation of the mixture distribution given
by (2.1) does not allow for an efficient use of Bayesian estimators because the corresponding
posterior involves the expansion of the mixture likelihood (2.38) into KN terms [40], [41]. The
computational difficulty is seen to increase at an exponential rate with the sample size N . Thus,
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a Bayesian estimator is often computationally prohibitive for more than a few observations xn.
To circumvent the problem of an intractable posterior, we resort to approximation techniques.
The two most prominent are Monte Carlo (MC) sampling, particularly, Markov chain Monte
Carlo (MCMC) methods such as Gibbs sampling [5], and variational inference (VI) methods
such as coordinate ascent variational inference [14]. While MCMC methods provide a numerical
and stochastic approximation of the exact posterior through a set of samples, VI methods
provide a locally-optimal, analytical solution to a deterministic approximation of the posterior.
MCMC methods are able to asymptotically approximate the posterior with arbitrary accuracy,
but they tend to be more computationally expensive than VI methods and do not scale easily
to high-dimensional models. In contrast, VI methods may suffer from oversimplified posterior
approximations, but they are usually faster than MC sampling methods and thus make Bayesian
inference computationally efficient and scalable to large-scale applications. VI methods aim at
calculating an approximated posterior pdf/pmf q(w) ≈ f(w|x1:N ), which is commonly referred
to as the variational distribution. This variational distribution can then be used to approximate
the MMSE or MAP estimator by replacing f(w|x1:N ) with q(w) in (2.40) or (2.41), respectively.
In this thesis, we focus on VI methods.
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3 Dirichlet Process Mixture Models

This chapter gives an introduction to the Dirichlet process mixture (DPM). The DPM is a
Bayesian nonparametric mixture model, i.e., a mixture model similar to what we discussed
in Section 2.1. “Nonparametric” means that the mixture model has an infinite number of
parameters, and therefore an infinite number of components. This is a result of using the
Dirichlet process (DP), which is also a Bayesian nonparametric model, as a prior distribution
for the mixing distribution in a mixture model. In what follows, we first present the DP and
then demonstrate how finite mixture models can be generalized to infinite mixture models,
resulting in the DPM.

3.1 Stick-breaking Representation of the Dirichlet Distribution

As the DP can be viewed as a generalization of the Dirichlet distribution and the Dirichlet
distribution can be viewed as a generalization of the beta distribution, we will first discuss
an alternative representation of the Dirichlet and beta distributions. Both distributions are
examples of distributions over distributions, which are suitable to model the random behavior of
a finite set of proportions. Because of this interpretation and the conjugacy to the binomial and
categorical distribution, they are often used as a prior distribution for the mixing proportions
π in mixture models [42]. We will now describe both distributions in the context of modeling
the random proportions π ∈ ∆K .

3.1.1 Beta Distribution

The beta distribution is given by

f(π) = B(π; α1, α2) = Γ(α1 + α2)
Γ(α1)Γ(α2)πα1−1(1 − π)α2−1, π ∈ [0, 1], (3.1)

where Γ(x) is the gamma function and α1 > 0 and α2 > 0 are scalar parameters that control the
shape of the distribution. Figure 3.1a shows examples of (3.1) for different shape parameters.
We note that the support of the beta distribution is [0, 1] and for α1 = α2 = 1, the uniform
distribution on [0, 1] is obtained. Small values of α1 and large values of α2 result in higher
probabilities for low values of π and vice versa. If α1 = α2, then for larger values of α1 = α2

more probability mass is concentrated around π = 0.5. The mean of the beta distribution is
given by

E(f(π)){π} = α1
α1 + α2

> 0. (3.2)
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Figure 3.1: (a) Beta distribution for four different parameter vectors α = (α1 α2)T. (b) Visu-
alization of four realizations of the beta distribution as breaking a unit-length stick
into K = 2 pieces using the distribution B(1, 1) in (a) for π1 and setting π2 = 1−π1.

We now consider a mixture model with K = 2 components and mixing probabilities π =
(π1 π2)T = (π1 1 − π1)T, and we use the beta distribution given by (3.1) as a prior for π1.
Figure 3.1b shows four different realizations from B(π1; 1, 1). Each realization results in two
mixing proportions π1 and π2 with π1 + π2 = 1. This can be interpreted as breaking a unit-
length stick into K = 2 pieces where the first piece has an average length according to (3.2).
Drawing conditionally i.i.d. data from a mixture distribution given π, where π corresponds
to a broken stick, means that each new data point is realized either from component 1 with
probability π1 or from component 2 with probability π2, i.e., we will observe two clusters in the
data set. Note that for α1 = α2, the means of π1 and of π2 = 1 − π1 (see (3.2)) are equal.

3.1.2 Dirichlet Distribution

The multivariate generalization of the beta distribution is provided by the Dirichlet distribution.
Consider a mixture model with K ≥ 2 components where the random vector π = (π1 . . . πK)T

exists in the (K − 1)-dimensional probability simplex ∆K given by (2.2). The Dirichlet distri-
bution, i.e., the pdf of π is given by

f(π) = D(π; α) =
Γ

(∑K
k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

παk−1
k , π ∈ ∆K , (3.3)

with parameter vector α = (α1 . . . αK)T ∈ RK , αk > 0. Comparing (3.1) and (3.3) shows
that for the case K = 2, the Dirichlet distribution reduces to the beta distribution, i.e., if
π1 ∼ B(π1; α1, α2) and π2 = 1 − π1, then π = (π1 π2)T ∼ D(π; α), where α = (α1 α2)T, and
vice versa. Similar to the beta distribution, the parameter vector α controls the shape of the
distribution, i.e., how concentrated the probability density is in certain areas of the support
∆K . When α = c1K , the probability mass concentrates more and more around the center of
the support of the distribution as c → ∞, which means the variability of the length of the stick
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Figure 3.2: Visualization of realizations of the Dirichlet distribution as the result of breaking a
unit-length stick into K = 4 pieces, for four different choices of the parameter vector
α. The stick pieces are represented by different colors. For each parameter vector
α, five realizations are shown.

pieces decreases. For c = 1 the uniform distribution over ∆K is obtained. Figure 3.2 shows the
effect of varying α for K = 4 in the stick-breaking representation.

The mean length of the stick pieces is given by

E(f(π)){π} = α∑K
k=1 αk

. (3.4)

Note that for α = c1K , the mean length (3.4) of all stick pieces are equal. The marginal
distributions of D(π; α) can be shown [43] to be given by

πk ∼ B
(

πk; αk,
∑
i ̸=k

αk

)
. (3.5)

Furthermore, because of the neutrality property of the Dirichlet distribution [43] we have

πk:K | π1:(k−1) ∼
(

1 −
k−1∑
i=1

πi

)
D(πk:K ; αk:K). (3.6)

Using (3.5) and (3.6), the stick-breaking behavior of the Dirichlet distribution can be refor-
mulated in a recursive way using auxiliary variables vk ∈ [0, 1] as follows. Assume we have a
unit-length stick and want to randomly break it into K parts of length π1, . . . , πK according to
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Figure 3.3: Construction of a D(π; α)-distributed random vector π by iteratively breaking a
unit-length stick into K = 4 pieces. Beta-distributed auxiliary variables vk are used
to break the currently remaining stick in the steps k = 1, . . . , K − 1 into two pieces.

(3.3). We will first assume that K = 4 and then generalize the overall procedure to any value
K ≥ 3. Figure 3.3 shows a visual representation of the stick-breaking approach of generating
a random vector π = (π1 π2 π3 π4)T according to the distribution D(π; α). It consists of
following steps:

1. First, we break off a piece of length π1 = v1 according to the marginal distribution
v1 ∼ B

(
v1; α1,

∑4
i=2 αi

)
(see (3.5)). The remaining stick has length 1 − π1 = 1 − v1.

2. Using (3.6) the pieces π2, π3 and π4 of the remaining stick are distributed according to
π2:4| π1 ∼ (1 − π1)D(π2:4; α2:4). Here, we can apply (3.5) to obtain the conditional
distribution of π2 given π1, i.e., π2| π1 ∼ (1 − π1)B(v2; α2, α3 + α4), where we use the
auxiliary variable v2. Thus, to obtain π2 we have to draw v2 from B(v2; α2, α3 + α4) and
calculate π2 = v2(1−π1) = v2(1−v1). By breaking off the piece of length π2 the remaining
stick has length 1 − π1 − π2 = (1 − v1)(1 − v2).

3. Similar to the previous step we have π3, π4| π1, π2 ∼ (1 − π1 − π2)D(π3, π4; α3, α4) and
π3| π1, π2 ∼ (1 − π1 − π2)B(v3; α3, α4). Here, π3 is obtained by drawing the auxiliary v3

from B(v3; α3, α4) and calculating π3 = v3(1 − π1 − π2) = v3(1 − v1)(1 − v2).

4. The length of the last piece is π4 = 1 − π1 − π2 − π3 = (1 − v1)(1 − v2)(1 − v3).

Note that in each step k = 1, . . . , K − 1 we draw an auxiliary variable vk from the distribution
B

(
vk; αk,

∑K
i=k+1 αi

)
and use it to break the currently remaining stick of length1

1 −
k−1∑
i=1

πi =
k−1∏
i=1

(1 − vi) (3.7)

to obtain πk (see Figure 3.3). For K ≥ 3 the overall sick-breaking approach can be summarized
as follows [43]:

1For a mathematical proof of the equality 1 − ∑k−1
i=1 πi =

∏k−1
i=1 (1 − vi) see the appendix of [8].
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1. Draw v1 ∼ B
(
v1; α1,

∑K
k=2 αk

)
and set π1 = v1, which is the first piece of the stick. The

remaining piece has length 1 − π1 = 1 − v1.

2. For 2 ≤ k ≤ K − 1, if k − 1 pieces with lengths π1, . . . , πk−1 have been broken off using
the auxiliary variables v1, . . . , vk−1, then 1 − ∑k−1

i=1 πi = ∏k−1
i=1 (1 − vi) is the length of

the remaining stick. Draw vk ∼ B
(
vk; αk,

∑K
i=k+1 αi

)
and set πk = vk

(
1 − ∑k−1

i=1 πi

)
=

vk
∏k−1

i=1 (1 − vi).

3. The length of the last piece is πK = 1 − ∑K−1
k=1 πk = ∏K−1

i=1 (1 − vi).

Next, we will discuss the generation of a sequence of K = ∞ mixing proportions π1, π2, . . .

that sum to one, which constitutes an infinite-dimensional generalization of the stick-breaking
interpretation of the Dirichlet distribution.

3.2 Dirichlet Process

The DP has been a centerpiece of Bayesian nonparametrics since its introduction in [44] as a
random probability measure. In this section, we will consider different representations of the
DP, called the stick-breaking process [11], the Blackwell-MacQueen Urn Scheme [12] and the
Chinese restaurant process [13], which all have the advantage of not requiring measure theory
in their formulations. These representations of the DP will build the basis for the inference
technique and simulations considered in Chapters 4 and 5, respectively.

Following [11], we define realizations of a random pdf G to be of the form

G(θ|π, θ∗
1:∞) ≜

∞∑
k=1

πkδ(θ − θ∗
k), (3.8)

with random proportions πk ∈ [0, 1] and random vectors θ∗
k ∈ Rp, where the random proportions

satisfy ∑∞
k=1 πk = 1 almost surely. Note that G(θ|π, θ∗

1:∞) is a discrete distribution, i.e., θ = θ∗
k

with probability πk or, equivalently, Pr(θ = θ∗
k | π, θ∗

1:∞) = πk (cf. Section 2.1.3). The DP
is a Bayesian nonparametric model capable of generating realizations of the form (3.8) and,
therefore, is a distribution over distributions, as (3.8) is a valid probability distribution. We
will denote it as DP(α, G0), where α is called the concentration parameter and G0 the base
distribution, and write

G ∼ DP(G; α, G0)

to express the fact that a random pdf G is distributed according to a DP. The two parameters α

and G0, which are involved in the generation of the proportions πk and vectors θ∗
k, respectively,

will be discussed in the following.

3.2.1 Stick-breaking Process

Following [11], we now present a constructive way of forming (3.8), which is commonly referred to
as the stick-breaking process [45] and relates to the stick-breaking representation of the Dirichlet
distribution described above. Using a sequence of auxiliary variables vk ∈ [0, 1], k ∈ N, and
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Figure 3.4: Stick-breaking representation of the GEM distribution. Compared to the stick-
breaking representation of the Dirichlet distribution in Figure 3.3, the unit-length
stick is broken into an infinite number of pieces using B(1, α)-distributed auxiliary
variables vk.

a real-valued parameter α > 0, called the concentration parameter, the infinite sequence of
(mixing) proportions πk, k = 1, 2, . . ., is given by (cf. (3.7))

πk = vk

k−1∏
i=1

(1 − vi) = vk

(
1 −

k−1∑
i=1

πi

)
, (3.9a)

with

vk
i.i.d.∼ B(vk; 1, α). (3.9b)

Note that the k-th proportion πk depends on the first k auxiliary variables v1, . . . , vk. Compared
to the stick-breaking representation of the Dirichlet distribution, a beta distribution with fixed
parameters 1 and α is used to generate the sequence auxiliary variables vk. It can be shown that∑∞

k=1 πk = 1 almost surely [11], i.e., the support of π = (π1 π2 · · · )T is the infinite-dimensional
probability simplex. The resulting distribution of the infinite sequence of proportions πk, or,
equivalently, of the infinite-dimensional vector π, is called the GEM distribution, named after
Griffiths, Engen and McCloskey [35]. We denote it by

π ∼ GEM(π; α). (3.10)

In Section 3.3, we will show that using (3.10) as a prior for the mixing probabilities π of a
mixture model represented by (2.7) (with K = ∞), is equivalent to using D(

π; α
K 1K

)
as a prior

for π and taking the limit K → ∞. This then demonstrates how the Dirichlet distribution can
be generalized to the Dirichlet Process. Figure 3.4 shows a representation of the stick-breaking
process where a unit-length stick is broken apart into an infinite number of pieces of length πk,
for k = 1, 2, . . . , according to (3.9a) using random auxiliary variables vk distributed according
to (3.9b).

22



3 Dirichlet Process Mixture Models

Using (3.2), the mean of the auxiliary variable vk is given by

E(f(vk)){vk} = 1
1 + α

> 0. (3.11)

To find the mean of the mixing proportions πk, we start with expression (3.9a), i.e.,

E(f(v1,...,vk)){πk} = E(f(v1,...,vk))
{

vk

k−1∏
i=1

(1 − vi)
}

.

Using the independence between the auxiliary variables vk (see (3.9b)) and the linearity of
expectation yields

E(f(v1,...,vk)){πk} = E(f(vk)){vk}
k−1∏
i=1

(
1 − E(f(vi)){vi}

)

= 1
1 + α

k−1∏
i=1

(
1 − 1

1 + α

)

= 1
1 + α

k−1∏
i=1

α

1 + α

= 1
1 + α

(
α

1 + α

)k−1
, (3.12)

where (3.11) was used. Because α/(1 + α) < 1, we conclude from (3.12) that E(f(v1,...,vk)){πk}
decreases with growing k and ultimately tends to zero, i.e., the average mixing proportions are
ordered in decreasing size with respect to k. For small values of α, the first few proportions
πk are likely assigned the majority of the stick mass while the rest of the proportions πk are
approximately zero. The reason is the first few terms of the sequence generated by (3.12)
dominate for small α. As α grows the average proportions (3.12) become smaller, resulting
in the majority of the stick mass being assigned to an increasing number of πk’s. Figure 3.5a
shows a plot of (3.12) for k = 1, . . . , 10 and illustrates this behavior. In Figure 3.5b we show
four different realizations of mixing proportions π sampled according to (3.10).

Next, in addition to π, we consider a sequence of random vectors θ∗
k ∈ Rp that are i.i.d. and

individually distributed according to a base distribution G0, i.e.,

θ∗
k

i.i.d.∼ G0(θ∗
k), k ∈ N. (3.13)

Pairing together θ∗
k and the GEM(π; α)-distributed proportions πk for k = 1, 2, . . . , the stick-

breaking construction of (3.8) can be described as

π ∼ GEM(π; α),

θ∗
k

i.i.d.∼ G0(θ∗
k),

G(θ|π, θ∗
1:∞) =

∞∑
k=1

πkδ(θ − θ∗
k),

where each segment πk of a unit length stick is associated with a random vector θ∗
k ∈ Rp. This
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Figure 3.5: (a) Mean of the mixing proportions πk (average stick lengths) for k = 1, . . . , 10 and
α ∈ {0.5, 1, 5, 10} (see (3.12)). For each value of α, a realization of π ∼ GEM(π; α)
is visualized in (b) where the length of each colored stick corresponds to one value
of πk.

construction of G guarantees that G ∼ DP(G; α, G0) and makes clear that samples from a
DP are discrete distributions represented by an infinite sum of weighted Dirac delta functions.
Figure 3.6 visualizes realizations of the DP with p = 1, i.e., θ∗

k ∈ R, and a standard normal
base distribution G0 = N (0, 1) for four different values of the concentration parameter α. As
α → ∞, the DP realizations G approximate the base distribution G0 by a densely sampled
set of discrete values θ∗

k due to π consisting of small, roughly uniform, proportions πk (cf. the
discussion of Figure 3.5).

Finally, given a realization G of DP(G; G0, α), we can consider N samples θ1, θ2, . . . , θN ,

i.i.d. and individually distributed according to this realization, i.e.,

θn|G i.i.d.∼ G(θn|π, θ∗
1:∞), n = 1, . . . , N . (3.14)

This means that each sample θn is equal to θ∗
k with probability πk (note that G consists

of a countably infinite number of possible vectors θ∗
k, see (3.8)). In a conventional sampling

scheme, this is not feasible since we are required to maintain an infinite number of values for the
proportions πk and vectors θ∗

k in order to obtain a sample θn. However, we can circumvent this
requirement and develop a feasible sampling method by using a generalized Pólya urn scheme
– discussed next – to directly produce θn. Under such an approach, and with a slight abuse
of language, we obtain θ1:N =

(
θT

1 , θT
2 , . . . , θT

N

)T, which we consider as N samples from the
Dirichlet process.

3.2.2 Pólya Urn Process

According to (3.14), a realization G of the DP assigns samples θn to distinct values θ∗
k, i.e.,

θn = θ∗
k with probability πk. Therefore, it is possible that multiple samples θn have identical

values. For a given N , the samples θn for n = 1, . . . , N will take on L ≤ N distinct values
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Figure 3.6: Draws from a Dirichlet process for p = 1, base distribution G0 = N (0, 1), and α ∈
{0.5, 1, 5, 10} visualized by a stem plot of (3.8). Additionally, the base distribution
G0(θ∗

k) is shown. The black stem lines can be interpreted as sticks from the stick-
breaking process where the height represents the values πk and the sticks itself are
placed at the one dimensional positions θ∗

k. Shown are only the values πk and θ∗
k for

k = 1, . . . , 50.

θ′
l ∈ {θ∗

1, θ∗
2, . . .}, l = 1, . . . , L. Let

Nl =
N∑

n=1
✶

(
θn = θ′

l

)
(3.15)

denote the number of times θ′
l appears within the sequence θ1:N (recall the discussion of (2.18)).

The probability of a new sample θN+1 taking one of the values θ′
1, . . . , θ′

L or a new value θ′
L+1

is given by a conditional distribution for θN+1 given θ1:N . This probability was derived in [12];
it is given by

f(θN+1|θ1:N ) = α

α + N
G0(θN+1) + 1

α + N

L∑
l=1

Nlδ
(
θN+1 − θ′

l

)
. (3.16)
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Thus, the DP leads to a closed-form predictive distribution (3.16) which can be evaluated using
the numbers N1, N2, . . . , NL and the L distinct values θ′

1:L =
(
θ′

1
T · · · θ′

L
T)T appearing within

the sequence θ1:N . Note that (3.16) is the sum of a continuous distribution given by the base
distribution G0(θ) weighted by α

α+N and a discrete part consisting of L discrete components at
positions θ′

l with weights Nl
α+N . From that it follows that θN+1 = θ′

l with probability Nl
α+N or

θN+1 is realized from the base distribution G0 with probability α
α+N , resulting in a new value

θ′
L+1.
This generative process of successively creating new samples by drawing from (3.16) can be

interpreted in terms of the following generalized Pólya urn model [12]. Consider a container (an
urn) containing one black ball whose mass is proportional to α and one colored ball for each
preceding sample θn, where the color uniquely corresponds to the associated θ′

l. Furthermore,
interpret the sampling of θN+1 from f(θN+1|θ1:N ) in (3.16) as drawing a ball from the urn and
putting it back together with a new ball. Each colored ball we draw corresponds to a realization
of the discrete part of (3.16). Here, the new ball we add to the urn is of the same color, meaning
that we increase the number of balls of that color by one, so that it becomes Nl + 1. Drawing
the black ball means realizing θN+1 from the base distribution G0. Here, the new ball we add to
the urn has a new, previously unseen color, corresponding to θ′

L+1. The probability of drawing
the black ball is assumed to be proportional to its weight α. Thus, the number of uniquely
colored balls increases with increasing α. Conversely, for small values of α, it is more likely to
draw a colored ball from the urn and return it together with a new ball of the same color. As
a consequence, the number of uniquely colored balls is more likely to be small.

The urn scheme can be used to generate samples θn from the DP without explicitly con-
structing the underlying pdf G ∼ DP(G; α, G0) and can be summarized as:

1. Realize the first sample θ1 from the base distribution G0.

2. For N = 1, 2, . . ., draw the next sample θN+1 from the predictive pdf in (3.16).

In the next subsection, we will present a different view of this process and emphasize the
clustering property of the DP, i.e., the fact that multiple samples θn take identical values θ′

l.

3.2.3 Clustering and Chinese Restaurant Process

Multiple samples θn of the DP taking identical values θ′
l indicates the existence of a clustering

structure within the samples θn. We again consider N samples θn, n = 1, . . . , N that take
L ≤ N distinct values θ′

l ∈ {θ∗
1, θ∗

2, . . .}, l = 1, . . . , L, which means that we can group the θn

into L different clusters. Let zn ∈ N be an indicator variable that indicates the cluster associated
with the n-th sample, i.e., θn = θ′

l if and only if zn = l. We can then reformulate (3.15) as

Nl =
N∑

n=1
✶(zn = l). (3.17)

26



3 Dirichlet Process Mixture Models

Figure 3.7: Chinese restaurant process with initially N = 5 customers sitting at two tables.
The sixth customer joins the first table and the seventh customer joins a new table.
The probability of a new customer joining a table (see (3.18)) is given by the values
within the circles.

Moreover, based on (3.16), we can formulate a predictive pmf for the indicator variable zN+1

of the next sample θN+1 as

p(zN+1|z1:N ) = α

α + N
✶(zN+1 = L + 1) + 1

α + N

L∑
l=1

Nl✶(zN+1 = l). (3.18)

The clustering of DP samples θn implies a clustering of the respective indices n ∈ N and,
thereby, a partitioning of N. This partitioning is described by the indicator variables zn and
called the Chinese restaurant process (CRP) by analogy to the process of seating customers
at tables in a restaurant [13]. Each customer (indicator variable zn) joins an existing table
(cluster), i.e., zn = l, with probability Nl

α+N or sits at a new table with probability α
α+N . In

the latter case a new cluster is created, i.e., zn = L + 1. Note that the probability of customer
joining a table is proportional to the number Nl of customers already sitting at that table, and
the probability of a customer sitting at a new table is proportional to α. The l-th table is
associated with the l-th value θ′

l. Figure 3.7 shows an example restaurant with initially N = 5
customers sitting at two tables, illustrating the partitioning of five integers into two clusters.
Additionally, the process of another customer joining an existing table (N = 6) as well as yet
another customer joining a new table (N = 7) is shown. For a given number of customers N ,
the expected number of occupied tables (clusters) L can be shown [4] to be given by

L̄ = α(Ψ(α + N) − Ψ(α)) (3.19)

≈ α ln
(

1 + N

α

)
, (3.20)

where Ψ(·) denotes the digamma function. The approximation in (3.20) is asymptotically exact
for N → ∞ and shows that for large N the expected number of tables L̄ grows logarithmically
with the number of customers N . Figure 3.8 shows the evolution of customers (indexed by
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Figure 3.8: Sampling of the indicator variables zn according to (3.18), which can be interpreted
as customers joining tables. Black dots refer to samples of already existing indicator
variables (at “time” n) and red dots refer to sampling new clusters. After N = 200
samples, there are L = 29 clusters. The blue curve shows the approximate expected
number of occupied tables as given by (3.20).

n) joining specific tables (indicated by zn) for n = 1, . . . , 200 and α = 10. At n = 8, the
indicator variable zn = 1 is equal to an already existing value, and at n = 40, the indicator
variable zn = 14 is equal to a new value. Note that the evolution of the indicator variables zn

corresponding to customers joining a new table (red dots) for increasing N roughly follows L̄.
Similar to the generalized Pólya urn scheme, we can use the CRP to sample θn from the DP

via a generation of indicator variables zn according to (3.18), without explicitly constructing the
underlying pdf G ∼ DP(G; α, G0). This CRP-based sampling procedure consists of following
steps:

1. Assign the first indicator variable z1 to an initial cluster by setting z1 = 1.

2. For N = 1, 2, . . ., realize the next indicator variable zN+1 from the predictive pmf in
(3.18).

3. For each cluster l ∈ {z1, z2, . . .} draw θ′
l from the base distribution G0 (see (3.13)).

4. Assign the values θ′
l to the samples θn by using the indicator variables zn, i.e., θn = θ′

zn
.

Compared to the generalized Pólya urn scheme, where we directly assign the values θ′
l to the

samples θn, the CRP describes which cluster l a sample θn belongs to via indicator variables
zn, such that zn = l and θn = θ′

zn
. In the generalized Pólya urn scheme, α influences how likely

it is to choose the black ball and therefore add a new color (cluster). In the CRP, α influences
how likely it is that a customer decides to sit on a new table, where the number of tables refers
to the number of clusters. The same behavior regarding α is exhibited in the stick-breaking
process. A large value of α means that there are many small sticks (see Figure 3.5b), which
is equivalent to an urn with a black ball of large mass (resulting in many differently colored
balls) and a restaurant with customers spread out over many tables. Table 3.1 summarizes the
equivalent descriptions of clustering in a DP.
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Clustering of Cluster labels
Clustering indicator variables natural numbers
Generalized Pólya urn scheme balls ball colors
CRP customers tables

Table 3.1: Equivalences between different descriptions of the clustering property of the DP.

Finally, we address a property of the stick-breaking process that is related to the indicator
variables zn as follows. Imagine we are given a vector π of mixing proportions πk, k = 1, 2, . . . ,

that was realized from the stick-breaking process (3.9). We can then consider indicator vari-
ables zn that are conditionally i.i.d. and individually distributed according to the categorical
distribution

zn|π i.i.d.∼ C(zn|π). (3.21)

Here, the independence of the indicator variables follows from the fact that we condition on
π, which is equivalent to the conditional independence of the samples θn given a realization
G from the Dirichlet process (see (3.14)). According to (3.12), the expectation of the mixing
proportion πk is decreasing with increasing k. In other words, on average, the probability of
the event zn = k decreases with increasing k. Given an observed sequence of indicator variables
z1:N , it is possible to determine the posterior distribution and the posterior expectation of π,
i.e., conditioned on z1:N . According to [25], the posterior distribution f(π|z1:N ) has again a
stick-breaking representation given by (cf. (3.9))

πk|z1:N = vk

k−1∏
i=1

(1 − vi), (3.22a)

where

vk|z1:N
i.i.d.∼ B(vk; ak, bk), (3.22b)

for k ∈ N, with

ak = 1 + Nk, (3.23a)

bk = α +
∞∑

i=k+1
Ni, (3.23b)

and Nk defined in (3.17). Comparing with the prior B(vk; 1, α) in (3.9b), we see that the
posterior of vk in (3.22b) is again a beta distribution but with updated parameters as given by
(3.23). Applying (3.2) yields for the posterior mean of the auxiliary variables

E(f(vk|z1:N )){vk} = ak

ak + bk
. (3.24)

By proceeding as in (3.12) with obvious modifications, the posterior expectation of the propor-
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tion πk is obtained as

E(f(v1,...,vk|z1:N )){πk} = E(f(vk|z1:N )){vk}
k−1∏
i=1

(
1 − E(f(vi|z1:N )){vi}

)

= ak

ak + bk

k−1∏
i=1

bi

ai + bi
. (3.25)

Note that the prior-to-posterior conversion (3.9) → (3.22) is fully determined by the multiplic-
ities Nk in (3.17), i.e., the numbers of times each value k appears in the sequence z1:N .

3.3 From Finite to Infinite Mixture Models

Based on [23] and [46], we now present a way of generalizing finite mixture models to infinite
mixture models, which serves as a more formal explanation of the DP as an infinite dimensional
generalization of the Dirichlet distribution.

3.3.1 Predictive Distribution for Finite Mixtures

Consider a Bayesian mixture model with K components as given by (2.7) using a symmetric
Dirichlet prior on the K mixing proportions. In the symmetric Dirichlet distribution all elements
of the parameter vector α have the same value, which we assume to be α/K, i.e.,

π ∼ D
(

π; α

K
1K

)
, (3.26)

where according to (3.3)

D
(

π; α

K
1K

)
= Γ(α)

Γ
(

α
K

)K

K∏
k=1

π
α
K

−1
k . (3.27)

Given mixing proportions π, we draw N indicator variables zn i.i.d. according to C(zn|π) in
(2.5). Thus, the conditional joint distribution of z1:N given π becomes

p(z1:N |π) =
N∏

n=1
C(zn|π) =

N∏
n=1

K∏
k=1

π
✶(zn=k)
k =

K∏
k=1

π

∑N

n=1 ✶(zn=k)
k =

K∏
k=1

πNk
k , (3.28)

where we used (3.17) in the last step. Using (3.27) and (3.28), we can now integrate out the
mixing proportions π to obtain the joint pmf of z1:N , i.e.,

p(z1:N ) =
∫

∆K

f(z1:N |π)f(π) dπ

=
∫

∆K

(
K∏

k=1
πNk

k

)
Γ(α)

Γ
(

α
K

)K

(
K∏

l=1
π

α
K

−1
l

)
dπ

= Γ(α)
Γ

(
α
K

)K

∫
∆K

K∏
k=1

π
Nk+ α

k
−1

k dπk. (3.29)
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Here, the integration amounts to calculating the normalization constant of a Dirichlet distribu-
tion with parameters α′

k = Nk + α
k (see (3.3)). According to (3.3) we have

∫
∆K

D(
π; α′) dπ =

Γ
(∑K

k=1 Nk + α
K

)
∏K

k=1 Γ
(
Nk + α

K

) ∫
∆K

K∏
k=1

π
Nk+ α

k
−1

k dπk = 1

and thus

∫
∆K

K∏
k=1

π
Nk+ α

k
−1

k dπk =
∏K

k=1 Γ
(
Nk + α

K

)
Γ

(∑K
k=1 Nk + α

K

) . (3.30)

Inserting (3.30) into (3.29) yields

p(z1:N ) = Γ(α)
Γ

(
α
K

)K

∏K
k=1 Γ

(
Nk + α

K

)
Γ

(∑K
k=1 Nk + α

K

) = Γ(α)
Γ(N + α)

K∏
k=1

Γ
(
Nk + α

K

)
Γ

(
α
K

) , (3.31)

where we used the fact that ∑K
k=1 Nk = N .

Based on joint pmf for the indicator variables, we can now derive a predictive pmf for a single
indicator variable zN+1 similar to (3.18). The conditional pmf for zN+1|z1:N can be expressed
as

p(zN+1|z1:N ) = f(zN+1, z1:N )
f(z1:N ) =

f(z1:(N+1))
f(z1:N ) . (3.32)

Using (3.31), we have

p(z1:(N+1)) = Γ(α)
Γ(N + 1 + α)

K∏
k=1

Γ
(
N ′

k + α
K

)
Γ

(
α
K

) , (3.33)

where N ′
k = Nk + 1 if zN+1 = k and N ′

k = Nk else, i.e., for zN+1 = k the k-th multiplicity Nk

is increased by one. Inserting (3.31) and (3.33) into (3.32) yields

p(zN+1|z1:N ) =
Γ(α)

Γ(N+1+α)
∏K

k=1
Γ(N ′

k+ α
K )

Γ( α
K )

Γ(α)
Γ(N+α)

∏K
k=1

Γ(Nk+ α
K )

Γ( α
K )

= Γ(N + α)
Γ(N + 1 + α)

K∏
k=1

Γ
(
N ′

k + α
K

)
Γ

(
Nk + α

K

) ,

where

K∏
k=1

Γ
(
N ′

k + α
K

)
Γ

(
Nk + α

K

) =
Γ

(
Nk + 1 + α

K

)
Γ

(
Nk + α

K

) .

Using the property Γ(x + 1) = xΓ(x) gives

p(zN+1|z1:N ) = Γ(N + α)
Γ(N + α + 1)

Γ
(
Nk + 1 + α

K

)
Γ

(
Nk + α

K

) = Γ(N + α)
(N + α)Γ(N + α)

(Nk + α
K )Γ

(
Nk + α

K

)
Γ

(
Nk + α

K

)
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and the result

p(zN+1|z1:N ) =
Nk + α

K

N + α
(3.34)

for the predictive distribution p(zN+1|z1:N ) of the indicator variable zN+1 ∈ {1, . . . , K}.

3.3.2 Limit to Infinite Mixtures

Finally, if we take the limit K → ∞ in (3.34) and assume that the indicator variables zn,
n = 1, . . . , N , take on values l ∈ {1, . . . , L} then

p(zN+1 = l|z1:N ) → Nl

N + α
. (3.35)

The limit in (3.35) is the probability that the indicator variable zN+1 is equal to one of the
previously observed indicators z1:N . It can moreover be shown [23] that for K → ∞ the
probability that zN+1 is different from all the previous zn for n = 1, . . . , N becomes

p(zN+1 ̸= zn ∀ n ≤ N |z1:N ) → α

N + α
. (3.36)

The limit in (3.36) is the probability that the indicator variable zN+1 is equal to a new value
L+1. Note that even when taking the limit to K = ∞ components, L can be at most N , which
means there is always a strictly positive probability that zN+1 = L + 1. Also note that the sum
of both limits (3.35) and (3.36) equals one, i.e.,

α

N + α
+

L∑
l=1

Nl

N + α
= α

N + α
+ N

N + α
= 1,

and thus that the derived predictive distribution for zN+1 is a valid probability distribution.
Comparing with the predictive distribution of the CRP in (3.18), the probability given by

(3.35) is equal to the probability that a new customer joins an occupied table and the probability
given by (3.36) is equal to the probability that a new customer takes a seat at a new table. If we
furthermore consider random vectors θ∗

k, k = 1, 2, . . ., i.i.d. according to the base distribution
G0 and create samples θn by setting θn = θ′

zn
with θ′

l ∈ {θ∗
1, θ∗

2, . . .}, l = 1, . . . , L, then this
generation of the θn is completely equivalent to the DP-based generation of the θn described
in Section 3.2.3.

Finally, we can use the samples θn to generate data xn according to the component dis-
tributions f(xn|θn) of a mixture model (see (2.14)). The resulting observations xn are then
distributed according to a DPM as we will define it in Section 3.4. Thus, by considering (2.7)
with a symmetric Dirichlet prior for the mixing proportions π according to (3.26) and by taking
the limit K → ∞, we arrive at a mixture model with an infinite number of components, more
specifically, a DPM.
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3.4 Dirichlet Process Mixture Definition

Another way of generalizing a finite mixture model to an infinite mixture model is to use the DP
as a prior for the mixing distribution G (see Section 2.1.3). That is, we directly draw G from
the DP instead of drawing the mixing proportions π and component parameters θ∗

k separately
as in (2.14). In order to model a set of conditionally i.i.d. observations xn, n = 1, . . . , N , we
define a DPM according to

G ∼ DP(G; α, G0), (3.37a)

θn|G i.i.d.∼ G(θn|π, θ∗
1:∞), (3.37b)

xn|θn ∼ f(xn|θn), (3.37c)

for n = 1, . . . , N , where the DP samples θn are hidden parameters that are used to realize the
n-th data point xn via the respective component distribution f(xn|θn). Each observation xn

is based on a conditionally independently sampled parameter θn; note that multiple samples
θn can take on the same value because of the discrete nature of G. Therefore, observations
xn based on the same value θn belong to the same cluster, as they are realized from the same
conditional distribution [4].

The statistical model of the DPM defined in (3.37) is a Bayesian mixture model similar to
the definition of a Bayesian mixture model in (2.14). Given a realization G (see (3.8)) from the
DP, i.e.,

G(θn|π, θ∗
1:∞) =

∞∑
k=1

πkδ(θ − θ∗
k), (3.38)

and proceeding as in the derivation of (2.17) in Section 2.1.3, yields the conditional distribution

f(xn|G) =
∞∑

k=1
πkf(xn|θ∗

k). (3.39)

This has exactly the form of a mixture distribution as defined in (2.1), but with a countably
infinite number of components.

Using the stick-breaking process, we can define a representation in terms of indicator variables
(cf. (2.7)) for the DPM as follows:

π ∼ GEM(π; α), (3.40a)

θ∗
k

i.i.d.∼ G0(θ∗
k; λ), (3.40b)

zn|π i.i.d.∼ C(zn|π), (3.40c)

xn|zn, θ∗
1 , . . . , θ∗

∞ ∼ f
(
xn

||θ∗
zn

)
, (3.40d)

for k ∈ N and n ∈ N. Here, the mixing proportions π are distributed according to the GEM dis-
tribution (3.10) with concentration parameter α, and the component parameters θ∗

k , k = 1, 2, . . .,
are i.i.d. realizations from the base distribution G0, which we assume to be parameterized by a
(deterministic) hyperparameter λ. As explained in Section 2.1.2 (see the derivation of (2.9)),
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(a) (b)

Figure 3.9: Bayesian network of a DPM model. (a) Model description in terms of the random
distribution G ∼ DP(G; α, G0). The parameters θ1:N |G are i.i.d. according to G.
(b) The mixing proportions π ∼ GEM(π; α) follow the stick-breaking process and
the component parameters θ∗

1, θ∗
2, . . ., are i.i.d. according to the base distribution

G0(θ∗
k; λ). The indicator variables zn determine the component that generates xn.

marginalizing the indicator variables zn reveals a mixture model with the form (2.1), with the
difference that the model (3.40) is an infinite component mixture as we sample an infinite num-
ber of proportions πk and component parameters θ∗

k for k ∈ N. Observing a dataset x1:N of
finite size N of a DPM means that we observe L ≤ N clusters in the data, i.e., the indicator
variables zn or the parameters θn take on at most L ≤ N different values. Mathematically
speaking, the number of clusters L is a random variable and its expected value grows as new
data points are observed (see (3.19)).

Finally, we summarize the DPM model descriptions (3.37) and (3.40) in Figures 3.9a and 3.9b,
respectively, using a Bayesian network representation [47]. Nodes, which are depicted as circles,
represent random quantities and edges represent statistical dependencies. A shaded node means
that we observe the respective quantity in the generative process whereas a nonshaded node
represents a hidden quantity. Plates are used to compactly represent a repetition of nodes.
The hyperparameters α and λ are also included but not represented by nodes since they are
considered as known quantities that parameterize the distribution of the unknown (random)
parameters of the model. Note that we can invoke the CRP (see Section 3.2.3) to generate
the sequence of indicator variables z1:N according to (3.18) or the Pólya urn process (see Sec-
tion 3.2.2) to generate the samples θ1:N according to (3.16). Using this approach, we are then
able to generate xn according to the component distribution f(xn|θn) = f

(
x

||θ∗
zn

)
.

3.5 Exponential Family Dirichlet Process Mixture Model with
Conjugate Prior

For the remainder of the thesis, we will consider DPMs where the observed data xn is drawn
from a mixture of EF distributions and the base distribution G0 is the corresponding conjugate
prior (see Section 2.2). This greatly simplifies Bayesian inference. In particular, as shown in [6],
it simplifies the derivation of variational inference methods, which we will consider in Chapter 4.

We will represent the DPM in terms of the stick-breaking process (see Section 3.2.1) and
hidden indicator variables (see (3.40)). Moreover, we assume the EF to be in canonical form
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(see (2.20)) with natural (canonical) parameter η∗
k = η∗

k(θ∗
k). This means that the parameter

of the component distribution f(xn|η∗
k) is given by η∗

k rather than θ∗
k. The auxiliary variables

vk of the stick-breaking process are distributed according to (3.9b) and the mixing proportions
πk are given by (3.9a). Recall that (3.9b) and (3.9a) together are the GEM(π; α) distribution.
Using (3.40), we can summarize the model for N conditionally independent observations xn as

vk
i.i.d.∼ B(vk; 1, α), (3.41a)

πk = πk(v1, . . . , vk) = vk

k−1∏
i=1

(1 − vi), (3.41b)

η∗
k

i.i.d.∼ G0(η∗
k; λ), (3.41c)

zn|π(v1, v2, . . .) i.i.d.∼ C(zn|π(v1, v2, . . .)), (3.41d)

xn|zn, η∗
1 , η∗

2 , . . . ∼ f
(
xn

||η∗
zn

)
, (3.41e)

for k = 1, 2, . . . and n = 1, . . . , N . Here, G0(η∗
k; λ) is given by (see (2.26))

G0(η∗
k; λ) = b(λ) exp

(
λT

1 η∗
k − λ2a(η∗

k)
)

(3.42)

and f
(
xn

||η∗
zn

)
is given by (see (2.6) and (2.20))

f
(
xn

||η∗
zn

)
=

∞∏
k=1

(
h(xn) exp

(
η∗

k
Tt(xn) − a(η∗

k)
))

✶(zn=k)
(3.43)

= h(xn) exp
(
η∗

zn

Tt(xn) − a
(
η∗

zn

))
. (3.44)

The hyperparameter λ =
(
λT

1 λ2
)T

consists of a p-dimensional vector λ1 ∈ Rp, where p =
dim(η∗

k), and a scalar λ2 ∈ R. Note that the auxiliary variables vk, mixing proportions πk and
the component parameters η∗

k are “global” model parameters as explained in Section 2.1.2. In
contrast, the indicator variables zn are “local” model parameters in that each zn associates the
corresponding data point xn with a certain component k.

The model (3.41) implies the following conditional or unconditional independence relations:

vk ⊥⊥vk′ , where k = k′ = 1, 2, . . . with k ̸= k′, (3.45a)

η∗
k ⊥⊥η∗

k′ , where k = k′ = 1, 2, . . . with k ̸= k′, (3.45b)

η∗
k ⊥⊥v1, v2, . . . , for all k = 1, 2, . . . , (3.45c)

η∗
k ⊥⊥zn | v1, v2, . . . , for all k = 1, 2, . . . and n = 1, . . . , N , (3.45d)

zn ⊥⊥zn′ | v1, v2, . . . , where n, n′ = 1, . . . , N with n ̸= n′, (3.45e)

xn ⊥⊥v1, v2, . . . , zn′ , xn′ , η∗
k | zn, η∗

zn
, where n, n′ = 1, . . . , N with n ̸= n′ and k ̸= zn. (3.45f)

Henceforth, we will further abbreviate the observed data x1:N by x =
(
xT

1 · · · xT
N

)T, the
sequence of auxiliary variables v1, v2, . . . by v = (v1 v2 · · · )T, the sequence of component pa-
rameters η∗

1, η∗
2, . . . by η∗ =

(
η∗

1
T η∗

2
T · · · )T, and the sequence of indicator variables z1, . . . , zN

by z = (z1 · · · zN )T.
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By using the chain rule, the joint pdf of the overall statistical model can be expressed as

f(x, z, v, η∗) = f(x|z, v, η∗)p(z|v, η∗)f(η∗|v)f(v). (3.46)

Here, the observations x do not depend on the auxiliary variables v given the indicator variables
z and component parameters η∗, i.e., f(x|z, v, η∗) = f(x|η∗, z), because the knowledge of v is
contained in z (see the hierarchical model description (3.41)). Moreover, using the independence
assumptions (3.45c) and (3.45d), (3.46) becomes

f(x, z, v, η∗) = f(x|η∗, z)p(z|v)f(η∗)f(v). (3.47)

Each of the four factors in (3.47) can be further simplified by using the independence assump-
tions (3.45a), (3.45b), (3.45e) and (3.45f), i.e.,

f(x, z, v, η∗) =
(

N∏
n=1

f
(
xn

||η∗
zn

))(
N∏

n=1
p(zn|v)

)( ∞∏
k=1

f(η∗
k)

)( ∞∏
k=1

f(vk)
)

=
(

N∏
n=1

f
(
xn

||η∗
zn

)
p(zn|v)

)( ∞∏
k=1

f(η∗
k)f(vk)

)
. (3.48)

Finally, inserting the distribution (3.41a) of the auxiliary variable vk and the conditional dis-
tribution (3.41d) of the indicator variable zn into (3.48) gives

f(x, z, v, η∗) =
(

N∏
n=1

f
(
xn

||η∗
zn

)C(zn|π(v))
)( ∞∏

k=1
G0(η∗

k; λ)B(vk; 1, α)
)

, (3.49)

where the likelihood function f
(
xn

||η∗
zn

)
is given by the EF distribution (3.44) and the prior

f(η∗
k) = G0(η∗

k; λ) by the corresponding conjugate prior (3.42). The Bayesian network in
Figure 3.10 presents a graphical summary of the model. It visualizes the dependencies among
the parameters v, z and η∗ and the observations x. The mixture distribution of an individual

Figure 3.10: Bayesian network representation of (3.49).

observation xn is given by (cf. (3.39))

f(xn|v, η∗) =
∞∑

k=1
πk(v1:k)f(xn|η∗

k), (3.50)

where the mixing proportions πk(v1:k) are determined according to (3.41b).
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4 Variational Inference for Exponential Family
Dirichlet Process Mixtures

The central object of interest in Bayesian inference is the posterior distribution

f(w|x) = f(w, x)
f(x) (4.1)

= f(w, x)∫
RP f(w, x) dw

, (4.2)

because it allows us to estimate the hidden parameters w = (w1 . . . wP )T ∈ RP given obser-
vations x =

(
xT

1 . . . xT
N

)T
and various Bayesian estimators, such as the MMSE and MAP

estimators (see (2.40) and (2.41)), can be obtained from it. The joint pdf f(w, x) in (4.2)
describes the statistical model (see (3.49) for an example) and is assumed to be known. The
evidence f(x) follows by marginalization of f(w, x) with respect to the hidden parameters w.
In statistical models for which a closed-form expression of the posterior is costly to compute or
in worst cases intractable, such as mixture models (see Section 2.3), computation of the MMSE
and MAP estimators is typically not possible. We then resort to approximate inference methods
which approximate the posterior distribution.

In this chapter, we will address an approximate inference technique known as variational
inference (VI) [6]. The principle of VI is to approximate the posterior distribution f(w, x) by
a different distribution that is tractable and not so costly to compute. This is done by finding
the “best” approximation to the posterior pdf within a family of approximating pdfs where
“best” means closest in terms of some divergence measure. Thus, VI methods are a discrete,
optimization-based methods where determining the approximate posterior pdf is formulated as
an optimization problem. The choice of divergence measure is typically the Kullback-Leibler
divergence [42] and the family of approximating pdfs is chosen to exhibit some structure that
simplifies the problem at hand.

The following sections are, unless stated otherwise, based on [7] and [6], where [7] was the first
paper that demonstrated a VI method for DPMs. We will first present a general formulation
of the VI optimization problem and then present a solution to this problem using the mean
field (MF) approximation and coordinate ascent variational inference (CAVI). Furthermore, we
will apply CAVI to the exponential family DPM model described in Section 3.5. At the end of
the chapter, we will discuss possible practical issues that have to be considered when using the
CAVI algorithm.
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4.1 Variational Inference as an Optimization Problem

Instead of computing the exact posterior pdf (4.2), the basic idea of VI is to approximate it by
a pdf q(w) with a simple structure (i.e., a structure that makes q(w) computationally efficient
to compute) called the variational distribution. Optimization of the variational distribution
involves the divergence D(q(w) || f(w|x)) which measures the distance of the two distributions
q(w) and f(w|x). VI amounts to minimizing the divergence D(q(w) || f(w|x)) between the
variational pdf q(w) and the posterior pdf f(w|x). By replacing the posterior pdf f(w|x)
with the approximation q(w) in Bayesian estimators such as (2.40) and (2.41), we can view
VI as a reformulation of Bayesian inference as an optimization problem. In the following we
will define the Kullback-Leibler divergence along with a related quantity known as the evidence
lower bound. At the end of the section, the optimization problem of VI is mathematically
formulated.

4.1.1 Kullback-Leibler Divergence

The Kullback-Leibler divergence (KLD) [42] is a measure of the dissimilarity between two
probability distributions q(w) and f(w). It is given by

DKL(q(w) || f(w)) = E(q(w))
{

ln q(w)
f(w)

}
=

∫
RP

q(w) ln q(w)
f(w) dw. (4.3)

Equivalent expressions are

DKL(q(w) || f(w)) = E(q(w)){ln q(w)} − E(q(w)){ln f(w)} (4.4)

=
∫
RP

q(w) ln q(w) dw −
∫
RP

q(w) ln f(w) dw

and

DKL(q(w) || f(w)) = −hq − E(q(w)){ln f(w)}, (4.5)

where hq is the differential entropy corresponding to the pdf q(w), i.e.,

hq = −E(q(w)){ln q(w)} = −
∫
RP

q(w) ln q(w) dw. (4.6)

Important properties of the KLD include

DKL(q(w) || f(w)) ≥ 0, (4.7)

DKL(q(w) || f(w)) = 0 if and only if q(w) = f(w), (4.8)

and in general DKL(q(w) || f(w)) does not equal DKL(f(w) || q(w)), i.e.,

DKL(q(w) || f(w)) ̸= DKL(f(w) || q(w)). (4.9)

Due to the lack of symmetry (see (4.9)) and because it does not satisfy the triangle equality,
the KLD is not a metric in the strict mathematical sense.

38



4 Variational Inference for Exponential Family Dirichlet Process Mixtures

Depending on the two different ways DKL(q(w) || f(w)) and DKL(f(w) || q(w)) we can use
the KLD in an optimization problem we obtain different approximate inference methods [2].
VI methods employ DKL(q(w) || f(w|x)) (also called the exclusive or reverse KLD), i.e., the
first term corresponds to the approximating pdf q(w) and the second term is the true posterior
f(w|x). This way of expressing the KLD leads to the evidence lower bound, which will be
discussed presently. Note that if we want to minimize DKL(q(w) || f(w|x)) with respect to
q(w), we must have q(w) = 0 whenever f(w|x) = 0 (see (4.3)) in order to prevent the KLD
becoming infinite. This behavior is called zero-forcing or mode-seeking. By contrast, to prevent
DKL(f(w|x) || q(w)) (also called the inclusive or forward KLD) from becoming infinite, we must
have q(w) > 0 whenever f(w|x) > 0 and as a result q(w) tends to cover all modes of f(w|x).
This behavior is called zero-avoiding or mode-covering and gives rise to an approximate inference
method known as expectation propagation (or moment matching), which we will not consider
in this thesis.

4.1.2 Evidence Lower Bound

VI methods seek to minimize DKL(q(w) || f(w|x)) such that the variational pdf q(w) is as
similar as possible to the posterior pdf f(w|x). Since we assume that the posterior f(w|x) is
intractable, we can not compute the KLD and therefore can not minimize it directly. Starting
with the KLD expression (4.4), a further decomposition of DKL(q(w) || f(w|x)) yields

DKL(q(w) || f(w|x)) = E(q(w)){ln q(w)} − E(q(w)){ln f(w|x)}

= E(q(w)){ln q(w)} − E(q(w))
{

ln f(w, x)
f(x)

}
= E(q(w)){ln q(w)} − E(q(w)){ln f(w, x) − ln f(x)}
= E(q(w)){ln q(w) − ln f(w, x)} + ln f(x), (4.10)

where we inserted (4.1) for the posterior f(w|x) and E(q(w)){ln f(x)} = ln f(x) since the ex-
pectation is with respect to q(w) and the evidence f(x) does not involve the hidden parameters
w. Equation (4.10) shows that the logarithm of evidence f(x), also called the log-evidence, can
be expressed as

ln f(x) = E(q(w)){ln f(w, x) − ln q(w)} + DKL(q(w) || f(w|x))

= E(q(w))
{

ln f(w, x)
q(w)

}
+ DKL(q(w) || f(w|x)) (4.11)

≥ E(q(w))
{

ln f(w, x)
q(w)

}
. (4.12)

In the last step we used the fact that DKL(q(w) || f(w|x)) ≥ 0 (cf. (4.7)) and therefore the right
side of (4.12) is a lower-bound on the log-evidence, called the evidence lower bound (ELBO):

L(q; x) ≜ E(q(w))
{

ln f(w, x)
q(w)

}
(4.13)

= E(q(w)){ln f(w, x)} − E(q(w)){ln q(w)}. (4.14)
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According to (4.11) the ELBO is equivalently given by

L(q; x) = ln f(x) − DKL(q(w) || f(w|x)). (4.15)

Note that the lower bound (4.12) is attained if and only if the variational pdf q(w) equals the
posterior pdf f(w|x) because DKL(q(w) || f(w|x)) = 0 if and only if q(w) = f(w|x). Also note
that the ELBO is an approximation of the evidence f(x), which provides a basis for selecting
a statistical model [6]. It can therefore be used as a criterion in model selection (see [48] for a
discussion).

The expression (4.15) for the ELBO leads to an interesting result. Since a closed-form of
f(w|x) is not available and we can not minimize DKL(q(w) || f(w|x)) directly, we can instead
maximize the ELBO L(q; x) with respect to the variational pdf q(w). According to (4.14), the
ELBO does not depend on the posterior pdf f(w|x). In order to calculate and maximize the
ELBO we instead need the joint pdf f(w, x) of the statistical model, which we assume to be
known. Considering the expression (4.15) and denoting the set of all possible distributions for
the vector w as F , maximization of the ELBO is equivalent to minimizing the KLD (cf. [39]),
i.e.,

q0(w; x) = arg max
q(w)∈F

L(q; x) (4.16)

= arg max
q(w)∈F

{ln f(x) − DKL(q(w) || f(w|x))} (4.17)

= arg max
q(w)∈F

{−DKL(q(w) || f(w|x))} (4.18)

= arg min
q(w)∈F

DKL(q(w) || f(w|x)) (4.19)

= f(w|x). (4.20)

This is because the evidence f(x) corresponds to an additive constant when maximizing with
respect to q(w) and due to (4.8) the maximum of the ELBO is obtained if and only if q(w) =
f(w|x). With this approach we can avoid computing the intractable KLD and instead maximize
the ELBO, which depends on the joint pdf of the model f(w, x) and the variational pdf q(w).
As the principle of VI is to approximate the posterior pdf by a simpler pdf, we will next constrain
the set F to a subset Q of pdfs with a simple structure. Although we then no longer obtain the
true posterior as result (i.e., f(w|x) /∈ Q), we gain the advantage of an efficient computation of
the maximum of the ELBO.

4.1.3 Constrained Optimization

We will denote the set of approximating pdfs q(w) by Q and refer to it as the variational family.
The VI optimization problem is then formulated as

q∗(w; x) = arg max
q(w)∈Q

L(q; x) = arg max
q(w)∈Q

E(q(w))
{

ln f(w, x)
q(w)

}
, (4.21)
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i.e., the pdf q∗(w; x) ∈ Q is the pdf that maximizes the ELBO. We have shown in (4.16)–(4.20)
that this is equivalent to minimizing the divergence measure (see (4.3))

DKL(q(w) || f(w|x)) = E(q(w))
{

ln q(w)
f(w|x)

}
=

∫
Rp

q(w) ln q(w)
f(w|x) dw, (4.22)

which means finding the pdf q(w) ∈ Q that is most similar to the posterior f(w|x), with
the difference that we now consider a constrained version of F , i.e., Q ⊂ F . Note that the
variational family is not a model of the observed data, that is, q(w) does not depend on the
data. Instead, it is the ELBO and the corresponding optimization problem (4.21) that connects
the fitted variational density q∗(w; x) to the model f(w, x) and the observed data x. The
complexity of the variational family Q determines the complexity of the optimization problem,
where Q should be chosen such that (4.21) can be solved with low computational effort while
approximating the posterior with sufficient accuracy.

The solution of (4.21) can be obtained by various optimization techniques. In what follows we
will consider a popular choice for Q and an iterative way of solving the maximization problem.

4.2 Mean Field Variational Family

In this thesis we focus on the mean field variational family. This approach assumes that the
variational distribution q(w) factorizes with respect to some partition of the parameters w. We
will first define Q and later present a factorization of q(w) for the case of the DPM.

4.2.1 Definition

We define members q(w) of the mean field variational family Q to be of the form

q(w) =
J∏

j=1
qj(wj), (4.23)

where the P -dimensional parameter vector w is partitioned into J disjoint Pj-dimensional sub-
vectors wj such that ∑J

j=1 Pj = P . Each subvector wj contains a unique set of Pj scalar
parameters and the union of all these subsets is contained in the entire parameter vector w.
According to (4.23) the variational distribution q(w) factorizes into approximating pdfs qj(wj)
of the individual subvectors wj . Note that we place no restriction on the functional form of
the individual distributions qj(wj). Accordingly, denoting the set of all possible pdfs for a
Pj-dimensional random vector wj with Fj , Q is defined as

Q =

[{)q(w) ∈ F
|||||| q(w) =

J∏
j=1

qj(wj), with qj(wj) ∈ Fj

]}(. (4.24)

By applying the mean field variational family in the VI optimization problem (4.21), the re-
sulting approximation q∗(w; x) for the posterior pdf f(w|x) also factorizes according to (4.23),
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i.e.,

q∗(w; x) =
J∏

j=1
q∗

j (wj ; x). (4.25)

4.2.2 Properties

The factorization of q(w) and q∗(w; x) (see (4.23) and (4.25)) leads to computations involving
low-dimensional subvectors wj , which tend to be less complex. Furthermore, we obtain the
marginal pdfs q∗

j (wj ; x) for wj that would be obtained by marginalizing out all other param-
eter vectors wi, where i ̸= j, from the joint pdf q∗(w; x), which is another way to save on
computational complexity. The marginal pdfs can be used to directly calculate estimates for
the parameters wj by using the MMSE estimator or the MAP estimator defined in (2.40) and
(2.41), e.g.,

ŵj,MMSE(x) ≈ E(q∗
j (wj ;x)){wj} =

∫
RPj

wjq∗
j (wj ; x) dwj ,

where we replaced the true marginal posterior f(w|x) with the approximation q∗
j (wj ; x). We

note that this approach only approximates the MMSE and MAP estimates since we use an
approximation of the true posterior.

Although the mean field variational family can describe any marginal density of the hidden
parameters w, we can not describe correlation between them. In combination with the mode-
seeking behavior of the reverse KLD DKL(q(w) || f(w|x)), this often leads to an approximate
posterior q∗(w; x) that under-represents the true posterior, more specifically, the approximated
posterior underestimates the second order statistics of the true posterior. An example is given by
Figure 4.1 where a two-dimensional Gaussian posterior f(w|x) = f(w1, w2|x) is approximated
by the product of two one-dimensional Gaussians, i.e., q(w) = q(w1, w2) = q(w1)q(w2), by
minimizing DKL(q(w) || f(w|x)) [2]. Because the reverse KLD penalizes placing probability
mass in q(w) on areas where the posterior f(w|x) has little mass (cf. (4.22)), the variational
approximation under-represents the posterior, i.e., it does not expand into areas where the
posterior has little mass. Therefore, using the mean field variational family (4.24) allows a
trade-off between accuracy (which increases as J decreases) and computational effort (which
decreases as J increases).

4.3 Coordinate Ascent Variational Inference

The mean field variational family (4.24) allows us to use a coordinate ascent [2] scheme to
approximate the mean field solution (4.25) in an iterative manner. This is called coordinate
ascent variational inference (CAVI) [6] and consists of optimizing each variational pdf factor
qj(wj) individually while keeping the other pdf factors qi(wi) with i ̸= j fixed. Note that this is
in contrast to the general VI optimization problem (4.21) where we perform a joint optimization
of all the pdf factors qj(wj), j = 1, . . . , J , while defining Q as the mean field variational family.
Thus, using the CAVI algorithm, the ELBO L(q; x) is maximized with respect to each pdf
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Figure 4.1: Variational approximation q(w) = q(w1)q(w2) of a two-dimensional Gaussian pos-
terior f(w1, w2|x) with a Gaussian variational family having a diagonal covariance
matrix corresponding to the mean field approximation. Shown is the solution mini-
mizing the reverse KLD. The Gaussian distributions are visualized with the contours
at two standard deviations.

factor qj(wj) in turn, instead of jointly, i.e.,

q
(ℓ)
j (wj ; x) = arg max

qj(wj)∈Fj

L(q; x) = arg max
qj(wj)∈Fj

E(q(w))
{

ln f(w, x)
q(w)

}
, (4.26)

where ℓ is the index of the current iteration. In each iteration ℓ the j-th substep, j ∈ {1, . . . , J},
updates the previous iterate q

(ℓ−1)
j (w; x) according to (4.26). The variational pdf q(w) used in

(4.26) is given by (4.23), i.e., q(w) = ∏J
j=1 qj(wj). Each pdf factor qi(wi) with i ̸= j is equal

to the result of the most recent respective update, which was either calculated in iteration step
ℓ − 1 or in a previous substep of iteration step ℓ.

The result of the CAVI algorithm depends on the initial choice of the pdfs q
(0)
j (w; x) before

starting with the first iteration ℓ = 1. After initialization, the factor pdfs q
(ℓ)
j (w; x), ℓ ≥ 1, are

updated in each iteration until the algorithm converges, i.e., the change in L(q; x) relative to the
previous iteration step falls below a predefined threshold. In general, the ELBO is a non-convex
objective function, but convergence to a local optimum is guaranteed since the bound is convex
with respect to each of the individual factors q

(ℓ)
j (w; x) [42]. We will discuss initialization and

convergence of the algorithm in more detail in Section 4.5.

4.3.1 Update Equation for the Variational Factors

We now derive a general solution to the CAVI optimization problem (4.26). We will denote the
parameter vector w ∈ RP with the j-th subvector wj ∈ RPj removed with w∼j ∈ RP∼j , i.e.,
w∼j contains P∼j ≜ P − Pj scalar parameters that are not included in wj . Using this notation,
we define the variational pdf q(w) with the j-th pdf factor qj(wj) removed as

q∼j(w∼j) ≜ q(w)
qj(wj) =

∏J
i=1 qi(wi)
qj(wj) =

∏
i ̸=j

qi(wi). (4.27)
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Furthermore, considering the joint pdf q(w) of the parameter vector w =
(
w1T . . . wJ

T
)T

and arbitrary functions gj(wj), we will make extensive use of the following properties of the
expectation:

• Linearity of expectation:

E(q(w)){gj(wj) + g∼j(w∼j)} = E(q(w)){gj(wj)} + E(q(w)){g∼j(w∼j)}, (4.28a)

E(q(w)){cg(w)} = cE(q(w)){g(w)}. (4.28b)

• Marginalization within the expectation operation:

E(q(w)){gj(wj)} = E(q(wj)){gj(wj)}, (4.29)

or in terms of integrals

E(q(w)){wj} =
∫
RP

gj(wj)q(w) dw

=
∫
RPj

gj(wj)
∫
RP∼j

q(w∼j , wj) dw∼j dwj

=
∫
RPj

gj(wj)qj(wj) dwj

= E(q(wj)){gj(wj)}.

• If wj and w∼j are independent, i.e. wj ⊥⊥w∼j and q(w) = qj(wj)q∼j(w∼j), then

E(q(w)){gj(wj)g∼j(w∼j)} = E(qj(wj)){gj(wj)}E(q∼j(w∼j)){g∼j(w∼j)}, (4.30)

or in terms of integrals

E(q(w)){gj(wj)g∼j(w∼j)} =
∫
RP

gj(wj)g∼j(w∼j)q(w) dw

=
∫
RPj

∫
RP∼j

gj(wj)g∼j(w∼j)qj(wj)q∼j(w∼j) dwj dw∼j

=
∫
RPj

gj(wj)qj(wj) dwj

∫
RP∼j

g∼j(w∼j)q∼j(w∼j) dw∼j

= E(qj(wj)){gj(wj)}E(q∼j(w∼j)){g∼j(w∼j)}.

• If q(w) = qj(wj)q∼j(w∼j), then we can compute the expectation of g(w) iteratively with
respect to the marginal pdfs qj(wj) and q∼j(w∼j), i.e.,

E(q(w)){g(w)} = E(q(wj))
{

E(q(w∼j)){g(w)}
}

, (4.31)

or in terms of integrals

E(q(w)){w} =
∫
RP

g(w)q(w) dw

=
∫
RP

g(w)q(w) dw
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=
∫
RPj

q(wj)
( ∫

RP∼j
g(w)q(w∼j) dw∼j. .. .

E(q∼j (w∼j )){w}

)
dwj

= E(q(wj))
{

E(q(w∼j)){g(w)}
}

.

We are now prepared to further develop the optimization problem (4.26) for all j = 1, . . . , J .
We start by substituting the factorization q(w) = qj(wj)q∼j(w∼j) (cf. (4.27)) into the definition
(4.14) of the ELBO and decompose it into terms that depend on qj(wj) or q∼j(w∼j). The
definition (4.14) of the ELBO is given by

L(q; x) = E(q(w)){ln f(w, x)} − E(q(w)){ln q(w)}. (4.32)

For the first term in (4.32) we obtain

E(q(w)){ln f(w, x)} = E(qj(wj))
{

E(q∼j(w∼j)){ln f(wj , w∼j , x)}
}

, (4.33)

where we used the expectation property (4.31). The second term in (4.32) can be developed as

E(q(w)){ln qj(wj)q∼j(w∼j)} = E(qj(wj)){ln qj(wj)} + E(qj(w∼j)){ln q∼j(w∼j)}, (4.34)

by using the expectation properties (4.28) and (4.29). Inserting (4.33) and (4.34) into (4.32)
yields

L(q; x) = E(qj(wj))
{

E(q∼j(w∼j)){ln f(wj , w∼j , x)}
}

− E(qj(wj)){ln qj(wj)} − E(qj(w∼j)){ln q∼j(w∼j)}.

Next, using the definition (4.6) of the differential entropy, i.e., hq = −E(q(w)){ln q(w)}, we
obtain

L(q; x) = E(qj(wj))
{

ln f̌(wj ; x) − c
}

+ hqj + hq∼j , (4.35)

where we have defined a new distribution f̌(wj ; x) by the relation

ln f̌(wj ; x) ≜ E(q∼j(w∼j)){ln f(wj , w∼j , x)} + c. (4.36)

Here, c is an additive constant (depending on x) that is determined such that (4.36) represents
a valid pdf, i.e.,

∫
RPj f̌(wj ; x) dwj = 1. Using (4.5), the terms depending on wj in (4.35) can

be replaced by the negative KLD between qj(wj) and f̌(wj ; x), i.e.,

L(q; x) = hqj + E(qj(wj))
{

ln f̌(wj ; x)
}

+ hq∼j − c

= −DKL
(
qj(wj) || f̌(wj ; x)

)
+ hq∼j − c. (4.37)

By inserting (4.37) into (4.26), we observe that the CAVI optimization problem reduces to
maximizing the negative KLD (which is equivalent to minimizing the positive KLD) since hq∼j
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and c do not depend on wj :

q
(ℓ)
j (wj ; x) = arg max

qj(wj)∈Fj

{
−DKL

(
qj(wj) || f̌(wj ; x)

)
+ hq∼j − c

}
= arg min

qj(wj)∈Fj

DKL
(
qj(wj) || f̌(wj ; x)

)
= f̌(wj ; x).

Note that q
(ℓ)
j (wj ; x) = f̌(wj ; x) in the last step because we consider the unconstrained set of

pdfs Fj for the minimization of DKL
(
qj(wj) || f̌(wj ; x)

)
. Recalling (4.36), this shows that the

log of the j-th variational pdf factor in the ℓ-th iteration of the CAVI algorithm is given by

ln q
(ℓ)
j (wj ; x) = E(q∼j(w∼j)){ln f(w, x)} + c

c= E(q∼j(w∼j)){ln f(w, x)} (4.38)

=
∫
RP∼j

q∼j(w∼j) ln f(w, x) dw∼j

=
∫
RP∼j

ln f(w, x)
∏
i ̸=j

qi(wi) dwi,

where c= denotes equality up to an additive constant c. Equivalently, we have

q
(ℓ)
j (wj ; x) ∝ exp

(
E(q∼j(w∼j)){ln f(w, x)}

)
. (4.39)

Furthermore, it is possible to express the CAVI update (4.38) in terms of the conditional pdf
f(wj |w∼j , x), which is referred to as the complete conditional. Using the chain rule, we note
that

f(w, x) = f(wj , w∼j , x) = f(wj |w∼j , x)f(w∼j , x),

which we insert into (4.38), i.e.,

ln q
(ℓ)
j (w; x) c= E(q∼j(w∼j)){ln f(wj |w∼j , x)f(w∼j , x)}

= E(q∼j(w∼j)){ln f(wj |w∼j , x)} + E(q∼j(w∼j)){ln f(w∼j , x)}.

Here, E(q∼j(w∼j)){ln f(w∼j , x)} does not depend on wj and can be absorbed into the additive
constant. Therefore, the CAVI update (4.38) can be alternatively computed as

ln q
(ℓ)
j (wj ; x) c= E(q∼j(w∼j)){ln f(wj |w∼j , x)} (4.40)

=
∫
RP∼j

q∼j(w∼j) ln f(wj |w∼j , x) dw∼j

=
∫
RP∼j

ln f(wj |w∼j , x)
∏
i ̸=j

qi(wi) dwi,

or equivalently

q
(ℓ)
j (wj ; x) ∝ exp

(
E(q∼j(w∼j)){ln f(wj |w∼j , x)}

)
. (4.41)
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4.3.2 Coordinate Ascent Variational Inference Algorithm

Equations (4.39) and (4.41) show that the solution of the CAVI optimization problem (4.26)
can be determined by calculating the expectation of the logarithm of the joint pdf f(w, x) or
the complete conditional f(wj |w∼j , x), where the expectation is with respect to q∼j(w∼j) =∏

i ̸=j qi(wi) in both cases. The solution for the ℓ-th iteration and j-th substep ln q
(ℓ)
j (w; x)

involves all other variational pdf factors qi(wi), i ̸= j, which are given by the results of most
recent updates. Convergence is determined by calculating the ELBO L

(
q(ℓ)(w); x

)
at the end

of each iteration and monitoring the change relative to the previous iteration ℓ − 1. When the
relative change of the ELBO is below some predefined threshold, convergence is declared. This
means the algorithm has reached a local optimum. We denote the solution at the final iteration
as q∗(w; x). A summary of the CAVI algorithm is provided by Algorithm 1.

Algorithm 1: General formulation of CAVI
Input: Observations x, model pdf f(w, x) or complete conditionals f(wj |w∼j , x),

mean field factorization of q(w)
Output: Variational factor pdfs q∗

j (wj ; x), for j = 1, . . . , J

1 Initialize: Variational factor pdfs q
(0)
j (wj), for j = 1, . . . , J (ℓ = 0)

2 while the ELBO has not converged do
3 ℓ = ℓ + 1
4 for j from 1 to J do
5 Compute q

(ℓ)
j (wj ; x) according to (4.39) or (4.41)

6 Compute the ELBO L
(
q(ℓ)(w); x

)
and check convergence

7 return q∗(w; x) = ∏J
j=1 q∗

j (wj ; x)

Note that the concepts explained so far in this chapter can be reformulated for the cases of
discrete and mixed continuous-and-discrete parameters wj . This can be done by replacing pdfs
with pmfs, and the subsequent modification of expectations from integrals to sums. We will
consider the mixed case in the application presented next.

4.4 Coordinate Ascent Variational Inference for Dirichlet Process
Mixtures

In this section, we apply the CAVI method to the exponential family DPM model described in
Section 3.5, where the joint pdf f(w, x) of the statistical model is given by (3.49). We will first
define a mean field variational family Q for the variational approximation q(w) and then derive
the corresponding update equations for the variational factors qj(wj). After that, we proceed
with a derivation of the ELBO L(q; x) and a final summary of the CAVI algorithm.

4.4.1 Truncated Mean Field Approximation

Following [7], we now define the mean field variational family Q for the approximation of the
posterior distribution f(z, v, η∗|x) of the exponential family DPM model (3.41). The hidden
parameters in this model are the scalar auxiliary variables vk ∈ [0, 1], k = 1, 2, . . ., the natural
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parameter vectors η∗
k ∈ Rp, k = 1, 2, . . ., and the scalar indicator variables zn ∈ N, n =

1, . . . , N , i.e., w =
(
vT η∗T zT)T with v = (v1 v2 · · · )T, η∗ =

(
η∗

1
T η∗

2
T · · · )T and z =

(z1 · · · zN )T. Note that the number of scalar parameters P = dim(w) is infinite in this model.
The (deterministic) hyperparameters are given by the concentration parameter α of the stick-
breaking process and the (p + 1)-dimensional vector λ =

(
λ1

T λ2
)T of the conjugate base

distribution G0(η∗
k; λ).

In order to approximate the posterior f(w|x) for the infinite-dimensional parameter vector
w in closed form, we consider a so-called truncated stick-breaking representation for the DPM,
i.e., we truncate the infinite sequence of variables vk and η∗

k at the truncation level T ∈ N.
To ensure the truncation of the stick-breaking process (cf. (3.9)) we set the T -th auxiliary
variable to a fixed value vT = 1, i.e., we stop breaking the unit length stick in the T -th iteration
of the stick-breaking process. According to (3.9a) this implies that the mixture proportions
πt = vt

∏t−1
i=1(1 − vt) = 0 for all t > T . As a consequence of the truncation we have v =

(v1 · · · vT −1)T and η∗ =
(
η∗

1
T · · · η∗

T
T)T, where vT is not included in the parameter vector

v because it is a deterministic quantity. Hence, we approximate an infinite mixture model,
specifically the DPM, with a finite mixture consisting of T components by employing a truncated
stick-breaking process. The dimension of the parameter vector w of the truncated DPM model
is given by

P = dim(w)

= dim(v) + dim(η∗) + dim(z)

= T − 1 + Tp + N . (4.42)

Based on the truncated parameter vectors v and η∗, and the vector of indicator variables z,
we define a fully factorized variational family of variational distributions q(w) as

q(w) = q(v, η∗, z) ≜ q(v)q(η∗)q(z) =
(

T −1∏
t=1

qt(vt)
)(

T∏
t=1

qt(η∗
t )

)(
N∏

n=1
qn(zn)

)
, (4.43)

where Q is constructed according to (4.24). Note that we do not restrict the functional form
of the individual pdfs in the products of (4.43), we only restrict the variational distribution
q(v, η∗, z) to be factorized into J = 2T − 1 + N individual pdfs (cf. (4.23)). Consequently, the
optimal solution q∗(v, η∗, z; x) also factorizes according to (4.43) into J = 2T −1+N individual
pdfs (cf. (4.25)).

We can summarize the truncated version of (3.41) for N conditionally independent observa-
tions xn as

vt
i.i.d.∼ B(vt; 1, α), (4.44a)

vT = 1, (4.44b)

πt(v1:t) = vt

t−1∏
i=1

(1 − vi), (4.44c)

η∗
t

i.i.d.∼ G0(η∗
t ; λ), (4.44d)

48



4 Variational Inference for Exponential Family Dirichlet Process Mixtures

zn|π(v) i.i.d.∼ C(zn|π(v); vT ), (4.44e)

xn|zn, η∗
1 , . . . , η∗

T ∼ f
(
xn

||η∗
zn

)
, (4.44f)

for t = 1, . . . , T and n = 1, . . . , N . For the base distribution G0(η∗
t ; λ) and component distri-

bution f
(
xn

||η∗
zn

)
we have

G0(η∗
t ; λ) = b(λ) exp

(
λT

1 η∗
t − λ2a(η∗

t )
)

(4.45)

and

f
(
xn

||η∗
zn

)
=

T∏
t=1

(
h(xn) exp

(
η∗

t
Tt(xn) − a(η∗

t )
))

✶(zn=t)
(4.46)

= h(xn) exp
(
η∗T

zn
t(xn) − a

(
η∗

zn

))
. (4.47)

The conditional or unconditional independence relations are similar to (3.45) given by

vt ⊥⊥vt′ , where t = t′ = 1, . . . , T − 1 with t ̸= t′, (4.48a)

η∗
t ⊥⊥η∗

t′ , where t = t′ = 1, . . . , T with t ̸= t′, (4.48b)

η∗
t ⊥⊥vt and η∗

t ⊥⊥vt | z, for all t = 1, . . . , T , (4.48c)

η∗
t ⊥⊥zn | v, for all t = 1, . . . , T and n = 1, . . . , N , (4.48d)

zn ⊥⊥zn′ | v, where n, n′ = 1, . . . , N with n ̸= n′, (4.48e)

xn ⊥⊥v, zn′ , xn′ , η∗
t | zn, η∗

zn
, where n, n′ = 1, . . . , N with n ̸= n′ and t ̸= zn. (4.48f)

We will denote joint pdfs (or pmfs) that involve a truncation with f (T ), e.g., f(x, z, v, η∗) is the
joint pdf of the model according to which we assume the observation x to be generated from,
while f (T )(x, z, v, η∗) is the truncated version used for the mean field approximation. Using
the independence relations (4.48) and proceeding as in the derivation of (3.49) yields the joint
pdf of the truncated stick-breaking model:

f (T )(x, z, v, η∗) =
(

N∏
n=1

f (T )(xn

||η∗
zn

)
p(T )(zn|v)

)(
T∏

t=1
f(η∗

t )
)(

T −1∏
t=1

f(vt)
)

(4.49)

=
(

N∏
n=1

f (T )(xn

||η∗
zn

)C(zn|π(v); vT )
)(

T∏
t=1

G0(η∗
t ; λ)

)(
T −1∏
t=1

B(vt; 1, α)
)

.

(4.50)

Figure 4.2 shows the corresponding Bayesian network (see Figure 3.10 for a comparison).
It is important to note, that the stick-breaking construction of the underlying statistical model

(3.41), which we will refer to as observation model, is not truncated. We only truncate the
stick-breaking process of the approximating model (4.44) in order to be able to computationally
approximate the posterior pdf in closed form. This is because the true posterior pdf involves
an infinite number of scalar parameters, while the truncated approximation only involves P =
T − 1 + Tp + N scalar parameters (see (4.42)). The truncation level T is a parameter that
must be chosen initially and its choice trades-off computationally efficiency and approximation
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Figure 4.2: Bayesian network for the truncated stick-breaking approximation of the DPM. The
corresponding joint pdf is given by (4.50).

accuracy. It is not part of the prior model specification (3.41) and as T → ∞ the truncated
stick-breaking approximation (4.44) becomes exact.

4.4.2 Derivation of the Variational Parameters

In what follows, we will evaluate the CAVI update for each factor pdf in the mean field factor-
ization (4.43) according to (4.41). We will observe that the update equations each reduce to a
closed-form solution given by the computation of a variational parameter which fully determines
the respective variational pdf factor. For the sake of brevity, we will skip the truncation param-
eter T in the superscript of the pdfs f (T )(·) and pmfs p(T )(·) in the derivation of the variational
parameters and note that in the following all pdfs and pmfs are related to the truncated model
(4.44).

Variational Parameter for qt(vt)

We start by considering the variational pdf factor q(v) of the auxiliary variable vector v =
(v1 . . . vT −1)T and, later on, apply the factorization q(v) = ∏T −1

t=1 q(vt) to obtain the pdf
factor q(vt). According to (4.40), for the case of q(v), we have to evaluate

ln q(ℓ)(v; x) c= E(q(η∗,z)){ln f(v|η∗, z, x)}, (4.51)

i.e., the expectation with respect to all other random parameters except v of the log complete
conditional of v. In order to compute this expectation we will first derive an expression for the
complete conditional f(v|η∗, z, x). Applying Bayes rule we have

f(v|η∗, z, x) = f(x|v, η∗, z)f(v|η∗, z)
f(x|η∗, z) . (4.52)

This can be further simplified by using the independence relations (4.48c) and the fact that the
knowledge of v is contained in z, i.e., f(x|v, η∗, z) = f(x|η∗, z), which results

f(v|η∗, z, x) = f(x|η∗, z)f(v|z)
f(x|η∗, z) = f(v|z).
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Here, we again apply Bayes rule and put variables that are constant with respect to v into a
proportional factor, i.e.,

f(v|η∗, z, x) = p(z|v)f(v)
p(z) ∝ p(z|v)f(v) =

(
N∏

n=1
p(zn|v)

)
T −1∏
t=1

f(vt), (4.53)

where the last step is due to the conditional independence among indicator variables zn (see
(4.48e)) and the independence among auxiliary variables vt (see (4.48a)). According to (4.53),
the complete conditional for v statistically depends only on the indicator variables z since we
removed all other variables from the condition by the corresponding independence relations.

The conditional pmf p(zn|v) can be expressed as

p(zn|v) =
T∏

t=1
(πt(v1:t))✶(zn=t)

=
T∏

t=1

(
vt

t−1∏
j=1

(1 − vj)
)✶(zn=t)

(4.54)

=
T∏

t=1
v
✶(zn=t)
t

t−1∏
j=1

(1 − vj)✶(zn=t), (4.55)

where we used the fact that zn given v is distributed according to a categorical distribution
(cf. (4.44e)) with probabilities πt, t = 1, . . . , T , given by (4.44c). Using the indicator function
✶(zn > t) allows us to aggregate all factors in (4.55) into one product, i.e.,

p(zn|v) =
T∏

t=1
v
✶(zn=t)
t (1 − vt)✶(zn>t)

and by considering vT = 1 (see (4.44b)) we obtain

p(zn|v) =
T −1∏
t=1

v
✶(zn=t)
t (1 − vt)✶(zn>t). (4.56)

We are now able to compute the CAVI update (4.51). Inserting (4.53) for the complete
conditional f(v|η∗, z, x) and using the linearity property (4.28a) of the expectation operator
gives

ln q(ℓ)(v; x) c= E(q(η∗,z))
{

ln
((

N∏
n=1

p(zn|v)
)

T −1∏
t=1

f(vt)
)}

=
(

N∑
n=1

E(q(η∗,z)){ln p(zn|v)}
)

+
T −1∑
t=1

E(q(η∗,z)){ln f(vt)}.

If we furthermore consider the marginalization property (4.29), we obtain

ln q(ℓ)(v; x) =
(

N∑
n=1

E(qn(zn)){ln p(zn|v)}
)

+
T −1∑
t=1

ln f(vt). (4.57)
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Here, it remains to compute the expectation E(qn(zn)){ln p(zn|v)}. Substituting p(zn|v) with
(4.56) yields

E(qn(zn)){ln p(zn|v)} = E(qn(zn))
{

ln
T −1∏
t=1

v
✶(zn=t)
t (1 − vt)✶(zn>t)

}

= E(qn(zn))
{

T −1∑
t=1

ln
(
v
✶(zn=t)
t

)
+ ln

(
(1 − vt)✶(zn>t)

)}
.

Again using the linearity property (4.28) results in

E(qn(zn)){ln p(zn|v)} =
T −1∑
t=1

E(qn(zn)){✶(zn = t) ln vt + ✶(zn > t) ln(1 − vt)}

=
T −1∑
t=1

ln vtE(qn(zn)){✶(zn = t)} + ln(1 − vt)E(q(zn)){✶(zn > t)}. (4.58)

Furthermore, the expectation E(qn(zn)){✶(zn = t)} in (4.58) reduces to the probability qn(zn = t)
(note that qn(zn) is a variational pmf since zn ∈ {1, . . . , T } is a discrete random variable), i.e.,

E(qn(zn)){✶(zn = t)} =
T∑

zn=1
✶(zn = t)qn(zn) = qn(zn = t). (4.59)

This is due to the indicator function ✶(zn = t) which reduces the sum in (4.59) to the term
qn(zn = t). We denote the T probabilities qn(zn = t), t = 1, . . . , T , with

ϕn,t ≜ qn(zn = t). (4.60)

As qn(zn) is the approximate posterior distribution of the indicator variable zn, the probability
ϕn,t is the approximate posterior probability that the n-th data point xn was generated by the
t-th mixture component and thus can be interpreted as a soft cluster assignment. Using (4.60)
the expectation E(qn(zn)){✶(zn > t)} is given by

E(qn(zn)){✶(zn > t)} =
T∑

zn=1
✶(zn > t)qn(zn) =

T∑
j=t+1

qn(zn = j) =
T∑

j=t+1
ϕn,j . (4.61)

Inserting the two expectations (4.59) and (4.61) into (4.58) then results

E(qn(zn)){ln p(zn|v)} =
T −1∑
t=1

ϕn,t ln vt +
(

T∑
j=t+1

ϕn,j

)
ln(1 − vt), (4.62)

and furthermore substituting (4.62) into (4.57) results

ln q(ℓ)(v; x) c=
(

N∑
n=1

T −1∑
t=1

ϕn,t ln vt +
(

T∑
j=t+1

ϕn,j

)
ln(1 − vt)

)
+

T −1∑
t=1

ln f(vt)

=
T −1∑
t=1

(
N∑

n=1
ϕn,t ln vt +

(
T∑

j=t+1
ϕn,j

)
ln(1 − vt)

)
+ ln f(vt). (4.63)
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From (4.63) we can conclude that the log variational pdf ln q(ℓ)(v; x) consists of T − 1 indepen-
dent terms that are given by

ln q
(ℓ)
t (vt; x) c=

(
N∑

n=1
ϕn,t ln vt +

(
T∑

j=t+1
ϕn,j

)
ln(1 − vt)

)
+ ln f(vt). (4.64)

Note that the factorization q(v) = ∏T −1
t=1 qt(vt) (see (4.43)), which is equivalent to ln q(v) =∑T −1

t=1 ln qt(vt), naturally arises from the independence relations within model.
As a final step, we insert the distribution f(vt) into (4.64). Recalling that the auxiliary

variable vt is distributed according to B(vt; 1, α) gives

f(vt) = B(vt; 1, α) = Γ(1 + α)
Γ(1)Γ(α)v1−1

t (1 − vt)α−1 = Γ(1 + α)
Γ(α) (1 − vt)α−1,

where we used (3.1) with α1 = 1 and α2 = α. Equivalently, we have

ln f(vt) = ln Γ(1 + α)
Γ(α) + (α − 1) ln(1 − vt). (4.65)

Inserting (4.65) into (4.64) then yields

ln q
(ℓ)
t (vt; x) c=

(
N∑

n=1
ϕn,t ln vt +

(
T∑

j=t+1
ϕn,j

)
ln(1 − vt)

)
+ ln Γ(1 + α)

Γ(α) + (α − 1) ln(1 − vt)

c=
(

N∑
n=1

ϕn,t ln vt +
(

T∑
j=t+1

ϕn,j

)
ln(1 − vt)

)
+ (α − 1) ln(1 − vt),

where ln(Γ(1 + α)/Γ(α)) can be put into the normalization constant c because it is constant
with respect to vt. By exponentiation, we get

q
(ℓ)
t (vt; x) ∝ exp

(
ln vt

N∑
n=1

ϕn,t

)
exp

(
ln(1 − vt)

N∑
n=1

T∑
j=t+1

ϕn,j

)
(1 − vt)α−1

= v

∑N

n=1 ϕn,t

t (1 − vt)
∑N

n=1
∑T

j=t+1 ϕn,j (1 − vt)α−1

= v

(
1+

∑N

n=1 ϕn,t

)
−1

t (1 − vt)
(

α+
∑N

n=1
∑T

j=t+1 ϕn,j

)
−1. (4.66)

From the last step it can be observed that the functional form of the variational factor q
(ℓ)
t (vt; x)

is given by a beta distribution. Comparing (4.66) with (3.1) yields

q
(ℓ)
t (vt; x) =

Γ
(
γ

(ℓ)
t,1 + γ

(ℓ)
t,2

)
Γ

(
γ

(ℓ)
t,1

)
Γ

(
γ

(ℓ)
t,2

)v
γ

(ℓ)
t,1 −1

t (1 − vt)γ
(ℓ)
t,2 −1, (4.67)

with

γ
(ℓ)
t,1 = 1 +

N∑
n=1

ϕn,t, (4.68a)
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γ
(ℓ)
t,2 = α +

N∑
n=1

T∑
j=t+1

ϕn,j . (4.68b)

We conclude that the CAVI update for q
(ℓ)
t (vt; x) is fully determined by the parameter vector

γ
(ℓ)
t =

(
γ

(ℓ)
t,1 γ

(ℓ)
t,2

)T
, which depends on the data x through the most recent update for ϕn,t =

qn(zn = t). We will refer to γ
(ℓ)
t as a (global) variational parameter. It parameterizes the

approximate posterior q
(ℓ)
t (vt; x) = B

(
vt; γ

(ℓ)
t,1 , γ

(ℓ)
t,2

)
of the (global) model parameter vt. Recall

that the prior pdf of vt is also given by a beta distribution but with parameters 1 and α, i.e.,
B(vt; 1, α). Thus, we interpret the update equations (4.68) as updating the parameters of the
prior B(vt; 1, α) in each iteration of the CAVI algorithm.

By defining the effective number of samples Ñt associated with mixture component t as

Ñt ≜
N∑

n=1
ϕn,t, (4.69)

we can rewrite the update (4.68) as

γ
(ℓ)
t,1 = 1 + Ñt, (4.70a)

γ
(ℓ)
t,2 = α +

T∑
j=t+1

Ñj , (4.70b)

which closely resembles the parameters of the posterior distribution f(π|z) given by (3.23). We
just have to replace the true (unknown) number of samples associated with component t, i.e.,
Nt ∈ N, by the effective number of samples Ñt ∈ R+. These can be computed with the most
recent soft cluster assignments ϕn,t. Note that ∑T

t=1 ϕn,t = ∑T
t=1 q(zn = t) = 1 and therefore

T∑
t=1

Ñt =
T∑

t=1

N∑
n=1

ϕn,t =
N∑

n=1

T∑
t=1

ϕn,t =
N∑

n=1
1 = N ,

i.e., the sum of Ñt and the sum of Nt both equal the overall sample size N (cf. (2.12)).

Variational Parameter for qt(η∗
t )

We proceed with the derivation of the CAVI update of the variational pdf factor qt(η∗
t ) by first

deriving the CAVI update for the joint pdf q(η∗) of the parameter vector η∗ =
(
η∗

1
T . . . η∗

T
T)T.

According to (4.40), we have to evaluate

ln q(ℓ)(η∗; x) c= E(q(v,z)){ln f(η∗|v, z, x)}, (4.71)

which means we first have to find an expression for the complete conditional of η∗. Similarly
to (4.52), we approach this by using Bayes rule such that the likelihood f(x|v, η∗, z) appears
in the numerator.

f(η∗|v, z, x) = f(x|v, η∗, z)f(η∗|v, z)
f(x|v, z) . (4.72)
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The likelihood can again be simplified as f(x|v, η∗, z) = f(x|η∗, z). A simplification of
f(η∗|v, z) with respect to the independence relations (4.48c) and (4.48d) yields f(η∗|v, z) =
f(η∗|v) = f(η∗) and thus

f(η∗|v, z, x) ∝ f(x|η∗, z)f(η∗),

where we omitted the denominator of (4.72) because it is constant with respect to η∗. Further-
more, using the independence relations (4.48b) and (4.48f), we have

f(η∗|v, z, x) ∝
(

N∏
n=1

f(xn|η∗, zn)
)

T∏
t=1

f(η∗
t ).

Here, f(xn|η∗, zn) = f(xn|η∗
1, . . . , η∗

T , zn) = f
(
xn

||η∗
zn

)
(cf. (4.44f)) is given by (4.46) and f(η∗

t )
is given by (4.45). Inserting both distributions, and omitting the factors involving b(λ) and
h(xn) since they do not depend on η∗, results in

f(η∗|v, z, x) ∝
(

N∏
n=1

T∏
t=1

(
exp

(
η∗

t
Tt(xn) − a(η∗

t )
))

✶(zn=t)
)

T∏
t=1

exp
(
λT

1 η∗
t − λ2a(η∗

t )
)

=
T∏

t=1
exp

(
λT

1 η∗
t − λ2a(η∗

t )
) N∏

n=1

(
exp

(
η∗

t
Tt(xn) − a(η∗

t )
))

✶(zn=t)
. (4.73)

Using expression (4.73) of the complete conditional for η∗ we are now able to further develop
the CAVI update (4.71), i.e.,

ln q(ℓ)(η∗; x) c= E(q(v,z))
{

ln
T∏

t=1
exp

(
λT

1 η∗
t − λ2a(η∗

t )
) N∏

n=1

(
exp

(
η∗

t
Tt(xn) − a(η∗

t )
))

✶(zn=t)
}

=
T∑

t=1
E(q(v,z))

{
λT

1 η∗
t − λ2a(η∗

t ) +
N∑

n=1
✶(zn = t)

(
η∗

t
Tt(xn) − a(η∗

t )
)}

=
T∑

t=1
λT

1 η∗
t − λ2a(η∗

t ) +
N∑

n=1
E(qn(zn)){✶(zn = t)}(

η∗
t

Tt(xn) − a(η∗
t )

)
,

where we used the properties (4.28) and (4.29). Inserting E(qn(zn)){✶(zn = t)} = ϕn,t (see (4.59))
we obtain

ln q(ℓ)(η∗; x) =
T∑

t=1
λT

1 η∗
t − λ2a(η∗

t ) +
N∑

n=1
ϕn,t

(
η∗

t
Tt(xn) − a(η∗

t )
)
. (4.74)

According to (4.74) the solution for ln q(ℓ)(η∗; x) depends on T independent terms that are
given by

ln q
(ℓ)
t (η∗

t ; x) c= λT
1 η∗

t − λ2a(η∗
t ) +

N∑
n=1

ϕn,t
(
η∗

t
Tt(xn) − a(η∗

t )
)
, (4.75)

which is, as explained for the update of the variational pdf of the auxiliary variable vt, a
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consequence of the independence relations within the model. Exponentiation of (4.75) yields

q(ℓ)(η∗
t ; x) ∝ exp

(
λT

1 η∗
t − λ2a(η∗

t ) +
N∑

n=1
ϕn,t

(
η∗

t
Tt(xn) − a(η∗

t )
))

= exp
(

λT
1 η∗

t − λ2a(η∗
t ) +

(
N∑

n=1
ϕn,tt

T(xn)
)

η∗
t −

N∑
n=1

ϕn,ta(η∗
t )

)

= exp
((

λT
1 +

N∑
n=1

ϕn,tt
T(xn)

)
η∗

t −
(

λ2 +
N∑

n=1
ϕn,t

)
a(η∗

t )
)

. (4.76)

Comparing (4.76) and (4.45) we observe that the functional form of the approximate posterior
q(ℓ)(η∗

t ; x) is given by the prior distribution f(η∗
t ), which is due to the conjugacy between the

prior and the component distributions of the mixture. Therefore, we can summarize the CAVI
update for q(ℓ)(η∗

t ; x) as

q
(ℓ)
t (η∗

t ; x) = b
(
τ

(ℓ)
t

)
exp

(
τ

(ℓ)
t,1

T
η∗

t − τ
(ℓ)
t,2 a(η∗

t )
)
, (4.77)

where τ
(ℓ)
t,1 and τ

(ℓ)
t,2 are updated versions of the hyperparameters λ1 and λ2 given by

τ
(ℓ)
t,1 = λ1 +

N∑
n=1

ϕn,tt(xn), (4.78a)

τ
(ℓ)
t,2 = λ2 +

N∑
n=1

ϕn,t = λ2 + Ñt, (4.78b)

and b(τ ) ∈ R+ is a normalization coefficient given by

b
(
τ

(ℓ)
t

)
= 1∫

Rp exp
(
τ

(ℓ)
t,1

T
η∗ − τ

(ℓ)
t,2 a(η∗)

)
dη∗

.

The update equations (4.78) are of similar form compared to the update equations (2.33) for the
posterior distribution (2.32), where we assumed a EF likelihood function with conjugate prior.
The only difference is that the sufficient statistic t(xn) in (4.78a) is scaled by the soft cluster
assignment ϕn,t of cluster t (cf. (2.33a)) and the effective number of samples Ñt associated with
component t arises in (4.78b) (instead of the overall number of data points N as does in (2.33b)).
We conclude that the approximate posterior pdf q(ℓ)(η∗

t ; x) of the global model parameter η∗
t is

fully determined by the global variational parameter τ
(ℓ)
t =

(
τ

(ℓ)
t,1

T
τ

(ℓ)
t,2

)T
, which may depend

on the data x through the most recent update for ϕn,t = qn(zn = t) (cf. (4.78)).

Variational Parameter for qn(zn)

It remains to find the CAVI update for the variational pmf factor qn(zn). Similar to the
derivation of the previous updates, we start with the joint factor pmf of the parameter vector
z = (z1 · · · zN )T. According to (4.40), the update is determined by

ln q(ℓ)(z; x) c= E(q(v,η∗)){ln p(z|v, η∗, x)}, (4.79)

56



4 Variational Inference for Exponential Family Dirichlet Process Mixtures

which involves the complete conditional of z. By using Bayes rules we express the complete
conditional as follows

p(z|v, η∗, x) = f(x|v, η∗, z)p(z|v, η∗)
f(x|v, η∗) .

Applying the conditional independence relation (3.45d) and f(x|v, η∗, z) = f(x|η∗, z) further
yields

p(z|v, η∗, x) ∝ f(x|η∗, z)p(z|v),

where we only kept terms that depend on z. The independence relations (4.48e) and (4.48f)
allow to factorize this expression with respect to n, i.e.,

p(z|v, η∗, x) ∝
(

N∏
n=1

f(xn|η∗, zn)
)

N∏
n=1

p(zn|v) =
N∏

n=1
f(xn|η∗, zn)p(zn|v). (4.80)

In (4.80) the likelihood f(xn|η∗, zn) = f
(
xn

||η∗
zn

)
is given by (4.46). For the conditional pmf

p(zn|v) we use the expression (4.54). Inserting both distributions into (4.80) results in

p(z|v, η∗, x) =
N∏

n=1

(
T∏

t=1

(
h(xn) exp

(
η∗

t
Tt(xn) − a(η∗

t )
))

✶(zn=t)
)(

T∏
t=1

(
vt

t−1∏
j=1

(1 − vj)
)✶(zn=t))

=
N∏

n=1

T∏
t=1

(
h(xn) exp

(
η∗

t
Tt(xn) − a(η∗

t )
))

✶(zn=t)
(

vt

t−1∏
j=1

(1 − vj)
)✶(zn=t)

=
N∏

n=1

T∏
t=1

()h(xn) exp
(
η∗

t
Tt(xn) − a(η∗

t )
)
vt

t−1∏
j=1

(1 − vj)

))✶(zn=t)

. (4.81)

Note that we used (4.54) instead of (4.56) for p(zn|v) because it allowed us to formally join the
products with respect to t and the exponent ✶(zn = t) in the first step.

With the expression (4.81) of the complete conditional p(z|v, η∗, x) we can now further
develop the CAVI update (4.79). By using the properties (4.28) and (4.29) of the expectation
operator this leads to the expression

ln q(ℓ)(z; x) c= E(q(v,η∗))

[�{�)ln
N∏

n=1

T∏
t=1

()h(xn) exp
(
η∗

t
Tt(xn) − a(η∗

t )
)
vt

t−1∏
j=1

(1 − vj)

))✶(zn=t)
]�}�(

=
N∑

n=1

T∑
t=1

✶(zn = t)E(q(v,η∗))

[{)ln

()h(xn) exp
(
η∗

t
Tt(xn) − a(η∗

t )
)
vt

t−1∏
j=1

(1 − vj)

))]}(
=

N∑
n=1

T∑
t=1

✶(zn = t)
(

ln h(xn) + E(qt(η∗
t ))

{
η∗

t
T

}
t(xn) − E(qt(η∗

t )){a(η∗
t )}

+ E(q(vt)){ln vt} +
t−1∑
j=1

E(q(vt)){ln(1 − vj)}
)

.
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Here, we introduce the shorthand notation

S
(ℓ)
n,t ≜ E(qt(η∗

t ))
{

η∗
t

T
}

t(xn) − E(qt(η∗
t )){a(η∗

t )} + E(q(vt)){ln vt} +
t−1∑
j=1

E(q(vj)){ln(1 − vj)} (4.82)

and obtain

ln q(ℓ)(z; x) =
N∑

n=1

T∑
t=1

✶(zn = t)
(
ln h(xn) + S

(ℓ)
n,t

)
. (4.83)

We observe that the update (4.83) consists of N independent terms given by

ln q(ℓ)
n (zn; x) c=

T∑
t=1

✶(zn = t)
(
ln h(xn) + S

(ℓ)
n,t

)
. (4.84)

By exponentiation, (4.84) can be equivalently written as

q(ℓ)
n (zn; x) ∝ exp

(
T∑

t=1
✶(zn = t)

(
ln h(xn) + S

(ℓ)
n,t

))

=
T∏

t=1

(
h(xn) exp

(
S

(ℓ)
n,t

))
✶(zn=t)

∝
T∏

t=1
exp

(
S

(ℓ)
n,t

)
✶(zn=t)

. (4.85)

In the last step we omitted h(xn) since it is constant with respect to t and thus does not
change the shape of the distribution. We conclude that the functional form of (4.85) is given
by a categorical distribution (cf. (2.5)) with probabilities ϕ

(ℓ)
n =

(
ϕ

(ℓ)
n,1 . . . ϕ

(ℓ)
n,T

)
that can be

obtained by normalizing (4.85), i.e.,

q(ℓ)
n (zn; x) =

T∏
t=1

ϕ
(ℓ)✶(zn=t)
n,t (4.86)

with

ϕ
(ℓ)
n,t =

exp
(
S

(ℓ)
n,t

)
∑T

t=1 exp
(
S

(ℓ)
n,t

) . (4.87)

Thus, the approximate posterior pmf q
(ℓ)
n (zn; x) of the local model parameter zn is given by the

distribution C
(
zn; ϕ

(ℓ)
n

)
. Like the prior distribution C(zn|π) of zn it is a categorical distribution

but with updated versions ϕ
(ℓ)
n,t of the prior probabilities πt. The (local) variational parameter

ϕ
(ℓ)
n,t is the approximate posterior probability that the observation xn was generated by the t-

th mixture component, i.e., ϕ
(ℓ)
n,t ≈ f(zn = t|x), while πt is the prior probability for the event

zn = t. Compared to a hard assignment, in which each observed data point xn is associated
uniquely with one cluster, ϕ

(ℓ)
n,t represents a soft assignment based on an approximate posterior

probability. It quantifies the level of uncertainty regarding the optimal assignment.

58



4 Variational Inference for Exponential Family Dirichlet Process Mixtures

The CAVI update (4.87) is fully determined by the local variational parameter ϕ
(ℓ)
n which itself

can be computed by evaluating the variables S
(ℓ)
n,t via (4.82). First, S

(ℓ)
n,t has to be evaluated

for all t = 1, . . . , T and then each ϕ
(ℓ)
n,t can be determined via (4.87). The two expectations

E(qt(η∗
t ))

{
η∗

t
T

}
and E(qt(η∗

t )){a(η∗
t )} in (4.82) depend on the choice of the EF, i.e., on the choice of

the base measure h(xn) and sufficient statistic t(xn). The remaining expectations E(q(vt)){ln vt}
and E(q(vt)){ln(1 − vt)} can be shown [49] to be given by

E(qt(vt)){ln vt} = Ψ(γt,1) − Ψ(γt,1 + γt,2), (4.88)

E(qt(vt)){ln(1 − vt)} = Ψ(γt,2) − Ψ(γt,1 + γt,2). (4.89)

Here, Ψ(·) denotes the digamma function, which is defined by the derivative of the logarithm
of the gamma function, i.e.,

Ψ(x) = d
dx

ln Γ(x).

Finally, note that the update (4.87) for the local variational parameter ϕ
(ℓ)
n depends on

the global variational parameters τt and γt (which are given by the most recent respective
update) through the expectations in S

(ℓ)
n,t. The updates (4.68) and (4.78) of the global variational

parameters τ
(ℓ)
t and γ

(ℓ)
t only depend on the local variational parameters ϕn and thus the

algorithm alternates between updating the local and global variational parameters.

4.4.3 Derivation of the Evidence Lower Bound

Given the variational pdf q(w) = q(v, η∗, z) and the observation x, we now derive an expression
for the ELBO L(q; x). To avoid excessive notation, we will abbreviate the joint pdf q(v, η∗, z)
as q in the derivation of the ELBO and thus write E(q){·} instead of E(q(v,η∗,z)){·} for the
expectation operator. Also, recall the properties (4.28), (4.29) and (4.30) of expectation, which
will be used several times in the following derivation of the ELBO.

We start with the expression (4.14) of the ELBO, i.e.,

L(q; x) = E(q)
{

ln f (T )(v, η∗, z, x)
}

− E(q){ln q(v, η∗, z)}.

Here, the joint pdf f (T )(v, η∗, z, x) is with respect to the truncated model (4.44), since we
used the truncated model for the variational approximation (4.43) (see Section 4.4.1). Inserting
the joint pdf (4.49) of the truncated stick-breaking approximation of the DPM model and the
corresponding mean field factorization (4.43) of q(v, η∗, z) yields

L(q; x) = E(q)
{(

N∑
n=1

(
ln f (T )(xn

||η∗
zn

))
+ ln p(T )(zn|v)

)
+

(
T∑

t=1
ln f(η∗

t )
)

+
T −1∑
t=1

ln f(vt)
}

− E(q)
{(

T −1∑
t=1

ln qt(vt)
)

+
(

T∑
t=1

ln qt(η∗
t )

)
+

N∑
n=1

ln qn(zn)
}

.

This can be further simplified by using the linearity property (4.28a) of expectation. Conse-
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quently, the ELBO splits up into seven distinct expectation values according to

L(q; x) =
N∑

n=1

(
E(q){ln f (T )(xn

||η∗
zn

)}
+ E(q){ln p(T )(zn|v)

}
+ E(q){ln qn(zn)}

)

+
T∑

t=1

(
E(q){ln f(η∗

t )} + E(q){ln qt(η∗
t )}

)

+
T −1∑
t=1

(
E(q){ln f(vt)} + E(q){ln qt(vt)}

)
.

(4.90)

In the subsequent analysis, we will evaluate these expectation values in sequential order.
For the first expectation in (4.90) we insert (4.46) for the component distribution f

(
xn

||η∗
zn

)
and obtain

E(q){ln f (T )(xn

||η∗
zn

)}
= E(q)

{
T∑

t=1
✶(zn = t)

(
ln h(xn) + η∗

t
Tt(xn) − a(η∗

t )
)}

=
T∑

t=1
E(q(zn,η∗

t ))
{
✶(zn = t)

(
ln h(xn) + η∗

t
Tt(xn) − a(η∗

t )
)}

=
T∑

t=1
E(qn(zn)){✶(zn = t)}E(qt(η∗

t ))
{

ln h(xn) + η∗
t

Tt(xn) − a(η∗
t )

}

=
T∑

t=1
ϕn,t

(
ln h(xn) + E(qt(η∗

t ))
{

η∗
t

T
}

t(xn) − E(qt(η∗
t )){a(η∗

t )}
)
. (4.91)

Here, we made use of the fact that q(zn, η∗
t ) = qn(zn)qt(η∗

t ), which is because of the mean
field assumption, and of the previous result (4.59). As mentioned earlier, once the exponential
family for the model has been specified, it becomes possible to derive the two expectations
E(qt(η∗

t ))
{

η∗
t

T
}

and E(qt(η∗
t )){a(η∗

t )}.
Using (4.56) for p(T )(zn|v), the second expectation in (4.90) is given by

E(q){ln p(T )(zn|v)
}

= E(q)
{

T −1∑
t=1

(✶(zn = t) ln vt + ✶(zn > t) ln(1 − vt))
}

=
T −1∑
t=1

(
E(q(zn,vt)){✶(zn = t) ln vt} + E(q(zn,vt)){✶(zn > t) ln(1 − vt)}

)

=
T −1∑
t=1

(
E(qn(zn)){✶(zn = t)}E(qt(vt)){ln vt} + E(qn(zn)){✶(zn > t)}E(qt(vt)){ln(1 − vt)}

)

=
T −1∑
t=1

(
ϕn,t(Ψ(γt,1) − Ψ(γt,1 + γt,2)) +

(
T∑

j=t+1
ϕn,j

)
(Ψ(γt,2) − Ψ(γt,1 + γt,2))

)
, (4.92)

where we inserted (4.88) for E(qt(vt)){ln vt} and (4.89) for E(qt(vt)){ln(1 − vt)}.
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Substituting (4.86) into the third expectation in (4.90) results in

E(q){ln qn(zn)} = E(q)
{

T∑
t=1

✶(zn = t) ln ϕn,t

}

=
T∑

t=1
E(qn(zn)){✶(zn = t)} ln ϕn,t

=
T∑

t=1
ϕn,t ln ϕn,t

= ϕT
n ϕn. (4.93)

Inserting the base distribution (4.45), i.e. the prior pdf for η∗
t , into the fourth expectation in

(4.90) yields

E(q){ln f(η∗
t )} = E(q)

{
ln b(λ) + λT

1 η∗
t − λ2a(η∗

t )
}

= ln b(λ) + λT
1 E(qt(η∗

t )){η∗
t } − λ2E(qt(η∗

t )){a(η∗
t )}. (4.94)

Furthermore, inserting the corresponding approximate posterior (4.77) of η∗
t into the fifth ex-

pectation in (4.90) results

E(q){ln qt(η∗
t )} = E(q)

{
ln b(τt) + τ T

t,1η∗
t − τt,2a(η∗

t )
}

= ln b(τt) + τ T
t,1E(qt(η∗

t )){η∗
t } − τt,2E(qt(η∗

t )){a(η∗
t )}. (4.95)

The last two expectations in (4.90) consider the beta prior f(vt) = B(vt; 1, α) and the approx-
imate beta posterior qt(vt) = B(vt; γt,1, γt,2). Inserting (4.65) into the sixth expectation term
yields

E(q){ln f(vt)} = E(q)
{

ln Γ(1 + α)
Γ(α) + (α − 1) ln(1 − vt)

}
= ln Γ(1 + α)

Γ(α) + (α − 1)E(qt(vt)){ln(1 − vt)}

= ln Γ(1 + α)
Γ(α) + (α − 1)(Ψ(γt,2) − Ψ(γt,1 + γt,2)) (4.96)

and inserting (4.67) into the last expectation gives

E(q){ln qt(vt)}

= E(q)
{

ln Γ(γt,1 + γt,2)
Γ(γt,1)Γ(γt,2) + (γt,1 − 1) ln vt + (γt,2 − 1) ln(1 − vt)

}

= ln Γ(γt,1 + γt,2)
Γ(γt,1)Γ(γt,2) + (γt,1 − 1)E(qt(vt)){ln vt} + (γt,2 − 1)E(qt(vt)){ln(1 − vt)}

= ln Γ(γt,1 + γt,2)
Γ(γt,1)Γ(γt,2) + (γt,1 − 1)(Ψ(γt,1) − Ψ(γt,1 + γt,2)) + (γt,2 − 1)(Ψ(γt,2) − Ψ(γt,1 + γt,2)).

(4.97)
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Here, we again employed (4.88) for E(qt(vt)){ln vt} and (4.89) for E(qt(vt)){ln(1 − vt)}.
We conclude that the ELBO for the truncated exponential family DPM model with joint pdf

f (T )(v, η∗, z, x) (see (4.49)) and variational distribution q(v, η∗, z) (see (4.43), (4.67), (4.77)
and (4.86)) is given by (4.90), where the respective expectations are given by (4.91), (4.92),
(4.93), (4.94), (4.95), (4.96) and (4.97). Note that we do not have to compute any integrals to
evaluate the ELBO. We arrive at a fully closed form solution that depends on the hyperparam-
eters α and λ, the observation x, and the variational parameters γ1:(T −1), τ1:T and ϕ1:N .

4.4.4 Summary

Finally, we summarize all equations that are necessary to implement CAVI for the DPM using a
truncated stick-breaking approximation. Algorithm 2 depicts the overall procedure to compute
the solution of the CAVI optimization problem (4.26). The input consists of the observations
xn, n = 1, . . . , N , the truncation level T , the hyperparameter α of the stick-breaking process,
and the hyperparameter λ of the base distribution. We track the number of iterations with
the variable ℓ and start with ℓ = 0, which corresponds to the initialization of the variational
parameters, i.e., ϕ

(0)
1:N , γ

(0)
1:(T −1), and τ

(0)
1:T .

As we have shown in the above derivation, the updates for the variational parameters of the
variational factor distributions are given by the following list of equations:

• Variational parameters ϕ
(ℓ)
n =

(
ϕ

(ℓ)
n,1 · · · ϕ

(ℓ)
n,T

)
of q

(ℓ)
n (zn; x) = C

(
zn; ϕ

(ℓ)
n

)
:

ϕ
(ℓ)
n,t =

exp
(
S

(ℓ)
n,t

)
∑T

i=1 exp
(
S

(ℓ)
n,t

) , (4.98a)

where

S
(ℓ)
n,t = E(qt(η∗

t ))
{

η∗
t

T
}

t(xn) − E(qt(η∗
t )){a(η∗

t )}

+ Ψ(γt,1) − Ψ(γt,1 + γt,2) +
t−1∑
j=1

Ψ(γj,2) − Ψ(γj,1 + γj,2).
(4.98b)

• Variational parameters γ
(ℓ)
t =

(
γ

(ℓ)
t,1 γ

(ℓ)
t,2

)T
of q

(ℓ)
t (vt; x) = B

(
vt; γ

(ℓ)
t,1 , γ

(ℓ)
t,2

)
:

γ
(ℓ)
t,1 = 1 +

N∑
n=1

ϕn,t, (4.99a)

γ
(ℓ)
t,2 = α +

N∑
n=1

T∑
j=t+1

ϕn,j . (4.99b)

• Variational parameters τ
(ℓ)
t =

(
τ

(ℓ)
t,1

T
τ

(ℓ)
t,2

)T
of q

(ℓ)
t (η∗

t ; x) ∝ exp
(

τ
(ℓ)
t,1

T
η∗

t − τ
(ℓ)
t,2 a(η∗

t )
)

:

τ
(ℓ)
t,1 = λ1 +

N∑
n=1

ϕn,tt(xn), (4.100a)
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τ
(ℓ)
t,2 = λ2 +

N∑
n=1

ϕn,t. (4.100b)

In each iteration ℓ we update the local variational parameters ϕ
(ℓ)
1:N using the most recent update

of the global variational parameters γ1:(T −1) and τ1:T , and the global variational parameters
γ

(ℓ)
1:(T −1) and τ

(ℓ)
1:T using the most recent update of the local variational parameters ϕ1:N . Note

that τt appears in (4.98b) through qt(η∗
t ).

At the end of each iteration, the ELBO L(q(ℓ); x) is evaluated using results of the global
variational parameters γ

((ℓ))
1:(T −1) and τ

((ℓ))
1:T and the local variational parameters ϕ

((ℓ))
1:N of the

current iteration, and the relative change is monitored to assess convergence. Convergence is
declared once the relative change of the ELBO has fallen below some predefined threshold. The
ELBO is given by

L(q; x) =
N∑

n=1

(
E(q){ln f (T )(xn

||η∗
zn

)}
+ E(q){ln p(T )(zn|v)

}
+ E(q){ln qn(zn)}

)

+
T∑

t=1

(
E(q){ln f(η∗

t )} + E(q){ln qt(η∗
t )}

)

+
T −1∑
t=1

(
E(q){ln f(vt)} + E(q){ln qt(vt)}

)
,

(4.101a)

with

E(q){ln f (T )(xn

||η∗
zn

)}
=

T∑
t=1

ϕn,t

(
ln h(xn) + E(qt(η∗

t ))
{

η∗
t

T
}

t(xn) − E(qt(η∗
t )){a(η∗

t )}
)
, (4.101b)

E(q){ln p(T )(zn|v)
}

=
T −1∑
t=1

(
ϕn,t(Ψ(γt,1) − Ψ(γt,1 + γt,2)) +

(
T∑

j=t+1
ϕn,j

)
(Ψ(γt,2) − Ψ(γt,1 + γt,2))

)
, (4.101c)

E(q){ln qn(zn)} = ϕT
n ϕn, (4.101d)

E(q){ln f(η∗
t )} = ln b(λ) + λT

1 E(qt(η∗
t )){η∗

t } − λ2E(qt(η∗
t )){a(η∗

t )}, (4.101e)

E(q){ln qt(η∗
t )} = ln b(τt) + τ T

t,1E(qt(η∗
t )){η∗

t } − τt,2E(qt(η∗
t )){a(η∗

t )}, (4.101f)

E(q){ln f(vt)} = ln Γ(1 + α)
Γ(α) + (α − 1)(Ψ(γt,2) − Ψ(γt,1 + γt,2)), (4.101g)

E(q){ln qt(vt)}

= ln Γ(γt,1 + γt,2)
Γ(γt,1)Γ(γt,2) + (γt,1 − 1)(Ψ(γt,1) − Ψ(γt,1 + γt,2)) + (γt,2 − 1)(Ψ(γt,2) − Ψ(γt,1 + γt,2)).

(4.101h)

Once the algorithm has converged, we obtain the variational approximation q∗(v, η∗, z; x) of
the posterior pdf f(v, η∗, z|x) using the latest state of the variational parameters at conver-
gence. Note that the final solutions for the update equations (4.98)-(4.100) and the ELBO
(4.101) do not require performing numerical integration, which enables the algorithm to remain
computationally efficient with increasing sample size N and truncation level T .
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Algorithm 2: CAVI for Exponential Family DPM Models with Conjugate Prior
Input: Observations x, truncation level T , hyperparameters α and λ
Output: Variational factor pdfs

• q∗
n(zn; x) for n = 1, . . . , N

• q∗
t (vt; x) for t = 1, . . . , T − 1

• q∗
t (η∗

t ; x) for t = 1, . . . , T

Initialize: Variational parameters ϕ
(0)
1:N , γ

(0)
1:(T −1), and τ

(0)
1:T ;

while the ELBO has not converged do
ℓ = ℓ + 1 for n from 1 to N do

for t from 1 to T do
set S

(ℓ)
n,t according to (4.98b)

for t from 1 to T do
set ϕ

(ℓ)
n,t according to (4.98a)

for t from 1 to T − 1 do
set γ

(ℓ)
t according to (4.99)

for t from 1 to T do
set τ

(ℓ)
t according to (4.100)

Compute the ELBO L(q(ℓ); x) according to (4.101)
return q∗(v, η∗, z; x) =

(∏T −1
t=1 q∗

t (vt; x)
)(∏T

t=1 q∗
t (η∗

t ; x)
)(∏N

n=1 q∗
n(zn; x)

)

4.5 Practicalities

In concluding this chapter, we will discuss practical considerations that arise when implementing
CAVI-based methods for the DPM. Specifically, we will address the following relevant aspects:
initializing the algorithm, reordering of component labels to enhance accuracy, and exploring
different methods for assessing the convergence of the algorithm.

4.5.1 Initialization

The initialization of the CAVI algorithm involves setting initial values for the variational pa-
rameters ϕ

(0)
1:N , γ

(0)
1:(T −1), and τ

(0)
1:T (cf. Algorithm 2), and has an impact on the quality of the

approximation of the posterior distribution. Poor choices of initialization may lead to slow
convergence or getting stuck in a poor local maxima of the ELBO. Therefore, experimentation
with the initialization procedure is often required to obtain good results.

There are three potential approaches for the sequence of the initialization of the variational
parameters. Firstly, we can begin by initializing the local variational parameters ϕ

(0)
1:N and

subsequently use them to set the global variational parameters γ
(0)
1:(T −1) and τ

(0)
1:T (according to

(4.99) and (4.100)), or, secondly, we can follow the opposite sequence (using (4.98)). Thirdly,
we can initialize the variational parameters independently of one another.

Recalling that ϕ
(0)
1:N represent (soft) cluster assignments, clustering methods [50] such as K-

64
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means, expectation-maximization, and DBSCAN can be employed to initialize these values. If
the number of clusters has to be provided as an input to the clustering algorithm, one can use
either the truncation level T or use a value T ′ < T and set ϕn,t with t > T ′ to 0. On the other
hand, if the number of clusters is determined by the clustering algorithm, the truncation level
T can be set according to the output of the algorithm. Possibilities that do not use clustering
for initialization include choosing T and randomly generate soft or hard cluster assignments or
use uniformly distributed cluster assignments (i.e., ϕn,t = 1/T for t = 1, . . . , T ). Note that a
hard cluster assignment means that ϕn is a vector of all zeros except for a single element ϕn,t

set to one. In contrast, a soft cluster assignment can have ϕn,t ∈ [0, 1] for t = 1, . . . , T with∑T
t=1 ϕn,t = 1.
An additional option that can be explored involves setting T = N and uniquely assign each

observation to its own cluster. The advantage of this approach is that the truncation level T is
high enough to capture any number of possible clusters in the observations. However, this comes
at the cost of sacrificing computational efficiency because there are more terms in the update
equations (4.98), (4.99), and (4.100), and in the ELBO (4.101), which have to be computed.

Similarly to the random initialization of the local variational parameters ϕ
(0)
1:N , the global

variational parameters γ
(0)
1:(T −1) and τ

(0)
1:T can also bet set randomly within a specified range.

Furthermore, if we exclude the variational parameters ϕ
(0)
1:N in equation (4.99) and (4.100), it is

possible to only utilize the prior knowledge, provided by the hyperparameters α and λ, to ini-
tialize γ

(0)
1:(T −1) and τ

(0)
1:T . Alternatively, simple parameter estimators, like sample moments, can

be employed to compute initial values for the global variational parameters using the available
observations.

Lastly, note that the variational parameters also depend on the truncation level T and the
hyperparameters α and λ (see (4.98), (4.99) and (4.100)). Hence, the choice of these input
values also influences the overall quality of the posterior approximation. The truncation level
T can be treated as a variational parameter and optimized by executing the algorithm multiple
times for different values of T . We can then select the value for T that yields the highest
ELBO. Recall that the ELBO is an approximation of the evidence f(x), which provides a basis
for selecting a model [6]. Selecting the number of components T of the mixture model based
on the ELBO is therefore referred to as model selection. A discussion about model selection
in mixture models using the ELBO can be found in [51]. Choosing a value for T may also
involve the stick-breaking parameter α. Specifically, we can set T equal to the average number
of clusters L̄ = α(Ψ(α + N) − Ψ(α)) that are expected to be present within the observation x

(see (3.19)). Since the maximum possible value of L is given by number of observations N , a
starting point for the truncation level T can be chosen such that L̄ < T < N .

4.5.2 Component Label Reordering

According to [17], the approximation accuracy of CAVI for models formulated in the stick-
breaking representation can be improved by ordering the mixture component labels t = 1, . . . , T

during the CAVI algorithm. As discussed in Section 3.2.1 the stick-breaking process implies that
the average mixing proportions are ordered in decreasing size with respect to the component
labels t (see (3.12)). The optimal relabelling of the components t is thus given by the one
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that orders the posterior mean of the mixing proportions in decreasing order. The approximate
posterior distribution q

(ℓ)
t (vt; x) of the t-th auxiliary variable vt is given by B

(
vt; γ

(ℓ)
t,1 , γ

(ℓ)
t,2

)
, and

thus, similar to (3.25), the posterior mean of mixing proportions πt is given by

E(q(ℓ)(v;x)){πt(v1:t)} = E(q(ℓ)
t (vt;x)){vt}

t−1∏
j=1

(
1 − E(q(ℓ)

t (vt;x)){vt}
)

(4.102)

=
γ

(ℓ)
t,1

γ
(ℓ)
t,1 + γ

(ℓ)
t,2

t−1∏
j=1

() γ
(ℓ)
j,2

γ
(ℓ)
j,1 + γ

(ℓ)
j,2

)), (4.103)

for t = 1, . . . , T − 1 and

E(q(ℓ)(v;x)){πT (v)} =
T −1∏
j=1

γ
(ℓ)
j,2

γ
(ℓ)
j,1 + γ

(ℓ)
j,2

, (4.104)

since vT = 1 due to the truncation. Evaluating (4.103) and (4.104) at the end of each iteration ℓ

with the current values of the variational parameters γ
(ℓ)
t,1 and γ

(ℓ)
t,2 , t = 1, . . . , T − 1, the optimal

reordering of the component labels t is achieved by

E(q(ℓ)(v;x))
{

πσ(1)(v1)
}

> E(q(ℓ)(v;x))
{

πσ(2)(v1, v2)
}

> · · · > E(q(ℓ)(v;x))
{

πσ(T )(v)
}

.

Here, we made use of a permutation function σ(·) which makes sure that the posterior mean of
the mixing proportions are ordered in decreasing size with respect to the relabeled component
labels σ(1), . . . , σ(T ).

We can also reorder the component labels according to the posterior mean of the auxiliary
variable vt since the posterior mean of πt is proportional to the posterior mean of the t-th
auxiliary variable vt (see (4.102)). Thus, we equivalently have

E(q(ℓ)
t (vt;x))

{
vσ(1)

}
> E(q(ℓ)

t (vt;x))
{

vσ(2)
}

> · · · > E(q(ℓ)
t (vt;x))

{
vσ(T −1)

}
,

which is easier to evaluate in terms of computational complexity compared to using the expec-
tations (4.102) of the mixture proportions for the relabelling.

4.5.3 Convergence

Assessing convergence in the CAVI algorithm is essential to ensure that the algorithm has
reached a local optimum. The ELBO indicates how well the CAVI algorithm is approximating
the posterior, because maximizing the ELBO is equivalent to minimizing the KLD between
the approximate posterior and the true posterior (see (4.16)–(4.20)). As the ELBO should
increase with each iteration ℓ, monitoring the convergence of the ELBO indicates how well the
algorithm is progressing. Convergence is declared when the relative change of the ELBO falls
below a predefined threshold, indicating that the algorithm has reached a local optimum. In the
simulations in Chapter 5 we will use the percentage change of the ELBO to assess convergence,
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i.e.,

L(q(ℓ); x) − L(q(ℓ−1); x)
L(q(ℓ−1); x)

× 100 < ϵ, (4.105)

where ϵ denotes the predefined convergence threshold.
Alternatively, assessing convergence can be done by tracking the changes in the variational

parameters at each iteration. When the variational parameters stabilize or show very small
changes between iterations, it suggests that the algorithm has converged. Indeed, convergence
of the variational parameters is sufficient to guarantee the convergence of the ELBO, because
the change of the ELBO results from the change of the variational parameters (see (4.101)).
An advantage of the latter method is, that we do not have to evaluate the computationally
burdensome ELBO. The disadvantage is that instead of monitoring a single scalar value we
have to monitor the change of all variational parameters. In the case of the truncated stick-
breaking DPM model this amounts to

dim(ϕ1:N ) + dim(γ1:(T −1)) + dim(τ1:T ) = NT + (T − 1)2 + T (p + 1) (4.106)

scalar values. The set of values that need to be monitored can be reduced by tracking specified
metrics of subgroups of variational parameters, e.g., by monitoring the relative change of the
quadratic norm of ϕ1:N , γ1:(T −1), and τ1:T .

As mentioned above, computing the ELBO for the entire observation x may be computa-
tionally intensive. Nonetheless, it is advantageous to monitor the relative change of a single
scalar value that quantifies the quality of the approximation. Another way to do this with less
computational burden is by evaluating the approximate predictive performance of the mixture
model, which should improve with each iteration. Using a small test dataset x̃ /∈ x of dimension
dim(x̃) = MJ , we can track the relative change of the average log predictive as follows. The
posterior predictive distribution [1] of a new value x̃j under the model (4.44) is given by

f(x̃j |x) =
∫
RT p

∫
R(T −1)

f(x̃j |v, η∗)f(v, η∗|x) dv dη∗ = E(f(v,η∗|x)){f(x̃j |v, η∗)}.

Replacing the conditional distribution f(x̃j |v, η∗) with the mixture distribution

f (T )(x̃j |v, η∗) =
T∑

t=1
πt(v1:t)f(x̃j |η∗

t )

of the truncated model (4.44), and using the approximate posterior pdf

q(v, η∗) = q(v)q(η∗) =
(

T −1∏
t=1

qt(vt)
)(

T∏
t=1

qt(η∗
t )

)

instead of the true posterior pdf f(v, η∗|x), yields an approximation of the posterior predictive,
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i.e.,

f(x̃j |x) ≈ E(q(v,η∗))
{

T∑
t=1

πt(v1:t)f(x̃j |η∗
t )

}

=
T∑

t=1
E(q(v,η∗)){πt(v1:t)f(x̃j |η∗

t )}

=
T∑

t=1
E(q(v)){πt(v1:t)}E(q(η∗)){f(x̃j |η∗

t )}

=
T∑

t=1
E(q(vt)){πt(v1:t)}E(q(η∗

t )){f(x̃j |η∗
t )}.

Taking the logarithm and averaging over the test dataset x̃j , j = 1, . . . , J , results in the average
log predictive

1
J

J∑
j=1

ln f(x̃j |x) ≈ 1
J

J∑
j=1

ln
T∑

t=1
E(q(vt)){πt(v1:t)}E(q(η∗

t )){f(x̃j |η∗
t )}, (4.107)

where E(q(vt)){πt(v1:t)} is given by (4.103) and E(q(η∗
t )){f(x̃j |η∗

t )} depends on the choice of the
EF. Equation (4.107) can be evaluated at the end of each iteration ℓ using the factors q

(ℓ)
t (vt; x)

and q
(ℓ)
t (η∗

t ; x), which itself depend on the variational parameters γ
(ℓ)
t and τ

(ℓ)
t . Note that,

unlike the full ELBO, the average log predictive is not guaranteed to monotonically increase
across iterations of the CAVI algorithm.

Finally, note that the initial values for the variational parameters, the choice of the hyper-
parameters and the convergence threshold influence how fast the CAVI algorithm converges.
If the algorithm converges too quickly, it is most likely because the threshold is set too large
and needs to be reduced. Moreover, it can converge to a local optimum that does not corre-
spond to a good approximation of the posterior. To address this concern in practice, we can
run the algorithm multiple times with a different initialization to check for consistency in the
results and the quality of the approximation via the ELBO (the higher the ELBO the better
the approximation).

68
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In this chapter, we use the coordinate ascent variational inference (CAVI) algorithm for a Gaus-
sian estimation problem. We will adapt the CAVI algorithm for exponential family Dirichlet
process mixture (DPM) models (see Algorithm 2) to Gaussian DPM models, where the mean
of the mixture components is assumed to be random. Furthermore, we will present simulation
results obtained by using the CAVI algorithm and compare them to results from [8], which were
obtained by using a Markov chain Monte Carlo (MCMC) method known as the Gibbs sampler.

5.1 Model Definition

Based on [8], we consider a Gaussian model for objects that are indexed by n = 1, . . . , N ,
where N is the total number of objects. Each object is described by a random feature vector
xn = (xn,1 · · · xn,M )T ∈ RM , which depends on a random local parameter vector θn =
(θn,1 · · · θn,M )T ∈ RM through the equation

xn = θn + un, n = 1, . . . , N . (5.1)

The vectors un ∈ RM , n = 1, . . . , N , in (5.1) will be called the parameter noise and are assumed
to be i.i.d. according to a zero-mean Gaussian distribution with known covariance matrix Σu,
i.e.,

f(un) = N (un; 0, Σu). (5.2)

From (5.1) and (5.2) it follows that the conditional pdf f(xn|θn) is given by

f(xn|θn) = N (xn|θn, Σu). (5.3)

Thus, conditioned on θn, the object features xn are Gaussian distributed with mean µxn|θn
= θn

and covariance matrix Σxn|θn
= Σu. Note that the mean µxn|θn

of (5.3) is assumed to be
random while the covariance Σxn|θn

is assumed to be known.
We assume the local parameters θn to be random and distributed according to a Dirichlet

process (DP) as introduced in Section 3.2. In other words, given a realization G(θ|π, θ∗
1:∞)

(see (3.8)) of DP(G; G0, α), we consider N local parameters θ1, . . . , θN i.i.d. and individually
distributed according to this realization (see (3.14)), i.e.,

G ∼ DP(G; G0, α) (5.4)

θn|G i.i.d.∼ G(θn|π, θ∗
1:∞), n = 1, . . . , N . (5.5)
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Recall that α > 0 represents the concentration parameter and G0(θ∗
k) the base distribution of

the DP. We assume a Gaussian base distribution

G0(θ∗
k) = N (θ∗

k; µθ∗ , Σθ∗), (5.6)

with mean µθ∗ and covariance matrix Σθ∗ . The random vectors θ∗
k, k = 1, 2, . . ., represent

global parameters of the model which are i.i.d. according to (5.6) as explained in the stick-
breaking construction of G (see (3.13)). Each local parameter θn is equal to one of the global
parameters, i.e., θn ∈ {θ∗

1, θ∗
2, . . .}. Note that (5.6) is a conjugate prior for likelihood function

(5.3), because the conjugate prior for a Gaussian likelihood function with random mean is given
by a Gaussian distribution [42].

Rather than directly observing the object features x1, . . . , xN , we instead observe an altered
version of the object features corrupted by additive noise. We denote the observations by
yn = (yn,1 . . . yn,M )T ∈ RM , n = 1, . . . , N . The observation model is assumed to be given by

yn = xn + vn, n = 1, . . . , N , (5.7)

where vn ∈ RM is i.i.d. across n according to the zero-mean Gaussian distribution

f(vn) = N (vn; 0, Σv) (5.8)

with known covariance matrix Σv. Because of (5.8) and (5.7), the distribution of yn given xn

is given by

f(yn|xn) = N (yn|xn, Σv), (5.9)

i.e., the observations yn are Gaussian distributed with unknown mean µyn|xn
= xn and known

covariance matrix Σyn|xn
= Σv. Moreover, inserting (5.1) into (5.7) yields

yn = θn + un + vn, n = 1, . . . , N , (5.10)

which entails that yn given θn is, similar to (5.3), given by a Gaussian distribution

f(yn|θn) = N (yn|θn, Σu + Σv), (5.11)

with unknown mean µyn|θn
= θn but with known covariance matrix Σyn|θn

= Σu + Σv.
Note that we assume the following independence assumptions for all n, n′ ∈ {1, . . . , N}:

un ⊥⊥un′ , vn ⊥⊥vn′ , where n ̸= n′, (5.12a)

and

θn ⊥⊥un′ , θn ⊥⊥vn′ , un ⊥⊥vn′ . (5.12b)

In contrast to un and vn being independent across object index n, the local parameters θn are
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not independent across n because of the DP prior (cf. (3.16)). However, the vectors θn are
conditionally independent, i.e., given a realization G of the DP as defined in (5.5). Thus, we
have

θn ⊥⊥θn′ | G, n ̸= n′, (5.13)

for all n, n′ ∈ {1, . . . , N}.
According to (5.3) and (5.11) the conditional distributions of the feature vector xn and the

corresponding noisy observation yn are both parameterized by the local parameter θn, which
is generated according to a DP. Relating the conditional distributions (5.3) and (5.11) and the
DP-distributed local parameters θn with the model definition (3.37), yields that the statistical
behavior of xn and the statistical behavior of yn are both characterized by the DPM model.
Since the parameters α and G0 of the DP are identical in both cases, the DPM governing xn

and the DPM governing yn only differ in terms of their component distribution f(xn|θ∗
k) and

f(yn|θ∗
k). In the case of xn the mixture distribution (see (3.39)) is given by

f(xn|G) =
∞∑

k=1
πkN (xn|θ∗

k, Σu), (5.14)

where the component distribution of the mixture corresponds to f(xn|θ∗
k) = N (xn|θ∗

k, Σu) (cf.
(5.3)). In the case of yn it is given by

f(yn|G) =
∞∑

k=1
πkN (yn|θ∗

k, Σu + Σv). (5.15)

Here, the component distribution of the mixture corresponds to f(yn|θ∗
k) = N (yn|θ∗

k, Σu + Σv)
(cf. (5.11)).

We conclude that the statistical model for the observation yn and the statistical model for
the object feature xn are equal to an infinite Gaussian mixture model where the mean of each
Gaussian component k is equal to the respective global parameter θ∗

k. The local parameters θn

take L < N distinct values θ′
l ∈ {θ∗

1, θ∗
2, . . .}, l = 1, . . . , L, and associate each object n with one

of the global parameters θ∗
k. All objects n that share the same value θ′

l build a cluster. In this
context the values θ′

l can be referred to as cluster parameters, where the number of clusters is
given by L. Using indicator variables zn ∈ {1, . . . , L}, we can mathematically formulate the
association of θn and θ′

l as θn = θ′
zn

. For a discussion of the clustering property of the DP we
refer to Section 3.2.2 and Section 3.2.3.

In Figure 5.1a we show the Bayesian network of the overall model. Each object n is asso-
ciated with a set comprising the random variables θn, xn and yn. The hyperparameters µθ∗

and Σθ∗ parameterize the base distribution G0(θ∗
k), which is together with the concentration

parameter α responsible for generating the local parameter θn through the DP. The hyper-
parameter Σu determines the statistical properties of the additive parameter noise (see (5.2))
and the hyperparameter Σu determines the statistical properties of the additive observation
noise (see (5.8)). Note that the set of hyperparameters {α, µθ∗ , Σθ∗ , Σu, Σv} is assumed to be
deterministic and the observations yn, n = 1, . . . , N , are assumed to be known. Figure 5.1b
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Figure 5.1: (a) Bayesian network of the overall model. The respective distributions for the
hierarchical generation of yn are given by (5.4) (5.5), (5.3) and (5.9). (b) Plot of N =
25 observations y1, . . . , y25 and the corresponding object features x1, . . . , x25. The
arrows illustrate the added observation noise v1, . . . , v25. The set of hyperparameters
is given by {α = 2, µθ∗ = 0, Σθ∗ = 5I2, Σu = I2, Σv = I2}.

shows an example plot of N = 25 observations with dimension M = 2. In what follows we
will denote the vector of all local parameters as θ =

(
θT

1 · · · θT
N

)T, the vector of all indicator
variables as z = (z1 · · · zN )T, the vector of all objects features as x =

(
xT

1 · · · xT
N

)T, and
the vector of all observations as y =

(
yT

1 · · · yT
N

)T.
In the remaining sections of this chapter we will discuss estimating the object features xn

given noisy observations yn, n = 1, . . . , N , and estimating the clustering structure underlying
the observations. Due to the DP prior imposed on the local parameters θn (see (5.4) and (5.5)),
the posterior pdf f(xn|y) can not be calculated in closed form [8]. Consequently, we can not
calculate the minimum mean square error (MMSE) estimator (cf. Section 2.3) in closed form,
where the MMSE estimator for the Gaussian estimation problem described above is given by

x̂n(y) = E(f(xn|y)){xn} =
∫
RM

xnf(xn|y) dxn. (5.16)

Thus, we resort to approximate inference, specifically to the CAVI algorithm, as described in
Chapter 4, specialized for the Gaussian estimation problem in [8].

5.2 Performance Benchmarks

To assess performance results of CAVI for the above statistical model we will rely on three
inference methods formulated in [8] as our benchmark methods. Two of the methods are based
on exact posterior inference of the objects features x, and one of the methods is based on
an approximate inference method called Gibbs sampling [5]. In this section we will briefly
summarize all three inference methods. For a more detailed explanation we refer to [8].
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(a) (b)

Figure 5.2: (a) Bayesian network for the case where θn, n = 1, . . . , N , are i.i.d. and individually
distributed according to (5.17). Compared to Figure 5.1a the local parameters are
not assumed to be generated by a DP. (b) Bayesian network for the case where θn,
n = 1, . . . , N , are assumed to be observed and thus known, which is indicated by
the respective shaded node.

5.2.1 Theoretical Performance Bounds

We now discuss two simplifying prior assumptions for the local parameter vector θn which allow
to derive the MMSE estimator (5.16) in closed form. Instead of choosing a DP prior for θn as
discussed in Section 5.1, we consider the following two modifications:

1. The local parameters θn, n = 1, . . . , N are i.i.d. according to

f(θn) = N (θn; µθ, Σθ), (5.17)

with mean µθ and covariance matrix Σθ. Instead of the independence assumption (5.13)
we then have

θn ⊥⊥θn′ , where n, n′ = 1, . . . , N with n ̸= n′. (5.18)

2. The local parameters θn, n = 1, . . . , N are observed and thus known.

Figure 5.2 shows the modified Bayesian network for both models (cf. Figure 5.1a). Despite
changing the modeling assumption of θn, the dependencies are as described in Section 5.1. Note
that in the first case we removed the dependence between the local parameters θn, n = 1, . . . , N ,
by replacing the DP prior (5.5) with (5.17), and thus we assume there is no clustering structure
underlying the local parameters and observations. In the second case the local parameters θn

are known, and thus any clustering structure underlying these parameters and the observations
is known. From (5.1) follows the (conditional) distribution of the object feature xn and from
(5.7) follows the (conditional) distribution of the observation yn.

The simplifying assumption for the modeling of the local parameter θn of both scenarios
allow to derive the MMSE estimator (5.16) for the object features xn, n = 1, . . . , N in closed
form, i.e., we do not have to resort to approximate inference methods. Due to the assumptions
that xn is embedded in additive white Gaussian noise (see (5.7)), that xn is itself Gaussian
because it linearly depends on Gaussian distributed variables (see (5.1)), and the independence
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assumptions (5.12) and (5.18), the MMSE estimators for both scenarios adhere to the following
formula [3]:

x̂n(yn) = µxn + ΣxnynΣ−1
yn

(yn − µyn). (5.19)

Here, µxn = E(f(xn)){xn} is the mean of the n-th object feature, µyn = E(f(yn)){yn} is the mean
and Σyn = E(f(yn))

{
(yn − µyn)(yn − µyn)T

}
is the covariance matrix of the n-th observation,

and Σxnyn = E(f(yn,xn))
{

(yn − µyn)(xn − µxn)T
}

is the cross-covariance matrix of xn and yn.
Note that the estimate x̂n = x̂n(yn) for the n-th object feature xn only depends on the n-th
observation yn because of the independence relations among the variables discussed above.

Given an estimate x̂n(yn), we will use the mean square error (MSE), which is minimized by
the MMSE estimator (5.19), to quantify the average estimation accuracy. Using (5.19) it can
be shown [3] to be given by

MSEmin = 1
M

E(f(xn,yn))
{

(x̂n(yn) − xn)T(x̂n(yn) − xn)
}

= 1
M

tr(Σxn − ΣxnynΣ−1
yn

Σxnyn). (5.20)

For the two models summarized in Figure 5.2, the MMSE estimators for the object features
xn are given as follows (see [8] for a detailed derivation):

1. With µxn = µyn = µθ, Σxn = Σθ + Σu, Σyn = Σθ + Σu + Σv and the cross-covariance
matrix Σxnyn = Σxn = Σθ + Σu, the MMSE estimator (5.19) for the case where θn is
distributed according to (5.17) is given by

x̂n(yn) = µθ + (Σθ + Σu)(Σθ + Σu + Σv)−1(yn − µθ). (5.21)

The minimum MSE (5.20) is obtained as

MSEmin = 1
M

tr(Σv(Σθ + Σu + Σv)−1(Σθ + Σu)). (5.22)

2. In the second case the local parameter θn is in addition to the observation yn known.
Thus, we have to evaluate

x̂n(yn, θn) = µxn|θn
+ Σxnyn|θn

Σ−1
yn|θn

(yn − µyn|θn
)

and

MSEmin = 1
M

tr(Σxn|θn
− Σxnyn|θn

Σ−1
yn|θn

Σxnyn |θn)

instead of (5.19) and (5.20). With µxn|θn
= µyn|θn

= θn, Σxn|θn
= Σu, Σyn|θn

= Σu +Σv

and the cross-covariance matrix Σxnyn|θn
= Σxn|θn

= Σu this results

x̂n(yn, θn) = θn + Σu(Σu + Σv)−1(yn − θn). (5.23)
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The corresponding minimum MSE (5.20) is

MSEmin = 1
M

tr(Σv(Σu + Σv)−1Σu). (5.24)

We conclude that the MMSE estimator (5.21) for the model in Figure 5.2a consists of the
mean µθ of the local parameters and a correction term that depends on the observation yn

and the various covariance matrices of the model. In contrast, the MMSE estimator (5.23) for
the model in Figure 5.2b can leverage its knowledge of the local parameter θn. It replaces the
mean µθ with the actual value of θn. Finally, note that the MSEs (5.22) and (5.24) do not
depend on the observation y in both cases. They only depend on the covariance matrix Σθ

of the local parameters, the covariance matrix of the parameter noise Σu and the covariance
matrix Σv of the observation noise. Since the local parameters θn are known in the second case
the MSE is expected to be improved, i.e., lowered, compared to the first case. We will employ
the MSE performance (5.22) and (5.24) of both MMSE estimators as theoretical performance
bounds when evaluating the simulation results of more sophisticated methods like CAVI and
Gibbs sampling in Section 5.5.

5.2.2 Gibbs Sampler

The Gibbs sampler is a Markov chain Monte Carlo (MCMC) method for obtaining samples
from a multivariate distribution when direct sampling is difficult. A general discussion of Gibbs
sampling and other sampling algorithms can be found in [5] and [22].

In [8] the Gibbs sampler is applied to the statistical model described in Section 5.1 (see
Figure 5.1a), where the posterior pdf f(xn|y) of the object feature xn can not be calculated
in closed form. It is shown, that a sequence of Q ∈ N samples x

(q)
n , q = 1, . . . , Q, can be

generated from f(xn|y) by sampling θ
(q)
n = θ

′(q)
z

(q)
n

and x
(q)
n from the complete conditionals of

the joint posterior pdf f(x, θ|y). Recall that the local parameters θn, n = 1, . . . , N , take
L < N distinct values θ′

l ∈ {θ∗
1, θ∗

2, . . .}, l = 1, . . . , L, and that θn = θ′
zn

by using indicator
variables zn ∈ {1, . . . , L}. We denote θ′ =

(
θ′T

1 · · · θ′T
L

)T as the vector containing all cluster
parameters θ′

l, l = 1, . . . , L. The complete conditionals are then given by p
(
zn|z∼n, θ′

z∼n
, x, y

)
,

where θ′
z∼n

denotes the parameters associated with all objects n′ ̸= n, f(θ′
l|θ′

∼l, z, x, y), and
f

(
xn|θ′

zn
, zn, yn

)
. In each iteration q the samples z

(q)
n , θ

′(q)
l and x

(q)
n are generated from the re-

spective complete conditionals by conditioning on the most recent samples and the observations.
The sampling within each iteration q is done in the following order:

1. Generate a sample z
(q)
n of the indicator variable zn for all n = 1, . . . , N .

2. Generate a sample θ
′(q)
l of the cluster parameter θ′

l for all l = 1, . . . , L.

3. Generate a sample x
(q)
n of the object feature xn for all n = 1, . . . , N .

After Q iterations the samples x
(q)
n , q = 1, . . . , Q can be regarded as samples from the marginal

posterior f(xn|y) by disregarding all other samples. The initial values for θ
(0)
n = θ

′(0)
z

(0)
n

and x
(0)
n

for q = 0, i.e., before starting sampling iteratively from the complete conditionals, are obtained
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as follows. The local parameters θ
(0)
n are obtained by sampling from the base distribution, i.e.,

θ(0)
n ∼ N

(
θ(0)

n ; µθ∗ , Σθ∗
)
,

which means that each object n is uniquely associated with a cluster parameter θ
′(0)
n (L = N)

and

z(0)
n = n, n = 1, . . . , N .

Inspired by (5.21), the initial value of the object feature x
(0)
n is obtained as

x̂(0)
n (yn) = µθ∗ + (Σθ∗ + Σu)(Σθ∗ + Σu + Σv)−1(yn − µθ∗), n = 1, . . . , N ,

using the observations yn. Note that both CAVI and Gibbs sampling update one variable at
a time while keeping others fixed. CAVI updates each variational pdf factor by calculating an
expectation of each complete conditional given the other variational pdf factors (cf. (4.40)),
whereas the Gibbs sampler samples from each complete conditional given the current values of
the other samples. For a more detailed description of the above Gibbs sampling algorithm and
a mathematical derivation of the complete conditionals we refer to [8].

Given the sequence of samples of the object feature x
(q)
n , q = 1, . . . , Q, which approximately

represents posterior pdf f(xn|y), we can calculate a Monte Carlo approximation of the MMSE
estimator (5.16), i.e.,

x̂n(y) ≈ 1
Q

Q∑
q=1

x(q)
n . (5.25)

From the law of large numbers it follows that this approximation is accurate for sufficiently
large Q and is exact for Q → ∞. The empirical MSE of the estimates x̂n = x̂n(y) can be
evaluated by averaging the squared estimation error over all objects, i.e.,

MSE = 1
NM

N∑
n=1

∥x̂n − xn∥2 .

5.3 CAVI for Gaussian Dirichlet Process Mixtures

The goal of this section is to apply the CAVI algorithm from Section 4.3 (see Algorithm 2) to the
Gaussian estimation problem described in Section 5.1. This will yield an approximate posterior
distribution which allows us to approximate the MMSE estimator of the local parameters θn

and subsequently approximate the MMSE estimator (5.23) of the object features xn.

5.3.1 Exponential Family and Stick-breaking Representation

To utilize Algorithm 2, our initial step involves reformulating the DPM model governing the
observation yn (see (5.15)). This reformulation entails representing the DP in terms of the
stick-breaking process and employing the exponential family (EF) form for the conditional
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distribution f(yn|θn) (or equivalently f(yn|θ∗
k)), along with the corresponding conjugate prior

for the global parameter f(θ∗
k) (cf. Section 3.5).

According to (5.11) the pdf of yn given θn is equal to the Gaussian pdf N (yn|θn, Σu + Σv),
where the mean µyn|θn

= θn in the condition is a random parameter and the covariance Σyn|θn
=

Σu + Σv is a known hyperparameter, i.e.,

f(yn|θn) = 1√
(2π)M det(Σu + Σv)

exp
(

−1
2(yn − θn)T(Σu + Σv)−1(yn − θn)

)
. (5.26)

Multiplying out the term in the exponent of (5.26) and comparing the resulting expression with
the EF distribution (2.19) yields (see [39])

f(yn|θn) = h(yn) exp
(
ηT(θn)t(yn) − a(η(θn))

)
, (5.27)

with

h(yn) =
exp

(− 1
2yT

n (Σu + Σv)−1yn
)√

(2π)M det(Σu + Σv)
, (5.28)

η(θn) = (Σu + Σv)−1θn, (5.29)

t(yn) = yn, (5.30)

a(η(θn)) = 1
2θT

n (Σu + Σv)−1θn. (5.31)

Note that η(θn) and t(yn) are M -dimensional vectors. In what follows, we consider the param-
eter of the EF distribution (5.27) to be ηn = η(θn) rather than θn, i.e., we consider the EF
to be in canonical form. We will refer to both θn and ηn as the local parameters and to both
θ∗

k and η∗
k as the global parameters, respectively. The parameter function η(·) in (5.29) can be

inverted as follows

θn = (Σu + Σv)ηn, (5.32)

allowing to convert one representation into the other at any given time using the known covari-
ance matrices Σu and Σv. Inserting (5.32) into (5.31) results

a(ηn) = 1
2ηT

n (Σu + Σv)(Σu + Σv)−1(Σu + Σv)ηn = 1
2ηT

n (Σu + Σv)ηn. (5.33)

We conclude that the EF representation of (5.26) is given by

f(yn|ηn) = h(yn) exp
(
ηT

n t(yn) − a(ηn)
)
, (5.34)

with base measure (5.28), sufficient statistic (5.30) and log-partition (5.33).
We continue by reformulating the prior distribution (5.6) of the global parameter θ∗

k. Since
we consider the EF to be in canonical form we apply the parameter transformation (5.29) to
obtain η∗

k = (Σu + Σv)−1θ∗
k. In Section 2.2, we showed that every EF likelihood function has
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a conjugate prior. According to (2.26), it is given by

f(η∗
k) = b(λ) exp

(
λT

1 η∗
k − λ2a(η∗

k)
)
.

Inserting a(η∗
k) = 1

2η∗
k

T(Σu + Σv)η∗
k (cf. (5.33)) yields

f(η∗
k) = b(λ) exp

(
λT

1 η∗
k − λ2

2 η∗
k

T(Σu + Σv)η∗
k

)
, (5.35)

where b(λ) ∈ R+ is a normalization constant and λ1 ∈ Rp and λ2 ∈ R are hyperparameters
represented by the vector λ =

(
λT

1 λ2
)T

. Inserting η∗
k = (Σu + Σv)−1θ∗

k we equivalently have

f(θ∗
k) = b̃(λ) exp

(
λT

1 (Σu + Σv)−1θ∗
k − λ2

2 θ∗
k

T(Σu + Σv)−1θ∗
k

)
. (5.36)

By an evaluation and comparison of the exponent in (5.36) with the exponent of the Gaussian
pdf N (θ∗

k; µθ∗ , Σθ∗), we obtain the following important relationships (see [39]):

µθ∗ = 1
λ2

λ1, (5.37)

Σθ∗ = 1
λ2

(Σu + Σv), (5.38)

or equivalently for the linearly transformed parameter η∗
k = (Σu + Σv)−1θ∗

k and the Gaussian
pdf N (η∗

k; µη∗ , Ση∗):

µη∗ = (Σu + Σv)−1µθ∗ = 1
λ2

(Σu + Σv)−1λ1, (5.39)

Ση∗ = (Σu + Σv)−1Σθ∗(Σu + Σv)−1 = 1
λ2

(Σu + Σv)−1. (5.40)

Thus, the conjugate prior (5.35) (and similarly (5.36)) is in fact a Gaussian pdf with mean
µη∗ given by (5.39) and covariance matrix Ση∗ given by (5.40). This is the reason for the
choice of a Gaussian distribution N (θ∗

k; µθ∗ , Σθ∗) for the base distribution G0(θ∗
k) of the DP

(see (5.6)). Note that the covariance matrix Σθ∗ of the base distribution has to be a multiple of
the covariance matrix Σyn|θn

= Σu + Σv of the likelihood function (5.26), which is a restriction
that is due to the EF framework. The hyperparameters µθ∗ and Σθ∗ of the base distribution
and the hyperparameters λ1 and λ2 of its equivalent representation (5.36) are related according
to the equations (5.37) and (5.38). Given the hyperparameters µθ∗ , Σθ∗ , Σu and Σv, we can
determine λ1 and λ2 as follows:

λ2IM = Σ−1
θ∗ (Σu + Σv), (5.41)

λ1 = λ2µθ∗ . (5.42)

It remains to compute the normalization constant b(λ) of (5.35). As explained above the
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distribution of η∗
k is given by

N (η∗
k; µη∗ , Ση∗) = 1√

(2π)M det(Ση∗). .. .
≜c

exp
(

−1
2(η∗

k − µη∗)TΣ−1
η∗ (η∗

k − µη∗)
)

. .. .
≜d

,

where we temporarly defined the two factors c and d. Replacing µη∗ and Ση∗ with (5.39) and
(5.40), and using Σyn|θn

= Σu + Σv yields

c = 1√
(2π)M det

(
1

λ2
Σ−1

yn|θn

) = 1√(
2π
λ2

)M
det(Σ−1

yn|θn
)

(5.43)

and

d = exp
(

−1
2

(
η∗

k − 1
λ2

Σ−1
yn|θn

λ1

)T ( 1
λ2

Σ−1
yn|θn

)−1 (
η∗

k − 1
λ2

Σ−1
yn|θn

λ1

))

= exp
(

−λ2
2

(
η∗

k − 1
λ2

Σ−1
yn|θn

λ1

)T (
Σyn|θn

η∗
k − 1

λ2
λ1

))

= exp
(

−λ2
2

(
η∗

k
TΣyn|θn

η∗
k − 1

λ2
η∗

k
Tλ1 − 1

λ2
λT

1 η∗
k + 1

λ2
2
λT

1 Σ−1
yn|θn

λ1

))
= exp

(
− 1

2λ2
λT

1 Σ−1
yn|θn

λ1

)
exp

(
λT

1 η∗
k − λ2

2 η∗
k

TΣyn|θn
η∗

k

)
= exp

(
− 1

2λ2
λT

1 Σ−1
yn|θn

λ1

)
exp

(
λT

1 η∗
k − λ2a(η∗

k)
)
, (5.44)

where we used (5.33) in the last step. When we compare the two factors (5.43) and (5.44) with
(5.35), we obtain

b(λ) = 1√(
2π
λ2

)M
det(Σ−1

yn|θn
)

exp
(

− 1
2λ2

λT
1 Σ−1

yn|θn
λ1

)

= 1√(
2π
λ2

)M
det((Σu + Σv)−1)

exp
(

− 1
2λ2

λT
1 (Σu + Σv)−1λ1

)
, (5.45)

i.e., we are able to compute the normalization constant b(λ) in closed form and do not have to
perform numerical integration as described in (2.27).

We are now ready to summarize the DPM model for N conditionally independent observations
yn as (cf. (3.41))

vk
i.i.d.∼ B(vk; 1, α), (5.46a)

πk(v1, . . . , vk) = vk

k−1∏
i=1

(1 − vi), (5.46b)

η∗
k

i.i.d.∼ G0(η∗
k; λ), (5.46c)

zn|π(v1, v2, . . .) i.i.d.∼ C(zn|π(v1, v2, . . .)), (5.46d)

yn|zn, η∗
1 , η∗

2 , . . . ∼ f
(
yn

||η∗
zn

)
, (5.46e)
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for k = 1, 2, . . . and n = 1, . . . , N . Here, v1, v2, . . . are the auxiliary variables of the stick-breaking
process and z1, . . . , zN are indicator variables. Note that our notation does not distinguish
between scalar auxiliary variables vk and the observation noise vector vn. It will be clear from
the context if we mean either of the two quantities. According to (5.35) the base distribution
G0(η∗

t ; λ) is given by

G0(η∗
t ; λ) = b(λ) exp

(
λT

1 η∗
k − λ2

2 η∗
k

T(Σu + Σv)η∗
k

)
,

where λ1 and λ2 are determined by (5.41) and (5.42), respectively. The conditional pdf
f

(
yn

||η∗
zn

)
is in EF form as specified in (5.34), i.e.,

f
(
yn|η∗

zn

)
= h(yn) exp

(
η∗T

zn
t(yn) − a

(
η∗

zn

))
with

h(yn) =
exp

(− 1
2yT

n (Σu + Σv)−1yn
)√

(2π)M det(Σu + Σv)
,

t(yn) = yn,

a
(
η∗

zn

)
= 1

2η∗ T
zn

(Σu + Σv)η∗
zn

.

The n-th indicator variable zn allows us to determine the n-th local parameter ηn by the
relation ηn = η∗

zn
, which means that f

(
yn|η∗

zn

)
is equal to f(yn|ηn). Recall that we refer to

both ηn and θn as the local parameter because they are connected by the deterministic relation
θn = (Σu + Σv)ηn (see (5.32)).

5.3.2 CAVI Algorithm

We proceed with applying the CAVI algorithm (see Algorithm 2) to the reformulation (5.46) of
the model described in Section 5.1. The output of the CAVI algorithm is the approximate poste-
rior distribution q∗(v, η∗, z; y) of the auxiliary variables v = (v1 · · · vT −1)T, global parameters
η∗ =

(
η∗

1
T · · · η∗

T
T)T and indicator variables z = (z1 · · · zN )T. This approximation of the

posterior pdf involves a truncated mean field approximation and entails truncation of (5.46)
using the truncated stick-breaking model (4.44). The truncation level is given by the trunca-
tion parameter T ∈ N, where the component label of the truncated DPM is t ∈ {1, . . . , T }.
For details of the truncated mean field approximation, we refer to Section 4.4.1. Note that
the observation y is still assumed to be generated as described in Section 5.1, i.e., we do not
truncate the model according to which the observations yn are generated.

With the specification of the EF, it is possible to calculate the expectations E(qt(η∗
t )){η∗

t } and
E(qt(η∗

t )){a(η∗
t )} that we were unable to further elaborate on in the derivations of Algorithm 2 in

Section 4.4. According to (4.77) the approximate posterior pdf qt(η∗
t ) maintains the functional

form of the conjugate prior (5.35), but it is parameterized by τt,1 and τt,2, which are updated
versions of the hyperparameters λ1 and λ2. Thus, the posterior mean E(qt(η∗

t )){η∗
t } of η∗

t is
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given by (5.39) with λ1 and λ2 replaced by τt,1 and τt,2, i.e.,

E(qt(η∗
t )){η∗

t } = 1
τt,2

(Σu + Σv)−1τt,1. (5.47)

Note that this is the approximate MMSE estimate for η∗
t since it is the mean of η∗

t with respect
to the approximate posterior qt(η∗

t ). Similarly, using (5.40) with λ1 and λ2 replaced by τt,1 and
τt,2, we obtain

E(qt(η∗
t ))

{(
η∗

t − E(qt(η∗
t )){η∗

t }
)T (

η∗
t − E(qt(η∗

t )){η∗
t }

)}
= 1

τt,2
(Σu + Σv)−1, (5.48)

i.e., the approximate posterior covariance matrix of η∗
t . The posterior expectations (5.47) and

(5.48) allow us to compute the last missing expectation E(qt(η∗
t )){a(η∗

t )}. For the sake of brevity,
we will use the abbreviations µ̃η∗

t
= E(qt(η∗

t )){η∗
t }, Σ̃η∗

t
= E(qt(η∗

t ))
{(

η∗
t − µ̃η∗

t

)T (
η∗

t − µ̃η∗
t

)}
and Σyn|θn

= Σu+Σv in the calculation of E(qt(η∗
t )){a(η∗

t )}. Replacing the log-partition function
a(η∗

t ) in E(qt(η∗
t )){a(η∗

t )} with (5.33) yields

E(qt(η∗
t )){a(η∗

t )} = 1
2E(qt(η∗

t ))
{

η∗
k

TΣyn|θn
η∗

k

}
. (5.49)

Here, it remains to compute the expectation of the quadratic form η∗
k

TΣyn|θn
η∗

k with respect
to the approximate posterior qt(η∗

t ). This can be shown [52] to be given by

E(qt(η∗
t ))

{
η∗

k
TΣyn|θn

η∗
k

}
= tr

(
Σyn|θn

Σ̃η∗
t

)
+ µ̃T

η∗
t
Σyn|θn

µ̃η∗
t
.

Replacing µ̃η∗
t

and Σ̃η∗
t

with (5.47) and (5.48) yields

E(qt(η∗
t ))

{
η∗

k
TΣyn|θn

η∗
k

}
= tr

(
Σyn|θn

1
τt,2

Σ−1
yn|θn

)
+ 1

τ2
t,2

τt,1
TΣ−1

yn|θn
Σyn|θn

Σ−1
yn|θn

τt,1

= tr
(

1
τt,2

IM

)
+ 1

τ2
t,2

τt,1
TΣ−1

yn|θn
τt,1

= 1
τ2

t,2

(
Mτt,2 + τt,1

TΣ−1
yn|θn

τt,1
)

. (5.50)

By inserting (5.50) into (5.49) we obtain the final result:

E(qt(η∗
t )){a(η∗

t )} = 1
2τ2

t,2

(
Mτt,2 + τt,1

TΣ−1
yn|θn

τt,1
)

= 1
2τ2

t,2

(
Mτt,2 + τ T

t,1(Σu + Σv)−1τt,1
)

. (5.51)

We are now able to adapt the more general formulation of CAVI for DPMs in Algorithm 2 to
our specific case of a Gaussian model. The corresponding update equations are given in (4.98),
(4.99) and (4.100). The solution for the ELBO is given in (4.101). We start by inserting the
two missing expectations (5.47) and (5.51), and the sufficient statistic (5.30), into the update
equations. This yields the following list of equations:
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• Variational parameters ϕ
(ℓ)
n =

(
ϕ

(ℓ)
n,1 . . . ϕ

(ℓ)
n,T

)
of q

(ℓ)
n (zn; y) = C

(
zn; ϕ

(ℓ)
n

)
:

ϕ
(ℓ)
n,t =

exp
(
S

(ℓ)
n,t

)
∑T

i=1 exp
(
S

(ℓ)
n,t

) , (5.52a)

where

S
(ℓ)
n,t = 1

τt,2
τ T

t,1(Σu + Σv)−1yn − 1
2τ2

t,2

(
Mτt,2 + τ T

t,1(Σu + Σv)−1τt,1
)

+ Ψ(γt,1) − Ψ(γt,1 + γt,2) +
t−1∑
j=1

Ψ(γj,2) − Ψ(γj,1 + γj,2)
(5.52b)

• Variational parameters γ
(ℓ)
t =

(
γ

(ℓ)
t,1 γ

(ℓ)
t,2

)T
of q

(ℓ)
t (vt; y) = B

(
vt; γ

(ℓ)
t,1 , γ

(ℓ)
t,2

)
:

γ
(ℓ)
t,1 = 1 +

N∑
n=1

ϕn,t, (5.53a)

γ
(ℓ)
t,2 = α +

N∑
n=1

T∑
j=t+1

ϕn,j . (5.53b)

• Variational parameters τ
(ℓ)
t =

(
τ

(ℓ)
t,1

T
τ

(ℓ)
t,2

)T
of q

(ℓ)
t (η∗

t ; y) ∝ exp
(

τ
(ℓ)
t,1

T
η∗

t − τ
(ℓ)
t,2 a(η∗

t )
)

:

τ
(ℓ)
t,1 = λ1 +

N∑
n=1

ϕn,tyn, (5.54a)

τ
(ℓ)
t,2 = λ2 +

N∑
n=1

ϕn,t. (5.54b)

Using the base measure (5.28), the sufficient statistic (5.30), the normalization constant (5.45)
and the two expectations (5.47) and (5.51) in (4.101), the ELBO is given by

L(q; y) =
N∑

n=1

(
E(q){ln f (T )(yn

||η∗
zn

)}
+ E(q){ln p(T )(zn|v)

}
+ E(q){ln qn(zn)}

)

+
T∑

t=1

(
E(q){ln f(η∗

t )} + E(q){ln qt(η∗
t )}

)

+
T −1∑
t=1

(
E(q){ln f(vt)} + E(q){ln qt(vt)}

)
,

(5.55a)

with

E(q){ln f (T )(yn

||η∗
zn

)}
=

T∑
t=1

ϕn,t

()ln
exp

(
−1

2yT
n Σ−1yn

)
√

(2π)M det
(
Σ

) + 1
τt,2

τ T
t,1Σ−1yn − 1

2τ2
t,2

(
Mτt,2 + τ T

t,1Σ−1τt,1
))), (5.55b)
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E(q){ln p(T )(zn|v)
}

=
T −1∑
t=1

(
ϕn,t(Ψ(γt,1) − Ψ(γt,1 + γt,2)) +

(
T∑

i=t+1
ϕn,i

)
(Ψ(γt,2) − Ψ(γt,1 + γt,2))

)
, (5.55c)

E(q){ln qn(zn)} = ϕT
n ϕn, (5.55d)

E(q){ln f(η∗
t )}

= ln 1√(
2π
λ2

)M
det(Σ−1)

− 1
2λ2

λT
1 Σ−1λ1 + 1

τt,2
λT

1 Σ−1τt,1 − λ2
2τ2

t,2

(
Mτt,2 + τ T

t,1Σ−1τt,1
)

,

(5.55e)

E(q){ln qt(η∗
t )}

= ln 1√(
2π
τt,2

)M
det(Σ−1)

− 1
2τt,2

τ T
t,1Σ−1τt,1 + 1

τt,2
τ T

t,1Σ−1τt,1 − 1
2τt,2

(
Mτt,2 + τ T

t,1Σ−1τt,1
)

,

(5.55f)

E(q){ln f(vt)} = ln Γ(1 + α)
Γ(α) + (α − 1)(Ψ(γt,2) − Ψ(γt,1 + γt,2)), (5.55g)

E(q){ln qt(vt)}

= ln Γ(γt,1 + γt,2)
Γ(γt,1)Γ(γt,2) + (γt,1−1)(Ψ(γt,1) − Ψ(γt,1 + γt,2)) + (γt,2−1)(Ψ(γt,2) − Ψ(γt,1 + γt,2)),

(5.55h)

where Σ = Σyn|θn
= Σu + Σv because of brevity.

Finally, the CAVI algorithm for a DPM with Gaussian components, where the mean of each
component is assumed to be random and the covariance matrix of each component is assumed to
be identical to the covariance matrix of the other components and known, can be summarized as
shown in Algorithm 3. In each iteration ℓ we update each variational parameter with the most
recent updates of the other variational parameters. At the end of each iteration, the current
state of the ELBO is evaluated and the relative change is monitored to assess convergence.
Different ways to assess convergence and the initialization of the CAVI algorithm have been
discussed in Section 4.5. The output of the algorithm is given by the approximate posterior pdf
q∗(v, η∗, z; y), which is a local optimum for the CAVI optimization problem (4.26).

5.4 Estimation of Model Parameters

Using the approximate posterior pdf q∗(v, η∗, z; y), i.e., the output of Algorithm 3, we can
estimate the mixing proportions πt, t = 1, . . . , T , the global parameters θ∗

t , t = 1, . . . , T ,
and the indicator variables zn, n = 1, . . . , N of the Gaussian DPM model associated with the
observations yn. Moreover, using these estimates enables to approximate the MMSE estimate
(5.23) of the object features xn.

We start with the approximate MMSE estimate π̂t = π̂t(y) of the mixing proportions πt. In
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Algorithm 3: CAVI for Gaussian DPM Models
Input: Observations y, truncation level T , set of hyperparameters {α, µθ∗ , Σθ∗ , Σu, Σv}
Output: Variational factor pdfs

• q∗
n(zn; y) for n = 1, . . . , N

• q∗
t (vt; y) for t = 1, . . . , T − 1

• q∗
t (η∗

t ; y) for t = 1, . . . , T

Initialize: Variational parameters ϕ
(0)
1:N , γ

(0)
1:(T −1) and τ

(0)
1:T ;

while the ELBO has not converged do
ℓ = ℓ + 1 for n from 1 to N do

for t from 1 to T do
set S

(ℓ)
n,t according to (5.52b)

for t from 1 to T do
set ϕ

(ℓ)
n,t according to (5.52a)

for t from 1 to T − 1 do
set γ

(ℓ)
t according to (5.53)

for t from 1 to T do
set τ

(ℓ)
t according to (5.54)

Compute the ELBO L(q(ℓ); y) according to (5.55)
return q∗(v, η∗, z; y) =

(∏T −1
t=1 q∗

t (vt; y)
)(∏T

t=1 q∗
t (η∗

t ; y)
)(∏N

n=1 q∗
n(zn; y)

)

(4.103) and (4.104) we already calculated the posterior mean of the mixing proportions πt with
respect to the approximate posterior pdf q∗(v; y). Thus, we already have a formula for the
approximate MMSE estimates of the mixing proportions πt that is given by

π̂t = E(q∗(v;x)){πt(v1:t)} = γt,1
γt,1 + γt,2

t−1∏
j=1

(
γj,2

γj,1 + γj,2

)
, t = 1, . . . , T − 1, (5.56a)

π̂T = E(q∗(v;x))
{

πT

(
v1:(T −1)

)}
=

T −1∏
j=1

(
γj,2

γj,1 + γj,2

)
. (5.56b)

We proceed with the approximate MMSE estimates θ̂∗
t = θ̂∗

t (y) and η̂∗
t = η̂∗

t (y) of the global
parameters θ∗

t and η∗
t . According to (5.47), the posterior mean of the global parameters η∗

t

with respect to the approximate posterior pdf q∗
t (η∗

t ; y) is given by

η̂∗
t = E(q∗

t (η∗
t ;y)){η∗

t } = 1
τt,2

(Σu + Σv)−1τt,1, t = 1, . . . , T .

Using the deterministic transformation (5.32) we obtain

θ̂∗
t = (Σu + Σv)η̂∗

t = 1
τt,2

τt,1, t = 1, . . . , T , (5.57)

for the approximate MMSE estimates of the global parameters θ∗
t .
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Next, we estimate the indicator variables zn and the clustering structure of the observations
yn. In order to obtain a hard clustering, we choose the approximate maximum a-posteriori
(MAP) estimate for the estimation of the indicator variables zn. The approximate posterior pmf
of the n-th indicator variable zn is given by the Categorical distribution q∗

n(zn; y) = C(zn; ϕn).
Calculating the mode of this distribution, i.e., the value t for which q∗

n(zn = t; y) takes it max-
imum, yields the approximate MAP estimate ẑn = ẑn(y). The location of the maximum of the
Categorical distribution C(zn; ϕn) is given by the location of the maximum entry of the vector
ϕT

n = (ϕn,1 . . . ϕn,T ) (cf. (2.5)). Thus, we obtain

ẑn = arg max
t

ϕn,t, n = 1, . . . , N, (5.58)

for the approximate MAP estimates of the indicator variables. Each estimate ẑn represents a
hard assignment of the n-th object to one of the t ∈ {1, . . . , T } components of the truncated
DPM. Applying (2.10), we can count the number of objects N̂t that we associate with the t-th
mixture component, i.e.,

N̂t =
N∑

n=1
✶(ẑn = t),

and determine the number of cluster as

L̂ =
T∑

t=1
✶

(
N̂t > 0

)
. (5.59)

Note that the estimated number of clusters L̂ is likely to be smaller than the truncation level
T meaning there can be components t with no associated object n (N̂t = 0).

Combining the estimates ẑn of the indicator variables and the estimates θ̂∗
t of the global

parameters, we can obtain estimates θ̂n = θ̂n(y) for the local parameters θn as follows

θ̂n = θ̂
∗
ẑn

. (5.60)

Here, each object n is assigned a global parameter θ̂∗
t through the local parameter θ̂n by using the

indicator variable ẑn. These estimates (5.60) can be used to approximate the MMSE estimator
(5.23) of the object features xn. As explained in Section 5.2.1, the MSE of this estimator
represents an upper performance bound, because it assumes the local parameters θn to be
known. Thus, the lower the error en = θ̂n − θn between our estimate θ̂n and the true local
parameter θn, the better will be our approximation of the MMSE estimator (5.23). Inserting
θ̂n into (5.23) results

x̂n = θ̂n + Σu(Σu + Σv)−1(yn − θ̂n), (5.61)

i.e., an estimate x̂n = x̂n(y) for the n-th object feature xn. Note that while equation (5.61)
may imply that the estimate x̂n solely depends on the n-th observation yn, we have to consider
that the estimate θ̂n = θ̂n(y) depends on all observations y1, . . . , yN through the estimates θ̂∗

t

and ẑn. Also note that the accuracy of all estimates depends on the input values chosen for the
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CAVI algorithm (see Section 4.5 for a discussion).

5.5 Simulation Results

In the final section of this chapter, we present simulation results that are obtained from the
application of the CAVI algorithm, specifically from Algorithm 3, in conjunction with the cor-
responding approximate MMSE/MAP estimators derived in Section 5.4. We will discuss the
simulation procedure, examine clustering results, analyze the behavior of the ELBO for different
types of initialization, and compare MSE performance results with those obtained in [8].

5.5.1 Simulation Setup

In order to be able to compare our simulation results to the simulation results of [8], we will
adopt the following model parameters. Each object n is associated with a feature vector xn =
(xn,1 xn,2)T ∈ R2, a local parameter vector θn = (θn,1 θn,2)T ∈ R2, and an observation vector
yn = (yn,1 yn,2)T ∈ R2, i.e., we consider a two-dimensional model (M = 2). The local parameter
θn is generated from a DP with Gaussian base distribution G0(θ∗

k) = N (θ∗
k; µθ∗ , Σθ∗), where

µθ∗ = 0 and Σθ∗ = 5I2. In terms of the concentration parameter α, we will examine the three
different values α ∈ {0.5, 1, 5}. As explained in Section 5.1, the feature vector xn is statistically
related to local parameter θn according to (5.1), where we assume that the distribution of the
parameter noise un is given by a zero-mean Gaussian distribution (see (5.2)) with covariance
matrix Σu = I2. Similarly, the observation yn is statistically related to the feature vector xn

according to (5.7), where we assume that the distribution of the observation noise vn is given
by a zero-mean Gaussian distribution (see (5.8)) with covariance matrix Σv = I2. The total
number of objects N is selected within the range of N = 1, . . . , 50. A summary of all model
parameters is provided by Table 5.1.

Parameter Value
M 2
N {1, . . . , 50}
µθ∗ 0
Σθ∗ 5I2
Σu I2
Σv I2
α {0.5, 1, 5}

Table 5.1: Model parameters for the simulations.

The subsequent simulation results are obtained by using Algorithm 3 and the approximate
MMSE/MAP estimators (5.56) – (5.61). Our implementation of the algorithm and the esti-
mators can be found in [53]. We used the programming language Python in combination with
the package NumPy for numerical calculations. Observations yn, n = 1, . . . , N , are generated
with the parameters in Table 5.1, i.e., we use synthetic data for our simulations. Recall that we
assume that the n-th observation yn is distributed according to a Gaussian DPM (see (5.15)).
For the generation of the local parameters θn, n = 1, . . . , N , we used the Chinese restaurant
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process (cf. Section 3.2.3), which also provides cluster assignment variables zn, n = 1, . . . , N .
The local parameters θn are then used to generate the observations yn by adding parameter
noise un and observation noise vn as explained above. The observations y =

(
yT

1 · · · yT
N

)T

and values for the truncation parameter T and hyperparameters {α, µθ∗ , Σθ∗ , Σu, Σv}, are then
used as input for the CAVI algorithm. Initial values ϕ

(0)
1:N , γ

(0)
1:(T −1) and τ

(0)
1:T of the variational

parameters are set according to a specified initialization method (see Section 4.5 for a discus-
sion about initialization). The percentage change (4.105) of the ELBO is monitored to assess
convergence. When the percentage change of the ELBO falls below a prespecified convergence
threshold ϵ the algorithm stops and outputs the current values of the variational parameters
ϕ1:N , γ1:(T −1) and τ1:T of the approximate posterior distribution

q(v, η∗, z; y) =
(

T −1∏
t=1

qt(vt; y)
)(

T∏
t=1

qt(η∗
t ; y)

)(
N∏

n=1
qn(zn; y)

)
.

The approximate MMSE/MAP estimators from Section 5.4 are applied in a post-processing
step, which results a posterior estimate of the clustering structure and the object features.

5.5.2 Estimation of the Cluster Assignments and Parameters

We first want to show simulation results for the estimation of the clustering structure underlying
the observation y in the case of N = 50. Such clustering results are subsequently used to
estimate the object features xn. For the input of the CAVI algorithm we choose the truncation
parameter T = N = 50 and assume the set {α, µθ∗ , Σθ∗ , Σu, Σv} of hyperparameters to be
known, i.e., to be equal to the parameters in Table 5.1 of the model governing the observations.
We initialize the local variational parameter ϕ

(0)
1:N by uniquely associating each object n with one

component t of the truncated DPM, i.e., ϕ
(0)
n,t equals one for n = t and zero else. The initialization

for the global variational parameters γ
(0)
1:(T −1) and τ

(0)
1:T is obtained from the initial value of the

local variational parameter ϕ
(0)
1:N by using (5.53) and (5.54). The convergence threshold is set

to ϵ = 0.01 %. In the post-processing, we estimate the T mixing proportions π̂1, . . . , π̂T by
applying (5.56), the T global parameters (component means) θ̂∗

1, . . . , θ̂∗
T by applying (5.57) and

the N indicator variables ẑ1, . . . , ẑN by applying (5.58). The estimated number of clusters L̂ is
obtained by (5.59).

Figure 5.3 shows three different simulation results corresponding to three different values of
the concentration parameter α ∈ {0.5, 1, 5}. For each value of α, we compare the true clustering
structure of N = 50 observations y1, . . . , y50 to the estimated clustering structure obtained by
using the CAVI algorithm. Figures 5.3a to 5.3c show the true number of clusters L < N

(different colors) in the observation y and the corresponding cluster means θ′
l ∈ {θ∗

1, θ∗
2, . . .},

l = 1, . . . , L, (big dots). Out of the T component estimates θ̂∗
t , t = 1, . . . , T , only L̂ are shown in

Figures 5.3d to 5.3f because no object has been associated to one of the other T − L̂ components
of the truncated DPM by the approximate MAP estimator. Again the clustering structure is
illustrated by the different colors.

The expected number of clusters L̄ (see (3.19)) are 2.94, 5.84 and 12.46 for α equal to 0.5, 1.5
and 5, respectively. We conclude that the higher the concentration parameter α the more small
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Figure 5.3: True and estimated clustering structure of the observation y. Big dots refer to the
value of cluster means and small dots refer to the values of the observations. Each
cluster is represented by a unique color. (a)-(c) True clustering properties. There are
L = 2, L = 4 and L = 11 clusters present for α equal to 0.5, 1.5 and 5, respectively.
(d)-(f) Estimated clustering results. The estimated numbers of clusters L̂ are 2, 4
and 6 for α equal to 0.5, 1.5 and 5, respectively.

and densely packed clusters are present within the observations and the more the estimated
clustering structure deviates from the true clustering structure.

5.5.3 Behavior of the ELBO for Different Initialization Types

Next, we want to show how the initialization ϕ
(0)
1:N , γ

(0)
1:(T −1) and τ

(0)
1:T of the variational pa-

rameters impacts the ELBO and the number of iterations to reach convergence. We set the
concentration parameter equal to α = 5, the truncation parameter equal to T = 30, the number
of objects equal to N = 50 and the convergence threshold equal to ϵ = 0.01 %. The set of
hyperparameters {α, µθ∗ , Σθ∗ , Σu, Σv} for the input of the CAVI algorithm is again assumed
to be known. In the simulation we run a fixed number of ℓ = 1, . . . , 80 CAVI iterations and
save the ELBO for each iteration, alongside an index indicating the iteration at which conver-
gence was achieved. For the initialization of the variational parameters we choose eight different
approaches that can be summarized as follows:

• “One cluster” means that we set ϕ
(0)
n,t = 1 for a chosen t and all n = 1, . . . , N , and zero

else, i.e., we associate all observations n with one specific component t of the truncated
model. Then we run the CAVI algorithm for each possible association t ∈ {1, . . . , T } and
choose the result with the highest ELBO.
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• For the initialization type “True”, we use the true cluster indicators zn (which we can
access because we generated the observation y by applying the CRP), i.e., ϕ

(0)
n,zn = 1 for

all n = 1, . . . , N and zero else. This initialization type serves as a reference.

• In the case of “DBSCAN”, we use the hard cluster assignments of the output of the
DBSCAN algorithm [50] to initialize the variational parameter ϕ

(0)
1:N . Note that this

algorithm requires two input parameters, which are the neighborhood radius and the
minimum number of neighbors. We set the neighborhood radius to 0.3 and the number
of neighbors to three.

• “Unique” means we uniquely associate each observation yn with a component t of the
truncated model, i.e., ϕ

(0)
n,t = 1 for n = t and zero else. Note that compared to the other

initialization types, where we choose T = 30, we here choose T = N . The reason is we
want to uniquely assign each observation n to a component t of the truncated model.

• The initialization type “Uniform” corresponds to uniform soft cluster assignment, i.e.,
ϕ

(0)
n,t = 1/T for all n = 1, . . . , N and t = 1, . . . , T .

• In the case of “KMeans”, we use the hard cluster assignments of the output of the KMeans
algorithm to initialize the variational parameter ϕ

(0)
1:N . We choose 12 clusters (equal to

the expected number of clusters L̄) for the input of the KMeans algorithm, with randomly
selected observations yn serving as the initial centroids.

• For the initialization type “Random” we generate ten different hard cluster assignments
from a discrete uniform distribution for the initialization of ϕ

(0)
1:N and run the CAVI al-

gorithm for reach random generation. Then, we check the ELBO at convergence for each
CAVI run and choose the output with the highest ELBO.

• “Global” means we initialize the global variational parameters γ
(0)
1:(T −1) and τ

(0)
1:T with

the knowledge of the hyperparameters α and λ, i.e., γ
(0)
t,1 = 1, γ

(0)
t,2 = α, τ

(ℓ)
t,1 = λ1 and

τ
(ℓ)
t,2 = λ2, for all t = 1, . . . , T (cf. (5.53) and (5.54)).

For all initialization types except “Global” we initialize the local variational parameters ϕ
(0)
1:N

and use (5.53) and (5.54) to obtain initial values for the global variational parameters γ
(0)
1:(T −1)

and τ
(0)
1:T . Recall that ϕ

(0)
n,t represents a soft assignment, i.e., ϕ

(0)
n,t is the approximate posterior

probability of the event zn = t (see the discussion of (4.60)). For the initialization type “Global”
we reverse this procedure and first set γ

(0)
1:(T −1) and τ

(0)
1:T , and then compute ϕ

(0)
1:N by using (5.52).

For each initialization type we average the resulting ELBO and iteration of convergence over 500
simulation runs and determine the 95 % confidence interval. The results are shown in Figure 5.4.

We observe that ELBO approaches the same maximum for each initialization type in our
simulation scenario, but varies in terms of the speed of convergence. The fastest convergence
is obtained by the “True” initialization type, where the CAVI algorithm converges after 10
iterations on average. The slowest convergence is obtained by the “Uniform” and “One Cluster”
initialization types. Here, the CAVI algorithm converges after approximately 23 iterations on
average. For the “Global” initialization type, the CAVI algorithm converges after 19 iterations
on average. Similar convergence behavior is obtained by the initialization types “DBSCAN”,

89



5 Gaussian Estimation

5 10 15 20 25 30

Number of iterations

−2450

−2400

−2350

−2300

−2250

−2200

A
ve
ra
ge

E
L
B
O

One Cluster

True

DBSCAN

Unique

5 10 15 20 25 30

Number of iterations

Uniform

KMeans

Random

Global

Convergence of the ELBO for α = 5

Figure 5.4: ELBO (solid lines) and iteration of convergence (dashed lines) averaged over 500
simulation runs for eight different types of initialization. The plot includes the 95 %
confidence interval (shaded regions).

“Unique”, “KMeans” and “Random”, where the average iterations needed for convergence are
12, 13, 12 and 13, respectively. Note that using the initialization types “One Cluster” and
“Random” needs the most computational effort, since we run the CAVI algorithm multiple
times and take the best run. The initialization types using hard clustering algorithms, i.e.,
“KMeans” and “DBSCAN”, deliver good performance results in terms of the ELBO, but come
with additional overhead as additional parameters are needed which may have to be adapted
for varying model parameters. The “True” initialization type is only included for reference since
it assumes the indicator variables zn to be known. Using “Global” and “Uniform” results in the
second and third-slowest convergence speed after “One Cluster”.

We conclude that using the “Unique” initialization type for our simulation scenario gives
a good trade-off in terms of convergence speed and computational effort. On one hand, the
computational costs for running CAVI with the initialization type “Unique” are higher compared
to “True”, “Global”, “KMeans” and “DBSCAN” due to T = N . On the other hand, the
computational costs are lower than for “One Cluster” and “Random” since we do not have to
run the CAVI algorithm multiple times. For higher values of N (and correspondingly large T

when using “Unique”) we can resort to one of the other initialization types, where the truncation
parameter T can be set arbitrarily and that deliver a similar performance in terms of the ELBO.

5.5.4 Estimation of the Object Features

Finally, we show simulation results for the estimation of the objects features xn, n = 1, . . . , N ,
given observations yn, n = 1, . . . , N , and compare them to the results obtained in [8]. Note
that we do not assume to know the clustering structure of y. The input to the CAVI algorithm
(see Algorithm 3) only consists of the “raw” observations y, the truncation level T , and the set
of hyperparameters {α, µθ∗ , Σθ∗ , Σu, Σv}. The parameters used for generating the observation
y are given by Table 5.1 and the hyperparameters for the CAVI input are still assumed to be
known, i.e., equal to the values in Table 5.1. For the initialization type we use “Unique” as
explained above, which means the truncation parameter T is equal to the number of objects
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Figure 5.5: True object features xn (black dots) compared to the estimates x̂n (red dots). The
gray lines correspond to the estimation errors en = x̂n − xn.

N . This is also the initialization type used for the initialization z
(0)
n of the indicator variables

in the Gibbs sampler (see Section 5.2.2). The convergence threshold is set to ϵ = 0.001 %.
In order to quantify the performance of CAVI and the approximate MMSE estimator (5.61)

for the object features xn, we calculate the empirical MSE by averaging the squared estimation
error over all objects n = 1, . . . , N and multiple simulation runs j = 1, . . . , J , i.e.,

MSE ≜ 1
JNM

J∑
j=1

N∑
n=1

∥x̂n,j − xn,j∥2 . (5.62)

Here, xn,j corresponds to the true feature of the n-th object in the j-th simulation run and
x̂n,j = x̂n

(
y(j)) is the respective estimate. The estimate x̂n,j is obtained by using the varia-

tional parameters from the CAVI output (see Algorithm 3) in the approximate MMSE/MAP
estimators (5.57), (5.58), (5.60) and (5.61), which depend on the observation y(j) of the j-th
simulation run. Figure 5.5 illustrates the result of a single simulation run in the case of α = 0.5
and N = 50. It shows the true object features xn and the estimates x̂n in conjunction with the
estimation error en = x̂n −xn. The MSE of a single simulation run J = 1 is obtained by adding
the squared length of the gray lines, i.e., the squared error, and dividing it by the number of
objects N and the dimension M . For the following results we additionally average the MSE
over J = 1000 simulation runs (see (5.62)).

Figure 5.6 presents the empirical MSE achieved by using CAVI, the two theoretical perfor-
mance bounds (5.22) and (5.24), and the empirical MSE achieved by using Gibbs sampling
as described in Section 5.2.2 with Q = 1000 samples (kindly provided by the author of [8]).
Inserting M = 2, Σθ = 5I2, Σu = I2 and Σv = I2 (see Table 5.1) into (5.22) yields

MSEmin = 1
2 tr(6I2(7I2)−1) = 6

7 (5.63)

for the MMSE estimator (5.21) which assumes no underlying clustering structure in the obser-
vation y, i.e., where the local parameters θn are assumed to be i.i.d. and individually distributed
according to (5.17). It serves as a benchmark which indicates if it is worthwhile using the more
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Figure 5.6: Average MSE achieved by CAVI compared to the benchmarks discussed in Sec-
tion 5.2. The results are shown for three different values of the concentration pa-
rameter α. Shaded regions visualize the 95 % confidence interval.

computationally involved CAVI algorithm. Inserting Σu = σ2
uIM and Σv = σ2

vIM into (5.24)
yields

MSEmin = 1
2 tr((2I2)−1) = 1

2 (5.64)

for the MMSE estimator (5.23) where the underlying clustering structure in the observation y is
known, i.e., where the local parameters θn are assumed to be known. It serves as a benchmark
which indicates how well we could perform in terms of MSE when we know the clustering
structure. Note that, in line with (5.22) and (5.24), both MSEs (5.63) and (5.64) do not depend
on the number of objects N . In the case of CAVI and the Gibbs sampler, the MSE depends on
N and the concentration parameter α.

We observe that in terms of the number of objects N and the concentration parameter α, the
overall MSE results of the CAVI algorithm are similar to the results of the Gibbs sampler. In the
case of α = 5, the CAVI algorithm is not able to perform better than the closed form MMSE
estimator (5.21) using no clustering, as the clustering structure can not be estimated with
sufficiently high accuracy by the approximate MMSE/MAP estimators. Recall that the higher
the value of α is, the more small and densely packed clusters are within the observation y and the
more difficult it is for the CAVI algorithm to estimate the clustering structure (see Figure 5.3).
In the case of α = 0.5 and α = 1, the CAVI algorithm performs better than the closed form
MMSE estimator (5.21) using no clustering, similar to the results of the Gibbs sampler. Here,
the empirical MSE decreases as the number of objects N increases. This is due to the fact that
more observations yn are available to the CAVI algorithm and the approximate MMSE/MAP
estimators. Consequently, more observations can be associated with the same cluster, i.e.,
share the same cluster parameters, which results in an improved estimation accuracy. The
concentration parameter α determines how strong the MSE decreases with N . For a small
value of α the clusters are more concentrated, i.e., there are few distinct clusters among the
observations, and thus it is easier to estimate the clustering structure. This is beneficial for the
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estimation of the object features xn, since the approximate MMSE estimator (5.61) relies on
an accurate estimate of the underlying clustering structure represented by the estimates θ̂n of
the local parameters.

The improved MSE performance compared to the MMSE estimator (5.21) assuming no un-
derlying clustering structure in the observation y can be captured with a performance metric
referred to as the clustering gain (CG) [8], [22]. The CG compares the MSE of an estimator
using no clustering, denoted as MSE(no clustering), to the MSE of an estimator that takes ac-
count for the underlying clustering structure in the observations, denoted as MSE(clustering). It
is defined as

CG ≜ 10 log10

(
MSE(no clustering)

MSE(clustering)

)
. (5.65)

Table 5.2 shows the CG obtained by using CAVI and Gibbs sampling for N = 50 observations.
According to (5.63) we have MSE(no clustering) = 6/7. The MSE values for the case of CAVI

α = 0.5 α = 1 α = 5
CG achieved by CAVI 1.243 dB 0.787 dB −0.294 dB
CG achieved Gibbs sampler 1.483 dB 1.164 dB 0.313 dB

Table 5.2: Clustering gain for N = 50 objects.

and Gibbs sampling (MSE(clustering)) can be read from Figure 5.6. The CG is then obtained
by inserting the MSE values into (5.65). Comparing the CG obtained by CAVI to the CG
obtained by Gibbs sampling, we obtain the following results. For α = 0.5 the CG of CAVI is
16.2 % less than that achieved by Gibbs sampling, for α = 1 the CG of CAVI is 32.4 % less
than that achieved by Gibbs sampling and for α = 5 the CG of CAVI is 193.93 % less than that
achieved by Gibbs sampling. We conclude that all MSE and CG results obtained by the CAVI
algorithm are lower than the results obtained by Gibbs sampling, because the MSE obtained by
CAVI is bigger than the MSE obtained by Gibbs sampling for all N = 1, . . . , 50 (see Figure 5.6).
This was to be expected, since VI methods are known to suffer from oversimplified posterior
approximations compared to MC sampling methods. However, the loss in CG in the case of
small α is not too high considering that we save in the required computational effort by using
the CAVI algorithm.

The runtime on our simulation machine (a mid-range laptop) of our implementation [53] of
Algorithm 3 for the above scenario is shown in Figure 5.7 as function of N . It includes the
average runtime, the minimum runtime and the maximum runtime of J = 1000 simulation runs
for each N = 1, . . . , 50. For N = 50, the average is approximately 20 ms with a 95 % confidence
interval of ±0.62 ms. Unfortunately, we are not aware of the runtime of the Gibbs sampler
implementation used in [8]. Nonetheless, considering that VI methods are known to be more
computationally efficient than MCMC sampling methods [6], [7] we expect the runtime of the
CAVI algorithm to be significantly less than that of the Gibbs sampler for the aforementioned
scenario. In [54], the runtime of the CAVI algorithm in a simple simulation was reported to be
300 times faster than that of the Gibbs sampler.
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Figure 5.7: Average, maximum and minimum runtime in seconds on our simulation machine
of our implementation of the CAVI algorithm (Algorithm 3). The 95 % confidence
interval is within ±0.62 ms for all N = 1, . . . , 50.

Up until now, we have assumed that the set of hyperparameters that we use for the input
of the CAVI algorithm is equal to the parameters of the model responsible for generating
the observations, i.e., that we perfectly know the values of the hyperparameters. As a final
simulation result we want to demonstrate the effect of deviating from the true values (see
Table 5.1) in the case of α = 0.5. We denote the hyperparameters that we choose as an input
for the CAVI algorithm as {α̃, µ̃θ∗ , Σ̃θ∗ , Σ̃u, Σ̃v}. For the mean µ̃θ∗ of the base distribution we
use the median of the observations y =

(
yT

1 · · · yT
N

)T, i.e.,

µ̃θ∗ = median(y),

where median(y) returns the middle value separating the greater and lesser halves of the obser-
vations for each of the two dimensions. For the covariance matrix Σ̃θ∗ of the base distribution
we compute the empirical variance of the observations in each dimension and take the maximum,
i.e.,

Σ̃θ∗ =
(

max
j

1
N

N∑
n=1

(yn,j − ȳj)2
)

I2,

where

ȳj = 1
N

N∑
n=1

yn,j . (5.66)

In terms of the concentration parameter α̃, we modify the true value α = 0.5 with a multi-
plicative factor. We will evaluate α̃ = 100α = 50 and α̃ = α/100 = 0.005. For the covariance
matrix of the parameter noise µ̃θ∗ and the covariance matrix of the observation noise Σ̃v, we
choose the values Σ̃u = Σ̃v = 1

2Σu = 1
2I2 and Σ̃u = Σ̃v = 2Σu = 2I2. We then run the

same simulation as for Figure 5.6, i.e., the true hyperparameters of the model responsible for
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generating the observation y is given by Table 5.1.
Figure 5.8 shows the simulation results. We observe that a precise knowledge of the concen-
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Figure 5.8: Average MSE achieved by CAVI in the case of unknown hyperparameters compared
to the case of known hyperparameters. Shaded regions visualize the 95 % confidence
interval.

tration parameter is not crucial, since the results in terms of MSE are similar to the case where
α̃ is known. Deviating from the true values of the covariance matrices Σ̃u and Σ̃v has more
impact on the performance results. Here, we observe a noticeable degradation in terms of the
MSE. Note that we still perform better than the MMSE estimator that uses no clustering, i.e.,
all MSE results are below 6/7 ≈ 0.86 (see (5.63)) for a sufficiently high number of observations
N .
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6 Conclusions

In this thesis, we discussed VI, which is a methodology for approximating the posterior distri-
bution for models — such as the DPM model — where the posterior distribution is intractable
and thus one has to resort to approximate inference techniques. We presented a detailed deriva-
tion of the CAVI algorithm for DPM models with EF component distributions and specialized
the CAVI algorithm to the Gaussian estimation problem considered in [8]. We also presented
simulation results for the proposed CAVI algorithm and compared them to the results from [8],
which were obtained using an MCMC method known as the Gibbs sampler.

We first provided an introduction to BMMs and the EF, and subsequently we discussed
the DP and its clustering properties. This led to the definition of a mixture model with an
infinite number of components, specifically a DPM model. Moreover, we defined a DPM model
with component distributions from the EF and with a conjugate prior, using the stick-breaking
representation of the DP. Based on [7], we then presented a detailed derivation of the CAVI
algorithm for that model. This algorithm relies on a truncated mean field approximation of
the posterior pdf and entails truncating the stick-breaking representation of the DP. We also
addressed practical considerations in the application of CAVI-based methods to DPM models.

Furthermore, we adapted the CAVI algorithm for DPM models with component distributions
from the EF to the case of DPM models with Gaussian component distributions, and performed
simulations for the Gaussian estimation problem proposed in [8]. In this Gaussian estimation
problem, the object features are modeled by a DPM of Gaussians, i.e., a mixture model with an
infinite number of Gaussian components, and the goal is to estimate the object features from
noisy observations. In view of the high computational complexity of the MCMC method used in
[8], we developed a more efficient method based on the CAVI algorithm for a DPM of Gaussians.
A drawback of the CAVI algorithm is that it can lead to oversimplified posterior approximations,
and thus we performed simulations to assess the estimation accuracy of our method and compare
it to that of the method used in [8] as well as to two theoretical performance bounds established
in [8]. Each of these theoretical performance bounds is based on a simplifying model assumption:
on one hand, that the object features do not possess a clustering structure (in contrast to the
DP prior), and on the other hand that the clustering structure is known.

Our simulation results demonstrated that the CAVI method can achieve a clustering gain,
corresponding to an improved performance compared to the performance bound assuming no
clustering. Moreover, we found that the difference between the clustering gains achieved by
our CAVI method and the Gibbs sampler of [8] depends on the concentration parameter α

of the DP. For high α (i.e., low concentration), the CAVI algorithm struggles to estimate the
cluster structure underlying the observations with sufficient accuracy and performs less well
than the Gibbs sampler in [8]. This is the price paid for the significantly better computational
efficiency of the CAVI algorithm. In this regard, we showed that our implementation of the
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CAVI algorithm for a DPM of Gaussians [53] has a runtime of approximately 20 ms when using
the simulation parameters listed in Table 5.1. Unfortunately, we are not aware of the runtime
of the Gibbs sampler implementation used in [8], but considering that VI methods are known
to be more computationally efficient than MCMC methods [6], [7], we expect the runtime of
the CAVI algorithm to be significantly less than that of the Gibbs sampler.

Finally, we presented simulation results demonstrating the effects of deviating in the imple-
mentation of the CAVI algorithm from the true model hyperparameters used to generate the
observations. We observed that accurate knowledge of the concentration parameter of the DPM
model is less critical than accurate knowledge of the covariance matrix of the noise model.

Given the recent and ongoing evolution of the VI methodology, there is scope for further
research aiming to develop VI methods for the considered estimation problem with increased
clustering gain (estimation accuracy) and computational efficiency. Possible research directions
include “accurate VI,” which employs variational models beyond the mean field approximation,
and “amortized VI,” which jointly predicts local parameters with a parameterized function of
the observations instead of optimizing a local variational parameter for each observation [14].
Furthermore, there is potential for exploring different model assumptions and model parameters
and their impact on the clustering gain. For instance, one could consider treating the parameters
of the DP as random variables with a specified prior distribution and estimating them from the
observed data. Another strategy could be to collapse the model as demonstrated in [17], thereby
eliminating parameters that are not essential for estimating the object features and potentially
improving the estimation.
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