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Abstract
For the spectral fractional diffusion operator of order 2s, s ∈ (0, 1), in bounded,
curvilinear polygonal domains Ω ⊂ R

2 we prove exponential convergence of two
classes of hp discretizations under the assumption of analytic data (coefficients and
source terms, without any boundary compatibility), in the natural fractional Sobolev
normH

s(Ω). The first hp discretization is based on writing the solution as a co-normal
derivative of a 2+1-dimensional local, linear elliptic boundary value problem, to which
an hp-FE discretization is applied. A diagonalization in the extended variable reduces
the numerical approximation of the inverse of the spectral fractional diffusion operator
to the numerical approximation of a system of local, decoupled, second order reaction-
diffusion equations in Ω . Leveraging results on robust exponential convergence of
hp-FEM for second order, linear reaction diffusion boundary value problems in Ω ,
exponential convergence rates for solutions u ∈ H

s(Ω) of Lsu = f follow. Key
ingredient in this hp-FEM are boundary fitted meshes with geometric mesh refinement
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towards ∂Ω . The second discretization is based on exponentially convergent numerical
sinc quadrature approximations of the Balakrishnan integral representation of L−s
combined with hp-FE discretizations of a decoupled system of local, linear, singularly
perturbed reaction-diffusion equations in Ω . The present analysis for either approach

extends to (polygonal subsets ˜M of) analytic, compact 2-manifolds M, parametrized
by a global, analytic chart χ with polygonal Euclidean parameter domain Ω ⊂ R

2.
Numerical experiments for model problems in nonconvex polygonal domains and
with incompatible data confirm the theoretical results. Exponentially small bounds on
Kolmogorov n-widths of solution sets for spectral fractional diffusion in curvilinear
polygons and for analytic source terms are deduced.

Keywords Fractional diffusion · Nonlocal operators · Dunford-Taylor calculus ·
Anisotropic hp–refinement · Geometric corner refinement · Exponential
convergence · n-widths

Mathematics Subject Classification 26A33 · 65N12 · 65N30

1 Introduction

In recent years, the mathematical and numerical analysis of initial-boundary value
problems for fractional differential operators has received substantial attention. Their
numerical treatment has to overcome several challenges. The first challenge arises
from their nonlocal nature as integral operators. A direct Galerkin discretization leads
to fully populated system matrices, and compression techniques (see, e.g., [31] and the
references there) have to be brought to bear to make the discretization computationally
tractable. An alternative to a direct Galerkin discretization is to realize the nonlocal
operator numerically as a Dirichlet-to-Neumann operator for a local (but degenerate)
elliptic problem in higher dimension. While this approach, sometimes referred to
as “Caffarelli–Silvestre” extension (“CS-extension” for short) [16, 57] increases the
spatial dimension by 1, it permits to use the mathematical and numerical tools that
were developed for local, integer order differential operators. In the present paper,
we study several hp-FE discretizations of the resulting local (but degenerate) elliptic
problem. We refer to these as Extended hp-FEM.

One alternative to the extension approach is the representation of fractional powers
of elliptic operators as Dunford-Taylor integrals proposed in [10, 11]. Discretizing
such an integral leads to a sum of solution operators for local, second order elliptic
problems, which turn out to be singularly perturbed, but are amenable to established
numerical techniques. In the present paper, we also study this approach under the name
sinc Balakrishnan FEM (sinc-BK FEM for short).

A second challenge arises from the fact that the solutions of problems involving
fractional operators are typically not smooth, even for smooth input data (cf. the exam-
ples and discussion in [9, Sec. 8.4]). Indeed, for the spectral fractional Laplacian, the
behavior near a smooth boundary ∂Ω is u ∼ u0 + O(dist (·, ∂Ω)β) for some more
regular u0 and a β /∈ N [17, Thm. 1.3]. Points of non-smoothness of ∂Ω introduce
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hp-FEM for spectral fractional diffusion 3

further singularities into the solution. The numerical resolution of both types of sin-
gularities requires suitably designed approximation spaces. For the spectral fractional
Laplacian (SFL) in two-dimensional polygonal domains, we present a class of meshes
in Ω with anisotropic, geometric refinement towards ∂Ω and with isotropic geometric
refinement towards the corners of Ω . We prove that spaces of piecewise polynomial
functions on such meshes allow for exponential convergence.

1.1 Existing results

The use of FEM techniques for the SFL based on CS-extension was initiated in
[46], based on first-order discretizations on graded meshes in the extended direction.
Improvements in error vs. number of degrees of freedom were obtained [9] for such
first order FEM via sparse grid approximations. Exploiting the analytic dependence
of the extension on the extruded variable allows one to use, as in the present work,
high order methods with exponential convergence rates for the discretization in the
extended direction (independent of the regularity in Ω) to reach nearly optimal com-
plexity algorithms for low order methods in Ω under certain regularity assumptions,
[9, 36]. For domains Ω ⊂ R

2 with analytic boundary, [9] analyzed the presently con-
sidered Extended hp-FEM in Ω and proved, for analytic coefficients and source term,
the first result on exponential convergence. The extension-based methods are Galerkin
methods based on piecewise polynomials. The functional form of the CS-extension
is in principle computationally accessible in terms of the eigenpairs {ϕi , λi }i∈N of the
Dirichlet Laplacian in Ω and functions ψk(y) = ψ(

√
λk y), where ψ is explicitly

known in terms of Bessel functions. This motivated [1] to approximate the extended
problem from a tensor product space of a standard FEM space with {ψ(˜λk ·)}k∈{1,...,M},
with suitable approximations˜λk to the eigenvalues and truncation parameter M .

A second route to numerically solving problems involving the SFL operator is via
the Dunford-Taylor calculus as mentioned above for low-order FEM in Ω in [10, 11]
and studied in the present paper in a high-order context.

Related to the representation of the SFL via the Dunford-Taylor calculus are repre-
sentations in terms of the heat semigroup. Availability of parabolic solvers then opens
up a third route to the numerical treatment of the SFL, see, e.g., [18, 59, 60].

Since the SFL is defined in terms of the eigenfunctions of the Laplacian, numerical
methods can be based on approximating these numerically. One representative of a
fourth route to treating the SFL operator is [55], where the use of the spectral element
method is proposed.

A further large class of discretization methods is based on discretizing the (local,
second order) Laplacian and on the subsequent computation of fractional powers of the
resulting stiffness matrix. In this fifth route, various approaches to computing approx-
imations to these powers have been proposed in the literature. Integral representations
of the univariate, model singular function xα motivate the use of quadrature-based
approximations as in [25, 26]. More generally, discretization of the SFL can be based
on approximating xα by rational functions resulting in techniques proposed in [27,
28]. Related to such rational approximations are the techniques in [19–21]. We also
refer to the discussion in [30] and the survey [33].
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Fig. 1 Example of a curvilinear polygon

Next we fix notation and assumptions for the class of SFD equations which are
covered by our analysis.

1.2 Geometric preliminaries

As in [8], we consider a bounded Lipschitz domain Ω ⊂ R
2 that is a curvilinear

polygon as depicted in Fig. 1. The boundary ∂Ω is assumed to consist of J ∈ N

closed curves Γ (i). Each curve Γ (i) in turn is assumed to comprise Ji ∈ N many open,

disjoint, analytic arcs Γ
(i)
j , j = 1, . . . , Ji , with Γ (i) = ⋃Ji

j=1 Γ
(i)
j , i = 1, . . . , J .

The arcs Γ
(i)
j are assumed further to admit nondegenerate, analytic parametrizations,

Γ
(i)
j =

{

x(i)
j (θ) | θ ∈ (0, 1)

}

, i = 1, . . . , J , j = 1, . . . , Ji .

The coordinate functions x (i)
j , y(i)

j of x(i)
j (θ) = (x (i)

j (θ), y(i)
j (θ)) are assumed to be

(real) analytic functions of θ ∈ [0, 1] and such that minθ∈[0,1] |ẋ(i)
j (θ)|2 > 0 for

j = 1, . . . , Ji , i = 1, . . . , J . The end points of the arcs Γ
(i)
j are denoted as A(i)

j−1 =
x(i)
j (0) and A(i)

j = x(i)
j (1). We enumerate these points counterclockwise by indexing

cyclically with j modulo Ji , thereby identifying in particular A(i)
0 := A(i)

Ji
. The interior

angle at A(i)
j is denotedω

(i)
j ∈ (0, 2π). For notational simplicity, we assume henceforth

that J = 1, i.e., ∂Ω consists of a single component of connectedness. We write
A j = A(1)

j for the corners and Γ j for Γ
(1)
j .
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hp-FEM for spectral fractional diffusion 5

1.3 Spectral fractional diffusion

When dealing with fractional operators, care must be exercised in stating the definition
of the fractional powers. Here, we consider the so-called spectral fractional diffusion
operators as investigated in [16]. We refer to the surveys [12, 33, 50] and the references
there for a comparison of the different definitions of fractional powers of the Dirichlet
Laplacian.

We consider the linear, elliptic, self-adjoint, second order differential operator
w �→ Lw = −div(A∇w) in a bounded, curvilinear polygon Ω ⊂ R

2 as described
in Sect. 1.2. The diffusion coefficient A ∈ L∞(Ω,GL(R2)) is assumed symmetric,
uniformly positive definite. The data A and f are assumed analytic in Ω . We quantify
analyticity of A and f by assuming that there are CA, C f > 0 such that

∀p ∈ N0 : ‖|DpA|‖L∞(Ω) ≤ C p+1
A p! , ‖|Dp f |‖L∞(Ω) ≤ C p+1

f p! . (1.1)

Here, the notation |DpA| signifies
∑

|α|=p |DαA|, with the usual multi-index con-

vention Dα denoting mixed weak derivatives of order α ∈ N
2
0 whose total order

|α| = α1 + α2. Further, we employ standard notation for (fractional) Sobolev spaces
Ht (Ω), consistent with the notation and definitions in [35].

We introduce the “energy” inner product aΩ(·, ·) on H1
0 (Ω) associated with the

differential operator L by

aΩ(w, v) =
∫

Ω

(A∇w · ∇v) dx ′ . (1.2)

The operatorL : H1
0 (Ω)→ H−1(Ω) induced by this bilinear form is an isomorphism,

due to the (assumed) positive definiteness of A. Let {λk, ϕk}k∈N ⊂ R
+ × H1

0 (Ω) be
a sequence of eigenpairs of L, normalized such that {ϕk}k∈N is an orthonormal basis
of L2(Ω) and an orthogonal basis of (H1

0 (Ω), aΩ(·, ·)). We introduce, for σ ≥ 0, the
domains of fractional powers of L as

H
σ (Ω) =

{

v =
∞
∑

k=1

vkϕk : ‖v‖2
H

σ (Ω) =
∞
∑

k=1

λσ
k v2

k <∞
}

. (1.3)

We denote by H
−σ (Ω) the dual space of Hσ (Ω). Denoting by 〈·, ·〉 the H

−σ (Ω) ×
H

σ (Ω) duality pairing that extends the standard L2(Ω) inner product, we can iden-
tify elements f ∈ H

−σ (Ω) with sequences { fk}k (written formally as
∑

k fkϕk)
such that ‖ f ‖2

H
−σ (Ω)

= ∑

k | fk |2λ−σ
k < ∞. With this identification, we can extend

the definition of the norm in (1.3) to σ < 0. Furthermore, the linear operator
Ls : Hs(Ω) → H

−s(Ω) : v �→ ∑∞
k=1 vkλ

s
kϕk is bounded and the Dirichlet problem

for the fractional diffusion in Ω may be stated as: given a fractional order s ∈ (0, 1]
and f ∈ H

−s(Ω), find u ∈ H
s(Ω) such that

Lsu = f in Ω . (1.4)
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6 L. Banjai et al.

The ellipticity estimate 〈w,Lsw〉 ≥ λs1‖w‖2
H
s (Ω)

valid for every w ∈ H
s(Ω) implies

the unique solvability of (1.4) for every f ∈ H
−s(Ω). The hp-FEM approximations

of (1.4) developed and analyzed in the present work are not based on explicit or
approximated eigenfunctions but instead on the localization of the operatorLs in terms
of the extension discussed in Sect. 1.5 and on the Dunford-Taylor integral discussed
in Sect. 1.6, the so-called Balakrishnan formula.

Remark 1.1 For s ∈ (0, 1), the spaces Hs(Ω) are alternatively characterized as inter-
polation spaces H

s(Ω) = (L2(Ω), H1
0 (Ω))s,2 (using the so-called “real” method

of interpolation with the K -functional) with equivalent norms, e.g., [46, (2.13)]. In
particular, properties of interpolation spaces (see, e.g., [58, Thm. 1.3.3(g)]) and the
Poincaré inequality give the interpolation inequality: for every 0 < s < 1 there exists
Cs > 0 such that

∀w ∈ H1
0 (Ω) : ‖w‖Hs (Ω) ≤ Cs‖w‖1−s

L2(Ω)
‖∇w‖sL2(Ω)

. (1.5)

��
Remark 1.2 (compatibility conditions)As discussed in [9, Lem. 1, Rem. 1] the spectral
fractional Laplacian has the mapping property Ls : Hs+σ (Ω)→ H

−s+σ (Ω), σ ≥ 0.
For smooth coefficients A and smooth ∂Ω , the spacesHs+σ (Ω), σ ≥ 0, are subspaces
of the Sobolev spaces Hs+σ (Ω). In fact, for −s + σ > 1/2, the spaces H−s+σ (Ω)

are proper subspaces of H−s+σ (Ω) as they encode some boundary conditions on
∂Ω . E.g., for f ∈ H

−s+σ (Ω) with −s + σ ≥ 1/2 one has f |∂Ω = 0. That is,
f ∈ H−s+σ (Ω) must satisfy additionally compatibility conditions on ∂Ω to ensure
u ∈ Hs+σ (Ω). ��

1.4 Contributions

We briefly highlight the principal contributions of this work. For the nonlocal, spectral
fractional diffusion problem (1.4) in bounded, curvilinear polygonal domains Ω as
described in Sect. 1.2 and with analytic data A and f as in (1.1), and without any
boundary compatibility, we develop two hp-FEMs for (1.4) that converge exponen-
tially in terms of the number of degrees of freedom NDOF in Ω . The setting covers
in particular also boundary value problems for fractional surface diffusion on ana-
lytic surface pieces as in the setting of Sect. 8.1. Key insight in our error analysis is
that either method, based on the extension of (1.4) combined with a diagonalization
procedure as in [9, Sec. 6] or on a contour-integral representation of Ls combined
with an exponentially converging sinc quadrature, reduce the numerical solution of
(1.4) to the numerical solution of local, singularly perturbed second order reaction-
diffusion problems in Ω . Drawing on analytic regularity and corresponding hp-FEM
in Ω for these reaction-diffusion problems with robust, exponential convergence as
developed in [8, 41–43], we establish here exponential convergence rate bounds for
solutions of (1.4). As we showed in [8, 41], the singular perturbation character of the
reaction-diffusion problems in Ω mandates both, geometric corner mesh refinement
and anisotropic geometric boundary mesh refinement to resolve the algebraic corner
and boundary singularities that occur in solutions to (1.4).
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hp-FEM for spectral fractional diffusion 7

Before proceeding to the main part of this paper, we briefly recall the localization
due to Caffarelli–Silvestre and the contour integral representation of Balakrishnan [7].

1.5 Caffarelli–Silvestre extension

In [16] the (full space) fractional Laplacian Ls was localized via a singular elliptic
PDE depending on one extra variable and thus represented as a Dirichlet-to-Neumann
operator for an elliptic problem in a half-space. Cabré and Tan [15] and Stinga and
Torrea [57] extended this to bounded domains Ω and more general operators, thereby
obtaining an extension posed on the semi–infinite cylinder C := Ω × (0,∞). Their
extension is given by the local boundary value problem

⎧

⎪

⎨

⎪

⎩

LU = −div (yαA∇U ) = 0 in C = Ω × (0,∞),

U = 0 on ∂LC,
∂ναU = ds f on Ω × {0},

(1.6)

whereA = diag{A, 1} ∈ L∞(C,GL(Rd+1)), ∂LC := ∂Ω×(0,∞), ds := 21−2sΓ (1−
s)/Γ (s) > 0, and α = 1 − 2s ∈ (−1, 1) [16, 57]. The so–called conormal exterior
derivative of U at Ω × {0} is

∂ναU = − lim
y→0+

yα∂yU . (1.7)

The limit in (1.7) is in the distributional sense [15, 16, 57]. Fractional powers of Ls in
(1.4) and the Dirichlet-to-Neumann operator of problem (1.6) are related by [16, 17]

dsLsu = ∂ναU in Ω , (1.8)

and the solution u of (1.4) is given by trace trΩU of U to Ω .
We write x = (x ′, y) ∈ C with x ′ ∈ Ω and y > 0. For D ⊂ R

d × R
+, we

define L2(yα, D) as the Lebesgue space with the measure yα dx and H1(yα, D) as
the weighted Sobolev space

H1(yα, D) :=
{

w ∈ L2(yα, D) : |∇w| ∈ L2(yα, D)
}

(1.9)

equipped with the norm

‖w‖H1(yα,D) =
(

‖w‖2
L2(yα,D)

+ ‖∇w‖2
L2(yα,D)

)1/2
. (1.10)

To investigate (1.6) we include the homogeneous boundary condition on the lateral
boundary ∂LC by setting

H̊1(yα, C) :=
{

w ∈ H1(yα, C) : w = 0 on ∂LC
}

. (1.11)
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The bilinear form aC : H̊1(yα, C)× H̊1(yα, C)→ R defined by

aC(v,w) =
∫

C
yα(A∇v · ∇w) dx ′ dy, (1.12)

is continuous and coercive on H̊1(yα, C). The energy norm ‖·‖C on H̊1(yα, C) induced
by the inner product aC(·, ·) is given by

‖v‖2
C := aC(v, v) ∼ ‖∇v‖2

L2(yα,C) . (1.13)

For w ∈ H1(yα, C) we denote by tr w its trace on Ω×{0}, which connects the spaces
H̊1(yα, C) and H

s(Ω) (cf. [46, Prop. 2.5]) via

tr H̊1(yα, C) = H
s(Ω), ‖ tr w‖Hs (Ω) ≤ Ctr‖w‖H̊1(yα,C). (1.14)

With these definitions at hand, the weak formulation of (1.6) is to find

U ∈ H̊1(yα, C) : ∀v ∈ H̊1(yα, C) : aC(U , v) = ds〈 f , tr v〉. (1.15)

Remark 1.3 (regularity of U for s = 1/2) In the special case s = 1/2 and A = Id
in (1.4) the operator L in the CS extension (1.6) in C coincides with the Laplacian in
C. Therefore, the solution U will, in general, exhibit algebraic singularities on ∂Ω ,
even if ∂Ω is smooth. ��

1.6 Balakrishnan formula

The weak formulation (1.15) can be the starting point for a Galerkin method and
indeed underlies the Extended hp-FEM analyzed here. The second approach to numer-
ically solving (1.4) which we discuss here is via discretization of a spectral integral
representation of fractional powers of elliptic operators. We develop the hp-error
analysis based on the representation [7] (hp-discretizations of other spectral inte-
gration based approximations are discussed in Sect. 8.3). For 0 < s < 1 and
L = −div(A∇) with homogeneous Dirichlet boundary conditions the bounded lin-
ear operator L−s : H−s(Ω) → H

s(Ω) admits the following representation with
cB = π−1 sin(πs):

L−s = cB

∫ ∞

0
λ−s(λI + L)−1 dλ = cB

∫ ∞

−∞
e(1−s)y(ey I + L)−1 dy

= cB

∫ ∞

−∞
e−sy(I + e−yL)−1 dy . (1.16)

The representations (1.16) were used in [10, 11] in conjunction with an exponen-
tially convergent, so-called sinc quadrature approximation of (1.16) (see, e.g., [56] for
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hp-FEM for spectral fractional diffusion 9

details) and an h-version Finite Element projection in Ω to obtain numerical approxi-
mations of the fractional diffusion equation (1.4) in Ω . Here, we generalize the results
in [10, 11] to the hp-FEM, establishing exponential convergence rates in polygonal
domains Ω for the resulting sinc-BK FEM for data A and f that are analytic in Ω (cf.
(1.1)) without boundary compatibility of f .

1.7 Outline

The outline of the remainder of the paper is as follows. The following Sect. 2 describes
the hp-FE spaces and Galerkin methods for (1.6) based on tensor products of dis-
cretizations in the x and the y variable.

Section 3 develops the diagonalization of the hp-FE semi-discretization in the
extended variable. In particular, in Sect. 3.1 we prove exponential convergence of
an hp-FE semidiscretization in (0,∞). The diagonalization reduces the semidiscrete
approximation of the CS-extended, localized problem to a collection of decoupled,
linear second order reaction-diffusion problems in Ω .

Section 4 presents the exponential convergence results from [8] of hp-FE dis-
cretizations of linear, second order singularly perturbed reaction-diffusion equations
in Ω and establishes robust (with respect to the perturbation parameter ε) exponential
convergence results for these.

Section 5 completes the proof of exponential convergence for the Extended hp-
FEM by applying the hp-FEM from Sect. 4 in Ω for the reaction-diffusion problems
obtained from the diagonalization process in Sect. 3. Section 5 presents in fact two
distinct hp-FE discretizations: a pure Galerkin method (Case B) and a method based
on discretizing after diagonalization each decoupled problem separately (Case A).
The latter approach features slightly better complexity estimates.

Section 6 is devoted to the analysis of the sinc-BK FEM. There once more the
numerical approximation of the fractional Laplacian is reduced to the numerical solu-
tion of a sequence of local linear, second order reaction-diffusion problems in Ω .
Applying exponential convergence bounds for sinc approximation and for hp-FEM
for reaction-diffusion problems in Ω in Sect. 4 from [8], once again exponential con-
vergence for the resulting sinc-BK FEM for the spectral version of the fractional
diffusion operator is established. As in Sect. 5, we separately discuss the possibili-
ties of approximating the solutions of the decoupled problems from the same space
(Case B) or from different spaces (Case A). Section 7 has numerical experiments
verifying the theoretical convergence results. Section 8 has a summary and outlines
several generalizations and directions for further research. In particular, we address in
Sect. 8.1 the extension to fractional diffusion on manifolds. In Sect. 8.2, we discuss
several exponential bounds on Kolmogorov n-widths of solution sets for spectral dif-
fusion in polygons that follow from our results. Finally, Sect. 8.3 comments on the
corresponding error analysis for a so-called double-exponential quadrature approxi-
mation of the BK formula, again combined with hp-FEM for the resulting (now with
complex-valued perturbation parameter) elliptic singular perturbation problems.
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1.8 Notation

Constants C , γ , b may be different in each occurence, but are independent of crit-
ical parameters. We denote by ̂S := (0, 1)2 the reference square and by ̂T :=
{(ξ1, ξ2) |, 0 < ξ1 < 1, 0 < ξ2 < ξ1} the reference triangle. Sets of the form
{x = y}, {x = 0}, {x = y} etc. refer to edges and diagonals of ̂S and analogously
{y ≤ x} = {(x, y) ∈ ̂S | y ≤ x}. Pq = span {xi y j | i, j ≥ 0, i + j ≤ q} denotes
the space of polynomials of total degree q and Qq = span {xi y j | 0 ≤ i, j ≤ q} the
tensor product space of polynomial of degree q in each variable separately. Through-
out, A � B signifies the inequality A ≤ CB with constant C > 0 independent
of critical parameters (in particular of discretization parameters) that A and B may
depend on. In the same vein, A ∼ B means that there exists some C > 0 such that
C−1B ≤ A ≤ CB.

2 hp-FEM discretization

In this section, we introduce hp-FEM spaces in both the x and the y-variable on which
the Extended hp-FEM will be based. In particular, we introduce the geometric meshes
GM

geo,σ that are used for the discretization in the y-variable.

2.1 Notation and FE spaces

2.1.1 Meshes and FE spaces on (0,Y )

Given Y > 0 and a mesh GM = {Im}Mm=1 on [0,Y ] consisting of M intervals Im =
[ym−1, ym], with 0 = y0 < y1 < · · · < yM = Y , we associate to GM a polynomial
degree distribution r = (r1, r2, . . . , rM ) ∈ N

M . We introduce the hp-FE space

Sr((0,Y ),GM ) = {

vM ∈ H1(0,Y ) : vM |Im ∈ Prm (Im), Im ∈ GM ,m = 1, . . . , M
}

,

where Pr (Im) denotes the space of polynomials of degree r on Im . We will primarily
work with the following piecewise polynomial space Sr{Y }((0,Y ),GM ) ⊂ H1(0,∞)

of functions that vanish on [Y ,∞):

Sr{Y }((0,Y ),GM ) =
{

v ∈ Sr((0,Y ),GM ) : v(Y ) = 0
}

; (2.1)

here, the embedding Sr{Y }((0,Y ),GM ) ⊂ H1(0,∞) is understood as implicitly

extending functions from Sr{Y }((0,Y ),GM ) to functions on (0,∞) by zero.
For constant polynomial degree ri = r ≥ 1, i = 1, . . . , M , we set

Sr{Y }((0,Y ),GM ). Henceforth, we abbreviate

M := dim Sr{Y }((0,Y ),GM ). (2.2)
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hp-FEM for spectral fractional diffusion 11

Of particular interest will be geometric meshes GM
geo,σ = {Ii | i = 1, . . . , M} on

(0,Y ) with M elements and grading factor σ ∈ (0, 1) with elements given by I1 =
(0,Y σ M−1) and Ii = (Y σ M−i+1,Y σ M−i ) for i = 2, . . . , M . On geometric meshes
GM
geo,σ on (0,Y ), we consider a linear polynomial degree vector r = {ri }Mi=1 with

slope s > 0 which is defined by

ri := 1+ �s(i − 1)�} , i = 1, 2, . . . , M . (2.3)

For geometric meshes and linear degree vectors we set

Mgeo := dim Sr{Y }((0,Y ),GM ) ∼ M2 as M →∞ (2.4)

with constants implied in ∼ depending on s > 0.

2.1.2 hp-FEM inÄ

In the polygon Ω , we consider Lagrangian FEM of uniform1 polynomial degree q ≥ 1
based on regular triangulations of Ω denoted by T. We admit both triangular and
quadrilateral elements K ∈ T, but do not assume shape regularity. In fact, as we shall
explain in Sect. 4 ahead, anisotropic mesh refinement towards ∂Ω will be required
to resolve singularities at the singular support ∂Ω that are generically present in
solutions of fractional PDEs (cf. Remark 1.3). We introduce, for a regular (in the
sense of [41, Def. 2.4.1]) triangulation T of Ω comprising curvilinear triangular or
quadrilateral elements K ∈ T with associated analytic element maps FK : ̂K → K
(where ̂K ∈ {̂T ,̂S} is either the reference triangle or square depending on whether K
is a curvilinear triangle or quadrilateral) the FE space

Sq0 (Ω, T ) = {

vh ∈ C(Ω) : vh |K ◦ FK ∈ Vq(̂K ) ∀K ∈ T, vh |∂Ω = 0
}

. (2.5)

Here, for q ≥ 1, the local polynomial space Vq(̂K ) = Pq if ̂K = ̂T and Vq(̂K ) = Qq

if ̂K = ̂S.

2.1.3 Tensor product hp-FE approximation

One hp-FE approximation of the extended problem (1.6) will be based on the finite–
dimensional tensor product spaces of the form

V
q,r
h,M (T,GM ) := Sq0 (Ω, T )⊗ Sr{Y }((0,Y ),GM ) ⊂ H̊1(yα, C) , (2.6)

where T is a regular triangulation of Ω . To analyze this method, we consider semidis-
cretizations based on the following (infinite–dimensional, closed) Hilbertian tensor

1 We adopt uniform polynomial degree q ≥ 1 here to ease notation and presentation. All approximation
results admit lower degrees in certain parts of the triangulations, e.g., a linear polynomial degree vector
near corners. Choosing a uniform polynomial degree will only affect constants in the error bounds, but will
not affect the exponential convergence behavior in the ensuing analysis.
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12 L. Banjai et al.

product space:

V
r
M (CY ) := H1

0 (Ω)⊗ Sr{Y }((0,Y ),GM ) ⊂ H̊1(yα, C) . (2.7)

Here, the argument CY indicates that spaces of functions supported in Ω × (0,Y )

are considered. Galerkin projections onto the spaces Vq,r
h,M (T,GM ) and V

r
M (CY ) with

respect to the inner product aC(·, ·) are denoted by Gq,r
h,M and G r

M , respectively. For

the CS-extension U , i.e., the solution of (1.15), the Galerkin projections Gq,r
h,MU ∈

V
q,r
h,M (T,GM ) and G r

MU ∈ V
r
M (CY ) are characterized by

∀v ∈ V
q,r
h,M (T,GM ) : aC(G

q,r
h,MU , v) = ds〈 f , tr v〉, (2.8)

∀v ∈ V
r
M (CY ) : aC(G

r
MU , v) = ds〈 f , tr v〉. (2.9)

3 Approximation by hp-semidiscretization in y

A key step in the hp-FE discretization in (0,Y ) is, as in [9], the diagonalization of
the semidiscretized, truncated extension problem with solution G r

MU given by (2.9).

3.1 Exponential convergence of hp-FEM in (0,∞)

As in [9, 36], we exploit the analytic regularity of the extended solution U with
respect to the extended variable y. It results in exponential convergence of the hp-
semidiscretization error U − G r

MU in (0,Y ), if geometric meshes GM
geo,σ and a

truncation parameter Y ∼ M are used.

Lemma 3.1 (exponential convergence, [9, Lem. 13]) Fix c1 < c2. Let f ∈ H
−s+ν(Ω)

for some ν ∈ (0, s). Assume that Y satisfies c1M ≤ Y ≤ c2M, and consider the
geometric mesh GM

geo,σ on (0,Y ) and the linear degree vector r with slope s > 0. Let
U be given by (1.15) and G r

MU be the Galerkin projection onto V
r
M (CY ) given by

(2.9). Then there exist C, b > 0 (depending solely on s, L, c1, c2, σ , ν, s) such that

‖∇(U − G r
MU )‖L2(yα,C) ≤ Ce−bM‖ f ‖

H
−s+ν (Ω) . (3.1)

Furthermore, (3.1) also holds for constant polynomial degree r = (r , . . . , r) if c3M ≤
r ≤ c4M for some fixed c3, c4 > 0. The constant b > 0 then depends additionally on
c3, c4.

Proof The statement is a slight generalization of [9, Lem. 13], which is the present
lemma except that [9, Lem. 13] requires the slope s to satisfy s ≥ smin for some
suitable smin > 0. The key step of the proof of [9, Lem. 13] is the use of [9, Lem. 11],
which is effectively a 1D hp-approximation result on geometric meshes. Inspection
of that proof shows that the condition s ≥ smin can be removed. In fact, this is typical
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hp-FEM for spectral fractional diffusion 13

of high order approximation on geometric meshes and is worked out in more detail,
e.g., in [3, Thm. 8, Eqn. (78), Rem. 16]. (See, alternatively, the extended preprint [3,
Thm. 3.13, Eqn. (3.21), Rem. 3.14].) We remark that the constant b = O(s) as s ↓ 0.
The statement about the constant polynomial degree follows from the case of the linear
degree vector since a) G r

MU is the Galerkin projection of U , b) the minimization
property of Galerkin projections, and c) the fact that the space Sr{Y }((0,Y ),GM

geo,σ ) is

a subspace of Sr{Y }((0,Y ),GM
geo,σ ) provided r is a linear degree vector with suitably

chosen slope. ��

The error bound (3.1) shows that up to an exponentially small (with respect to Y ) error
introduced by truncation of (0,∞) at Y , the solution U can be approximated by the
solution of a local problem on the finite cylinder CY .

3.2 Diagonalization

Diagonalization, as introduced in [9], refers to the observation that the solution G r
MU

of the semidiscrete problem (2.9) can be expressed in terms of M solutions Ui ∈
H1

0 (Ω), of M decoupled, linear local 2nd order reaction–diffusion problems in Ω .
As the eigenvalues μi in the corresponding eigenvalue problem (3.2) ahead govern
the length scales in the local reaction-diffusion problems in Ω (3.5) (which, in turn,
will be crucial in the mesh-design for the hp-FEM in Ω), it is of interest to know their
asymptotic behavior. We investigate this in Lemma 3.2 below.

Diagonalization is based on the explicit representation for the semidiscrete
solution UM obtained from the following generalized eigenvalue problem, intro-
duced in [9, Sec. 6], and proposed earlier in [34], which reads: find (v, μ) ∈
Sr{Y }((0,Y ),GM )\{0} × R such that

∀w ∈ Sr{Y }((0,Y ),GM ) : μ

∫ Y

0
yαv′(y)w′(y) dy =

∫ Y

0
yαv(y)w(y) dy . (3.2)

All eigenvalues (μi )
M
i=1 of (3.2) are positive and Sr{Y }((0,Y ),GM ) has an orthonormal

eigenbasis (vi )
M
i=1 satisfying

∫ Y

0
yαv′i (y)v′j (y) dy = δi, j ,

∫ Y

0
yαvi (y)v j (y) dy = μiδi, j . (3.3)

We may expand the semidiscrete approximation G r
MU as

G r
MU (x ′, y) =:

M
∑

i=1

Ui (x
′)vi (y). (3.4)
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14 L. Banjai et al.

The coefficient functions Ui ∈ H1
0 (Ω) satisfy a system of M decoupled linear

reaction-diffusion equations in Ω: for i = 1, . . . ,M, find Ui ∈ H1
0 (Ω) such that

∀V ∈ H1
0 (Ω) : aμi ,Ω(Ui , V ) = dsvi (0)〈 f , V 〉 . (3.5)

Here vi denotes the i-th eigenfunction of the eigenvalue problem (3.2), (3.3) and

aμi ,Ω(U , V ) := μi aΩ(U , V )+
∫

Ω

UV dx ′, (3.6)

with aΩ as introduced in (1.2). Due to the biorthogonality (3.3) of the discrete eigen-
functions vi ∈ Sr{Y }((0,Y ),GM ), any Z(x ′, y) = ∑M

i=1 Vi (x
′)vi (y) with arbitrary

Vi ∈ H1
0 (Ω) satisfies the energy (“Pythagoras”) identities

aC(Z , Z) = aCY (Z , Z) =
M
∑

i=1

‖Vi‖2
μi ,Ω

, ‖Vi‖2
μi ,Ω

:= aμi ,Ω(Vi , Vi ). (3.7)

The following bounds on the μi were shown in [9, Lem. 14] for the special case of
geometric meshes GM

geo,σ and linear degree vectors:

Lemma 3.2 (properties of the eigenpairs, [9, Lem. 14]) Let {GM
geo,σ }M≥1 be a sequence

of geometricmeshes on (0,Y ), and let r bea linear polynomial degree vectorwith slope
s > 0. Assume that the truncation parameter Y is chosen so that c1M ≤ Y ≤ c2M
for some constants 0 < c1, c2 <∞ that are independent of M.

Then, there exists C > 1 (depending on c1, c2, s, and on σ ∈ (0, 1)) such that there

holds for every M ∈ N for the eigenpairs (μi , vi )
Mgeo
i=1 given by (3.2), (3.3)

‖vi‖L∞(0,Y ) ≤ CM (1−α)/2, C−1(s−2M−2σ M )2 ≤ μi ≤ CM2. (3.8)

3.3 Fully discrete approximation

The full discretization is obtained by approximating the functions Ui of (3.5) from
finite-dimensional spaces. Let Ti , i = 1, . . . ,M, be regular triangulations in Ω and
q ∈ N. Let Π

q
i : H1

0 (Ω) → Sq0 (Ω, Ti ) denote the Ritz projectors for the bilinear
forms aμi ,Ω , which are characterized by

∀v ∈ Sq0 (Ω, Ti ) : aμi ,Ω(u −Π
q
i u, v) = 0. (3.9)

In terms of the projections Π
q
i we can define the fully discrete approximation

Uh,M (x, y) :=
M
∑

i=1

vi (y)Π
q
i Ui (x). (3.10)
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By combining (3.5) and (3.9), the functions Π
q
i Ui ∈ Sq0 (Ω, Ti ) are explicitly and

computably given as the solutions of

∀V ∈ Sq0 (Ω, Ti ) : aμi ,Ω(Π
q
i Ui , V ) = dsvi (0)〈 f , V 〉. (3.11)

In view of (3.7), we have the following representation of the difference between the
semidiscrete approximation G r

MU and the fully discrete approximation Uh,M :

Lemma 3.3 Let Uh,M be given by (3.10). Then:

aC(G
r
MU −Uh,M ,G r

MU −Uh,M ) =
M
∑

i=1

‖Ui −Π
q
i Ui‖2

μi ,Ω
. (3.12)

Concerning the meshes Ti , we distinguish two cases in this work:

Case A: The meshes Ti , i = 1, . . . ,M, possibly differ from each other.
Case B: The meshes Ti , i = 1, . . . ,M, coincide. That is, all coefficient functions
Ui in the semidiscrete solution (3.4) are approximated from one common hp-FE
space Sq0 (Ω, T ).

In Case B the approximation Uh,M actually coincides with the Galerkin projection
Gq,r

h,MU ∈ V
q,r
h,M (T,GM ) = Sq0 (Ω, T )⊗ Sr{Y }((0,Y ),GM ):

Lemma 3.4 (error representation, [9, Lem. 12]) Let (μi , vi )
M
i=1 be the eigenpairs

given by (3.2), (3.3). For i = 1, . . . ,M, let Ui ∈ H1
0 (Ω) be the solutions to (3.5).

ConsiderCaseB and letΠq
i : H1

0 (Ω)→ Sq0 (Ω, T ) be theGalerkin projections given
as in (3.9), with one common, regular triangulation T of Ω for i = 1, . . . ,M. Let
G r

MU denote the solution to the semidiscrete problem (2.9). Then the tensor product
Galerkin approximation Gq,r

h,MU ∈ V
q,r
h,M (T,GM ) = Sq0 (Ω, T ) ⊗ Sr{Y }((0,Y ),GM )

satisfies

Gq,r
h,MU = Uh,M (x ′, y) =

M
∑

i=1

vi (y)Π
q
i Ui (x

′), (3.13)

aC(G
r
MU − Gq,r

h,MU ,G r
MU − Gq,r

h,MU ) =
M
∑

i=1

‖Ui −Π
q
i Ui‖2

μi ,Ω
. (3.14)

Lemma 3.4 shows that in Case B, the Galerkin projection of U into the tensor product
space Vq,r

h,M (T,GM ) coincides with the approximation Uh,M defined in (3.10) in terms
of the decoupling procedure. Hence, the decoupling procedure is not essential for
numerical purposes in Case B, although it has algorithmic advantages. In contrast,
Case A relies on the decoupling in an essential way. In both cases, the exponential
convergence result below will make use of the error estimates of Lemmas 3.3, 3.4
obtained by the diagonalization process.

It is advisable to choose the meshes Ti in case Case A such that the functions Ui

can be approximated well from Sq0 (Ω, Ti ) in the norm ‖ · ‖μi ,Ω . Correspondingly in
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16 L. Banjai et al.

Case B, the common mesh T should be chosen such that each Ui can be approximated
well from Sq0 (Ω, T ). The bounds (3.8) indicate that, for large M , most of the reaction-
diffusion problems (3.5) are singularly perturbed. Hence we design in the following
Sect. 4 hp-FE approximation spaces in Ω which afford exponential convergence rates
that are robust with respect to the singular perturbation parameter.

4 hp-FE approximation of singular perturbation problems

In the exponential convergence rate analysis of tensorized hp-FEM for the CS exten-
sion (Extended hp-FEM) as well as for the ensuing (see Sect. 6 ahead) sinc-BK
FEM approximation, a crucial role is played by robust exponential convergence rate
bounds for hp-FEM for singularly perturbed, reaction-diffusion problems in curvilin-
ear polygonal domains Ω . Specifically, we consider the hp-FE approximation of the
local reaction-diffusion problem in Ω ,

− ε2div
(

A(x ′)∇uε
)+ c(x ′)uε = f in Ω, uε = 0 on ∂Ω, (4.1)

where we assume ess inf x ′∈Ωc(x ′) ≥ c0 > 0 and

A, c, and f are analytic on Ω and

A is symmetric, uniformly positive definite.
(4.2)

We note again that (4.1) does not imply any kind of boundary compatibility of f at
∂Ω (cf. Remark 1.2). We assume Ω to be scaled so that diam(Ω) = O(1). Then,
for small ε > 0, the boundary value problem (4.1) is a so-called “elliptic-elliptic”
singular perturbation problem. Under the assumptions (4.2), for every ε > 0 problem
(4.1) admits a unique solution uε ∈ H1

0 (Ω). In general, uε exhibits, for small ε > 0,
boundary layers near ∂Ω whose robust numerical resolution (i.e., with error bounds
whose constants are independent of ε) requires anisotropically refined meshes aligned
with ∂Ω (see [24, 42, 49] and the references there). In addition, the corners of Ω

induce point singularities in the (analytic in Ω) solution uε. In the context of hp-FEM
under consideration here, their efficient numerical approximation mandates geometric
mesh refinement near the corners.

In the present section, we consider the hp-FEM approximation of uε that features
exponential convergence for two different types of meshes: (a) geometric boundary-
refined meshes in Sect. 4.2 and (b) admissible boundary layer meshes in Sect. 4.3.
In both cases the error estimates are of the form O(e−bq + e−b′L), with the constant
hidden in O(·) independent of ε, L , and q and where q is the polynomial degree
employed and L measures the number of layers of geometric refinement towards the
vertices or edges of Ω . The difference in these two types of meshes is that “admissible
boundary layer meshes” are strongly ε-dependent with geometric refinement towards
the vertices and only a single layer of thin elements of width O(qε) near ∂Ω to
resolve the boundary layer. The number of elements is then O(L) leading to a number
of degrees of freedom N = O(Lq2). In contrast, geometric boundary-refined meshes
are based on geometric, anisotropic refinement towards the edges and corners of Ω . As
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we show in [8], hp-FEM on such meshes afford exponential convergence for boundary
layers with multiple scales. The total number of elements in geometric boundary-
refined meshes with L layers is O(L2). Combined with local FE spaces of polynomial
degree q, this results in a number of degrees of freedom N = O(L2q2). Whereas
admissible boundary layer meshes are designed to approximate boundary layers of
a single, given length scale ε, geometric boundary-refined meshes afford concurrent,
robust and exponentially convergent approximations of boundary layers with multiple
length scales in Ω . These arise, e.g., upon semidiscretization in the extended variable
as is evident from (3.5).

4.1 Macro triangulation: geometric boundary-refinedmesh

We do not consider the most general meshes with anisotropic refinement, but confine
the hp-FE approximation theory to meshes generated as push-forwards of a small
number of so-called mesh patches. This concept was used in the error analysis of hp-
FEM for singular perturbations in [41, Sec. 3.3.3] and in [24]. Specifically, we assume
given a fixed macro-triangulation T M = {KM | KM ∈ T M} of Ω consisting of
curvilinear quadrilaterals KM with analytic patch maps (to be distinguished from the
actual element maps) FKM : ̂S = (0, 1)2 → KM that satisfy the usual compatibility
conditions. I.e., T M does not have hanging nodes and, for any two distinct elements
KM

1 , KM
2 ∈ T M that share an edge e, their respective element maps induce com-

patible parametrizations of e (cf., e.g., [41, Def. 2.4.1] for the precise conditions).
Each element of the fixed macro-triangulation T M is further subdivided according to
one of the refinement patterns in Definition 4.1 (see also [41, Sec. 3.3.3] or [24]). The
actual triangulation is then obtained by transplanting refinement patterns on the square
reference patch into the physical domain Ω by means of the element maps FKM of the
macro-triangulation. That is, for any element K ∈ T, the element map FK is the con-
catenation of an affine map—which realizes the mapping from the reference square or
triangle to the elements in the patch refinement pattern and will be denoted by AK—
and the patch map (which will be denoted by FKM), i.e., FK = FKM ◦ AK : K̂ → K .

The following refinement patterns were introduced in [8, Def. 2.1, 2.3]. They are
based on geometric refinement towards a vertex and/or an edge; the integer L controls
the number of layers of refinement towards an edge whereas n ∈ N measures the
refinement towards a vertex.

Definition 4.1 (Catalog P of refinement patterns, [8, Def. 2.1]) Given σ ∈ (0, 1), L ,
n ∈ N0 with n ≥ L the catalog P consists of the following patterns:

1. The trivial patch: The reference square ̂S = (0, 1)2 is not further refined. The

corresponding triangulation of ̂S consists of the single element: Ť tr ivial = {̂S}.
2. The geometric edge patch Ť E,L

geo,σ : ̂S is refined anisotropically towards {ŷ = 0} into

L+1 elements as depicted in Fig. 2 (top left). The mesh Ť E,L
geo,σ is characterized by

the nodes (0, 0), (0, σ i ), (1, σ i ), i = 0, . . . , L and the corresponding rectangular
elements generated by these nodes.
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Ť E,L
geo,σ

x̂

ŷ

Ť C,n
geo,σ

x̂

ŷ

trivial patch

x̂

ŷ

Ť T,L,n
geo,σ

̂S1 = (0, σL)2
x̂

ŷ
Ť M,L,n

geo,σ

̂S1 = (0, σL)2
x̂

ŷ

Fig. 2 Catalog P of reference refinement patterns from [8]. Top row: reference edge patch Ť E,L
geo,σ with L

layers of geometric refinement towards {ŷ = 0}; reference corner patch Ť C,n
geo,σ with n layers of geomet-

ric refinement towards (0, 0); trivial patch. Bottom row: reference tensor patch Ť T,L,n
geo,σ with n layers of

refinement towards (0, 0) and L layers of refinement towards {̂x = 0} and {ŷ = 0}; reference mixed patch

Ť M,L,n
geo,σ with L layers of refinement towards {ŷ = 0} and n layers of refinement towards (0, 0). Geometric

entities shown in boldface indicate parts of ∂̂S that are mapped to ∂Ω . These patch meshes are transported
into the curvilinear polygon Ω shown in Fig. 1 via analytic patch maps FKM

3. The geometric corner patch Ť C,n
geo,σ : ̂S is refined isotropically towards (0, 0) as

depicted in Fig. 2 (top middle). Specifically, the reference geometric corner patch

mesh Ť C,n
geo,σ in ̂S with geometric refinement towards (0, 0) and n layers is given

by triangles determined by the nodes (0, 0), and (0, σ i ), (σ i , 0), (σ i , σ i ), i =
0, 1, . . . , n.

4. The tensor product patch Ť T,L,n
geo,σ : ̂S is triangulated in ̂S1 := (0, σ L)2 and ̂S2 :=

̂S \ ̂S1 separately as depicted in Fig. 2 (bottom left). The triangulation of ̂S1 is

a scaled version of Ť C,n−L
geo,σ characterized by the nodes (0, 0), (0, σ i ), (σ i , 0),

(σ i , σ i ), i = L, . . . , n. The triangulation of ̂S2 is characterized by the nodes
(σ i , σ j ), i , j = 0, . . . , L , and consists of rectangles and triangles, and only the
triangles abutt on the diagonal {̂x = ŷ}.

5. Themixed patches Ť M,L,n
geo,σ : The triangulation consists of both anisotropic elements

and isotropic elements as depicted in Fig. 2 (bottom right) and is obtained by
triangulating the regions ̂S1 := (0, σ L)2, ̂S2 :=

(

̂S \ ̂S1
) ∩ {ŷ ≤ x̂}, ̂S3 :=

̂S \ (

̂S1 ∪ ̂S2
)

separately. ̂S1 is a scaled version of Ť C,n−L
geo,σ characterized by the

nodes (0, 0), (0, σ i ), (σ i , 0), (σ i , σ i ), i = L, . . . , n. The triangulation of ̂S2 is
given by the nodes (σ i , 0), (σ i , σ j ), 0 ≤ i ≤ L , i ≤ j ≤ L and consists of
rectangles and triangles, and only the triangles abutt on the diagonal {̂x = ŷ}. The
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triangulation of ̂S3 consists of triangles only given by the nodes (0, σ i ), (σ i , σ i ),
i = 0, . . . , L .

Remark 4.2 We kept the list of possible patch refinement patterns in Definition 4.1
small in order to reduce the number of cases to be discussed for the hp-FE error
bounds. A larger number of refinement patterns could facilitate greater flexibility
in mesh generation. In particular, the reference patch meshes do not contain general
quadrilaterals but only (axiparallel) rectangles; this restriction is not essential but leads
to some simplifications in the hp-FE error analysis in [8].

The addition of the diagonal line in the reference corner, tensor, and mixed patches
is done to be able to apply the regularity theory of [41] and is probably not necessary
in actual computations. We also mention that with additional constraints on the macro
triangulation T M the diagonal line could be dispensed with, [8]. ��

The following definition of the geometric boundary layer mesh T L,n
geo,σ formalizes

the requirement on the meshes that anisotropic refinement towards ∂Ω is needed as
well as geometric refinement towards the corners.

Definition 4.3 (geometric boundary-refined mesh, [8, Def. 2.3]) Let T M be a fixed
macro-triangulation consisting of quadrilaterals with analytic element maps that sat-
isfies [41, Def. 2.4.1].

Given σ ∈ (0, 1), L , n ∈ N0 with n ≥ L , a mesh T L,n
geo,σ is called a geometric

boundary-refined mesh if the following conditions hold:

1. T L,n
geo,σ is obtained by refining each element KM ∈ T M according to the finite cata-

log P of structured patch-refinement patterns specified in Definition 4.1, governed
by the parameters σ , L , and n.

2. T L,n
geo,σ is a regular triangulation of Ω , i.e., it does not have hanging nodes. Since the

element maps for the refinement patterns are assumed to be affine, this requirement
ensures that the resulting triangulation satisfies [41, Def. 2.4.1].

For each macro-patch KM ∈ T M, exactly one of the following cases is possible:

3. KM ∩ ∂Ω = ∅. Then the trivial patch is selected as the reference patch.
4. KM ∩ ∂Ω is a single point. Then two cases can occur:

(a) KM ∩ ∂Ω = {A j } for a vertex A j of Ω . Then the corresponding reference

patch is the corner patch Ť C,n
geo,σ with n layers of refinement towards the origin

O. Additionally, FKM(O) = A j .

(b) KM ∩ ∂Ω = {P}, where the boundary point P is not a vertex of Ω . Then the

refinement pattern is the corner patch Ť C,L
geo,σ with L layers of geometric mesh

refinement towards O. Additionally, it is assumed that FKM(O) = P ∈ ∂Ω .

5. KM ∩ ∂Ω = e for an edge e of KM and neither endpoint of e is a vertex of Ω .

Then the refinement pattern is the edge patch Ť E,L
geo,σ and additionally FKM({ŷ =

0}) ⊂ ∂Ω .
6. KM ∩ ∂Ω = e for an edge e of KM and exactly one endpoint of e is a vertex

A j of Ω . Then the refinement pattern is the mixed patch Ť M,L,n
geo,σ and additionally

FKM({ŷ = 0}) ⊂ ∂Ω as well as FKM(O) = A j .
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Fig. 3 Patch arrangement in Ω [8]. Left panel: example of L-shaped domain decomposed into 27 patches
(T , E , M , C indicate Tensor, Edge, Mixed, Corner patches, empty squares stand for trivial patches). Right
panel: Zoom-in near the reentrant corner A j . Solid lines indicate patch boundaries, dashed lines mesh lines

7. Exactly two edges of a macro-element KM are situated on ∂Ω . Then the refinement

pattern is the tensor patch Ť T,L,n
geo,σ . Additionally, it is assumed that FKM({ŷ = 0}) ⊂

∂Ω , FKM({̂x = 0}) ⊂ ∂Ω , and FKM(O) = A j for a vertex A j of Ω .

Finally, the following technical condition ensures the existence of certain meshlines:

8. For each vertex A j of Ω , introduce a set of lines

� =
⋃

KM : A j∈KM

{ FKM({ŷ = 0}), FKM({̂x = 0}), FKM({̂x = ŷ}) }.

Let Γ j , Γ j+1 be the two boundary arcs of Ω that meet at A j . Then there exists a
line e ∈ � such that the interior angles ∠(e, Γ j ) and ∠(e, Γ j+1) are both less than
π .

Example 4.4 Fig. 3 shows an example of an L-shaped domain with macro triangulation
and suitable refinement patterns. ��
Remark 4.5 For fixed L and increasing n, the meshes T L,n

geo,σ are geometrically refined
towards the vertices of Ω . These meshes are classical geometric meshes for elliptic
problems in corner domains as introduced in [5, 6] and discussed in [52, Sec. 4.4.1].

��

4.2 hp-FE approximation of singularly perturbed problems on geometric
boundary-refinedmeshes

The principal result [8, Thm. 4.1] on robust exponential convergence of hp-FEM for
(4.1) reads as follows:

Proposition 4.6 ([8, Thm. 4.1]) Let Ω ⊂ R
2 be a curvilinear polygon with J vertices

as described in Sect. 1.2. Let A, c ≥ c0 > 0, f satisfy (4.2). Denote by {T L,n
geo,σ }L≥0,n≥L

a family of geometric boundary-refined meshes in the sense of Definition 4.3. Fix
c1 > 0.
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Then there are constants C, b > 0, β ∈ [0, 1) (depending solely on the data A, c,
f , Ω , on the parameter c1, and on the analyticity properties of the patch-maps of the
macro-triangulation T M) such that the following holds: If ε ∈ (0, 1] and L satisfy
the (boundary layer) scale resolution condition

σ L ≤ c1ε (4.3)

then, for any q, n ∈ N, the solution uε ∈ H1
0 (Ω) of (4.1) can be approximated from

Sq0 (Ω, T L,n
geo,σ ) such that

inf
v∈Sq0 (Ω,T L,n

geo,σ )

(‖uε − v‖L2(Ω)+ ε‖∇(uε − v)‖L2(Ω)

) ≤ Cq9
[

εβσ (1−β)n + e−bq
]

,

(4.4)

N := dim Sq0 (Ω, T L,n
geo,σ ) ≤ C

(

L2q2card T M + nq2 J
)

. (4.5)

Proposition 4.6 is restricted to ε ∈ (0, 1]. For ε ≥ 1, the solution uε of (4.1)
does not have boundary layers but merely corner singularities. Hence, by Remark 4.5,
meshes with fixed L are appropriate. In particular, the boundary layer scale resolution
condition (4.3) is not required:

Proposition 4.7 Assume the hypotheses on Ω and the data A, c, f as in Proposi-
tion 4.6. Let {T L,n

geo,σ }L≥0,n≥L be a sequence of geometric boundary-refined meshes2.
There are constants C, b > 0, β ∈ [0, 1) (depending solely on A, c, f , σ ∈ (0, 1),

and the analyticity properties of the macro-triangulation) such that the solution uε of
(4.1) satisfies for all ε ≥ 1 and for all L, n ∈ N0, q ∈ N

inf
v∈Sq0 (Ω,T L,n

geo,σ )

‖uε − v‖H1(Ω) ≤ Cε−2q9
(

σ (1−β)n + e−bq
)

. (4.6)

Furthermore, dim Sq0 (Ω, T L,n
geo,σ ) satisfies (4.5).

Proof (sketch) Rewriting problem (4.1) in the form

−div (A(x ′)∇uε)+ ε−2c(x ′)uε = ε−2 f , in Ω, uε = 0 on ∂Ω,

we recognize it to be, for ε ≥ 1, a regularly perturbed problem. Its approximation
by hp-FEM on meshes that are refined geometrically towards the corners is well-
understood, [5, 6, 52]. The factor ε−2 in (4.6) results from the scaling of the right-hand
side and the linearity of problem, the term σ (1−β)n reflects the approximation on the
elements abutting the corner singularities and the term e−bq the approximation on the
remaining elements. ��
2 No boundary layer refinement/ resolution is required here, i.e., “ordinary”, corner refined geometric
mesh sequences will suffice.
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4.3 hp-FE approximation of singularly perturbed problems on admissible meshes
T L,q
min,�(") inÄ

In Proposition 4.6, the solution uε is approximated on patchwise geometric meshes.
These meshes are able to capture boundary layers (and corner layers) on a whole
range of singular perturbation parameters ε: as long as a lower bound for ε is known
and provided that geometric mesh refinement resolves all scales, robust exponential
convergence is assured.

On the other hand, if there is a single, explicitly known scale ε then the “mini-
mal, admissible boundary layer meshes” T L,q

min,λ(ε) := T (min{κ0, λqε}, L) of [41,
Def. 2.4.4] (see also [54, Fig. 11] or [44, Fig. 2]), which are designed to resolve a
single, explicitly known length scale with hp-FEM may be employed. In contrast to
the geometric boundary-refined meshes of Def. 4.3, these “minimal” boundary-fitted
meshes are ε-dependent.

Proposition 4.8 ([41, Thm. 2.4.8 in conjunction with Thm. 3.4.8]) Let Ω ⊂ R
2 be a

curvilinear polygon with J vertices as described in Sect. 1.2. Let A, c ≥ c0 > 0, f
satisfy (4.2). Let uε be the solution of (4.1).

Consider, for κ0 > 0 determined by Ω , the two-parameter family T (κ, L),
(κ, L) ∈ (0, κ0] × N, of admissible meshes in the sense of [41, Def. 2.4.4], [24,
Def. 3.1, Figs. 1, 2].

Then there are constants b, λ0 independent of ε ∈ (0, 1] such that for every λ ∈
(0, λ0] there is C > 0 such that for every q ≥ 1, L ≥ 0 there holds the error bounds

inf
v∈Sq0 (Ω,T L,q

min,λ(ε))

‖uε − v‖L2(Ω) + ε‖∇(uε − v)‖L2(Ω) ≤ Cq6
[

e−bλq + εe−bL
]

,

(4.7)

T L,q
min,λ(ε) := T (min{κ0, λqε}, L), (4.8)

N := dim Sq0 (Ω, T L,q
min,λ(ε)) ≤ CLq2. (4.9)

In particular, for L ∼ q, one has with C, b′ independent of ε

inf
v∈Sq0 (Ω,T L,q

min,λ(ε))

‖uε − v‖L2(Ω) + ε‖∇(uε − v)‖L2(Ω) ≤ C exp(−b′N 1/3).

For ε ≥ 1 these admissible boundary layer meshes are the well-known geometric
meshes with L layers of geometric refinement as introduced in [5, 6] and discussed
in [52, Sec. 4.4.1]. These geometric, corner-refined meshes are similar to the meshes
T L,n
geo,σ with fixed L = 0 discussed in Remark 4.5. In particular, the minimal boundary

layer meshes T L,q
min,λ(ε) for ε ≥ 1 do not really depend on ε, λ, and q. However, for

consistency of notation, we keep the notation T L,q
min,λ(ε) in the following result, which

covers the case ε ≥ 1. We need this result since the range (3.8) of eigenvalues μi

involves also eigenvalues μi ≥ 1.
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Proposition 4.9 Under the assumptions of Proposition 4.8, there exist constants b,
C > 0 such that

∀ε ≥ 1,∀q, L ∈ N : inf
v∈Sq0 (T L,q

min,λ(ε))

‖uε − v‖H1(Ω) ≤ Cε−2q6
[

e−bλq + e−bL
]

,

where N := dim Sq0 (Ω, T L,q
min,λ(ε)) ≤ CLq2.

In particular, for L ∼ q, there are constants b′, C > 0 such that

∀ε ≥ 1,∀q ∼ L ∈ N : inf
v∈Sq0 (Ω,T L,q

min,λ(ε))

‖uε − v‖H1(Ω) ≤ Cε−2 exp(−b′N 1/3).

Proof For ε ≥ 1, the minimal boundary layer meshes T L,q
min,λ(ε) are simply meshes

that are geometrially refined towards the corners of Ω . That is, structurally, the meshes
T L,q
min,λ(ε) are similar to the meshes T 0,L

geo,σ . The approximation result is then a conse-
quence of Proposition 4.7. ��
It is worth pointing out the following differences between the approximation on geo-
metric boundary-refined meshes T L,n

geo,σ and on the minimal admissible boundary layer

meshes T L,q
min,λ: (a) the use of the mesh T L,n

geo,σ requires the scale resolution condi-
tion (4.3). It requires L � | ln ε| so that the approximation result Proposition 4.6
depends (weakly) on ε. (b) Selecting n ∼ L ∼ q in Proposition 4.6 yields con-
vergence O(exp(−b 4

√
N )) whereas the choice L ∼ q in Proposition 4.8 yields the

better convergence behavior O(exp(−b′ 3
√
N )). (c) The meshes T L,q

min,λ are designed

to approximate a single scale well whereas the meshes T L,n
geo,σ are capable to resolve

a range of scales. (d) The meshes T L,q
min,λ rely on a suitable choice of the parameter

λ whereas the geometric boundary layer meshes T L,n
geo,σ do not have parameters that

need to be suitably chosen.

5 Exponential convergence of Extended hp-FEM

Based on the hp semidiscretization in the extended variable combined with the diag-
onalization in Sect. 3, we use the hp-approximation results from Sect. 4 to prove
exponential convergence of hp-FEM for the CS-extended problem (1.15).

As is revealed by the diagonalization (3.5), the y-semidiscrete solution G r
MU con-

tains M separate length scales associated with the eigenvalues μi , i = 1, . . . ,M.
The solutions Ui ∈ H1

0 (Ω) of the resulting M many independent, linear second-order
reaction-diffusion problems in Ω exhibit both, boundary layers and corner singulari-
ties.

In Case A, which we discuss in Sect. 5.1, we employ for each i a “minimal” hp-
FE space in Ω that resolves boundary- and corner layers appearing in the Ui due
to possibly large/small values of μi . Mesh design principles for such “minimial” FE
spaces that may resolve a single scale of a singularly perturbed problem have already
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been presented in, e.g., [39, 41, 42, 53, 54]; the specific choice T L,q
min,λ(ε) has been

discussed in Propositions 4.8, 4.9 and will be used in our analysis.
In Case B, which we discuss in Sect. 5.2, we discretize these decoupled, reaction-

diffusion problems by one common hp-FEM in the bounded polygon Ω , which
employs both, geometric corner refinement as well as geometric boundary refine-
ment, as in [41, 42]. Due to the need to obtain FE solutions for all μi in one common
FE space in Ω , however (in order that the sum (3.13) belong to a tensor product
hp-FE space), our analysis will provide one hp-FE space in Ω which will resolve all
boundary and corner layers due to small parameters μi near ∂Ω . As we shall show,
in Case B the total number of DOFs is larger than in Case A.

5.1 Exponential convergence I: diagonalization andminimal meshes

The robust exponential convergence result Proposition 4.8 allows us to establish, in
conjunction with the diagonalization (3.2)–(3.4), a first exponential convergence result
in Case A of Sect. 3. We consider the following numerical scheme, which relies on the
“minimal boundary layer meshes” T L,q

min,λ(ε) from [41, Sec. 2.4.2] already discussed
in Proposition 4.8:

(1) Select Y with c1M ≤ Y ≤ c2M and consider the space Sr{Y }((0,Y ),GM
geo,σ ) for

the geometric mesh GM
geo,σ on (0,Y ) with M elements and a linear degree vector

r with slope s > 0.
(2) Solve the eigenvalue problem (3.2), (3.3).
(3) Select λ > 0. Define Uq,L

i ∈ Sq0 (T L,q
min,λ(

√
μi )) as the solution of

∀v ∈ Sq0 (T L,q
min,λ(

√
μi )) : aμi ,Ω(Uq,L

i , v) = dsvi (0)〈 f , v〉. (5.1)

(4) Define the approximation U q,L(x, y) := ∑Mgeo
i=1 vi (y)U

q,L
i (x).

For the approximation error U −U q,L we have:

Theorem 5.1 Let Ω ⊂ R
2 be a curvilinear polygon with J vertices as described in

Sect. 1.2. Let A, f satisfy (1.1) and let A be uniformly symmetric positive definite on
Ω . Fix positive constants c1, c2, and the slope s.

Then there are constants C, b, b′, b′′, λ0 > 0 (depending on Ω , A, f s, σ , c1,
c2, s, and the parameters characterizing the mesh family T L,q

min,λ) such that for any
λ ∈ (0, λ0] there holds for all q, M ≥ 1, L ≥ 0

‖u − tr U q,L‖Hs (Ω) � ‖∇(U −U q,L)‖L2(yα,C)

≤ CM2−αq6 [

exp(−bλq)+ exp(−b′L)
]+ exp(−b′′M).

(5.2)
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In particular, for q ∼ L ∼ M ∼ p, denoting U p := U q,L with this choice of q and
L, and the total number of degrees of freedom N =∑

i
dim Sq0 (Ω, T L,q

min,λ(
√

μi )),

‖u− tr U p‖Hs (Ω) � ‖∇(U −U p)‖L2(yα,C) � exp(−bp) ∼ exp(−b′′′ 5
√
N ) , (5.3)

where the constant b′′′ depends additionally on the implied constants in q ∼ L ∼ M.

Remark 5.2 The approximation result (5.3) still holds if the linear degree vector r in
the definition of U q,L is replaced with a constant polynomial degree r ∼ M . ��

Proof Step 1 (semidiscretization error): The analyticity of f on Ω implies f ∈
H
−s+ν(Ω) for any ν ∈ (0, 1/2 + s). Hence, by (3.1), the semidiscretization error

U − G r
MU satisfies for suitable b > 0 independent of M

‖U − G r
MU ‖C � e−bM . (5.4)

Step 2 (representation of G r
MU ): The semidiscrete approximation G r

MU may be
expressed in terms of the eigenbasis {v j }Mj=1 in (3.2), (3.3) as

(G r
MU )(x ′, y) =

Mgeo
∑

i=1

vi (y)Ui (x
′) ,

where the function Ui solve by (3.5)

∀V ∈ H1
0 (Ω) : aμi ,Ω(Ui , V ) = dsvi (0)〈 f , V 〉.

Step 3: For every i = 1, . . . ,Mgeo, and for every q ∈ N, approximateUi ∈ H1
0 (Ω) by

its Galerkin approximation Uq,L
i ∈ Sq0 (Ω, T L,q

min,λ(
√

μi )) ⊂ H1
0 (Ω). That is, Uq,L

i =
Π

q
i Ui is the aμi ,Ω(·, ·)-projection of Ui given by (3.9). It is the best approximation to

Ui in the corresponding energy norm and satisfies

‖Ui −Π
q
i Ui‖μi ,Ω = min

V∈Sq0 (Ω,T L,q
min,λ(

√
μi ))

‖Ui − V ‖μi ,Ω .

By linearity of Π
q
i , the analyticity of f , Propositions 4.8, 4.9 (depending on whether

μi ≤ 1 or μi > 1), and Lemma 3.2 we get

‖Ui −Π
q
i Ui‖μi ,Ω � |vi (0)|q6

(

e−bλq +√μi e
−b′L)

� M(1−α)/2
geo q6

(

e−bλq +√μi e
−b′L)

.
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Step 4 (Proof of (5.2)): With the approximations Uq,L
i the approximation U q,L of U

is given by

U q,L(x ′, y) :=
Mgeo
∑

i=1

vi (y)U
q,L
i (x ′) ∈ H̊1(yα, C).

From (3.7) we get for Z = UM −U q,L =∑Mgeo
i=1 vi (y)(Ui (x)−Uq,L

i (x))

‖Z‖2
C = aC(Z , Z) =

Mgeo
∑

i=1

‖Ui −Uq
i ‖2

μi ,Ω
� M2−α

geo q
12 [

exp(−2bλq)+ exp(−2b′L)
]

.

We note that Mgeo ∼ M2. Combining this last estimate with (5.4) yields the second
estimate in (5.2). The first estimate in (5.2) expresses the continuity of the trace operator
at y = 0.

Step 5 (complexity estimate): Using that Mgeo = O(M2) = O(q2) and the fact that

dimSq0 (Ω, T L,q
min,λ(

√
μi )) ≤ CLq2 = O(q3) as well as the assumption q ∼ L ∼

M ∼ p, we arrive at a total problem size N = O(q5). Absorbing algebraic factors in
the exponentially decaying one in (5.2) then yields (5.3). ��

5.2 Exponential convergence II: geometric boundary-refinedmeshes

In this section, we show that exponential convergence of a Galerkin method for (1.15)
can be achieved by a suitable choice of meshes T and GM in the tensor product space
V
q,r
h,M (T,GM ) of (2.6). That is, we place ourselves in Case B in Sect. 3.2. For the

discretization in y, we select again the spaces Sr{Y }((0,Y ),GM
geo,σ ) with Y ∼ M and

the linear degree vector r with slope s. The hp-FE discretization in Ω is based on
the space Sq0 (Ω, T L,n

geo,σ ) with the geometric boundary-refined mesh T L,n
geo,σ in Defini-

tion 4.3. Recall that Gq,r
h,MU denotes the Galerkin projection of the solution U onto

V
q,r
h,M (T L,n

geo,σ ,GM
geo,σ ) = Sq0 (Ω, T L,n

geo,σ )⊗Sr{Y }((0,Y ),GM
geo,σ ). In Theorem 5.4 below,

we will focus on the case q ∼ L ∼ M and the corresponding Galerkin projection is
denoted U

p
T P .

Remark 5.3 (i) In contrast to the procedure of Case A in the preceeding Sect. 5.1,
precise knowledge of the length scales

√
μi is not necessary.

(ii) The diagonalization procedure may be carried out numerically and results in
decoupled reaction-diffusion problems, affording parallel numerical solution.

(iii) The linear degree vector r could be replaced with a constant degree r ∼ M , and
Theorem 5.4 will still hold. ��

The tensor-product hp-FEM in CY converges at exponential rate.

Theorem 5.4 Let Ω ⊂ R
2 be a curvilinear polygon with J vertices as described in

Sect. 1.2. Let A, f satisfy (1.1) and let A be uniformly symmetric positive definite on
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Ω . Fix a slope s > 0. Set

Y ∼ L ∼ M ∼ n ∼ q =: p (5.5)

With these choices, denote by U
p
T P the Galerkin projection of U onto the tensor

product hp-FE space Vq,r
h,M (T L,n

geo,σ ,GM
geo,σ ) = Sq0 (Ω, T L,n

geo,σ )⊗ Sr{Y }((0,Y ),GM
geo,σ ).

Then N := dim V
q,r
h,M (T L,n

geo,σ ,GM
geo,σ ) = O(p6), and there are constants C, b,

b′ > 0 depending only on Ω , A, f , s, the macro triangulation T M underlying the
geometric boundary-refined meshes T L,n

geo,σ , the parameter σ , the slope parameter s,
and the implied constants in (5.5) such that

‖u − tr U p
T P‖Hs (Ω) � ‖∇(U −U

p
T P )‖L2(yα,C) � exp(−bp) ∼ exp(−b′ 6

√
N ) .

Proof The proof of this result is structurally along the lines of the proof of The-
orem 5.1. We omit details and merely indicate how the scale resolution condition
(4.3) is now accounted for. We note that for fixed Y and M ′ ≤ M , we have that the
spaces Sr{Y }((0,Y ),GM ′

geo,σ ) and Sr{Y }((0,Y ),GM
geo,σ ) satisfy Sr{Y }((0,Y ),GM ′

geo,σ ) ⊂
Sr{Y }((0,Y ),GM

geo,σ ) (if the same slope s for the linear degree vector is chosen).

Hence, the Galerkin error for the approximation from the space Sq0 (Ω, T L,n
geo,σ ) ⊗

Sr{Y }((0,Y ),GM
geo,σ ) is smaller than that from Sq0 (Ω, T L,n

geo,σ ) ⊗ Sr{Y }((0,Y ),GM ′
geo,σ ),

and we therefore focus on bounding the approximation error for Sq0 (Ω, T L,n
geo,σ ) ⊗

Sr{Y }((0,Y ),GM ′
geo,σ ). That is, we will not necessarily exploit the full approximation

power of the space Sq0 (Ω, T L,n
geo,σ )⊗ Sr{Y }((0,Y ),GM

geo,σ ); instead we select M ′ so that
the smallest length scale induced by the discretization on the extended direction is
resolved by the spatial mesh T L,n

geo,σ . We select M ′ of the form M ′ = �ηM� for some
η to be chosen below. For ease of notation, we simply set M ′ = ηM .

By Lemma 3.2 we have that the smallest length scale of the singularly perturbed
problems for the space Sq0 (T L,n

geo,σ )⊗ Sr{Y } (GM ′
geo,σ ) is mini μi � M ′−2

σ 2M ′
and that

the scale resolution condition (4.3) is certainly met if we enforce

c1 min
i

√
μi � c1M

′−1
σ M ′ = c1

1

ηM
σηM !≥ σ L . (5.6)

Since L ∼ M , we see that (5.6) can be satisfied for some fixed c1 provided η is chosen
sufficiently small (depending on the implied constant in the relation L ∼ M). The
approximation of U from the subspace Sq0 (T L,n

geo,σ ) ⊗ Sr{Y }(GM ′
geo,σ ) then follows by

arguments very similar to those of the proof of Theorem 5.1. ��
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6 Exponential convergence of hp-sinc-BK FEM

The hp-sinc BK FEM is based on exponentially convergent, so-called “sinc” quadra-
tures, to the Balakrishnan formula

L−s = cB

∫ ∞

−∞
e−sy(I + e−yL)−1 dy . (6.1)

as described in Sects. 1.6 and (1.16) (see [10–12] and the references there). We briefly
review the corresponding exponential convergence results in Sect. 6.1. The numerical
realization of the sinc quadrature approximation of (6.1) leads again to the numerical
solution of decoupled, local linear reaction-diffusion problems in Ω . The resulting
local boundary value problems in Ω are again singularly perturbed. Accordingly,
we discuss two classes of hp-FE approximations for their numerical solution: In
Sect. 6.2.1, we discuss Case A, which is based on the minimal boundary layer meshes
T L,q
min,λ in Ω . In Sect. 6.2.2, we detail Case B, where geometric boundary-refined

meshes in Ω are employed. The latter permit the use of one common hp-FEM for all
values of parameters arising from the sinc quadrature approximation of (6.1).

6.1 Sinc quadrature approximation

The functional integral (6.1) can be discretized by so-called “sinc” quadratures (see,
e.g., [10, 56]). To that end, we define for K ∈ N

y j := j K−1/2 = jk, | j | ≤ K , k := 1/
√
K . (6.2)

For f ∈ L2(Ω) ⊂ H
−s(Ω) for every 0 < s < 1, the (semidiscrete) sinc quadrature

approximation uM of u = L−s f ∈ H
s(Ω) as represented in (6.1) reads with ε j :=

e−y j /2 = e j/(2
√
K ), | j | ≤ K :

uK = Q−sk (L) f := cBk
∑

| j |≤K
ε2s
j

(

I + ε2
jL

)−1
f . (6.3)

We note that for any k, we have that Q−sk (L) : H−1(Ω) → H
1(Ω) is a bounded

linear map. By the continuous embeddings H1(Ω) ⊆ H
s(Ω) ⊆ H

−s(Ω) ⊆ H
−1(Ω),

also Q−sk (L) : H−s(Ω) → H
s(Ω) is a bounded linear map for any 0 < s < 1. The

semidiscretization error L−s − Q−sk (L) is bounded in [10]:

Proposition 6.1 ([10, Thm. 3.2]) For f ∈ L2(Ω) and for every 0 ≤ β < s with
0 < s < 1 denoting the exponent of the fractional diffusion operator in (1.4), there
exist constants b, C > 0 (depending on β, s, Ω , and L) such that for every k > 0 as
in (6.2) holds, with D(Lβ) = H

2β(Ω) where Hσ (Ω) is as in (1.3),

‖(L−s − Q−sk (L)) f ‖D(Lβ) ≤ C exp(−b/k)‖ f ‖L2(Ω) . (6.4)
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Remark 6.2 Sinc approximation formulas such as (6.3) have a number of parame-
ters which can be optimized in various ways. The error bound in Proposition 6.1 is
merely one particular choice (the so-called “balanced” choice of parameters), which
is sufficient for the exponential sinc error bound (6.4). Other choices yield analogous
(exponential) sinc error bounds, with possibly better numerical values for the constants
b, C > 0 in (6.4). We point out that we make such a choice in our numerical examples
in (7.3) and refer to [10, Rem. 3.1] for details. ��

6.2 hp-FE approximation inÄ

The sinc approximation error bound (6.4) implies exponential convergence of the sinc
quadrature sum (6.3), which we write as

Q−sk (L) f = cBk
∑

| j |≤K
ε2s
j w j . (6.5)

Here, the w j ∈ H1
0 (Ω) are solutions of the 2K + 1 reaction-diffusion problems

ε2
jLw j + w j = f in Ω, w j |∂Ω = 0 , | j | ≤ K . (6.6)

With the bilinear form aε2
j ,Ω

(·, ·) from (3.6), their variational formulations reads: find

w j ∈ H1
0 (Ω) such that

∀v ∈ H1
0 (Ω) : aε2

j ,Ω
(w j , v) = ( f , v) . (6.7)

The reaction diffusion problems (6.6) are again of the type (3.5) for which exponen-
tially convergent hp-FE approximations were presented in Sect. 5, from [41] and [8].
A fully discrete sinc-BK FEM approximation is constructed by replacing w j in (6.5),
(6.6) by one of the hp-FE approximations discussed in Sect. 5. As in the case of the
Extended hp-FEM, also for the sinc-BK FEM one can distinguish between Case A,
in which each problem (6.7) is discretized using a different hp-FE space, and Case B,
where all problems (6.7) are discretized by the same hp-FE space in Ω .

6.2.1 Case A

We discretize the singularly perturbed problems (6.7) with length scales ε j using the

spaces T L,q
min,λ(ε j ). That is, denoting the resulting approximations generically by w

hp
j ,

defined by: for | j | ≤ K , find w
hp
j ∈ Sq0 (Ω, T L,q

min,λ(ε j )) such that

∀v ∈ Sq0 (Ω, T L,q
min,λ(ε j )) : aε2

j ,Ω
(w

hp
j , v) = 〈 f , v〉 . (6.8)

The hp-FE approximations w
hp
j are well-defined. Replacing in (6.5) the w j by their

hp-FE approximations, we obtain the sinc-BK FEM approximation of the (inverse of)
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the fractional diffusion operator Ls :

Q−sk (Lhp) f := cBk
∑

| j |≤K
ε2s
j w

hp
j . (6.9)

To bound the error ‖u − Q−sk (Lhp) f ‖Hs (Ω), we write

‖u − Q−sk (Lhp) f ‖Hs (Ω) ≤ ‖(L−s − Q−sk (L)) f ‖Hs (Ω) + ‖Q−sk (L− Lhp) f ‖Hs (Ω) .

For the first term, the sinc approximation error, we use the error bound (6.4) with
β = s/2. Using D(Ls/2) = H

s(Ω) for 0 < s < 1, we obtain from (6.4) and from
k ∼ K−1/2 (see (6.2)) the bound

‖(L−s − Q−sk (L)) f ‖Hs (Ω) ≤ C exp(−b√K )‖ f ‖L2(Ω) . (6.10)

To bound the second term, definition (6.5) and the triangle inequality imply

‖Q−sk (L− Lhp) f ‖Hs (Ω) � k
∑

| j |≤K
ε2s
j ‖w j − w

hp
j ‖Hs (Ω) . (6.11)

To invoke the hp-error bound (4.4) with the norm (3.7), we apply the interpolation
inequality (1.5) to each term in (6.11) and, using the definition (3.7) of the norm
‖w‖2

ε2,Ω
∼ ‖w‖2

ε2 := ε2‖∇w‖2
L2(Ω)

+‖w‖2
L2(Ω)

∼ (

ε‖∇w‖L2(Ω) + ‖w‖L2(Ω)

)2 for
all ε ≥ 0, we arrive at

‖Q−sk (L− Lhp) f ‖Hs (Ω) � k
∑

| j |≤K
εsj‖w j − w

hp
j ‖1−s

L2(Ω)

(

ε j‖∇(w j − w
hp
j )‖L2(Ω)

)s

� k
∑

| j |≤K
εsj‖w j − w

hp
j ‖ε2

j
. (6.12)

From ε j = exp( j/(2
√
K )), we estimate with a geometric series argument and then a

Taylor expansion for large K

∑

j≥0

εs−1
j =

∑

j≥0

e j(s−1)/(2
√
K ) =

(

1− e(s−1)/(2
√
K )

)−1 ≤ C
√
K , (6.13)

∑

j≤0

εsj =
∑

j≤0

e js/(2
√
K ) =

(

1− e−s/(2
√
K )

)−1 ≤ C
√
K . (6.14)

We split the summation indices in the sum in (6.12) as I+ ∪ I− with I+ := {| j | ≤
K } ∩ { j > 0} and I− := {| j | ≤ K } ∩ { j ≤ 0}. We note 0 < ε j ≤ 1 for j ∈ I− and
1 < ε j ≤ exp(

√
K/2) for j ∈ I+. With Proposition 4.9, we estimate the sum over
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j ∈ I+ in (6.12) according to

∑

j∈I+
εsj‖w j − w

hp
j ‖ε2

j
� q6

∑

j∈I+
εs−1
j

(

exp(−bq)+ exp(−b′L)
)

(6.13)

�
√
Kq6 (

exp(−bq)+ exp(−b′L)
)

. (6.15)

Next, we bound in the same manner the sum over j ∈ I− (i.e., 0 < ε j ≤ 1) in (6.12).
With Proposition 4.8 we get

∑

j∈I−
εsj‖w j − w

hp
j ‖ε2

j
� q6

∑

j∈I−
εsj

[

exp(−bλq)+ ε j exp(−b′L)
]

(6.14)

�
√
Kq6 [

exp(−bλq)+ exp(−b′L)
]

. (6.16)

We select L ∼ q (i.e., the number L of mesh-layers proportional to the polynomial
degree q ≥ 1) with proportionality constant independent of ε j . Furthermore, we note
k = 1/

√
K and select K ∼ q2 so that

‖Q−sk (L− Lhp) f ‖Hs (Ω) � q7 exp(−bλq). (6.17)

Combining the error bounds (6.10) and (6.17), and suitably adjusting the constant
b > 0 in the exponential bounds, we arrive at

‖u − Q−sk (Lhp) f ‖Hs (Ω) � exp(−bq) . (6.18)

Given that the approximation uK ,hp involves the solution of O(K ) = O(q2) reaction-
diffusion problems, each of which requires O(q3) DOF, the error bound (6.18) in
terms of the total number of degrees of freedom NDOF reads

‖u − Q−sk (Lhp) f ‖Hs (Ω) ≤ C exp(−b 5
√

NDOF ) (6.19)

with constants b, C > 0 that are independent of NDOF . We have thus shown:

Theorem 6.3 Let Ω be a curvilinear polygon as defined in Sect. 1.2, let A, f satisfy
(1.1), and let A be uniformly symmetric positive definite onΩ . Let u be the solution to
(1.4), and let its fully discrete approximation be given by the sinc-BKFEMapproxima-
tion (6.5) in conjunction with the hp-FE approximation w

hp
j in (6.8) with the hp-FE

spaces Sq0 (Ω, T L,q
min,λ(ε j )) on the minimal boundary layer meshes T L,q

min,λ(ε j ). Choose

further the parameters q ∼ L ∼ √
K, and let N = ∑

| j |≤K
dim Sq0 (Ω, T L,q

min,λ(ε j ))

denote the total number of degrees of freedom.
Then there exists a λ0 (depending on Ω , A, f , and the parameters characterizing

the mesh family T L,q
min,λ) such that for any λ ∈ (0, λ0] there are constants C, b > 0
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(depending additionally on the implied constants in q ∼ L ∼ √K and s) such that

‖L−s f − Q−sk (Lhp) f ‖Hs (Ω) ≤ C exp(−b 5
√
N ).

6.2.2 Case B

Instead of approximating the problems (6.7) from individual spaces, one may approxi-
mate them from the same hp-FE space in Ω . Specifically, we define the approximations
w

hp
j by: Find w

hp
j ∈ Sq0 (Ω, T L,n

geo,σ ) such that

∀v ∈ Sq0 (Ω, T L,n
geo,σ ) : aε2

j ,Ω
(w

hp
j , v) = 〈 f , v〉 . (6.20)

Theorem 6.4 Let Ω be a curvilinear polygon as defined in Sect. 1.2. Assume that A,
f satisfy (1.1) and that A is uniformly symmetric positive definite. Let u be solution to
(1.4), and let its discrete approximation Q−sk (Lhp) f be given by (6.5) in conjunction
with (6.20). Let

√
K ∼ q ∼ L = n and set N = (2K + 1)dim Sq0 (Ω, T L,n

geo,σ ) ∼ q6,
the total number of degrees of freedom.

Then there are constants C, b > 0 (depending on Ω , A, f , σ , s, and the analyticity
properties of the macro triangulation) such that

‖L−s f − Q−sk (Lhp f )‖Hs (Ω) ≤ C exp(−b 6
√
N ).

Proof We start with the observation that, similar to the geometric series arguments in
(6.13), (6.14), there is C > 0 such that for any δ > 0 there holds

∑

j : ε j≤δ

εsj � C
√
K δs . (6.21)

The proof of Theorem 6.4 follows the arguments of Theorem 6.3: The semidiscretiza-
tion error is given by (6.10), and the error ‖Q−sk (L − Lhp) f ‖Hs (Ω) is bounded
by (6.12). To estimate (6.12) the summation indices I = {| j | ≤ K } are split as
I = Inonres∪ Ires∪ I+ := { j ∈ I : ε j < σ L}∪{ j ∈ I : σ L ≤ ε j ≤ 1}∪{ j ∈ I : j > 0}.
For the sums over Ires and I+, we proceed as in the proof Theorem 6.3 relying on
Props. 4.6 and 4.7 (note that the scale resolution condition (4.3) in Prop. 4.6 is satis-
fied with c1 = 1) to estimate

∑

j∈Ires

εsj‖w j − w
hp
j ‖ε2

j
�
√
Kq9

[

σ (1−β)n + e−bq
]

, (6.22)

∑

j∈I+
εsj‖w j − w

hp
j ‖ε2

j
�
√
Kq9

[

σ (1−β)n + e−bq
]

. (6.23)

In the sum over Inonres, the scale resolution condition (4.3) is not satisfied so that the
exponential convergence result of Prop. 4.6 cannot be used. Instead, the trivial estimate
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‖w j − w
hp
j ‖ε2

j
� ‖w j‖ε2

j
� ‖ f ‖L2(Ω) provided by Céa’s Lemma leads to

∑

j∈Inonres

εsj‖w j − w
hp
j ‖ε2

j
� ‖ f ‖L2(Ω)

∑

j∈Inonres

εsj

(6.21);δ=σ L

� σ Ls‖ f ‖L2(Ω). (6.24)

Combining (6.22)– (6.24) and recalling
√
K ∼ q ∼ L = n concludes the proof. ��

7 Numerical experiments

We consider the problem (1.4) with diffusion coefficient A = I , i.e., Ls = (−Δ)s .
The domain Ω is chosen as either the unit square Ω1 = (0, 1)2, the so-called L-shaped
polygonal domain Ω2 ⊂ R

2 determined by the vertices {(0, 0), (1, 0), (1, 1), (−1, 1),

(−1,−1), (0,−1)}, the square domain with a slit Ω3 = (−1, 1)2\(−1, 0]×{0}, or the
quadrilateral Ω4 with corners the same as Ω1 but with curved sides, which are elliptic
arcs. One of these elliptic arcs is characterized by the condition to pass through the
two points (0, 0) and (1, 0) and to be tangential to the two lines passing through these
two points and (0.5, 0.25); the remaining 3 curved sides are obtained by appropriate
rotation of this arc. As we are in particular interested in smooth, but possibly non-
compatible data f in all the numerical examples we take

f (x1, x2) ≡ 1 in Ω. (7.1)

Notice that, in this case, f is analytic on Ω but f ∈ H
1−s(Ω) only for s > 1/2 due to

boundary incompatibility (cf. Remark 1.2). The exact solution is not known, so that
the error is estimated numerically with reference to an accurate numerical solution.
The error measure is always the functional

e(ũ) =
∣

∣

∣

∣

ds

∫

Ω

f (ufine − ũ) dx ′
∣

∣

∣

∣

1/2

, (7.2)

where ufine is the numerical solution obtained on a fine mesh. Note that for the Galerkin
method on the cylinder C (i.e., Extended hp-FEM in Case B) this error measure is
equivalent to the energy norm if ufine is replaced by the exact solution u:

‖u − tr U p‖2
H
s (Ω) � ‖∇(U −U p)‖2

L2(yα,C) = ds

∫

Ω

f (u − tr U p) dx ′,

where U p denotes the discrete solution in CY .
In Fig. 4 we show examples of the meshes used for the four domains. These are

constructed using the Netgen/NGSolve package [51]. For the square domain Ω =
Ω1 the resulting mesh is the geometric boundary-refined mesh T L,L

geo,σx with L = 4
and σx = 1/4. The same parameters are used in Netgen/NGSolve to construct the
meshes for the other three domains, with the resulting meshes diverging from the strict
definition of T L,L

geo,σ2
near the re-entrant corners since these meshes are not constructed

123



34 L. Banjai et al.

Fig. 4 Examples of geometric boundary-refined meshes generated by Netgen/NGSolve [51] that are used
for the four domains Ω = Ω j , j = 1, 2, 3, 4, ordered from left to right and top to bottom

using mesh patches but instead by applying directly geometric refinement towards
edges and vertices. Nevertheless we denote these meshes also by T L,L

geo,σx and make

use of the finite element spaces Sq0 (Ω, T L,L
geo,σx ).

Given a polynomial order p ≥ 1, in both approaches the finite element space in Ω

is Sq0 (Ω, T L,L
geo,σx ) with uniform polynomial degree q = p, number of levels L = p

and σx = 1/4. Next, we describe the parameters used in the hp-FEM on (0,Y ) and
the quadrature in the Balakrishnan formula.

For the extended problem, on the geometric mesh GM
geo,σy

in (0,Y ) as defined

in Sect. 2.1.1 we use FE-spaces Sr{Y }((0,Y ),GM
geo,σy

). Given a polynomial degree

p ≥ 1, in the definition of these spaces we use Y = 1
2 p, σy = 1/4 and M =

round(0.79 p/s)3, and a uniform degree vector r = (p, . . . , p).
For simplicity in the analysis of the sinc quadrature, we used a symmetric approxi-

mation (6.3). For the numerical experiments in order to obtain a more efficient scheme

3 The choice M = round(0.79 p/s) resulted from equilibrating (an upper bound for) the semidiscretization
error associated with [y0, y1] and [yM−1, yM ].
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Fig. 5 Energy norm convergence for Extended hp-FEM (“hp”, solid) and the sinc-BK FEM (“BK”, dashed)

for the domain Ω1, versus the polynomial degree p (left) and N1/2
ls , where Nls denote the number of linear

systems that need to be solved (right). Results for s = 0.2, s = 0.4 and s = 0.8 are shown

we have followed [10] to define the quadrature as

Q−sk (L) f := k sin(πs)

π

K2
∑

�=−K1

e−sy� (I + e−y�L)−1 f , (7.3)

with y� = �k and the number of quadrature points chosen as

K1 =
⌈

π2

2(1− s)k2

⌉

, K2 =
⌈

π2

sk2

⌉

.

For the given polynomial order p ≥ 1, we set k = 4
3 p
−1.

We now compare the convergence of the two schemes. We plot the error against
the polynomial degree p and against N 1/2

ls , where Nls is the number of linear systems
that need to be solved. The convergence curves for the square domain Ω1 are shown
in Fig. 5, for the L-shaped domain Ω2 in Fig. 6, for the slit domain Ω3 in Fig. 7, and
for the curved domain in Fig. 8. In the case of the curved domain, the curved sides are
approximated by so-called “projection-based polynomial interpolation” in the sense of
[22, 23] of order p. For all four domains we clearly see exponential convergence as the
polynomial order is increased. Also, the Extendedhp-FEM requires significantly fewer
linear systems to be solved to achieve the same accuracy as the sinc-BK FEM . We
should, however, also note that the eigenvalue problem (3.2) becomes ill-conditioned
for increasing p and much higher accuracy than the one shown in the above figures
cannot be obtained using our approach for the extension problem. No such accuracy
limitations could be seen for the sinc approach.
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Fig. 6 Energy norm convergence of the Extended hp-FEM (“hp”, solid) and the sinc-BK FEM (“BK”,

dashed) for L-shaped domain Ω2 versus the polynomial degree p (left) and N1/2
ls , the square root of the

number of linear systems to be solved (right)
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Fig. 7 Energy norm convergence of the Extended hp-FEM (“hp”, solid) and the sinc-BK FEM (“BK”,

dashed) for the slit domain Ω3 versus the polynomial degree p (left) and N1/2
ls , the square root of the

number of linear systems to be solved (right)
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Fig. 8 Energy norm convergence of the Extended hp-FEM (“hp”, solid) and the sinc-BK FEM (“BK”,

dashed) for the domain Ω4 with curved boundaries versus the polynomial degree p (left) and N1/2
ls , the

square root of the number of linear systems to be solved (right)
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8 Extensions and conclusions

We briefly summarize the principal results and indicate several generalizations which
are direct consequences.

8.1 Fractional diffusion onmanifolds

Diffusion problems on manifolds are an established tool in applied mathematics. Frac-
tional diffusion on manifolds, being a generalization of classical diffusion processes,
has therefore attracted attention, see, e.g., [14, 29]. The present setting of possibly
non-constant coefficient A in the diffusion operator L in the setting in Sect. 1.3 allows
us to extend our numerical schemes and their exponential convergence analysis to
fractional diffusion on manifolds as we very briefly outline.

Let Γ ⊂ R
3 denote a compact, orientable analytic manifold (e.g. [4]). We think

of bounded, analytic surfaces such as the unit sphere S
2 ⊂ R

3. Let Γ be covered by
a finite atlas of analytic charts {χ j }Jj=1. In a generic analytic chart χ of Γ , consider

the polygonal domain ˜Γ = χ(Ω) ⊂ Γ where the parameter domain Ω ⊂ R
2 of the

chart χ is a curvilinear polygon in the sense of Sect. 1.2. On Γ , introduce the surface
(Lebesgue)measure μ. On ˜Γ , for given f̃ ∈ L2(Γ , μ;R), consider the Dirichlet
problem for the surface diffusion operator ˜L: find uΓ such that

˜LuΓ := −divΓ ( Ã∇Γ uΓ ) = f̃ on ˜Γ , uΓ |∂ ˜Γ = 0 . (8.1)

Here, the “diffusion coefficient” Ã in (8.1) is a symmetric, uniformly in Γ positive
definite linear map acting on the tangent bundle of Γ , and ∇Γ and divΓ denote the
surface gradient and divergence differential operators on Γ , respectively (see [4]).
With Sobolev spaces on Γ invariantly defined in the usual fashion (e.g., [4]), the
surface diffusion operator ˜L in (8.1) extends to a boundedly invertible, self-adjoint
operator ˜L : H1

0 (˜Γ ;μ) → H−1(˜Γ ;μ) = (H1
0 (˜Γ ;μ))∗ (duality with respect to

L2(˜Γ ;μ) ∼ (L2(˜Γ ;μ))∗) whose inverse ˜L−1
is a compact, self-adjoint operator

on L2(˜Γ ;μ). The spectral theorem implies that ˜L−1
admits a countable sequence of

eigenpairs (λ̃k, ϕ̃k)k≥1 whose eigenvectors ϕ̃k can be normalized so that they constitute
an ONB of L2(˜Γ ;μ). With the ONB {ϕ̃k}k≥1, fractional Sobolev spaces on ˜Γ can be
defined as in (1.3), i.e. for 0 < s < 1,

H
s(Γ̃ ) :=

{

w =
∞
∑

k=1

wk ϕ̃k : ‖w‖2
H
s (Γ̃ )

=
∞
∑

k=1

λ̃skw
2
k <∞

}

. (8.2)

The space H
s(Γ̃ ) can be characterized by (real) interpolation: There holds Hs(Γ̃ ) =

(H1
0 (˜Γ ;μ), L2(˜Γ ;μ))s,2 for 0 < s < 1. As in (1.4), with the family (λ̃k, ϕ̃k)k≥1

we may define the spectral fractional Laplacian ˜Ls = (L, I )s,2 by interpolation of
linear operators (e.g. [32]). The arguments in [16] extend verbatim the localization
(1.6) to the present setting. In particular, the spectral fractional diffusion operator on
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˜Γ with homogeneous Dirichlet boundary conditions on ∂˜L admits a localization on
the cylinder˜C = ˜Γ × (0,∞).

Pulling back the problem (8.1) via χ into the (Euclidean) chart domain Ω ⊂ R
2,

the Dirichlet problem for the fractional power s ∈ (0, 1) of the surface diffusion (8.1)
in ˜Γ = χ(Ω) reduces to (1.6) where the bilinear form (1.2) and diffusion coefficient
A are given by

A(x ′) = G(x ′)%( Ã ◦ χ)(x ′)G(x ′) , x ′ ∈ Ω,

with G(x ′) = Dχ(x ′) : Ω → R
3×2 denoting the (assumed analytic in Ω) metric

of M in chart χ . The real-analyticity of compositions, sums and product of real-
analytic functions implies that x ′ �→ A(x ′) satisfies (1.1) in Ω , so that the preceding
mathematical results also apply to (1.4) with (8.1).

8.2 N-widths of solution sets

Thehp-approximation rate bounds for either the Extendedhp-FEM (Theorems 5.1, 5.4)
and the sinc-BK FEM (Theorems 6.3, 6.4) imply exponential bounds on N -widths of
solution sets of (1.4) in a curvilinear polygon Ω as defined in Sect. 1.2, with the data A
and f satisfying the conditions in Sect. 1.3. Such bounds are well-known to determine
the rate of convergence of so-called reduced basis methods (see [47] and the references
there).

We recall that, for a normed linear space X (with norm ‖ ◦ ‖X ) and for a compact
subset K ⊂ X , the N -width of K in X is given by

dN (K, X) = inf
EN

sup
f ∈K

inf
g∈EN

‖ f − g‖X . (8.3)

Here, the first infimum is taken over all subspaces EN of X of dimension N ∈ N.
Subspace sequences {EN }N≥1 that attain the rates of dN (K, X) in (8.3) as N → ∞
can be realized numerically by (generally non-polynomial) reduced bases ( [47] and
the references there). We fix a set G ⊂ C

2 containing Ω and choose A ⊂ L2(Ω)

as the set of functions f : Ω → R that admit a holomorphic extension to G with
‖ f ‖L∞(G) ≤ 1. Then K := L−sA ⊂ H

s(Ω) is a compact subset by the continuity
of L−s : H−s(Ω) → H

s(Ω) and the compact embedding L2(Ω) ⊂ H
−s(Ω). We

choose X = H
s(Ω) in (8.3).

From Theorem 6.4 and the fact that Q−sk (Lhp) f ∈ Sq0 (Ω, T L,n
geo,σ ), with the choices

of parameters in Theorem 6.4, N = dimSq0 (Ω, T L,n
geo,σ ) = O(q4), for K as above and

EN = Sq0 (Ω, T L,n
geo,σ ) follows the (constructive) bound

dN (K, X) � exp(−b 4
√
N ) (8.4)

for some constant b > 0 independent of N .
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We also mention that the argument in [40] can be adapted to the setting of (1.4) in
Sect. 1.2, resulting in the (sharp) nonconstructive bound

dN (K, X) � exp(−b√N ) . (8.5)

We refer to [2, 13, 20, 21] for numerical approximation of (1.4) using reduced basis
methods.

8.3 Contour-integral methods: hp − DE Approximation

An alternative to the sinc-BK approximation in Theorems 6.3 and 6.4 is provided by
quadrature approximations of contour-integral representations of the solution operator
for the spectral fractional equation Lsu = f . When combined with hp-FE discretiza-
tions from Sect. 4 in Ω , they lead to similar algorithms and convergence rate bounds.
We illustrate this for the so-called double exponential quadrature (“DE approxima-
tion” for short) analyzed by M. Mori and coworkers (see [45] and references there).

In the presently considered PDE context, double exponential approximations DE−sk
toL−s were studied recently in [48]; there, the focus was on bounds for the DE quadra-
ture approximation error. The results of [48] can be combined with hp-approximation
error bounds from Sect. 4 to yield novel error bounds for fully discrete “hp − DE”
approximations.

The DE approximation in [48] is based on the Riesz-Dunford representation with
a contour Cσ,κ,θ := {κ(cosh(σw)+ iθ sinh(w)) : w ∈ R} ⊂ C> that is contained in
the right half-plane C> := {z ∈ C : Re(z) > 0}, i.e.,

L−s = 1

2π i

∫

Cσ,κ,θ

z−s(L− z)−1dz .

Here, σ, κ, θ are chosen in order for the contour Cσ,κ,θ ⊂ C> to enclose spec (L). For
L−s with L = −div(A∇) and homogeneous Dirichlet boundary conditions on ∂Ω ,
the choice σ = 1 in the parametrization [48, Eqn. (2.1)] of the contour is possible.
The semidiscrete DE approximations are, for Kq ∈ N, then given by [48, Def. 2.1]

DE−sk (L) f := k

2π i

∑

| j |≤Kq

((ψ1,θ ( jk))
−s−1ψ ′1,θ ( jk)(ε

2
jL− 1)−1 f , (8.6)

where f ∈ L2(Ω), the DE-stepsize k := ln(Kq)/Kq , and [48, Eqn. (2.1)]

ε2
j := 1/ψ1,θ ( jk), ψ1,θ (y) := κ

[

cosh
(π

2
sinh(y)

)

+ iθ sinh
(π

2
sinh(y)

)]

.

With this choice of k, and with the choices ε = 0, ρ = 0 and r = s/2, in [48,
Cor. 3.6, Rem. 3.7] the DE approximation error is bounded as

‖(L−s − DE−sk (L)) f ‖Hs (Ω) ≤ C exp(−b[Kq/ ln(Kq)]1/2)‖ f ‖L2(Ω) , (8.7)
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for some constants b, C > 0 that are independent of f and of Kq .
As in the sinc-BK approach, the reaction-diffusion problems (ε2

jL − 1)w j = f
in Ω that appear in (8.6) are singularly perturbed: for large values of | j |, |ε j | ↓ 0
with complex singular perturbation parameters ε j ∈ Sδ′ := {z ∈ C \ {0} | |arg z| <

π/2 − δ′} for some δ′ > 0 depending on κ, θ , i.e., | Im ε j | � Re ε j ≤ |ε j | � Re ε j

for all j .
The fully discrete hp-DE approximation of (8.6) can be written as

DE−sk (Lhp) f := k

2π i

∑

| j |≤Kq

((ψ1,θ ( jk))
−s−1ψ ′1,θ ( jk)w

hp
j , (8.8)

where w
hp
j = (ε2

jLhp−1)−1 f ∈ H1
0 (Ω;C) denotes either one of the hp-FE approxi-

mations (6.8) or (6.20) corresponding to the minimal mesh T L,q
min,λ(Re ε j ) (Case A) or

the geometric boundary-refined meshes T L,n
geo,σ (Case B). In both cases, the hp-FEM

approach leads to quasi-optimality for the errors w j −w
hp
j in the |ε j |-weighted norm

‖ · ‖|ε j |2,Ω given by (3.7); this is worked out for the case of small |ε j | in [38, App. A]
and uses in an essential way Re ε j > 0.

As for the sinc-BK approach, the singular perturbation nature of the operators
ε2
jL − 1 appearing in (8.6) leads, for analytic in Ω source term f , to solutions w j

with boundary layers and corner layers. As a precise characterization of the regu-
larity of solutions w j in the presence of complex perturbation parameters ε j does
not seem available for polygons Ω , we formulate the approximability of the w j by

hp-approximants w
hp
j as an assumption:

Assumption 8.1 Assume that (1.1) holds, and assume that, given choices q ∼ L ≤ n
and c1 > 0, there are constants C , b > 0, and λ0 > 0 such that the following holds:

(i) For any ε ∈ Sδ′ there holds for any λ ∈ (0, λ0] for w = (ε2L − 1)−1 f :

inf
v∈Sq0 (Ω,T L,q

min,λ(Re ε))

‖w − v‖|ε|2,Ω ≤ Ce−bλq ,

(ii) For any ε ∈ Sδ′ satisfying the scale resolution condition σ L ≤ c1|ε| there holds
for w = (ε2L − 1)−1 f :

inf
v∈Sq0 (Ω,T L,n

geo,σ )

‖w − v‖|ε|2,Ω ≤ Ce−bq ,

Remark 8.2 Assumption 8.1 has been verified in [38, App. A] for the case of Ω ⊂ R
2

having an analytic boundary. Then the solution w = (ε2L−1)−1 f has only boundary
layers (and no corner singularities or corner layers) and [38, App. A] ascertains that the
regularity theory developed in [41] for real singular perturbation parameters extends
to the case of ε ∈ Sδ′ ⊂ C>. While it should, in principle, be possible to extend the
regularity theory of [41] to polygonal domains Ω and to complex-valued ε ∈ Sδ′ , a
citable result does not seem available in the literature. ��
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Remark 8.3 Distinct from the case of the sinc-BK FEM discussed in Sect. 6 where the
solutions w j to singularly perturbed problems are real-valued due to the parameters
ε j being real, the DE approach generally leads to complex-valued w j , even for real-
valued data f . ��
The DE approximations (8.8) being structurally similar to sinc-BK (6.9), an error
analysis analogous to Sect. 6 is possible, with error bounds essentially equal to those
of Theorems 6.3, 6.4.

Proposition 8.4 LetΩ be a curvilinear polygon as defined in Sect. 1.2. Let A, f satisfy
(1.1), and let A be uniformly symmetric positive definite on Ω . Let u be the solution
to (1.4). Let the fully discrete approximation be given by the hp−DE approximation
(8.8), where the hp-FE approximations w

hp
j in Case A are based on the j-dependent

hp-FE spaces Sq0 (Ω, T L,q
min,λ(Re ε j )) and in Case B on the spaces Sq0 (Ω, T L,n

geo,σ ). Let

Assumption 8.1 be valid, and choose q ∼ L = n and Kq ∼ q2. Let N denote the total

number of degrees of freedom (i.e., N = ∑

| j |≤Kq
dim Sq0 (Ω, T L,q

min,λ(Re ε j )) in Case

A and N = (2Kq + 1)dim Sq0 (Ω, T L,n
geo,σ ) in Case B).

Then the following holds for the two cases Case A and Case B:
In Case A, there exists a constant λ0 > 0 (depending on Ω , A, f , and the param-

eters characterizing the mesh family T L,q
min,λ) such that for any λ ∈ (0, λ0] there are

constants C, b′ > 0 (depending additionally on s and the implied constants in q ∼ L
and Kq ∼ q2) such that

‖L−s f − DE−sk (Lhp) f ‖Hs (Ω) ≤ C exp(−b′N 1/5/
√

ln N ). (8.9)

In Case B, there exist constants C, b′ > 0 depending on Ω , A, f , σ , s, the analyticity
properties of themacro triangulation, and the implied constants in q ∼ L and Kq ∼ q2

such that
‖L−s f − DE−sk (Lhp) f ‖Hs (Ω) ≤ C exp(−b′N 1/6/

√
ln N ). (8.10)

Proof We start by noting that

N ∼ Kq Lq
2 ∼ q5 for Case A, N ∼ Kq L

2q2 ∼ q6 for Case B.

The DE semidiscretization error (8.7) therefore has the desired form. As in the case
of sinc-BK FEM in addition to the semidiscretization error one has to estimate

S := k
∑

| j |≤Kq

|ψ1,θ ( jk)|−s−1|ψ1,θ ( jk)|‖w j − w
hp
j ‖Hs (Ω). (8.11)

As in the case of the sinc-BK FEM (cf. the proof of Thms. 6.3, 6.4), we estimate with
the interpolation inequality (1.5) and the norm ‖·‖|ε j |2,Ω ∼ ‖·‖L2(Ω)+|ε j |‖∇ ·‖L2(Ω)

similar to the procedure in deriving (6.12)

|ε j |2s‖w j − w
hp
j ‖Hs (Ω) � |ε j |2s‖w j − w

hp
j ‖1−s

L2(Ω)
‖∇(w j − w

hp
j )‖sL2(Ω)
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� |ε j |s‖w j − w
hp
j ‖|ε j |2,Ω . (8.12)

From the explicit form of ψ1,θ we get

|ψ1,θ ( jk)|−s−1|ψ ′1,θ ( jk)| � |ε j |2se| j |k . (8.13)

Inserting (8.12), (8.13) in (8.11), we obtain

S � k
∑

| j |≤Kq

e| j |k |ε j |s‖w j − w
hp
j ‖|ε j |2,Ω . (8.14)

At this point, we differentiate between Case A and Case B, which follow the proofs
of Theorems 6.3 and 6.4, respectively.

We consider Case A first. The quasi-optimality of the Galerkin method in the norm
‖ · ‖|ε j |2,Ω , Assumption 8.1, and the trivial bound |ε j | � 1 give

S � k
∑

| j |≤Kq

e| j |k |ε j |s‖w j − w
hp
j ‖|ε j |2,Ω

Ass. 8.1;|ε j |�1

� k(2Kq + 1)ekKq e−bλq .

(8.15)

With the DE stepsize k = ln(Kq)/Kq , we have k(2Kq + 1)ekKq � Kq ln Kq . As
Kq ∼ q2 the algebraic term can be absorbed in the exponentially decaying one leading
to S � e−b′q for suitable b′ > 0.

We turn toCase B. The assumption L ∼ q implies that the spatial mesh T L,n
geo,σ does

not necessarily resolve all scales |ε j |. We therefore split the index set I = {| j | ≤ Kq}
as I = Ires ∪ Inonres := { j : σ L ≤ |ε j |} ∪ { j : σ L > |ε j |} into those j ∈ Ires whose
corresponding scale |ε j | can be resolved by T L,n

geo,σ and those j ∈ Inonres whose scale

|ε j | is not resolved by T L,n
geo,σ . We proceed as in the proof of Theorem 6.4 exploiting

that for j ∈ Ires, we will be able to use Assumption 8.1 whereas for j ∈ Inonres we will
have to use |ε j |s ≤ σ sL and the trivial estimate ‖w j − w

hp
j ‖|ε j |2,Ω � ‖w j‖|ε j |2,Ω �

‖ f ‖L2(Ω) that follows by Céa’s Lemma and stability:

S � k
∑

j∈Ires

e| j |k |ε j |s‖w j − w
hp
j ‖|ε j |2,Ω + k

∑

j∈Inonres

e| j |k |ε j |s‖w j − w
hp
j ‖|ε j |2,Ω

Ass. 8.1;|ε j |�1

� k(2Kq + 1)ekKq e−bq + k
∑

j∈Inonres

e| j |k |ε j |s‖w j‖|ε j |2,Ω

� k(2Kq + 1)ekKq e−bq + k(2Kq + 1)ekKqσ Ls .

From L ∼ q, Kq ∼ q2, and k = ln(Kq)/Kq we get an exponential decay in q. ��
Remark 8.5 The bound (8.7) on the semidiscrete DE approximation error assumed
f ∈ L2(Ω). In [48, Cor. 3.9], it is shown that under stronger, Gevrey-type regularity
assumptions on f , again with the DE stepsize k = ln(Kq)/Kq , the upper bound (8.7)
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Fig. 9 Energy norm convergence of the Extended hp-FEM (“hp”, solid), the sinc-BK FEM (“BK”, dashed),
and the DE (“DE”, dotted) approximation for the slit domain Ω3 versus the polynomial degree p (left) and

N1/2
ls , the square root of the number of linear systems to be solved (right)

can be strengthened to � exp(−b/(k| ln k|)). Repeating the arguments in Proposi-
tion 8.4 with the choices q ∼ L ∼ Kq will imply error bounds of the form

‖L−s f − DE−sk (Lhp) f ‖Hs (Ω) ≤ C exp(−b′Nr/ ln2 N ) (8.16)

with r = 1
4 in Case A and r = 1

5 in Case B. ��

We illustrate the double exponential approximation by repeating the numerical
experiment related to the fractional Laplacian on the slit domain Ω3. We again
make use of geometric boundary-refined meshes T L,L

geo,σx and the corresponding finite

element spaces Sq0 (Ω, T L,L
geo,σx ) with uniform polynomial degree q = p, number

of levels L = p, and σx = 1/4. In order to obtain an error of size O(e−cp)
for some constant c > 0, we choose the parameter Kq in the double exponential
approximation asymptotically proportional to p2. Since, according to [48, Cor. 3.6],
the constant b in (8.7) is proportional to

√
s, after some experimentation, we set

Kq = round(( 1
2 p

2+10)/s) in all the experiments. Furthermore, following the advice
from [48], we set k = 0.9 ln(Kq)/Kq and θ = 4. This particular choice of k, instead
of k = ln(Kq)/Kq , is made due to better stability properties and increases the error

due to cut-off to O(e−K 0.9
q ), which, however, does not impact the error estimates nor

the numerical results visibly. As the solutions w
hp
j for j > 0 are the complex conju-

gates of w
hp
− j with the negative index, it is sufficient to solve Nls = Kq + 1 singularly

perturbed problems instead of 2Kq + 1. The results of the numerical experiments are
shown in Fig. 9. The error, as a function of Nls, decays at the fastest rate for the DE
approximation. However, it needs to be said that the use of complex arithmetic brings
with it a large overhead in terms of computational time.
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8.4 Conclusions

For the Dirichlet problem of the spectral, fractional diffusion operatorLs with 0 < s <

1 in a bounded, polygonal domain Ω ⊂ R
2, we proposed three hp-FE discretizations:

the Extended hp-FEM , the sinc-BK FEM and, somewhat briefly, the hp − DE-
approximation. The first discretization, already considered in [9, 36], is based on the
CS-extension upon hp-FE semi-discretization in the extended variable. Subsequent
diagonalization leads to a decoupled system (3.5) of M linear and local, singularly
perturbed second order reaction-diffusion problems in Ω . Invoking analytic regularity
results for these problems from [41, 43], and robust exponential convergence of hp-
FEM for reaction-diffusion problems in polygons from [8, 41, 42], an exponential
convergence rate boundC exp(−b 6

√
NDOF ) with respect to the total number of degrees

of freedom, NDOF , which are used in the tensor-product hp-FE discretization, is
established in the fractional Sobolev norm H

s(Ω). We add that the variational semi-
discretization in Sect. 3 with respect to the extruded variable y offers the possibility
for residual a posteriori error estimation.

The second discretization is based on the spectral integral representation of L−s
due to Balakrishnan [7]. A sinc quadrature discretization [56] approximates the spec-
tral integral by an (exponentially convergent [11, 56]) finite linear combination of
solutions of decoupled elliptic reaction diffusion problems in Ω with analytic input
data. Drawing once more on analytic regularity and robust exponential convergence of
hp-FEM [8, 41–43], we prove exponential convergence also for this approach. A com-
putable a posteriori bound for the semidiscretization error incurred for the sinc-BK
FEM approach does not seem to be available currently.

The theoretical convergence rate bounds are verified in a series of numerical
experiments. These show, in particular, for all schemes considered that exponential
convergence is realized in the practical range of discretization parameters. They also
indicate a number of practical issues, such as conditioning or algorithmic steering
parameter selection, which are beyond the scope of the mathematical convergence
analysis. We point out that the proposed algorithms and the exponential convergence
results extend in several directions: besides homogeneous Dirichlet boundary con-
ditions, also mixed, Dirichlet-Neumann boundary conditions, and operators with a
nonzero first order term could be considered. In either case, the proposed algorithms
extend readily. The main result is the construction of hp-FE discretizations with robust
exponential convergence rates for spectral fractional diffusion in polygonal domains
Ω ⊂ R

2. Similar results hold in bounded intervals Ω ⊂ R
1 (we refer to [9] for details).

In polyhedral Ω ⊂ R
3, the present line of analysis is also applicable; however, expo-

nential convergence and analytic regularity of hp-FEM for reaction-diffusion problems
in space dimension d = 3 does not appear to be available to date. We considered frac-
tional powers only for self-adjoint, second-order elliptic divergence-form differential
operators Lw = −div(A∇w) in Ω . The arguments for the sinc-BK FEM extend to
non-selfadjoint operators which include first-order terms via [10], provided suitable
hp-FEM for advection-reaction-diffusion problems in Ω are available (e.g. [37]). The
proposed hp-sinc-BK approach could be replaced by the hp − DE-FEM contour-

123



hp-FEM for spectral fractional diffusion 45

integration scheme based on [45, 48]. Distinct from the sinc-BK FEM, it requires
complex arithmetic, even for real-valued data.

We also point to the numerical equivalence of the hp-FE “semidiscretization and
diagonalization” approach presented in Sect. 3 with certain schemes based on rational
approximation of the map z �→ z−s on the spectrum of L in C, see, e.g., [30, Thm. 2].
By this result, the presently developed hp-error analysis in Sect. 5 directly implies
an exponential convergence rate from Theorem 5.4 for a “rational approximation and
hp-FEM in Ω” algorithm in curvilinear polygons.

The present analysis is indicative for achieving high, algebraic rate p + 1 − s of
convergence in H

s(Ω) by h-version FEM of fixed order p ≥ 1 in Ω . As in hp-
FEM, this will require anisotropic mesh refinement aligned with ∂Ω , ie., so-called
“boundary-layer” meshes. Several constructions are available (see, e.g., [54] for so-
called “exponential boundary layer meshes” and [49] for so-called “Shishkin meshes”).
We refrain from developing details for this approach, which can be analyzed along the
lines of the present paper.
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