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Abstract: Dual fluidized bed steam gasification enables the production of gaseous energy
carriers from woody biomass or biogenic residues. The circulation of bed material in dual
fluidized bed gasifiers strongly affects the process behavior. Therefore, precise control of the bed
material circulation is desired. This paper presents a control algorithm addressing two aspects of
the given problem setting: On the one hand, redundant control actuators are available. Typically,
there are several air streams to the reactors influencing the bed material circulation. On the
other hand, only black box models with uncertainties in their model parameters are available for
model-based control design. The presented control algorithm uses a model predictive controller
considering known uncertainties in the model parameters and drives the process in a region with
the lowest model uncertainties. This results in an improvement of the closed-loop performance
when the actual plant deviates from the internal model used for the model predictive control
predictions. Simulations show 66 % less offset from the design trajectory with the presented
algorithm when compared to a standard model predictive controller.
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1. INTRODUCTION

Dual Fluidized Bed (DFB) steam gasification can be used
to produce high-quality product gas from woody biomass
or biogenic residues (Benedikt et al. (2018)). For an
efficient operation of DFB plants, process variables such
as reactor temperatures, product gas mass flow or product
gas quality have to be controlled. Typically, a combination
of single-input single-output controllers is used to control
these process variables, as presented in Nigitz et al. (2020)
and Pröll and Hofbauer (2010). Multiple-input multiple-
output control concepts cannot be found in the literature
for DFB plants, yet offer the chance to increase process
efficiency (Stanger et al. (2023)). To control the reactor
temperatures or the product gas quality, effective control
of the bed material circulating between the two reactors
is required since the bed material is transporting both
heat and char between the reactors. The bed material
circulation in DFB gasifiers is modeled mostly based on
computational fluid dynamics and is shown in Liu et al.
(2016) or Kraft et al. (2017). Estimating the mass of
bed material circulating in fluidized beds is a challenging
task and discussed for example in Medrano et al. (2016)
and Matsuda (2008). In Stollhof et al. (2018) and Fuchs
⋆ This work was supported by the project ADORe-SNG, which is
funded by the Austrian Climate and Energy Fund (FFG, No.881135).

et al. (2018) it is shown, that the pressure gradient in
the upper part of the combustion reactor (CR) is a
reliable indicator for the bed material circulation. The
bed material circulation is mainly manipulated by the air
streams to the CR: There are air inlets at different reactor
heights. Thus, by changes in the air staging, the circulation
can be influenced. At the advanced 100 kW DFB pilot
plant at TU Wien, three air stages are available at the
CR. Therefore, more control actuators are available than
variables that need to be controlled.
In process control, split range control is often applied when
redundant control actuators are available, as presented in
Fonseca et al. (2013) and Reyes-Lúa and Skogestad (2020).
In motion control for vehicles and aircrafts, control alloca-
tion is applied for over-actuated systems. In Johansen and
Fossen (2013) a survey of control allocation algorithms is
given and different applications are discussed. A method
for control allocation incorporating the information on
model uncertainties is presented in Grauer and Pei (2021).
The scope of this work is to present a method on how
to handle the availability of redundant control actuators
by using the knowledge about model uncertainties. The
algorithm leads to the usage of the control actuators in
a way that the process is driven within a region of low
model uncertainties. The control algorithm is presented
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within a model predictive control (MPC) framework which
allows the explicit consideration of input constraints, since
constraints often occur in process control problems. Sim-
ulations are shown for the cold flow model (CFM) of
the advanced 100 kW DFB pilot plant at TU Wien and
demonstrate the effectiveness of the proposed algorithm.

2. PROCESS DESCRIPTION

The main components of a DFB gasifier are the gasification
reactor (GR) and the combustion reactor (CR). Both
reactors are operated as fluidized bed reactors, the GR
as a bubbling fluidized bed reactor and the CR as a fast
fluidized bed reactor. These two reactors are connected by
loop seals. Bed material is constantly circulating between
the GR and the CR transporting ungasified fuel from the
GR to the CR and heat from the CR to the GR. The
amount of heat and ungasified fuel transported between
the two reactors depends on the bed material circulation
rate (Stollhof et al. (2018)).

2.1 Cold Flow Model of a Dual Fluidized Bed Gasifier

CFMs have been widely used to investigate the fluid
dynamical behavior of DFB gasifiers (Shrestha et al.
(2016)). In this paper, modeling and control design are
based on the CFM at TU Wien, since experiments can be
easier carried out at the CFM. Fig. 1 shows the design of
the CFM. A detailed description of the experimental setup
can be found in Lunzer et al. (2021) and Fuchs (2013).
The CFM at TU Wien is designed in a way that the
dimensionless similarity is given to the hot 100 kW pilot
plant, which means that dimensionless quantities such
as Reynolds number or Archimedes number are similar.
Therefore, it behaves similarly in terms of fluid dynamics.
The reactors and the loop seals of the CFM are fluidized
with air, and bronze particles are used as bed material.
Whereas the 100 kW pilot plant has three air inlets
to the CR, there are only two air stages available at
CFM: Primary air and secondary air. Those are the
most significant inputs to manipulate the bed material
circulation. The pressure is measured at various positions
in both reactors and in the loop seals. For this work,
the pressure measurements in the upper part of the CR
are relevant and used for control, whereby the pressure
difference is denoted as ∆p.

2.2 Plant Model

In steady state, the pressure difference ∆p in the upper
part of the combustion reactor is modeled by the linear
relationship

∆p = b0 + b1V̇p + b2V̇s, (1)

where V̇p and V̇s are the primary and secondary air flows,
respectively. With the input vector

u =
[
1 V̇p V̇s

]T
= [1 u1 u2]

T
, (2)

and the parameter vector

Air

Combustion
reactor (CR)

Gasification
reactor (GR)

Secondary air

Primary air

∆p

Fig. 1. Cold Flow Model to investigate the fluid dynamical
behavior of the advanced 100 kW DFB pilot plant at
TU Wien.

θ = [b0 b1 b2]
T (3)

we can write (1) compact to

∆p = uTθ. (4)

The pressure difference ∆p corresponds to the system state
x. The parameter vector θ is estimated from measurement
data. Moreover, the parameter covariance matrix Σ is
estimated from measurement data and is later used for
control design.
If an input variable is changed step-wise, a PT1-like
response can be observed in the pressure difference. This
dynamic behavior is modeled by the first order differential
equation

ẋ =
1

τ

(
− x+ b0 + b1u1 + b2u2

)
(5)

with the time constant τ .

3. METHODS

In this section, first, the procedure of the control algo-
rithm is described. Then, the disturbance model and the
observer design are presented, followed by the minimum-
variance MPC (MV-MPC) approach proposed as the main
contribution.
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3.1 Algorithmic Procedure

At each time step k, the following steps are carried out
(1) Observer: Both the model state and a disturbance

state are estimated by a Kalman filter.
(2) Target Calculation: An operating point is calculated

considering the disturbance state. This operating
point is then tracked by the MPC.

(3) Solution of the MPC optimization problem: The opti-
mal sequence of control inputs is calculated by solving
the MPC optimization problem.

3.2 Observer Design

In order to capture the plant-model mismatch and un-
measured disturbances the plant model is augmented by a
disturbance model as follows:



ẋ =

1

τ

(
− x+ b0 + b1u1 + b2u2 + d

)

ḋ = 0

y = x,

(6)

with the disturbance state d. This disturbance state mod-
els process variables that are influencing the bed material
circulation and are slowly changing over time, such as the
total amount of bed material in the system. A discretiza-
tion of the model leads to the state-space system

[
xk+1

dk+1

]
=

[
a bd
0 1

] [
xk

dk

]
+

[
b
0

]
uk,

yk = xk,

(7)

where the entries a, bd, and b in the system matrices are
both a function of the continuous-time parameters and the
sampling time.
A Kalman filter is designed to estimate both the original
state x and the disturbance state d:

[
x̂k+1

d̂k+1

]
=

[
a bd
0 1

] [
x̂k

d̂k

]
+

[
b
0

]
uk

+

[
lx
ld

]
(−ym|k + x̂k),

ŷk = x̂k,

(8)

with the Kalman gain matrix L = [lx ld]
T and the mea-

sured output variable ym.

3.3 MPC Cost Function

The MPC is designed to track a constant reference for the
output y. A quadratic cost function is formulated and is
minimized at every time step k:

min
U

JMPC =

N−1∑
i=0

(xk+i − x̄k)
T q(xk+i − x̄k)

+ (uk+i − ūk)
TΣ(uk+i − ūk),

subj. to xk+i+1 = axk+i + buk+i + bddk, (9)
xk = x̂k,

dk = d̂k,

uk+1(1) = 1,

umin ≤ uk+i ≤ umax,

where U is the input sequence U = [uk, ...,uk+N−1]
within the prediction horizon N , q is a weighting factor
and x̄ and ū are the target state and target input vector,
respectively. The MPC is designed to track these steady-
state target values. The calculation of these target vari-
ables is discussed in the next section.

3.4 Target Calculation - The Minimum-Variance Approach

The aim of the target calculation is to find an input vector
ūk = [ū1|k, ū2|k]

T at time step k so that the target output
ȳk = x̄k meets the reference rk in a steady state with
minimized variance:

rk = b0 + b1ū1|k + b2ū2|k + dk. (10)

It can be seen that there is no unique solution for ū1|k and
ū2|k so that (10) is fulfilled.
In this paper, we suggest incorporating knowledge about
the model uncertainty to find a solution for the target
inputs. The estimate for the parameter vector is given by

θ̂ =
[
b̂0 b̂1 b̂2

]T
. (11)

Moreover, the estimate for the parameter covariance ma-
trix Σ̂ is assumed to be known. The undisturbed model
output in a steady state can be written as

ŷ = uT θ̂. (12)

The output variance can be computed by

Var(ŷ) = E{(ŷ − y)2}
= E{(uT θ̂ − uTθ)2}
= uT E{(θ̂ − θ)(θ̂ − θ)T }u
= uTΣu.

(13)

This output variance is taken as the cost function and is
minimized to find the target input vector ūk at time step
k:
min
uk

Jtarget = uT
k Σ̂uk,

subj. to uk(1) = 1, (14)
rk = b̂0 + b̂1ū1|k + b̂2ū2|k + d̂k,

umin ≤ ūk ≤ umax.

The input constraints in the optimization problem (14)
can cause infeasibility. This means that no input vector
within the constraints exists so that the model output
meets the reference in a steady state. In this case instead
the squared steady-state difference between the output
and its reference

within a model predictive control (MPC) framework which
allows the explicit consideration of input constraints, since
constraints often occur in process control problems. Sim-
ulations are shown for the cold flow model (CFM) of
the advanced 100 kW DFB pilot plant at TU Wien and
demonstrate the effectiveness of the proposed algorithm.

2. PROCESS DESCRIPTION

The main components of a DFB gasifier are the gasification
reactor (GR) and the combustion reactor (CR). Both
reactors are operated as fluidized bed reactors, the GR
as a bubbling fluidized bed reactor and the CR as a fast
fluidized bed reactor. These two reactors are connected by
loop seals. Bed material is constantly circulating between
the GR and the CR transporting ungasified fuel from the
GR to the CR and heat from the CR to the GR. The
amount of heat and ungasified fuel transported between
the two reactors depends on the bed material circulation
rate (Stollhof et al. (2018)).

2.1 Cold Flow Model of a Dual Fluidized Bed Gasifier

CFMs have been widely used to investigate the fluid
dynamical behavior of DFB gasifiers (Shrestha et al.
(2016)). In this paper, modeling and control design are
based on the CFM at TU Wien, since experiments can be
easier carried out at the CFM. Fig. 1 shows the design of
the CFM. A detailed description of the experimental setup
can be found in Lunzer et al. (2021) and Fuchs (2013).
The CFM at TU Wien is designed in a way that the
dimensionless similarity is given to the hot 100 kW pilot
plant, which means that dimensionless quantities such
as Reynolds number or Archimedes number are similar.
Therefore, it behaves similarly in terms of fluid dynamics.
The reactors and the loop seals of the CFM are fluidized
with air, and bronze particles are used as bed material.
Whereas the 100 kW pilot plant has three air inlets
to the CR, there are only two air stages available at
CFM: Primary air and secondary air. Those are the
most significant inputs to manipulate the bed material
circulation. The pressure is measured at various positions
in both reactors and in the loop seals. For this work,
the pressure measurements in the upper part of the CR
are relevant and used for control, whereby the pressure
difference is denoted as ∆p.

2.2 Plant Model

In steady state, the pressure difference ∆p in the upper
part of the combustion reactor is modeled by the linear
relationship

∆p = b0 + b1V̇p + b2V̇s, (1)

where V̇p and V̇s are the primary and secondary air flows,
respectively. With the input vector

u =
[
1 V̇p V̇s

]T
= [1 u1 u2]

T
, (2)

and the parameter vector

Air

Combustion
reactor (CR)

Gasification
reactor (GR)

Secondary air

Primary air

∆p

Fig. 1. Cold Flow Model to investigate the fluid dynamical
behavior of the advanced 100 kW DFB pilot plant at
TU Wien.

θ = [b0 b1 b2]
T (3)

we can write (1) compact to

∆p = uTθ. (4)

The pressure difference ∆p corresponds to the system state
x. The parameter vector θ is estimated from measurement
data. Moreover, the parameter covariance matrix Σ is
estimated from measurement data and is later used for
control design.
If an input variable is changed step-wise, a PT1-like
response can be observed in the pressure difference. This
dynamic behavior is modeled by the first order differential
equation

ẋ =
1

τ

(
− x+ b0 + b1u1 + b2u2

)
(5)

with the time constant τ .

3. METHODS

In this section, first, the procedure of the control algo-
rithm is described. Then, the disturbance model and the
observer design are presented, followed by the minimum-
variance MPC (MV-MPC) approach proposed as the main
contribution.
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Fig. 2. Measurement points and model for ∆p (model
output y) as a function of the inputs V̇p and V̇s.

(rk − uT
k θ̂ + d̂k)

2 (15)

is minimized by solving the quadratic program

min
uk

Jtarget = uT
k θ̂θ̂

T
uk − 2(rk + d̂k)ukθ

subj. to uk(1) = 1 (16)
umin ≤ ūk ≤ umax.

4. RESULTS AND DISCUSSION

An identification experiment to find a mathematical model
describing the input-output relationships has been carried
out at the CFM at TU Wien. The minimum variance MPC
approach is tested in simulations and compared to an MPC
which does not consider model uncertainties in its design,
hereinafter referred to as Standard MPC. For this Standard
MPC, the identity matrix is used instead of the covariance
matrix Σ in the cost functions (9) and (14). Thus, the
Standard MPC aims to minimize the norm of the input
vector.

4.1 Plant Model

Carrying out identification experiments at DFB gasifiers is
usually an expensive task. Although industrial plants are
running continuously, they are typically operated at the
same operating points. Thus, only for a small region of the
input space measurement data is available. Our control
concept is presented for the CFM, however, the aim is
to apply it to a DFB gasifier. Therefore, we assume that
only a small data set for system identification is available.
Furthermore, we investigate the case that the quality of
data is different for different input variables. Fig. 2 shows
the data points as well as the identified steady-state model

y = −4.7660 + 0.67158u1 + 0.47462u2, (17)

describing the bed material circulation. The estimated
coefficients in (17) show that the first input u1, the
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Fig. 3. The ellipsoid gives the region, where the parameters
are located with a probability of 95 %. The red point
shows the least squares estimate of the model param-
eters. The blue points are located on the ellipsoid and
are used for closed-loop simulations.

primary air, locally has a higher influence on the bed
material circulation. Moreover, it can be seen in Fig.
2 that 8 operating points are available with different
values in the first input u1, the primary air volume flow.
For the second input u2, however, only 2 different data
points are available. This leads to higher uncertainties
for the parameter b2 describing the influence of u2 on
the output. The ellipsoid in Fig. 3 shows the region in
which the parameters are located with a probability of 95
%, described by the estimate of the parameter covariance
matrix

Σ̂ =

[
0.6974 −5.611e− 04 −0.0675

−5.611e− 04 1.403e− 04 −7.013e− 05
−0.0675 −7.013e− 05 0.0067

]
. (18)

The center of the ellipsoid corresponds to the parameter
estimate. The closed-loop simulations are done with dif-
ferent plant models, where the parameters are biased to
simulate modeling inaccuracies. The blue points in Fig. 3
show the different parameter sets used for the plant models
in the closed-loop simulations.

4.2 Circulation Control Without Input Constraints

As a first step, the MPC algorithm is tested without
any input constraints. The MV-MPC requires only one
parameter, the state weighting q in (9). This parameter is
chosen to be q = 10−2. No input weighting is necessary,
since the estimated parameter covariance matrix Σ̂ is
chosen as the input weighting in the MPC cost function.
For the Standard MPC, the state weighting q = 20 and the
input weighting matrix R = I is chosen in the MPC cost
function. With these weightings, both MPC algorithms
cause the same response to a step in the reference, as
long as there are no model inaccuracies considered in the
simulation. For the Standard MPC, the computation of the
target values is done by minimizing the norm of the input
vector. The disturbance model and the observer design are
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Fig. 4. Simulation of a step in the reference without input
constraints.

the same for both MPCs. The Kalman gain matrix L is
computed by solving the discrete-time algebraic Riccati
equation, with the process noise covariance matrix Q = I,
and the measurement noise variance R = 102.
The closed-loop simulation is carried out with the original
plant model and with 22 different plant models that are
biased in their parameters. The upper part of Fig. 4 shows
the response to a step in the reference. The solid lines show
the simulation with an unbiased plant model, which results
in the same response for the MV-MPC and the Standard
MPC. The areas around the solid lines indicate where the
output trajectories are located for the simulations with
the biased plant models. It can be seen that for the MV-
MPC approach the deviation from the design trajectory
can be reduced. For the biased plant models, also before
the step in the reference, a deviation from the reference
can be observed since the necessary control input needs to
be corrected using the disturbance model. However, for
the MV-MPC the maximum deviation from the design
trajectory before the step in the reference is around 0.05
mbar, therefore it can hardly be seen in the plot. Due
to the disturbance model, offset-free reference tracking
can be achieved with both MPCs in steady-state (Maeder
et al. (2009)). In the lower part of the figure, the input
trajectories are shown for the simulation with the unbiased
plant models. It can be seen that the MV-MPC avoids the
usage of the input u2, since changes in this input would
lead to a higher variance in the model output. The input
trajectories are also shown in Fig. 5. In this figure, also
the variance of the steady-state model output according to
(13) is shown as a function of the input. As expected, the
MV-MPC algorithm keeps the inputs in an area leading
to low uncertainties in the model output.

4.3 Circulation Control With Input Constraints

For the second simulation scenario, input constraints are
applied and a maximum value of 25 Nm3/h is set as a con-
straint for both inputs. Simulations are again performed
for the original and for biased plant models. Fig. 6 shows
the closed-loop step response plot for the MV-MPC and
the Standard MPC. Here, the output trajectories with the
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Fig. 5. MPC trajectories in the input space. The contour
lines show the model output variance: brighter colors
indicate a higher output variance and therefore a
higher model uncertainty.
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Fig. 6. Simulation of a step in the reference with input con-
straints. Both inputs are constrained to a maximum
of 25 Nm3/h.

unbiased plant model deviate for both MPCs, because the
constraints are active for different time spans. Moreover,
it can be seen that also with input constraints the MV-
MPC reduces the deviation from the design trajectory if
there are inaccurate parameters in the simulation model.
Fig. 7 shows the input trajectories and the model output
variance. Again, the MV-MPC keeps the inputs in an area
with low model uncertainties.
Table 1 shows the maximum deviations from the design
trajectory with the MV-MPC and the Standard MPC,
both for the simulation without constraints and with
constraints. With the MV-MPC the deviation can be
reduced by up to 65.9 %.

5. CONCLUSION

In this paper, an MPC algorithm has been presented,
which is beneficial for the case that there are known model
uncertainties and redundant inputs for process control.
In this case, the proposed MPC algorithm can improve
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Fig. 2. Measurement points and model for ∆p (model
output y) as a function of the inputs V̇p and V̇s.

(rk − uT
k θ̂ + d̂k)

2 (15)

is minimized by solving the quadratic program

min
uk

Jtarget = uT
k θ̂θ̂

T
uk − 2(rk + d̂k)ukθ

subj. to uk(1) = 1 (16)
umin ≤ ūk ≤ umax.

4. RESULTS AND DISCUSSION

An identification experiment to find a mathematical model
describing the input-output relationships has been carried
out at the CFM at TU Wien. The minimum variance MPC
approach is tested in simulations and compared to an MPC
which does not consider model uncertainties in its design,
hereinafter referred to as Standard MPC. For this Standard
MPC, the identity matrix is used instead of the covariance
matrix Σ in the cost functions (9) and (14). Thus, the
Standard MPC aims to minimize the norm of the input
vector.

4.1 Plant Model

Carrying out identification experiments at DFB gasifiers is
usually an expensive task. Although industrial plants are
running continuously, they are typically operated at the
same operating points. Thus, only for a small region of the
input space measurement data is available. Our control
concept is presented for the CFM, however, the aim is
to apply it to a DFB gasifier. Therefore, we assume that
only a small data set for system identification is available.
Furthermore, we investigate the case that the quality of
data is different for different input variables. Fig. 2 shows
the data points as well as the identified steady-state model

y = −4.7660 + 0.67158u1 + 0.47462u2, (17)

describing the bed material circulation. The estimated
coefficients in (17) show that the first input u1, the
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are located with a probability of 95 %. The red point
shows the least squares estimate of the model param-
eters. The blue points are located on the ellipsoid and
are used for closed-loop simulations.

primary air, locally has a higher influence on the bed
material circulation. Moreover, it can be seen in Fig.
2 that 8 operating points are available with different
values in the first input u1, the primary air volume flow.
For the second input u2, however, only 2 different data
points are available. This leads to higher uncertainties
for the parameter b2 describing the influence of u2 on
the output. The ellipsoid in Fig. 3 shows the region in
which the parameters are located with a probability of 95
%, described by the estimate of the parameter covariance
matrix

Σ̂ =

[
0.6974 −5.611e− 04 −0.0675

−5.611e− 04 1.403e− 04 −7.013e− 05
−0.0675 −7.013e− 05 0.0067

]
. (18)

The center of the ellipsoid corresponds to the parameter
estimate. The closed-loop simulations are done with dif-
ferent plant models, where the parameters are biased to
simulate modeling inaccuracies. The blue points in Fig. 3
show the different parameter sets used for the plant models
in the closed-loop simulations.

4.2 Circulation Control Without Input Constraints

As a first step, the MPC algorithm is tested without
any input constraints. The MV-MPC requires only one
parameter, the state weighting q in (9). This parameter is
chosen to be q = 10−2. No input weighting is necessary,
since the estimated parameter covariance matrix Σ̂ is
chosen as the input weighting in the MPC cost function.
For the Standard MPC, the state weighting q = 20 and the
input weighting matrix R = I is chosen in the MPC cost
function. With these weightings, both MPC algorithms
cause the same response to a step in the reference, as
long as there are no model inaccuracies considered in the
simulation. For the Standard MPC, the computation of the
target values is done by minimizing the norm of the input
vector. The disturbance model and the observer design are
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Table 1. Maximum deviation from the design

trajectory.

Standard MPC MV-MPC ∆

without constraints 0.5005 mbar 0.1705 mbar -65.94 %
with constraints 0.4756 mbar 0.1868 mbar -60.72 %

the closed-loop performance. This can be advantageous
when system identification is expensive and there are high
inaccuracies in the parameter estimates, which is often the
case for DFB plants. The deviation from the reference
can then be reduced and the bed material circulation
demanded by the plant operator can be achieved more
rapidly. Input constraints can be explicitly considered
by the algorithm. An implementation of the proposed
algorithm to the 100 kW pilot plant is envisaged.
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