
Numerical investigation of the gas jet
formation immediately after opening a

champagne bottle

Author

Lukas Wagner, BSc

Student ID number: 01426990

Supervisor

Ao.Univ.Prof. Dipl.-Ing. Dr.techn.

Stefan Braun

Institut für Strömungsmechanik und Wärmeübertragung

Vienna, October 2021

Contents

1 Abstract 3

2 Discharge Flow Behavior out of a Cylindrical Bottleneck 4

3 Physical-Mathematical Modeling 6
3.1 Dimensional Analysis . 8
3.2 Governing Equations . 9
3.3 Hyperbolic Differential Equations . 11
3.4 Euler Equations . 12
3.5 Boundary and Initial Conditions . 16

4 Numerical Treatment 17
4.1 Riemann Problem . 17
4.2 Finite Volume Methods . 24
4.3 Installation and Setup of CLAWPACK 29
4.4 PyClaw’s Framework . 31

4.4.1 Domain . 31
4.4.2 Riemann Solver . 32
4.4.3 State . 34
4.4.4 Solution . 35
4.4.5 Controller . 35

4.5 Configuration of the Numerical Simulation 36
4.5.1 Roe Solver . 37
4.5.2 Geometry of the Bottle and the Cork 44
4.5.3 Source Term due to Axial Symmetry 47
4.5.4 Numerical Implementation of the Boundary Conditions 49
4.5.5 CFL-Condition and High Resolution Methods 51

5 Discharge Flow Analysis 54
5.1 Mach Number Distribution . 57
5.2 Fluid-Cork-Interaction . 59

5.2.1 Distance between the Shock Wave and the Cork 63
5.3 Unresolved Issues and Further Improvements 68

6 Conclusion 70

7 Appendix 71

8 References 85

2

1 Abstract

The goal of this thesis is to deliver a numerical simulation concerning the emissive
behavior of pressurized CO2 gas inside a Champagne bottle in the first few milliseconds
after the cork popping. This system was proposed and experimentally performed by
[1]. The mentioned goal, the embedding of existing literature and the overall approach
regarding the proposed system are introduced in section 2. Chapter 3 describes the
theoretical background needed to create the simulation, such as the Euler equations of
a compressible fluid in cylindrical coordinates in their non-dimensional form. The next
section explains the numerical discretization via finite volume methods to update the
solution for each time step and introduces the CLAWPACK software package, which
provides the framework of this thesis’ Python and Fortran programs. The last part of
chapter 4 determines the different settings of the simulation, for example explaining the
Roe solver, and finally section 5 illustrates and explains the characteristics of the flow
without any obstacle and secondly the effects of an incorporated cork on the fluid flow
and vise versa.

3

2 Discharge Flow Behavior out of a Cylindrical
Bottleneck

This thesis is based on the experimental work of [1] and provides the numerical simulation
for the emission of gas in the first few microseconds after the popping of a champagne
bottle. In the mentioned experiment six 75 cl champagne rosé bottles with 12.5% ethanol
were used. 72 hours before the cork popping, four bottles were stored at 20 ➦C and two
at 30 ➦C to examine the effects on bottles with different temperatures and therefore also
varying pressures. During storage some dissolved CO2 gas in liquid phase transitioned
into gas phase in accordance with Henry’s law, [2]. The CO2 gas is instantly mixed with
H2O vapor, formed due to the exact same reason as for the CO2. While the pressure of
gas-phase CO2 in the sealed bottle pCO2 is 7.5 and 10.2 bar for the 20 and 30 ➦C bottle,
the pressure of H2O vapor pH2O is only 0.0203 and 0.0368 bar respectively. Because of
the small net effect of water vapor on the overall emissive behavior, only the CO2 gas
will be considered in this thesis.

Figure 1: An illustration of the given system with its corresponding reference quantities.

4

After the bottle opening, the gas mixture undergoes an adiabatic expansion, leading to
a drastic temperature decrease and velocity increase of the gas. While the temperature
drop results in the formation of a blue haze for the 20 ➦C bottles due to Rayleigh scattering
and a gray-white fog for the 30 ➦C bottles due to Mie-scattering, for this thesis the
effects of the sudden velocity increase are considered more thoroughly. The emitting
gas speeds up in a way that the velocity reaches Mach numbers M > 1, leading to the
creation of shock waves in the form of Mach disks. This phenomenon and its temporal
progression are described by the Euler equations of a compressible fluid, considering
axial symmetry, which are solved numerically via Godunov’s finite volume method with
the implementation of the Roe solver.

5

3 Physical-Mathematical Modeling

As mentioned in the previous section, the CO2 gas is the major contributor, regarding
the emissive behavior of the fluid, due to its high gas pressure compared to the one for
gaseous H2O. This results in a two-phase mixture, initially being CO2 inside and air
outside of the bottle. To drastically simplify the given problem and therefore also the
necessary equations, the CO2 is exchanged with pressurized air, so that ultimately a
single-phase system is proposed.

To mathematically describe the physical problem, a set of conservation laws, material,
thermal and caloric equations must be given, so that the number of existing equations
matches the number of unknown physical quantities, [3]. In this case the desired quan-
tities are: the fluid’s mass density ρ, three velocity components vi due to the system’s
given dimensions, pressure p and energy density E (N = 6). The latter is defined as

E = ρ
�
e+

vivi

2

�
, (1)

where ρe is the internal energy density.

While the conservation laws and material equations will be considered in section 3.2, the
thermal and caloric equations of state describe the type of fluid and are introduced in this
section. For the expected magnitude of the pressures and temperatures the assumption
of an ideal gas is sufficient and therefore the ideal gas equation is used as the thermal
equation of state,

p =
ρRT

M , (2)

where R is the universal gas constant, T the absolute temperature and M the molar
mass of the fluid.

The following set of caloric equations of state holds true for an ideal gas and results in

e =
f

2

p

ρ
=

f

2

RT

M
, h = e+

p

ρ
=

�f
2
+ 1

� RT

M
, (3)

where ρh is the internal enthalpy density and f are the degrees of freedom
(f = 5 for air), [22].

Another major quantity, which will be the only source of information concerning the
type of fluid in the final equations, is the heat-capacity ratio κ

κ =
cp
cV

=

�
∂h
∂T

�
p�

∂e
∂T

�
V
, (4)

6

where V = 1/ρ is the specific volume, cp and cV are the heat capacities at constant
pressure and volume, respectively.

Inserting (3) into (4), a relation between the heat-capacity ratio and the degrees of
freedom can be found.

κ =
f + 2

f
(5)

With the definition of κ, e and h can be written as

e =
1

κ− 1

p

ρ
+ const , h =

κ

κ− 1

p

ρ
+ const , (6)

where const is set to be 0.

Therefore E can be calculated to

E =
p

κ− 1
+ ρ

vivi

2
. (7)

The relation between E and all other quantities in (7) reduces the number of unknown
quantities by one (N = 5), so that p is chosen to be a dependent quantity.

The speed of sound c is given by

c =

��∂p
∂ρ

�
s
=

�
κ
p

ρ
, (8)

where s is the entropy.

The following equation describes the total enthalpy density ρH.

H = h+
vivi

2
(9)

Defining the second half of (6) as a function of E and inserting it into (9), yields

H = κ
E

ρ
− (κ− 1)

vivi

2
. (10)

Note, that the proposed system is time-dependent, therefore the physical quantities
depend on three spatial dimensions xi, which define the position vector rm, and the time
t. However, for better readability, these parameters will never be explicitly mentioned
in equations, unless the dependency is of any importance. All vectors are denoted
by a single and matrices by two superscripts. If two indices are the same, Einstein’s
summation convention is used.

7

3.1 Dimensional Analysis

The whole set of equations and unknown quantities, as well as the parameters are
dimension-afflicted, which means that for each different system the set of differential
equations, introduced in section 3.2, has to be calculated individually, even if its initial
state only varies in one constant. The latter would be the case, when designing a model
for a physical object with the same proportions, but a usually smaller size. This issue
can be solved by dimensional analysis. Hereby all physical quantities b̃ are split into a
non-dimensional part b and a reference-quantity b0, while the second one always stays

constant (b̃ → b b0).

For rm and t a proper reference length d0 and time τ0 = d0/c0 are chosen, which suit the
given system, whereas for the unknown quantities, defined as the vector qi, the reference
quantities resemble the initial conditions of the environment (see appendix).

q̃i(t) =

 ρ̃
ρ̃ ṽi

Ẽ

 , q̃i(t = 0) →
1 · ρ0
0 · ρ0 c0
1 · E0

 =

ρ0
0
E0

 (11)

The non-dimensional functions are equal for all systems with the same proportions and
dependencies and are either 1 or 0 for the environment at t = 0, as seen in the second
vector of (11). 0 in the second column shows that the initial conditions consider a static
fluid, while 1 symbolizes that there must be a given mass and energy density present
from the beginning.

The equations are then written in non-dimensional form, transforming E, c and H to

E = p+ κ0(κ0 − 1) ρ
vivi

2
, (12)

c =

�
p

ρ
=

√
T , (13)

H =
E

ρ
− (κ0 − 1)2 · v

ivi

2
, (14)

where κ is already defined as a non-dimensional constant, therefore κ̃ → κ0.

H can also be written in terms of velocities,

H = c2 + (κ0 − 1)
vivi

2
(15)

8

3.2 Governing Equations

The overall goal is to find a set of equations, which describes the spatial and temporal
evolution of a viscous fluid in the presence of a stress tensor σij and a heat flux Qi. This
set has to comply with physical laws conserving the quantities mass, momentum and
energy. The approach is completely based on continuum mechanics, is independent of
the fluid’s molecular structure and finally leads to the Navier-Stokes-equations.

At first, σij is defined as a continuous function with respect to the strain-rate tensor
Dij , considering spatial homogeneity. A Newtonian fluid is characterized by a linear
dependency of σij with respect to Dij and results in its material equation

σij =
�− p+ µ̄∇kvk

�
δij + 2µDij , (16)

where µ̄ is the volume and µ the dynamic viscosity of the fluid, ∇k the Nabla operator
and δij the Kronecker-delta.

The Navier-Stokes-equations are called the continuity equation (17), the equation of
motion (18) and the energy equation (19), each considering the conservation of mass,
momentum and energy, respectively, [3].

Sr
∂ρ

∂t
+ vi ∇iρ+ ρ∇ivi = 0 , (17)

Sr ρ
∂vi

∂t
+ ρ vj∇jvi = −Eu∇ip+

1

Re

�
∇i

�
µ̄∇kvk

�
+∇j

�
2µDij

��
+

1

Fr2
ρeig , (18)

ρ
�
Sr

∂h

∂t
+ vi∇ih

�
− Eu Ec

�
Sr

∂p

∂t
+ vi∇ip

�
=

Ec

Re
Φ− 1

Re Pr
∇iQi , (19)

where eig is the unit vector pointing in the direction of an external force, Φ is the dissi-
pation function and Sr, Eu, Fr, Re, Ec, Pr are the system’s non-dimensional groups:

1. Strouhal number

2. Euler number

3. Froude number

4. Reynolds number

5. Eckert number

6. Prandtl number

Note, that (17)-(19) are nonlinear and that the Navier-Stokes-equations are written in
non-dimensional form. The magnitudes of the corresponding non-dimensional groups
allow the simplification of the given conservation laws, so that ultimately the Euler
equations of a compressible fluid can be deduced.

9

Order of Magnitude Estimates:

The non-dimensional groups contained in the Navier-Stokes-equations are fractions of
reference quantities which depend on the given system. These numbers are named after
their inventors:

❼ Strouhal number . . . Sr =
d0
c0 τ0

= 1

❼ Euler number . . . Eu =
p0
ρ0 c20

=
1

κ0

❼ Froude number . . . Fr =
c0√
g0 d0

≈ 817 → 1

Fr2
≈ 10−6

❼ Reynolds number . . . Re =
c0 d0 ρ0
µ0

≈ 4.07 · 105 → 1

Re
≈ 10−6

❼ Eckert number . . . Ec =
c20

cp0 T0

= κ0 − 1

❼ Prandtl number . . . Pr =
µ0 cp0
λ0

≈ 0.700

Since 1/Fr2 and 1/Re are very small compared to the other values, gravitational and
viscous effects are neglected in the present study. Due to these simplifications, the
Navier-Stokes-equations reduce to the Euler equations for an inviscid, adiabatic, com-
pressible gas flow:

Sr
∂ρ

∂t
+ vi ∇iρ+ ρ∇ivi = 0 , (20)

Sr ρ
∂vi

∂t
+ ρ vj∇jvi + Eu∇ip = 0 , (21)

ρ
�
Sr

∂h

∂t
+ vi∇ih

�
− Eu Ec

�
Sr

∂p

∂t
+ vi∇ip

�
= 0 . (22)

Because material equations are used to describe the dependency of any heat flux or
viscous stress on the temperature or velocity gradient, they are not considered in this
thesis, [3]. Another reason for their redundancy is the already achieved number of
required equations (N = 5), with the consideration of (21) being 3 separate equations.

The Euler equations in the form of (20)-(22) still require two modifications to be solvable
for a broad spectrum of problems. The first one is expressing the equations in divergence
form. This expression allows the definition of a speed matrix, which finally results in
an eigenvalue problem. The second requirement is the definition of a proper coordinate
system, in the present case the cylindrical coordinates.

10

3.3 Hyperbolic Differential Equations

Hyperbolic partial differential equations arise wherever a physical process can be de-
scribed by a wave motion. This phenomenon is the case in disciplines like Newtonian
mechanics, thermodynamics, electrodynamics, optics and many more. The unknown
functions describing the system are again indicated by qi and can be calculated with an
important class of homogeneous hyperbolic equations called conservation laws, [4].

The general divergence form of these laws denoted in Einstein notation is

∂qi(rm, t)

∂t
+∇jf ij(qk(rm, t)) = 0 , (23)

where f ij is the flux matrix.

Modifying the total derivative ∇jf ij by using the chain rule, yields

∂qi(rm, t)

∂t
+

∂f ij(qk(rm, t))

∂qk
∇jqk = 0 . (24)

One of the main tasks of this thesis is to transform equations in the form of (24) into a
quasilinear divergence form like

∂qi(rm, t)

∂t
+

3�
l=1

Aij
l

∂qj(rm, t)

∂xl

= Ψi(qk(rm, t), rm, t) (25)

for the special case of a compressible Euler fluid in cylindrical coordinates.

Ψi represents a source term and Aij
l = ∂f i

l / ∂q
j is the Jacobean or speed-matrix

of the flux term f i
l .

The total flux is defined as the sum of all flux terms: f i =
�
l

f i
l

11

3.4 Euler Equations

The Euler equations describe the motion and behavior of inviscid fluids, in this thesis
assuming no inner friction (viscosity η = 0) and an adiabatic expansion. The continuity
equation (26), the equation of motion (27) and the energy equation (28) are derived from

the dimensional form of (20)-(22) and transformed into the form of (23), resulting in

∂ρ

∂t
+∇i

�
ρvi

�
= 0 , (26)

∂

∂t
(ρvi) +∇j

�
δijp+ ρvivj

�
= 0 , (27)

∂E

∂t
+∇i

�
vi(E + p)

�
= 0 . (28)

The general Euler equations (26) to (28) are coordinates-independent. In order to trans-
form these equations, the basis unity vectors and the corresponding Nabla operator must
be known. The basis B in cylindrical coordinates is defined as

B =

�
êir =

cos(φ)
sin(φ)

0

 , êiφ =

− sin(φ)
cos(φ)

0

 , êiz =

0
0
1

�
. (29)

Every vector inside this space can be written as a linear combination of these unit vectors.
Therefore the position and velocity vectors are

rm = rêmr , vi = uêir + vêiφ + wêiz . (30)

The general Nabla operator is defined as

∇i =
∂

∂ri
=

�
l

1

hl

êil
∂

∂xl

, (31)

where hl =
��∂rm
∂xl

�� .
For cylindrical coordinates (31) becomes

∇i = êir
∂

∂r
+

1

r
êiφ

∂

∂φ
+ êiz

∂

∂z
. (32)

12

The main assumption for the given problem of the gas discharge through a bottle neck
is axial symmetry. All quantities solely depend on r and z, but not on φ. Therefore the
system can be depicted in only two dimensions and the derivative of any function with
respect to ∂

∂φ
, as well as the velocity component v in the φ-direction become zero. Only

the unit vectors still depend on φ and therefore ∂
∂φ
êir = êiφ. This fact will be important

for the calculation of the source term Ψi outlined below.

The overall number of unknown quantities therefore decreases by one (N = 4), as
well as the number of given equations (the second equation of (27), considering the
φ-component, yields: 0 = 0). All other conservation laws in cylindrical coordinates are
calculated by inserting vi from (30) and ∇i from (32) into (26)-(28).

∂ρ

∂t
+
�
êir

∂

∂r
+

1

r
êiφ

∂

∂φ
+ êiz

∂

∂z

��
ρ
�
uêir + wêiz

��
= 0 (33)

∂

∂t

�
ρ
�
uêir + wêiz

��
+
�
êir

∂

∂r
+

1

r
êiφ

∂

∂φ
+ êiz

∂

∂z

�
p+

�
êjr

∂

∂r
+

1

r
êjφ

∂

∂φ
+ êjz

∂

∂z

��
ρ
�
uêir + wêiz

� �
uêjr + wêjz

��
= 0

(34)

∂E

∂t
+
�
êir

∂

∂r
+

1

r
êiφ

∂

∂φ
+ êiz

∂

∂z

���
uêir + wêiz

� �
E + p

��
= 0 (35)

After expanding all products by multiplication and solving the derivatives, the actual
form of the continuity equation (36), the equation of motion in the r-direction (37) and
the z-direction (38), as well as the energy equation (39) can be seen.

∂ρ

∂t
+

∂

∂r

�
ρu

�
+

∂

∂z

�
ρw

�
= −ρu

r
(36)

∂

∂t

�
ρu

�
+

∂

∂r

�
p+ ρu2

�
+

∂

∂z

�
ρuw

�
= −ρu2

r
(37)

∂

∂t

�
ρw

�
+

∂

∂z

�
p+ ρw2

�
+

∂

∂r

�
ρuw

�
= −ρuw

r
(38)

∂E

∂t
+

∂

∂r

�
u(E + p)

�
+

∂

∂z

�
w(E + p)

�
= −u(E + p)

r
(39)

To finally be able to transform (36)-(39) into the shape of (25), qi, Ψi and f i = f i
r + f i

z

must be identified.

13

qi =




ρ
ρu
ρw
E

�� =




q1
q2
q3
q4

�� , Ψi = −1

r




ρu
ρu2

ρuw
u(E + p)

�� = −1

r




q2

q22/q1
q2q3/q1

q2
q1

�
q4 + p(qi)

�
��

f i
r =




ρu

p+ ρu2

ρuw
u(E + p)

�� =




q2

p(qi) + q22/q1
q2q3/q1

q2
q1

�
q4 + p(qi)

�
�� , f i

z =




ρw
ρuw

p+ ρw2

w(E + p)

�� =




q3

q2q3/q1
p(qi) + q23/q1
q3
q1

�
q4 + p(qi)

�
��

(40)

p(qi) can be calculated from (7) to give

p(qi) = (κ− 1)E − ρ
vivi

2
= (κ− 1)q4 − q22 + q23

2q1
. (41)

With the definition of f i
r and f i

z, the corresponding Jacobean matrices can be calculated
to yield

Aij
r =




0 1 0 0

∂p
∂q1

− �
q2
q1

�2 ∂p
∂q2

+ 2 q2
q1

∂p
∂q3

∂p
∂q4

− q2q3
q21

q3
q1

q2
q1

0

q2
q1

�
∂p
∂q1

− p+q4
q1

�
1
q1

�
q2

∂p
∂q2

+ p+ q4
�

q2
q1

∂p
∂q3

q2
q1

�
∂p
∂q4

+ 1
�

���� , (42)

Aij
z =




0 0 1 0

− q2q3
q21

q3
q1

q2
q1

0

∂p
∂q1

− �
q3
q1

�2 ∂p
∂q2

∂p
∂q3

+ 2 q3
q1

∂p
∂q4

q3
q1

�
∂p
∂q1

− p+q4
q1

�
q3
q1

∂p
∂q2

1
q1

�
q3

∂p
∂q3

+ p+ q4
�

q3
q1

�
∂p
∂q4

+ 1
�

���� . (43)

Aij
r and Aij

z look rather similar. This is the reason why the eigenvalues are the same,
when exchanging the velocity components u and w, which is shown in section 4.1 .

14

Performing dimensional analysis transforms the source and flux terms to

Ψi = −1

r




ρu
ρu2

ρuw
u
�
E + (κ0 − 1) p

�
�� ,

f i
r =




ρu

p/κ0 + ρu2

ρuw
u
�
E + (κ0 − 1) p

�
�� , f i

z =




ρw
ρuw

p/κ0 + ρw2

w
�
E + (κ0 − 1) p

�
�� .

(44)

These relations finally lead to the non-dimensional form of the Jacobean matrices.

Aij
r =




0 1 0 0

(κ0 − 1) u2+w2

2
− u2 (3− κ0)u −(κ0 − 1)w 1

κ0

−uw w u 0

κ0u
�
(κ0 − 1)2 u2+w2

2
−H

�
κ0

�
H − (κ0 − 1)2u2

� −κ0(κ0 − 1)2uw κ0u

����� (45)

Aij
z =




0 0 1 0

−uw w u 0

(κ0 − 1) u2+w2

2
− w2 −(κ0 − 1)u (3− κ0)w

1
κ0

κ0w
�
(κ0 − 1)2 u2+w2

2
−H

� −κ0(κ0 − 1)2uw κ0

�
H − (κ0 − 1)2w2

�
κ0w

����� (46)

Note, that (42) and (43) have to be modified by multiplying 1/κ0 in row 2 or 3 and
(κ0 − 1) in row 4 with every p to result in (45) and (46). The reason for that is because
f i
r and f i

z have been changed by dimensional analysis too.

15

3.5 Boundary and Initial Conditions

Since viscous effects are neglected in the present study, the no-slip condition cannot
be satisfied at solid walls. Instead, the no-penetration condition at solid boundaries is
applied, [3].

(vi − viw) n̂
i = 0 , (vi − viw) t̂

i �= 0 , n̂i t̂i = 0 (47)

viw is the velocity of the wall, n̂i and t̂i are the normal and tangent unit vectors.

The last requirement for solving any set of differential equations, describing unsteady
processes, are initial conditions. These define the initial state of the system or rather
the value of qi at t = 0, as briefly mentioned in section 3.1.

16

4 Numerical Treatment

4.1 Riemann Problem

The Riemann problem is defined as the combination of the given equations and very
special initial conditions, consisting of a piecewise constant function with at least one
jump discontinuity, [4]. Since (25) has a quasi-linear form, the general solution must be
a linear superposition of plane waves moving in the direction of the corresponding unit
vector n̂m, which can be any linear combination of the basis vectors: n̂m = nrê

m
r +nz ê

m
z .

In addition, each wave propagates at constant speed s.

Therefore the solution looks like

qi(rm, t) = q̄i(n̂m rm − st) . (48)

Applying the first derivative with respect to time and the spatial dimensions yields

∂qi(rm, t)

∂t
= −s q̄ �i(n̂m rm − st) ,

∂qj(rm, t)

∂xl

= n̂m ∂rm

∂xl

q̄ �j(n̂m rm − st) .

(49)

For the r- and z-directions, n̂m ∂rm

∂xl
equals nr and nz, respectively.

Therefore the homogeneous part of (25) simplifies to

�
nrA

ij
r + nzA

ij
z

�
q̄ �j(n̂m rm − st) = s q̄ �i(n̂m rm − st) . (50)

(50) requires that both Aij
r and Aij

z are diagonalizable with real eigenvalues λr p, λz p and
eigenvectors rir p, r

i
z p (=hyperbolicity condition), so that ultimately qi can be obtained

from them.

In this thesis the non-dimensional eigenvalues and eigenvectors are calculated as fol-
lows.

17

λr 1 = u− c : rir 1 =




1

u− c
w

κ0

�
H − (κ0 − 1)uc

�
��

λr 2 = u : rir 2 =




1
u
w

κ0

�
H − c2

�
�� , λr 3 = u : rir 3 =




0
0
1

κ0(κ0 − 1)w

��

λr 4 = u+ c : rir 4 =




1

u+ c
w

κ0

�
H + (κ0 − 1)uc

�
��

(51)

λz 1 = w − c : riz 1 =




1
u

w − c
κ0

�
H − (κ0 − 1)wc

�
��

λz 2 = w : riz 2 =




1
u
w

κ0

�
H − c2

�
�� , λz 3 = w : riz 3 =




0
1
0

κ0(κ0 − 1)u

��

λz 4 = w + c : riz 4 =




1
u

w + c
κ0

�
H + (κ0 − 1)wc

�
��

(52)

The general form of (50) allows the definition of qi to be some linear combination of the
eigenvectors and therefore a superposition of waves propagating at different velocities,
denoted by the eigenvalues, [4]:

qi(rm, t) =
4�

p=1

�
wr p(n̂

m rm − λr p t) r
i
r p + wz p(n̂

m rm − λz p t) r
i
z p

�
, (53)

where the functions wp(r
m, t) = wp(n̂

m rm−λp t) are called the characteristic variables.

18

(53) can further be written as a sum of matrix-multiplications of wj = (w1, ... , w4) with
the transformation matrices T ij = (ri1, ... , r

i
4),

qi(rm, t) = T ij
r wj

r(r
m, t) + T ij

z wj
z(r

m, t) . (54)

The Jacobean matrices can be transformed into their diagonal matrices Λkl as well,

Aij = T ikΛklT lj−1

, Λkl =


λ1

. . .

λ4

� . (55)

(55) is needed to validate the proposed form of qi, so that an eigenvalue problem must
arise again when inserting (54) and (55) into the homogeneous part of (25),

T ij
r

∂wj
r

∂t
+ T ik

r Λkl
r T

lj−1

r T jm
r

∂wm
r

∂r
= 0 ,

T ij
z

∂wj
z

∂t
+ T ik

z Λkl
z T

lj−1

z T jm
z

∂wm
z

∂z
= 0 .

(56)

Simplifying (56) yields

∂wi
r

∂t
+ Λij

r

∂wj
r

∂r
= 0 ,

∂wi
z

∂t
+ Λij

z

∂wj
z

∂z
= 0 ,

(57)

which further reveals two eigenvalue problems independent from each other. The ad-
vantage of (57) compared with (50) is that its problem can be written as a set of scalar
equations, when considering the properties of diagonal matrices.

∂wr p

∂t
+ λr p

∂wr p

∂r
= 0

∂wz p

∂t
+ λz p

∂wz p

∂z
= 0

(58)

19

The solutions of (58) are the already known characteristic variables in the form of

wp(r
m, t) = ẘp(n̂

m rm − λp t) = ljp q̊j(n̂m rm − λp t) , (59)

where ljp are the left eigenvectors or the row-entries of the inverse transformation

matrices T ij−1
. The circle over some letters denotes the initial value of that quantity

q̊i = qi(t = 0).

Finally, qi can be written in terms of its initial value as

qi(rm, t) =
4�

p=1

�
ljr p q̊

j(n̂m rm − λr p t) r
i
r p + ljz p q̊

j(n̂m rm − λz p t) r
i
z p

�
. (60)

Domain of Dependence and Range of Influence

(60) shows, that qi(rm, t) only depends on q̊i at, especially in this thesis, four particular
points n̂m rm−λp t for a given n̂m. This set of points is called the domain of dependence
of the point (rm, t). The value of q̊i at other points has no influence on the value of qi at
(rm, t). This is only the case for linear hyperbolic equations and is the result from the
fact that information propagates at finite speed. This fact is later discussed in relation
to the CFL condition in section 4.5.5.

Another way to represent the domain of dependence is to focus on a single point rm0
at time t = 0 and consider the influence of q̊i(rm0) on the solution qi(rm, t). The initial
condition will again only affect the solution along the characteristic lines n̂m rm0 + λp t.
This set is called the range of influence of the point rm0 , [4].

Figure 2: For a typical hyperbolic system of three equations with λ1 < 0 < λ2 < λ3,
(a) domain of dependence of the point (X, T),
(b) range of influence of the point x0, [4].

20

Discontinuous Solutions

(60) can even be used, when the initial data q̊i is neither smooth nor continuous at
some points. If q̊i has a singularity at rm0 , at least one characteristic variable wp(r

m
0 , 0)

will have one at that point as well. These singularities can then lead to ones in the
solution qi at some or even all points n̂m rm0 +λp t. Conversely, if q̊

i is smooth in a small
region around the line n̂m rm − λp t, then the solution qi must also be smooth in the
neighborhood of the point (rm, t), [4].

When considering special initial data that is constant everywhere, except for a single
jump discontinuity, q̊i can be split into a continuous left and right side. This split can
be performed separately for each dimension and in the following will therefore only be
mentioned once,

q̊i(rm) =

�
n̂m rm < 0 : qil
n̂m rm > 0 : qir

. (61)

qil and qir can be defined in terms of a linear combination of the corresponding charac-
teristic variables as well,

qil =
4�

p=1

wl p rip , qir =
4�

p=1

wr p rip . (62)

The discontinuity propagates with speed λp and therefore wp is split into

wp(r
m, t) =

�
n̂m rm − λp t < 0 : wl p

n̂m rm − λp t > 0 : wr p

. (63)

Finally qi consists of two solutions, one left and the other one right from the singularity,

qi(rm, t) =
4�

p: n̂mrm<λpt

wl p rip +
4�

p: n̂mrm>λpt

wr p rip . (64)

21

Figure 3: Construction of the solution to the Riemann problem at (X, T) for a system
of 3 equations, [4].

Note, that the solution is constant between two lines of n̂mrm − λpt = 0, as seen in
figure 3. The p-th jump from wl p to wr p is defined as

�
wr p − wl p

�
rip = αp rip . (65)

Being a scalar multiple of rip with the constant αp, the jump is an eigenvector of the
Jacobean matrix Aij (=Rankine–Hugoniot jump condition). Because of (65), the total
jump from qil to qir can be written as

qir − qil =
4�

p=1

αp rip =
4�

p=1

W i
p , (66)

where W i
p is the p-th wave in the solution of the Riemann problem.

The solution qi can then be written in terms of the waves in two different forms

qi(rm, t) = qil +
4�

p: n̂mrm>λpt

W i
p ,

qi(rm, t) = qir −
4�

p: n̂mrm<λpt

W i
p .

(67)

The first equation of (67) can also be depicted with the use of the Heaviside step function
H:

qi(rm, t) = qil +
4�

p=1

H(n̂mrm − λpt) W
i
p . (68)

22

The Phase Plane

The splitting of qir − qil can be viewed in state space, where each vector qi is represented
by a point in a, for this case, four-dimensional space. For clearer explanation, only a
system of two equations will be considered in this section. Therefore the state space can
be described by the so-called phase plane. Since qir − qil is an eigenvector of Aij, the line
from qil to qir must be parallel to the eigenvector ri1 or ri2 (see figure 4(a)). These lines
give the set of all possible states (=Hugoniot loci), that can be connected to qil by the
waves W i

1 or W i
2. This result is the same for qir.

For a general Riemann problem with two equations and arbitrary qil and qir, the solution
consists of two discontinuities traveling with speeds λ1 and λ2 and a new constant state
qim in between them (see figure 4(b)), [4],

qim = wr 1 ri1 + wl 2 ri2 , (69)

so that qim − qil = (wr 1 − wl 1) r
i
1 and qir − qim = (wr 2 − wl 2) r

i
2.

Figure 4: (a) The Hugoniot loci of the state qil .
(b) Solution to the Riemann problem in the x–t plane, [4].

Considering a system with four dimensions again, (66) can be used to obtain a piecewise
linear path from qil to qir in four-dimensional state space.

23

4.2 Finite Volume Methods

A finite volume method subdivides the system’s spatial domain into small, but finite
volumes, the so-called grid cells, and considers an approximation to the integral of qi

over each of these volumes. This kind of method also deals with discrete time steps
by updating all values, using approximations to the flux through the boundaries of the
given domain.

The average value of qi over the m-th cell at time tn is defined as

Qi(rim, tn) ≈
1

ΔV (rim)

�
ΔV (rim)

qi(ri, tn) dV . (70)

For better clarity, from (70) on every vector is going to be denoted by the index i,
including the position vector ri.

ΔV (rim) is the volume of the m-th cell and only depends on the position of the cell center
rim, assuming a static grid. For a constant ΔV the cells are evenly spaced, which is the
definition of a uniform grid. If qi is a smooth function, the integral in (70) agrees with
its value at the cell center to O(ΔV (rim)

2), [4].

The integral form of the conservation laws from (23) generally gives

d

dt

�
ΔVm

qi(ri, t) dV = f i
in

�
qi(rim, t)

�− f i
out

�
qi(rim, t)

�
, (71)

where f i
in is the total flux into and f i

out out of the m-th cell, and ΔVm = ΔV (rim).

The integral form can then be used to develop an explicit time-marching algorithm.
Integrating (71) over a single time step from tn to tn+1 yields

�
ΔVm

�
qi(ri, tn+1)− qi(ri, tn)

�
dV =

tn+1�
tn

�
f i
in

�
qi(rim, t)

�− f i
out

�
qi(rim, t)

��
dt . (72)

Rearranging (72), dividing by ΔVm and using the definition of (70) gives

Qi(rim, tn+1) = Qi(rim, tn)−
Δtn
ΔVm

�
F i
out(r

i
m, tn)− F i

in(r
i
m, tn)

�
, (73)

where F i(rim, tn) is defined as some approximation to the average flux over the time step
Δtn = tn+1 − tn,

24

F i(rim, tn) ≈
1

Δtn

tn+1�
tn

f i
�
qi(rim, t)

�
dt . (74)

The average flux can be approximated based on the values of the surrounding cells. This
leads to a fully discrete method.

In one dimension the incoming average flux can be described only by the value Qi of the
given cell and its left neighbor and the outgoing flux by the value of the given cell and
its right neighbor,

Figure 5: Illustration of a finite volume method for updating the cell average
Qn

i = Q(xi, tn) by fluxes at the cell edges F n
i−1/2 = Fin(xi, tn),

F n
i+1/2 = Fout(xi, tn), shown in x–t space, [4].

F i
in(xm, tn) = F i

�
Qi(xm−1, tn), Q

i(xm, tn)
�
,

F i
out(xm, tn) = F i

�
Qi(xm, tn), Q

i(xm+1, tn)
�
,

(75)

where F i is some numerical flux vector.

In this one-dimensional case the updated vector Qi(xm, tn+1) only depends on three
values: Qi(xm−1, tn), Q

i(xm, tn) and Qi(xm+1, tn).

The sum of all flux differences cancels out, except for the fluxes at the domain’s edges.
Therefore all values of Qi are conserved, except in the outermost cells of the domain,
which must be solved by boundary conditions, [4].

25

Godunov’s Method

Godunov’s method revolutionized the field of computational fluid dynamics by providing
a solution for systems of equations, where information propagates in different directions
and where discontinuities, like shock waves, can be present.

The method consists of the following three steps:

❼ Definition of a piecewise polynomial function q̃i(ri, tn) for all r
i at time tn,

❼ Definition of the in- and outgoing fluxes,

❼ Application of the flux-differencing formula from (73).

The simplest form of q̃i is denoted by constants inside the cells and can therefore solely
be represented by the average value of qi,

q̃i(ri, tn) = Qi(rim, tn), ri ∈ ΔVm . (76)

For the case of hyperbolic systems that are not in conservation form, q̃i will typically
have at least one discontinuity inside every cell. For example, a linear system of three
one-dimensional equations with eigenvalues λ1 < 0 < λ2 < λ3 has three discontinuities in
the m-th grid cell at the points xm−1/2+λ2 Δtn, xm−1/2+λ3 Δtn and xm+1/2+λ1Δtn.

Instead of trying to work with q̃i directly, the new cell averages are calculated by con-
sidering the waves of the Riemann problem and their corresponding speeds. The first
ones can be expressed by transforming (66) into its numerical, one-dimensional form

Qi(xm, tn)−Qi(xm−1, tn) =
�
p

W i
p(xm−1/2, tn) , (77)

where W i
p is the numerical p-th wave at the left boundary of the m-th cell.

Figure 6: The wave movement of a system with three one-dimensional equations.
Wp

i−1/2 = Wp(xi−1/2, tn), λ2 = λ2, [4].

26

The Riemann problem depicted in figure 6 is solved at each cell interface and the wave
structure is used to determine Qi(x, tn+1). After the passing of the time step Δtn, the
wave W i

2, for example, has moved the distance λ2 Δtn. This movement results in the
decrease of the average value of qi by the amount

− λ2Δtn
Δxm

W i
2(xm−1/2, tn) , (78)

where Δxm = xm+1/2 − xm−1/2 is the length of the m-th cell. The minus sign arises
because W i

2 measures the jump from right to left.

The new cell average can be found by simply adding up these independent effects,

Qi(xm, tn+1) = Qi(xm, tn)− Δtn
Δxm

�
p

�
λ+ p W i

p(xm−1/2, tn)+λ− p W i
p(xm+1/2, tn)

�
, (79)

where λ+ p = max(λp, 0) and λ− p = min(λp, 0).

For a better approach regarding the physical properties of the waves, the net effects of all
right-traveling waves from the left edge of them-th cell are defined as Aij

+ ΔQj(xm−1/2, tn)

and the left-traveling waves from the right edge as Aij
− ΔQj(xm+1/2, tn). These net effects

are called wave fluctuations.

Using the diagonal form of the Jacobean matrix from (55) and defining Λkl
+ as the

diagonal matrix of all λ+ p and Λkl
− of all λ− p, A

ij
+ and Aij

− are stated as

Aij = T ikΛkl T lj−1

= T ik
�
Λkl

+ + Λkl
−
�
T lj−1

= Aij
+ + Aij

− ,

Aij
+ = T ikΛkl

+ T lj−1

, Aij
− = T ikΛkl

− T lj−1

.
(80)

The splitting of Aij is essential for describing the wave fluctuations in terms of the total
amount of right- or left-traveling waves,

Aij ΔQj = T ikΛkl T lj−1
�
p

Wj
p =

�
p

rip λp l
j
p αp r

j
p =

�
p

λp W i
p . (81)

27

This leads to the final form of the fluctuations

Aij
+ ΔQj(xm−1/2, tn) =

�
p

λ+ p W i
p(xm−1/2, tn) ,

Aij
− ΔQj(xm+1/2, tn) =

�
p

λ− p W i
p(xm+1/2, tn) .

(82)

As a consequence (79) becomes

Qi(xm, tn+1) = Qi(xm, tn)− Δtn
Δxm

�
Aij

+ ΔQj(xm−1/2, tn) + Aij
− ΔQj(xm+1/2, tn)

�
. (83)

To transform (83) into (73), the in- and out-going average fluxes for a general linear
problem must be defined as

F i
in(xm, tn) = f i

�
Qi(xm, tn)

�− Aij
+ ΔQj(xm−1/2, tn) ,

F i
out(xm, tn) = f i

�
Qi(xm, tn)

�
+ Aij

− ΔQj(xm+1/2, tn) ,
(84)

where f i is the flux term defined in section 3.3.

For a conservative system the in-going average flux must cancel out the out-going one
at the cell interface xm−1/2 inside the domain, hence

F i
out(xm−1, tn)− F i

in(xm, tn) = 0 ,

Aij
− ΔQj(xm−1/2, tn) + Aij

+ ΔQj(xm−1/2, tn) = f i
�
Qi(xm, tn)

�− f i
�
Qi(xm−1, tn)

�
.

(85)

The difference between the fluxes is split into a left-going fluctuation updating Qi(xm−1)
and a right-going one updating Qi(xm). This method is called flux-difference splitting
and is often used for the calculation of (83).

28

4.3 Installation and Setup of CLAWPACK

The CLAWPACK software package, [5], delivers a wide range of algorithms, which ap-
ply to a variety of hyperbolic systems, by providing the appropriate Riemann solver
along with the basic framework for creating the user’s Fortran or Python program. It
also includes templates and examples, which were very helpful in designing this thesis’
program. Further information can be obtained from [5].

In this thesis the installation of CLAWPACK is done on an Ubuntu-subsystem of a
Windows PC because it was only possible to run the software package directly on a
Linux kernel. Therefore the following section can be skipped when already working on
any Linux distribution.

Installation of the Ubuntu-Subsystem

For Windows 10 Ubuntu can be installed from the Microsoft Store. Under default
configuration the whole environment is saved inside the folder:

C:\Users*user*\AppData\Local\ Packages\CanonicalGroupLimited.
UbuntuonWindows 79rhkp1fndgsc\LocalState\rootfs .

After choosing a username and a password, the system must be updated with the com-
mand: sudo apt update.
Then, Python’s package installer pip, the Fortran compiler gfortran and the mathe-
matical package for Python, called NumPy, must all be downloaded via the following
commands.

sudo apt install gfortran
sudo apt install python3-pip
sudo apt install python3-numpy

Note, that for this thesis CLAWPACK was compiled with python3 as well as gfortran.
For later versions of Python or other Fortran compilers, all three commands must be
changed accordingly.

Installation of CLAWPACK

CLAWPACK’s current version (in this case v5.8.0) can be downloaded as a tar-file from
[6]. After copying the file to anywhere inside the environment folder, the command
sudo tar -xzf clawpack-v5.8.0.tar.gz unpacks the file into a folder with the same name.
Opening it with cd clawpack-v5.8.0, reveals the data structure of the software. Inside this
folder the following command finally installs CLAWPACK, so that it can be used inside
every Python script: sudo python3 setup.py config fc ––fcompiler=gfortran install

29

Installation of Pycharm

PyCharm is an integrated development environment (=IDE) and therefore simplifies
the process of editing, compiling and error finding. While for a native Linux machine
the setup of Pycharm is rather straightforward, additional configurations need to be
applied for the Ubuntu-subsystem. Therefore this section is only necessary for the virtual
environment too.

At first, the professional version of the IDE must be downloaded from [7], due to its
ability to use the subsystem for compilation. After installation, a new project can be
created. Under the tab Pure Python, Ubuntu can be chosen by selecting Previously con-
figured interpreter, clicking on the three dots and choosing WSL (=Windows subsystem
for Linux). Under the Python interpreter path, in this case, the python3.8 file inside the
already configured /usr/bin folder must be selected. The default path mapping, where
all projects are stored, is /mnt/c/Users/*user*/PycharmProjects. This can later be
changed under File→Settings...→Project:*name*→Python Interpreter.

To finally be able to run a Python program inside the Ubuntu subsystem, the shell path
must be changed under File→Settings...→Tools→Terminal from cmd.exe to wsl.exe,
[8].

Graphical Output

To visualize the resulting data, the Python package Matplotlib is used. Additionally, a
display server for Windows, like Xming, is needed to be able to see the graphs created
by Ubuntu. After downloading Xming from [9], Matplotlib can be installed via the
following command: sudo apt install python3-matplotlib

Finally, the desired Python script can be compiled with the following command se-
quence:

cd ∼/clawpack-v5.8.0/ ; sudo python3 setup.py config fc ––fcompiler=gfortran install ;
cd /mnt/c/Users/*user*/PycharmProjects ; DISPLAY=:0 python3 *program*.py

The second command only has to be called when modifying the Riemann solver and
DISPLAY=:0 is needed to address the display server. Note, that all expressions
surrounded by stars must be adjusted accordingly, that the commands should be typed in
manually because they cannot be pasted correctly in the Linux shell and that Matplotlib
must not be installed via the pip package installer.

30

Custom Riemann Solver

CLAWPACK already comes with a variety of different Riemann solvers, including Euler-
equation-solvers in two spatial dimensions which, especially the hlle-solver, will be the
basis of this thesis’ custom Riemann solver. To use this one, a few steps must be
performed to let CLAWPACK recognize the solver.

❼ Place the Riemann solver inside the folder /clawpack-v5.8.0/riemann/src

❼ Add the solver to the list in /clawpack-v5.8.0/riemann/riemann/setup.py

❼ Add the solver to the list in /clawpack-v5.8.0/riemann/riemann/ init .py , [10].

While the basic framework of the problem is written in Python3, the Riemann solvers are
usually Fortran90 files. This allows to combine the convenience of Python classes with
the computational efficiency of the Fortran language. This is done via the CLAWPACK
package PyClaw.

4.4 PyClaw’s Framework

PyClaw’s Framework consists of the following classes:

❼ Domain

❼ Solver

❼ State

❼ Solution

❼ Controller

4.4.1 Domain

PyClaw’s geometry package contains the classes used to define the space, in which the
solution lives. The base class for all other geometry-related quantities is called the
domain. This object can contain multiple patches, which can have different coordinate
mappings, or that are used to construct complex domain shapes. However, in this thesis
only one patch is used and is therefore indistinguishable from the domain. Another
simpler, but not so elegant way to construct a complex domain structure, is to define
custom boundary conditions and simply disregard the space outside the constructed
borders.

The patch can include multiple grids, and these in turn consist of dimension objects,
which define the start- and end-point of the given dimension, as well as the number of
grid cells in it, [11].

31

In the most complex case a domain could look as depicted in figure 7.

Figure 7: Complex domain structure, [11].

Again, in this thesis only one grid is used, therefore possessing the same dimensions
as the domain. The grid is then automatically defined by the parameters of the base
class.

A grid mapping can be used to describe a non-rectangular domain or to locally adjust the
spacing of some grid cells. This method can be helpful when dealing with non-Cartesian
coordinate systems. In spite of the thesis’ cylindrical coordinates, the domain has axial
symmetry and can therefore be described by a two-dimensional Cartesian system, where
source terms describe the components of mixed spatial dimensions, as seen in section
3.4 . Therefore a grid mapping is not considered in this case.

4.4.2 Riemann Solver

The Riemann Solver uses the given set of hyperbolic equations and computes the waves
and speeds at every cell interface, defined by the system’s domain, to update the solution
of the problem for a given time step. The majority of computational work is done
by a so-called normal solver, that solves the one-dimensional problem in the direction
perpendicular to a cell interface. The extension of this numerical method for higher
dimensions is called dimensional splitting, [12].

Furthermore, the solver-class is responsible for the implementation of high resolution
limiters, source terms and boundary conditions. The latter ones are realized via auxiliary
fields and updating these fields before each time step is done by the solver as well.

The normal or one-dimensional solver consists of 11 input and 4 output arguments.

32

Input Parameters

The following input parameters must be allocated to the numerical Riemann solver:

❼ ixy . . . determines the used dimension (here: either the r- or z-direction)

❼ mx . . . the total cell number of the chosen dimension

❼ maxm . . . the maximum total cell number of all dimensions

❼ meqn . . . the number of equations used (here: 4)

❼ mwaves . . . the number of waves

❼ maux . . . the number of auxiliary fields used

❼ mbc . . . the number of ghost cells at each boundary

❼ ql, qr(meqn, 1−mbc : maxm+mbc) . . .
the solutions of the problem on the left or right side of the cells (see figure 8)

❼ auxl, auxr(maux, 1−mbc : maxm+mbc) . . .
the auxiliary fields’ values on the left or right side of the cells

Output Parameters

The following output parameters are returned by the numerical Riemann solver:

❼ s(mwaves, 1−mbc : maxm+mbc) . . . the speeds of the waves sp

❼ wave(meqn,mwaves, 1−mbc : maxm+mbc) . . . the waves W i
p

❼ amdq(meqn, 1−mbc : maxm+mbc) . . . the left-going fluctuations Aij
− ΔQj

❼ apdq(meqn, 1−mbc : maxm+mbc) . . . the right-going fluctuations Aij
+ ΔQj

Figure 8: Various cell values at the cell centers xi−1, xi and interface xi− 1
2
, [12].

33

While generally ql(:, i) �= qr(:, i) and therefore both values differ from the cell average
Q(:, i), in this thesis at least the auxiliary fields stay constant through the i-th cell:
auxl(:, i) = auxr(:, i) = aux(:, i). A single colon denotes that the numerical operation is
performed over all given entries of the replaced index.

Dimensional Splitting

As the name already suggests, for this method a multidimensional problem is simply
split into a sequence of one-dimensional problems. In this thesis the problem along the
z-axis is solved first by applying the flux-differencing formula (73) only in one dimension.
Therefore F i

in and F i
out are also only average fluxes in the z-direction,

Q̃i(rimz ,mr
, tn) = Qi(rimz ,mr

, tn)− Δtn
ΔVm

�
F i(rimz+1/2,mr

, tn)−F i(rimz−1/2,mr
, tn)

�
, (86)

where F i(rimz−1/2,mr
, tn) = F i

in(r
i
mz ,mr

, tn) and F i(rimz+1/2,mr
, tn) = F i

out(r
i
mz ,mr

, tn).

The difference between (86) and (73) is that the cell’s index m is split into a two-
dimensional array (mz,mr) and the result is not denoted by the average valueQi(rim, tn+1),

but Q̃i(rimz ,mr
, tn). To get the updated value of Qi, the flux-differencing formula must

be used again, but this time with average fluxes in the r-direction: F̃ i
in, F̃

i
out ,

Qi(rimz ,mr
, tn+1) = Q̃i(rimz ,mr

, tn)− Δtn
ΔVm

�
F̃ i(rimz ,mr+1/2, tn)− F̃ i(rimz ,mr−1/2, tn)

�
, (87)

where F̃ i(rimz ,mr−1/2, tn) = F̃ i
in(r

i
mz ,mr

, tn) and F̃ i(rimz ,mr+1/2, tn) = F̃ i
out(r

i
mz ,mr

, tn).

4.4.3 State

The state object stores the data of the fields that exist on a given patch, or in this case on
the whole domain. These fields include the average value Qi and auxiliary fields, which
are used to describe the given boundary conditions and some relevant parameters. The
latter ones are also used inside the normal solver and in this thesis describe the velocity
of a solid object. The arguments to the constructor must therefore include the domain,
the number of equations and the number of auxiliary fields, [13].

The state also interacts with the solver by providing certain constants that occur inside
the given equations. In this thesis the only constant will be the heat capacity ratio κ0.

34

4.4.4 Solution

The solution object is a container for the data of the state and domain classes and defines
the problem’s solution over the whole time interval. For a system with multiple grids
and different states, the solution could look like figure 9.

Figure 9: Solution of a complex grid-state-structure, [14].

4.4.5 Controller

The controller class provides a convenient way for running the simulation and configuring
the specifications of the corresponding data output. The latter includes the format and
the overall output style of the generated figures, which are created by the Matplotlib
package, [15].

The only two input parameters are the solver and the solution object. Internal param-
eters are used to specify the number of figures num output times and the final time
tfinal, where the simulation should end (assuming tstart = 0). If no output is desired
keep copy is set to False, otherwise the setplot-class determines the general structure
and appearance of the plot.

The graphical output in setplot is done with another CLAWPACK package, called Vis-
Claw. For every different plot-setup a new plotfigure object must be initialized. In this
thesis four new plotfigure objects are created to display the mass density, pressure, Mach
number and temperature of the fluid inside the given domain.

35

These objects include the following instances:

❼ new plotaxes . . . defines attributes like title, aspect ratio and axes’ limits

❼ figno . . . the number of the corresponding figure

❼ afteraxis . . . a powerful class that can include or change aspects of the plot which
cannot be accessed by any VisClaw instance directly.

❼ new plotitem . . . the type of figure (in this case a two-dimensional heat-map, hence
new plotitem(plot type=2d pcolor))

❼ plot var . . . the data to plot

❼ add colorbar . . . if the heat map should include a color-bar

❼ pcolor cmap . . . the color gradient of the bar

❼ pcolor cmin, pcolor cmax . . . the limits of the bar

Finally, the run() command runs the simulations and plot() creates the figures via Xming
or the already integrated graphics software of Linux itself.

4.5 Configuration of the Numerical Simulation

While the general description of PyClaw’s framework was already given in section 4.4,
this one focuses on the configurations used in this thesis. The chosen settings include:

❼ Solver

❼ Geometry

❼ Source Term

❼ Boundary Conditions

❼ Spatial and Temporal Resolution

❼ Order of Precision

All other options, unless mentioned otherwise, are set by the default classes, functions
or parameters of the CLAWPACK software and therefore will not be discussed any
further.

36

4.5.1 Roe Solver

Linearized Riemann Solvers

A practical way to simplify the numerical simulation of nonlinear systems is the applica-
tion of Linearized Riemann Solvers. Hereby the quasi-linear form of (25) is discretised by
using the matrix Âij

�
Qi(xm−1/2)

�
, which is some approximation to the Jacobean matrix

Aij valid in a neighborhood of the data Qi(xm−1) and Qi(xm). This slight modification
defines the linearized problem locally at each cell interface, [4].

In order to properly define Âij, it must fulfill certain criteria similar to the ones for the
original matrix:

❼ It is diagonalizable with real eigenvalues λ̂p(xm−1/2) and vectors r̂ip(xm−1/2).

❼ It is hyperbolic

❼ It is consistent with the original conservation laws:

Âij
�
Qi(xm−1/2)

� → Aij , when Qi(xm−1), Q
i(xm) → q̄i

Condition one can still fail to be satisfied, even if both Aij
�
Qi(xm−1)

�
and Aij

�
Qi(xm)

�
have real eigenvalues and eigenvectors. Furthermore, in smooth regions, which separate
the isolated contact discontinuities, the variation in Qi is of the order of O(Δx) and the
Jacobean matrix is nearly constant: Aij

�
Qi(xm−1)

� ≈ Aij
�
Qi(xm)

�
.

In its simplest form the new Jacobean matrix can be defined as

Âij = Aij
�
Q̂i(xm−1/2)

�
, Q̂i(xm−1/2) =

Qi(xm−1) +Qi(xm)

2
, (88)

where Q̂i(xm−1/2) is some average of Qi(xm−1) and Qi(xm), in (88) simply corresponding
to the mean value.

This definition creates a single state q̂im with only one wave and the Hugoniot loci needed
to find the exact Riemann solution are just straight lines pointing in the directions of
the eigenvectors of Âij (see Fig 10(a)). However, near shocks Qi(xm−1) and Qi(xm)
are far apart in state space and the true nonlinear structure is very different from the
eigenstructure of Âij in (88). Both values of Qi should therefore be connected by a single
2-shock. In this case Roe linearization can offer an elegant way to compute the exact
solutions, [4].

37

Figure 10: Calculation of the solutions Qi = Qi(xm), Qi−1 = Qi(xm−1), connected by a
2-shock in an example governed by the shallow water equations, [4], using

(a) the average Q̂i from (88),

(b) the Roe average, [4].

Roe Linearization

The additional requirement for Roe linearization states, that if Qi(xm−1) and Qi(xm)
are connected by a single wave in the true Riemann solution, then W i

1 should also be an
eigenvector of Âij. If this statement is true, then the linearized Riemann solution also
consists of this single wave and agrees with the exact solution, [4].

This condition can be phrased mathematically by using the one-dimensional form of
(71) and assuming that qi is constant inside each cell, the following expression can be
obtained

s
�
Qi(xm)−Qi(xm−1)

�
= f i

�
Qi(xm)

�− f i
�
Qi(xm−1)

�
, (89)

where s = Δxm/Δtn is the wave speed and the flux vector f i represents both the in-
and out-going fluxes: f i

�
Qi(xm)

�
= f i

in

�
Qi(xm)

�
, f i

�
Qi(xm−1)

�
= f i

out

�
Qi(xm−1)

�
.

The variation of Qi is also the solution to the linearized Riemann problem, hence

Âij
�
Qi(xm−1/2)

� �
Qi(xm)−Qi(xm−1)

�
= s

�
Qi(xm)−Qi(xm−1)

�
. (90)

Combining (89) with (90) yields

38

Âij
�
Qi(xm−1/2)

� �
Qi(xm)−Qi(xm−1)

�
= f i

�
Qi(xm)

�− f i
�
Qi(xm−1)

�
. (91)

(91) is another essential requirement for the conservative nature of the system. Physical
quantities are conserved if the flux-difference-splitting formula (85) is valid and this in
turn is only satisfied for the linearized Riemann solver if the condition (91) is fulfilled.

One way to obtain a matrix satisfying (91) is by integrating Âij over a suitable path in
state space between Qi(xm−1) and Qi(xm). q

i can therefore be parameterized like

qi(η) = Qi(xm−1) +
�
Qi(xm)−Qi(xm−1)

�
η , (92)

for 0 ≤ η ≤ 1. The flux difference can then be written as the line integral

f i
�
Qi(xm)

�− f i
�
Qi(xm−1)

�
=

� 1

0

df i
�
qi(η)

�
dη

dη

=

� 1

0

df i
�
qi(η)

�
dqj

dqj

dη
dη =

�� 1

0

df i
�
qi(η)

�
dqj

dη

 �
Qj(xm)−Qj(xm−1)

�
,

(93)

since dqi/dη =
�
Qi(xm)−Qi(xm−1)

�
is constant and can be pulled out of the integral.

Inserting (91) into (93) results in the already proposed claim

Âij
�
Qi(xm−1/2)

�
=

� 1

0

df i
�
qi(η)

�
dqj

dη . (94)

The main issue for solving (94) is to evaluate this integral in closed form for most
nonlinear problems. Roe was the first author to circumvent this problem for the Euler
equations by introducing a parameter vector zi(qi), with the change of variables finally
leading to an integral that is much easier to evaluate, [4]. The mapping is assumed to
be invertible, meaning that qi(zi) is also known and that the flux vector f i can also be
written as a function of zi, or more precisely: f i = f i(qi(zi)).

Rather than integrating along the path of (92), the new one is defined as

zi(η) = Zi(xm−1) +
�
Z i(xm)− Zi(xm−1)

�
η , (95)

where Z i is the average value of zi of the m-th cell: Zi(xm) = zi
�
Qi(xm)

�
.

39

With the new definition of the line path in (95), two line integrals can be constructed.
The first one resembles the flux formula in (93), but using the new parameter zi,

f i
�
Qi(xm)

�− f i
�
Qi(xm−1)

�
=

�� 1

0

df i
�
zi(η)

�
dzj

dη

 �
Zj(xm)− Zj(xm−1)

�
. (96)

The second line integral describes the relation between Qi and Zi and looks like

Qi(xm)−Qi(xm−1) =

�� 1

0

dqi
�
zi(η)

�
dzj

dη

 �
Zj(xm)− Zj(xm−1)

�
. (97)

Defining the line integrals in (96) and (97) as linearization matrices yields

f i
�
Qi(xm)

�− f i
�
Qi(xm−1)

�
= Ĉij

�
Zi(xm−1/2)

� �
Zj(xm)− Zj(xm−1)

�
,

Qi(xm)−Qi(xm−1) = B̂ij
�
Zi(xm−1/2)

� �
Zj(xm)− Zj(xm−1)

�
.

(98)

With the introduction of B̂ij and Ĉij , Âij can be calculated to

Âij
�
Qi(xm−1/2)

�
= Ĉij

�
Z i(xm−1/2)

�
B̂ij−1�

Zi(xm−1/2)
�
. (99)

To find a simple solution for the linearization matrices, zi must be chosen in a way
that both dqi/dzj and df i/dzj have components that are polynomials with respect to
zi. Therefore the path in (95) will also only consist of polynomials, hence it is easy to
integrate, [4].

Roe Solver for the Euler Equations

For the Euler equations Roe proposed the following parameter zi, [16]:

zi =
√
ρ




1
u
w
H

�� (100)

Therefore the non-dimensional flux vectors f i
r and f i

z in (44) can be transformed to

40

f i
r =




z1z2

z22 +
p(zi)
κ0

z2z3
z2
z1

�
E(zi) + (κ0 − 1) p(zi)

�
�� , f i

z =




z1z3
z2z3

z23 +
p(zi)
κ0

z3
z1

�
E(zi) + (κ0 − 1) p(zi)

�
�� , (101)

with E and p being functions depending on zi:

E(zi) = z1z4 + (κ0 − 1)2
z22 + z23

2
, p(zi) = z1z4 − (κ0 − 1)

z22 + z23
2

. (102)

Considering the eigenvalues and eigenvectors of Aij
r and Aij

z in section 4.1, similar results
can be achieved. Therefore the eigenvalue problem must only be solved for one of the
Jacobean matrices and the solutions can easily be transformed to obtain the quantities
for the other matrix. In this case the eigenvalue problem will be solved for Aij

r , or more
precisely for the linearized form Âij

r .

The main goal of this section is to evaluate the linearization matrices B̂ij
r and Ĉij

r .
Therefore df i

r/dz
j and dqi/dzj must be calculated first,

df i
r

dzj
=




z2 z1 0 0
z4
κ0

κ0+1
κ0

z2 −κ0−1
κ0

z3
z1
κ0

0 z3 z2 0
0 κ0z4 0 κ0z2

��� , (103)

qi =




z21
z1z2
z1z3
E(zi)

�� → dqi

dzj
=




2z1 0 0 0
z2 z1 0 0
z3 0 z1 0
z4 (κ0 − 1)2z2 (κ0 − 1)2z3 z1

�� . (104)

The linear form of (103) and (104) confirms that zi was chosen correctly, considering
the simple solutions for the path integrals in (96) and (97). Therefore only the following
integral must be evaluated for each element of zi:

� 1

0

zp(η) dη =
Zp(xm−1) + Zp(xm)

2
= Z̄p , (105)

where Z̄p = Z̄p(xm−1/2), and Z̄i = (Z̄1, ..., Z̄4) is the discretized mean vector of zi of the
interface between the m-th and (m−1)-th cell.

41

This means that the linearization matrices can just be expressed by the relation

Ĉij
r =

df i
r

dzj
�
Z̄i

�
, B̂ij

r =
dqi

dzj
�
Z̄i

�
. (106)

Inverting B̂ij
r yields

B̂ij−1

r =





1
2Z̄1

0 0 0

− Z̄2

2Z̄2
1

1
Z̄1

0 0

− Z̄3

2Z̄2
1

0 1
Z̄1

0

(κ0 − 1)2
Z̄2
2+Z̄2

3

Z̄3
1

− Z̄4

2Z̄2
1

−(κ0 − 1)2 Z̄2

Z̄2
1

−(κ0 − 1)2 Z̄3

Z̄2
1

1
Z̄1

������ . (107)

Using (99), Âij
r can finally be calculated to

Âij
r =




0 1 0 0

(κ0 − 1) û2+ŵ2

2
− û2 (3− κ0) û −(κ0 − 1) ŵ 1

κ0

−ûŵ ŵ û 0

κ0û
�
(κ0 − 1)2 û2+ŵ2

2
− Ĥ

�
κ0

�
Ĥ − (κ0 − 1)2 û2

� −κ0(κ0 − 1) ûŵ κ0û

����� , (108)

which yields the same result as in (45), but with the Roe-averages:

û =
Z̄2

Z̄1

=

�
ρ(xm−1) u(xm−1) +

�
ρ(xm)u(xm)�

ρ(xm−1) +
�
ρ(xm)

,

ŵ =
Z̄3

Z̄1

, Ĥ =
Z̄4

Z̄1

.

(109)

Therefore all eigenvalues and eigenvectors can be obtained by simply exchanging all
quantities in (51) with their corresponding Roe-averages, whereas (15) is used to
calculate ĉ.

42

The HLLE Solver

In some situations linearized Riemann solvers can fail completely, giving non-physical
solutions such as negative pressures or densities in the Euler equations. This can be
the case for data that is near a vacuum state or where strong expansions arise, which
both occur in this thesis’ scenario. The key requirement for avoiding these non-physical
effects is for the Riemann solver to be positively conservative. This means that the mass
and energy density must always remain positive for any physical initial data, [4].

While Godunov’s method with the exact Riemann solver is positively conservative, the
authors of [17] were able to prove this requirement for the HLLE solver as well. This
simple approximate Riemann solver, named after its inventors Harten, Lax, van Leer and
Einfeldt, estimates the smallest and largest wave speeds arising in the Riemann solution,
called s1(xm−1/2) and s2(xm−1/2). Therefore a new middle state Q̂i(xm−1/2) between the
waves is created, as illustrated in figure 4(b). The waves are then defined as

W i
1(xm−1/2) = Q̂i(xm−1/2)−Qi(xm−1) , W i

2(xm−1/2) = Qi(xm)− Q̂i(xm−1/2) . (110)

Extending (89) for two waves yields

s1(xm−1/2)
�
Q̂i(xm−1/2)−Qi(xm−1)

�
+ s2(xm−1/2)

�
Qi(xm)− Q̂i(xm−1/2)

�
=

f i
�
Qi(xm)

�− f i
�
Qi(xm−1)

�
.

(111)

Therefore Q̂i can be calculated to

Q̂i(xm−1/2) =
f i
�
Qi(xm)

�−f i
�
Qi(xm−1)

�−s2(xm−1/2)Q
i(xm)+s1(xm−1/2)Q

i(xm−1)

s1(xm−1/2)− s2(xm−1/2)
.

(112)

The only parameters left for definition are the wave speeds sp. In the original HLL
method s1 and s2 were chosen to be some lower and upper bounds on all characteristic
speeds λp that arise in the true Riemann solution. Einfeldt [18], however, defined the
speeds as follows

s1(xm−1/2) = min
p

�
min

�
λp(xm), λ̂p(xm−1/2)

��
,

s2(xm−1/2) = max
p

�
max

�
λp(xm+1), λ̂p(xm−1/2)

��
,

(113)

or especially for this thesis, knowing that u−c must be the smallest and u+c the biggest
value,

43

s1(xm−1/2) = min
�
u(xm)− c(xm), û(xm−1/2)− ĉ(xm−1/2)

�
,

s2(xm−1/2) = max
�
u(xm+1) + c(xm+1), û(xm−1/2) + ĉ(xm−1/2)

�
.

(114)

Compared to the HLL solver, Einfeldt’s adaptation (the HLLE solver) gives sharper
results for shock waves in general and for data connected only by a single shock wave,
the approximate solution exactly agrees with the true solution, due to the properties of
the Roe solver.

4.5.2 Geometry of the Bottle and the Cork

The shapes of the bottle and the moving cork are defined by the initial values Qi(t0) and
the auxiliary fields, which are responsible for managing the boundary conditions. This
section describes the functions needed to define the initial values. The bottle opening’s
diameter d0 = 1.8 cm, [1], is chosen as a reference length, so that in the non-dimensional
case it is equal to one and all other sizes are adjusted accordingly. The form of the bottle
resembles a polynomial of second order, with the assumption of the starting point being
two times bigger than the opening and that the function’s minimum is at the bottle’s
ending point (see figure 1),

fB(x) = ax2 + bx+ c , fB(0) = 1 , fB(L) =
1

2
,

dfB(L)

dx
= 0

→ fB(x) =
x2

2L2
− x

L
+ 1

(115)

L is the non-dimensional length of the bottle and is determined by the given volume of
the bottleneck Vr = 25ml, [1]. For the derivation the volume integral of a cylinder with
varying width is used,

V =

2π�
0

dφ

L�
0

dx

f(x)�
0

r dr = π

L�
0

dx f 2
B(x) . (116)

At first, the dimensional volume must be calculated. Multiplying fB and L by the
reference length d0, (116) results in

V =
7π

15
d30 L . (117)

44

Since V = Vr is a constant, L finally results in

L =
15

7π

Vr

d30
. (118)

The same procedure is then used for the cork, only exchanging fB with fC in (116),
which is defined as a linear function with the bottle opening’s radius at the end point
and a slightly wider diameter at the start, due to its elastic expansion after the cork
popping. The cork’s length is assumed to be twice its end diameter,

fC(x) = ax+ b , fC(0) =
3

5
, fC(2) =

1

2

→ fC(x) =
3

5
− x

20
.

(119)

(116) is then evaluated for the function of the cork, whereas this time the cork’s volume
is the desired quantity,

VC =
91π

150
d30 . (120)

Since the spatial domain of the system is represented by a grid of finite cells, the bottle’s
and cork’s geometries must also be discretized. Therefore two functions are needed to
define the cells, occupied by the bottle and cork, in the r- and z-direction respectively.
The dimension z lies on the x-axis and r on the y-axis.

The function Ind x(xst, xend) returns the indices of the starting- and ending points on
the x-axis. This is done by calculating the absolute distance between each cell interface
xm−1/2 and the point xst or xend for increasing m. If the mentioned distance reaches
its minimum value, the corresponding index is assigned to the starting or the ending
point and is returned. While for the smaller point the initial index starts at 0, for the
bigger one minit can already be set to the previously calculated index for xst. The only
disadvantage is that the size of objects is altered slightly. However, this effect decreases
with increasing total cell numbers and every other method changes the size as well, as
long as the grid is not perfectly aligned with the object’s dimensions. In the latter case
the recommended method also preserves the true size of the object.

Ind y(xst, xend,func) on the other hand has an arbitrary function as an additional input
parameter because the index of the object’s wall in the y-direction depends on that
function with respect to x. Hereby func is calculated for every cell interface between xst

and xend. Then the interfaces in the y-direction are scanned along increasing m, starting
at the cell in the middle, which corresponds to y = 0. Independent of the fact that the
total number of cell interfaces N is either even or odd, the scanning starts at int(N/2),

45

which is exactly N/2 for even and (N − 1)/2 for odd numbers of N . If the position
of an interface ym−1/2 eventually becomes greater than the function’s value at xm−1/2,
the corresponding index is again assigned to the wall’s y-position. The indices for the
underside of the bottle and cork are calculated to mst = N − mend − 1. A graphical
description is depicted in figure 11.

Figure 11: Illustration showing the position of mst and mend to further assign
symmetrical wall cells.

Figure 11 shows that the wall cells must be symmetrical around the middle interface for
odd and around the middle cell for even numbers of N . This difference explains, why
mst can be described by the same formula for both cases.

Filling in the cells with initial values from the bottom to the top wall cells is then done
by the function init values(value). Because all velocities are initially zero, this function
only has to be called for ρ and E. At first, all values inside the domain are set to 1, as
discussed in section 3.1. Only for cells occupied by the bottle, the values must be higher.
Therefore the non-dimensional pressure and temperature are defined as p = pr/p0 and
T = Tr/T0, with p0, T0 being the ambient air pressure and temperature as the reference
quantities and pr, Tr being the pressure and temperature inside the bottle (either
7.5 bar at 20 ➦C or 10.2 bar at 30 ➦C). Then ρ can be calculated with the non-dimensional
form of (2) to ρ = p/T and E with (12), in the case of u and w being 0, to E = p.

Finally, the following loop fills in the corresponding values

for i in range(len(j top)): array[ix+i,j bot[i]:j top[i]] = value ,

where ix is the index of xst, j bot and j top are the arrays storing the indices for the
bottom and top wall of the bottle, returned by Ind y, and value is either ρ or E.

46

The inside of the cork and the wall cells of the bottle are represented by None values and
are also implemented by init values. These cells must not have any numerical values,
so that they do not interact with the fluid, except the ones which are used to fulfill the
boundary conditions. The result of this approach can be seen in figure 12.

Figure 12: Initial density plot showing the distribution of values for a pressurized bottle
(7.5 bar) and a flying cork with a total cell number of 800 for each dimension.

The white area in figure 12 corresponds to the None cell entries. These also exist around
the bottle, but due to the walls’ slim width of only two cells, they are not visible in the
illustration. Note, that all graphs below, including figure 12, show dimensional quantities
with the corresponding units and that a uniform grid with the same total cell numbers
in both directions, but therefore different cell distances is used.

4.5.3 Source Term due to Axial Symmetry

A source term Ψi is usually required, when either a fluid source or sink is present. This
fact transforms the conservation laws into balance laws. However, as seen in section
3.4, a physical problem must also contain Ψi, when its dimensions are reduced due to
symmetries. This fact can be understood more thoroughly, when considering the given
two-dimensional bottle. After the cork popping, the gas expands in three-dimensional
space. Therefore the two-dimensional cross section must inevitably lose some of its
otherwise conserved quantities, hence a source term is required.

There are two numerical ways of implementing the source term: the fractional-step or
strang-splitting method. While the latter is more accurate, the algorithms are much more
elaborate and the benefits can be neglected for large cell numbers. Therefore the first
method will be used for the present work. The necessary assumption for both methods
is that the source term solely depends on the unknown quantities: Ψi = Ψi(qi), which

47

fortunately is the case for (44). The fractional-step method is applied by first splitting
(25) into two subproblems, that can be solved independently. The first problem describes
the homogeneous equation system, that was already discussed in previous sections and
the second one deals with the particular equation system

∂qi(ri, t)

∂t
= Ψi

�
qi(ri, t)

�
. (121)

Since the homogeneous quantities Qi
h(tn+1) have already been solved by (83), these

functions are used to find a numerical method for solving (121). The Runge-Kutta
methods are the most applicable single-step methods, meaning that the solution must
only be known one time step prior to the desired one. The general solution of these
methods, assuming Ψi does not possess an independent parameter of time, looks like

Qi(tn+1) = Qi(tn) + Δtn
�
j=1

bj k
i
j , ki

j = Ψi
�
Qi(tn) + Δtn

�
l=1

ajl k
i
l

�
, (122)

where bj and ajl are coefficients from the Butcher-table, [19]. Every method is then
characterized by its own table. While for implicit methods the two sums in (122) can
have the same upper index, resulting in iterative algorithms, for explicit ones the second
sum should at most be added up to l = j − 1. The easiest Runge-Kutta method is the
explicit Euler-method, where a1 1 = 0 and b1 = 1, therefore the solution is just:

Qi(tn+1) = Qi(tn) + Δtn Ψ
i
�
Qi(tn)

�
.

The total number of bj or k
i
j defines the order of the method. In this thesis an algorithm

of at least second order is sufficient and therefore the general second order Runge-Kutta
method is used. Its Butcher-table is defined as

bj =

�
0
1

�
, ajl =

�
0 0
1
2

0

�
. (123)

The solution finally results in

ki
1 = Ψi

�
Qi(tn)

�
, ki

2 = Ψi
�
Qi(tn) +

Δtn
2

ki
1

�
,

Qi(tn+1) = Qi(tn) + Δtn k
i
2 .

(124)

In terms of the fractional-step method, Qi(tn) must be exchanged with Qi
h(tn+1) in (122)

and (124) to receive the total solution of the system at tn+1.

48

Further note, that due to the inverse radial dependence of the source term, the total
cell number in the r-direction must be even, therefore the total number of cell interfaces
being odd, so that there is no middle cell with the position r = 0. This fact would
otherwise cause singularities.

4.5.4 Numerical Implementation of the Boundary Conditions

So far Qi(xm) could always be updated by considering the in-going flux from Qi(xm−1)
and the out-going flux into Qi(xm+1). Unfortunately, the domain is always bounded
by a finite number of grid cells and therefore the first and last cell do not possess the
required neighboring information. This issue can be circumvented by extending the
computational domain to include additional cells on either end, called ghost cells, whose
values are set at the beginning of each time step. These values solely depend on the
boundary conditions and are entirely decoupled from the choice of the numerical method,
used for updating Qi. While for Godunov’s method the fluxes depend on two values of
Qi, as seen in (75), and therefore only one ghost cell is needed on either end, for any
advanced method like a high-resolution flux limiter, discussed in the following section,
at least two ghost cells are required, [4].

In this thesis outflow boundaries describe the fluid’s behavior at the domain’s edges and
special internal no-penetration conditions are applied to explain the interaction between
the fluid and the stationary bottle or the moving cork.

To let a substance freely flow out of a given volume, the cells outside this region are
not allowed to influence the inner cell’s values whatsoever. This is ensured by only
permitting in-going internal fluxes, but not external ones. By applying a zero-order
extrapolation, the ghost cells’ values for the edges in the x-direction are determined as
follows:

Qi(xj) = Qi(xNG+1) , Qi(xM+j) = Qi(xM) , j ∈ [1, NG] , (125)

where the overall first index is 1, M the last internal index to the right and NG the num-
ber of ghost cells. This definition makes it obvious that external cells cannot influence
internal ones, when sharing the same value, hence no in-going flux is present.

For any no-penetration condition the key requirement is that the fluid’s velocity perpen-
dicular to a given wall must be the speed of that object vw in the given direction, in a
stationary case being zero, so that no substance can pass through it. Because each wall
is positioned at a cell interface, the cells’ values on the left and right of the wall must
somehow be combined to match the desired condition. The easiest way is just taking the

average between these cells, meaning that Qi(xm−1/2) =
�
Qi(xm−1) + Qi(xm)

�
/2. This

method can be extended to also include cells farther away.

49

Because Q2(xm−1/2) must be equal to ρ(xm−1/2) vw (Q3 for a wall in the y-direction),
the ghost cells for a wall on the right interface can be calculated to

Q2(xm+j−1) = 2 ρ(xm−1/2) vw −Q2(xm−j) , j ∈ [1, NG] . (126)

For the case of a wall to the left, the values of Q2 in (126) simply have to be exchanged.

All other quantities can be determined by mirroring their values on the cell interface,

Qi(xm+j−1) = Qi(xm−j) → ρ(xm−1/2) = ρ(xm−1) = ρ(xm), j ∈ [1, NG] . (127)

Numerically (126) and (127) are only applied if one cell is occupied by the fluid and
the exact neighbor is characterized as a wall cell. The first auxiliary field aux(0, :, :) is
responsible for this characterization, by setting its value to 1 if the corresponding cell is
filled with a fluid and 0 for describing a solid object. The function aux init() performs
this algorithm, which is the same one for filling in the initial None values. Then the no-
penetration condition is called inside the normal solver only if the numerical neighboring
condition is fulfilled.

For Godunov’s method and therefore only one ghost cell on each edge, the gas emission
of a bottle, without considering the cork, yields the results depicted in figure 13.

Figure 13: Density plot showing the gas emission of a pressurized bottle (7.5 bar) with
a total cell number of 800 for each dimension. The left figure is calculated
without a source term, corresponding to a planar flow and the second graph
with one, describing a three-dimensional system with axial symmetry.

The left graph in figure 13 illustrates a two-dimensional bottle in Cartesian coordinates
and the right graph only a cross section of a three-dimensional bottle in cylindrical
coordinates, but with a reduced dimension due to axial symmetry. The left depiction
truly lacks an extra dimension and therefore additional space to expand into. This
explains, why its fluid is able to expand more rapidly into the given two dimensions than
the gas in the second illustration, which also has to expand into the third dimension.

50

Note, that the ambient quantities for all simulations are p0 = 1.013 bar [20],
ρ0 = 1.204 kg/m3 [21] and T0 = 20 ➦C. Furthermore, the fluid inside the bottle is assumed
to be air with κ0 = 7/5 [22], so that the properties of multiple-phase mixtures, once the
internal gas exits the bottle, can be neglected.

4.5.5 CFL-Condition and High Resolution Methods

While for the previously depicted numerical methods, mainly the Godunov method,
precision is improved by generally decreasing Δxm and Δtn, there are conditions to be
fulfilled, so that the numerical solution can even converge towards the true solution in
the limit of Δxm ,Δtn → 0. One of the most important conditions, which can directly be
implemented with the given CLAWPACK routines, is the CFL-condition, named after
Courant, Friedrichs and Lewy. It states that a numerical method can be convergent
only if its numerical domain of dependence contains the true domain of dependence of
the equation system, [4]. This condition is necessary, but does not guarantee a stable
numerical scheme. For figure 2(a) the domain of dependence D(X, T) must therefore lie

within the interval: X − λ3 T ≤ D(X, T) ≤ X − λ1 T .

Refining the grid with a fixed ratio of r = Δtn/Δxm, the interval can be transformed to

X − T/r ≤ D(X, T) ≤ X + T/r T , with the necessary CFL-condition for a three-point-

method, such as Godunov’s one, being

ν =
Δtn
Δxm

max
p

|λp| ≤ 1 , (128)

where ν is the Courant number.

If the CFL-condition is not satisfied, a change in the initial data at any point inside the
domain of dependence would change the true solution at (X, T), but could have no effect
on the numerical solution at this point. In CLAWPACK a desired, as well as a maximum
Courant number can be set. While cfl max should always be left at 1, cfl desired should
approximately be 1, but not exactly, unless the numerical solution is the same as the
true solution. Therefore the desired value is set to default, being 0.9.

Because Godunov’s method is only first-order accurate, it can cause numerical diffusion,
yielding poor accuracy and smeared results. This method can be improved by inserting
an additional correction term into (83),

Qi(xm, tn+1) = Qi(xm, tn)− Δtn
Δxm

�
Aij

+ ΔQj(xm−1/2, tn) + Aij
− ΔQj(xm+1/2, tn)

�
− Δtn

Δxm

�
F̃ i
out(xm, tn)− F̃ i

in(xm, tn)
�
,

(129)

where F̃ i are the fluxes based on the waves, resulting from the Riemann solution, [4].

51

These correction terms can be described by considering a second order method such as
the Lax–Wendroff-method, which is based on the truncated Taylor series expansion

qi(x, tn+1) = qi(x, tn) + Δtn
∂qi(x, tn)

∂t
+

Δt2n
2

∂2qi(x, tn)

∂t2
+O�

Δt3n
�
. (130)

By inserting the one-dimensional, homogeneous form of (25) and its second derivative

with respect to time, being

∂qi

∂t
= −Aij ∂q

j

∂x
,

∂2qi

∂t2
= −Aij ∂2qj

∂x ∂t
=

�
Aij

�2 ∂2qj

∂x2
, (131)

into (130), yields

qi(x, tn+1) = qi(x, tn)−Δtn A
ij ∂q

j(x, tn)

∂x
+

Δt2n
2

�
Aij

�2 ∂2qj(x, tn)

∂x2
+O�

Δt3n
�
. (132)

Keeping only the first three terms and replacing the spatial derivatives with central finite
difference approximations, finally results in the Lax–Wendroff-method,

Qi(xm, tn+1) = Qi(xm, tn)− Δtn
2Δxm

Aij
�
Qj(xm+1, tn)−Qj(xm−1, tn)

�
+
1

2

� Δtn
Δxm

�2 �
Aij

�2 �
Qj(xm−1, tn)− 2Qj(xm, tn) +Qj(xm+1, tn)

�
.

(133)

Transforming (133) into the form of (129), defines the correction terms as

F̃ i
out(xm, tn) =

1

2

�
Aij

+ − Aij
− − Δtn

Δxm

�
Aij

�2�
ΔQj(xm+1/2, tn) ,

F̃ i
in(xm, tn) =

1

2

�
Aij

+ − Aij
− − Δtn

Δxm

�
Aij

�2�
ΔQj(xm−1/2, tn) .

(134)

In spite of its better accuracy, the Lax–Wendroff-method cannot be used for the present
work due to its dispersive nature near discontinuities. Comparing figure 14 with 13(b),
a major difference can be seen in regions, where r is very small. The reason for the
unrealistic ’stripe’ is that the source term has a singularity at r = 0 and therefore the
Taylor series expansion is not valid for updating over this discontinuity.

52

Figure 14: Density distribution ρ(r, z, t = 0.315ms) showing the gas emission of a pres-
surized bottle (7.5 bar) with a total cell number of 800 for each direction. The
solution is evaluated with the Lax–Wendroff-method.

High Resolution methods are a way of combining the best features of both the Godunov
and the Lax–Wendroff-method. Second-order accuracy is obtained where possible, but
not for regions, where the solution does not behave smoothly. Numerically this is per-
formed by the introduction of flux limiters, which change the magnitude of the correction
terms that are used, depending on how the solution behaves. These limiters must be
applied in such a way that the discontinuous portion of the solution does not cause any
dispersion, while the smooth part remains accurate. A low-order flux formula F i

L such
as (84) and a high-order flux F i

H like (134) are combined to obtain the general form of
a flux-limiter-method,

F i
out(xm) = F i

L + Φ(xm+1/2)
�F i

H −F i
L

�
,

F i
in(xm) = F i

L + Φ(xm−1/2)
�F i

H −F i
L

�
,

(135)

where F i = F i
�
Qi(xm−1), Q

i(xm)
�
for F i

in, F i = F i
�
Qi(xm+1), Q

i(xm)
�
for F i

out

and 0 ≤ Φ ≤ 1.

Although there are various limiter algorithms, unfortunately no standard method inside
the CLAWPACK package is able to solve the issue depicted in figure 14, when the order
of the solver, as well as the number of ghost cells are set to two. Only individually these
settings result in a smooth solution, the problem being that the latter parameter must be
bigger than one in order for the Lax–Wendroff-method to function properly. Therefore
the first-order Godunov method, which also requires only a single ghost cell on either
side, and the default TVD minmod limiter are used for all further simulations.

53

5 Discharge Flow Analysis

While the general flow out of the pressurized bottle was already discussed in the previous
section, this section concentrates on the analysis of the system’s quantities as a function
of time and space and their dependencies on each other. As discussed in section 3.2, the
two main assumptions of the flow are being inviscid and adiabatically expanding after
the cork popping. The latter allows the definition of the relation between the fluid’s
temperature and pressure at the bottle opening at r = 0 as a function of time. This
relation is derived by defining the total derivative of (3) as

de = T ds+
p

ρ2
dρ, dh = T ds+

1

ρ
dp, (136)

An additional assumption is the isentropic change of state, hence ds=0. Inserting (136)
into (4) results in the already non-dimensional form

κ0 =
ρ

p

dp

dρ
(137)

Multiplying by dρ/ρ, integrating on both sides and using (2), finally yields the desired
relation

T (t) = Tr

�
p(t)

pr

�κ0−1
κ0

. (138)

To validate (138) numerically, two temperature graphs are created and compared with
each other by depicting them in one plot. The first one is calculated by combining (12)
with the non-dimensional ideal gas equation to

T =
E

ρ
− κ0(κ0 − 1)

u2 + w2

2
, (139)

and later multiplying it by T0 to get the dimensional temperature. The second function
is evaluated with (138).

The quantities’ numerical values are returned by the program at every time step inside
the instance solver.before step, which calls the custom function Flow calc(solver,state).
The plotting is then performed outside VisClaw with the function plot flow(t,Temp,
Temp2,Press), which in turn uses Matplotlib, before the two-dimensional heat-maps are
plotted. Figure 15 shows that (138) and (139) are very similar and therefore the as-
sumption of an isentropic expansion at the bottle opening is justified. This fact offers
a reliable scenario to test the average error between the two graphs for increasing total
cell numbers. Furthermore, the program’s overall runtime can also be measured. For
this work the numerical simulation was executed on an Intel i7 -9700K processor and a
working memory of 32GB.

54

Figure 15: Comparison between (138) T (p) and (139) T (qi) at the bottle opening with
Tr = 20 ➦C for a total cell number of (a) 200 and (b) 800.

total cell number average error 1st run 2nd run 3rd run average runtime
200 1.519 ➦C 9.948 s 10.057 s 10.021 s 10.009 s
400 0.654 ➦C 68.751 s 68.313 s 68.876 s 68.647 s
600 0.437 ➦C 237.484 s 237.253 s 237.124 s 237.287 s
800 0.338 ➦C 496.388 s 495.870 s 496.282 s 496.180 s

Table 1: Average error between (138) T (p) and (139) T (qi) at the bottle opening with
Tr = 20 ➦C and the average runtime of the Python program (see appendix) for
increasing total cell numbers.

It can be seen that the overall precision is improved, while the compilation time is
exponentially increased when considering bigger total cell numbers and therefore smaller
grid step sizes. The spatial distribution of the fluid’s temperature at a given point in
time is depicted in figure 16.

Figure 16: Temperature distribution T (r, z, t) (right) and at the axis r = 0 (left) at time
t = 0.105ms for a total cell number of 800 and Tr = 20 ➦C.

55

While at the bottle opening z = 5.26 cm the temperature never drops below −70 ➦C,
at around z = 8 cm temperatures can reach values even below −180 ➦C (see figure 17),
which by far falls below the freezing temperature of CO2, being −78.5 ➦C at atmospheric
pressure, [23]. This fact allows a phase transition of the CO2 gas and leads therefore to
the formation of dry ice particles in front of the bottle, but not inside of it.

Although the simulation is performed by assuming that the fluid is just air, the same
phenomenon still occurs when changing the fluid inside the whole domain to be pure
CO2, by setting κ0 to 9/7, [22].

Figure 17: Temperature distribution T (r, z, t) (right) and at the axis r = 0 (left) at time
t = 0.315ms for a total cell number of 800 and Tr = 20 ➦C.

For bottles stored at 30 ➦C the minimum temperature even drops further from
Tmin(Tr = 20 ➦C) = −184.17 ➦C to Tmin(Tr = 30 ➦C) = −197.19 ➦C (see figure 18).

Figure 18: Temperature distribution T (r, z, t) (right) and at the axis r = 0 (left) at time
t = 0.315ms for a total cell number of 800 and Tr = 30 ➦C.

56

This can be explained by the fact, that a higher initial bottle pressure results in a greater
temperature decrease, such as the relation in (138) suggests. However, in reality the fluid
is generally warmer due to inner friction, which was not considered in this simulation.
Figures 17 and 18 also illustrate the temperature shock discontinuity. This jump appears
in distributions of other quantities as well.

5.1 Mach Number Distribution

This section discusses the velocity of a partially supersonic flow, assuming a steady quasi-
one-dimensional stream through a bottle with a slightly varying cross section A = A(z).
Hereby the main reference quantity is the local Mach number, defined as

M =

√
u2 + w2

c
. (140)

The previous assumptions lead to M = w/c and allow the integral form of the general
Euler equations (26)-(28) and the isentropic equation (137) to be simplified to

d

dz
ln
�
ṁ
�
=

1

A

dA

dz
+

1

w

dw

dz
+

1

ρ

dρ

dz
= 0 , (141)

1

w

dw

dz
+

1

κ0M2

1

p

dp

dz
= 0 , (142)

c2

κ0 − 1
+

w2

2
=

c20
κ0 − 1

= const , (143)

1

p

dp

dz
− κ0

1

ρ

dρ

dz
= 0 , (144)

where ṁ=ρwA is the fluid’s mass flow, (141)-(143) correspond to the quasi-one-dimensional
Euler equations in the same order and (144) to the isentropic equation, [3].

Combining (141), (142) and (144) yields

1

A

dA

dz
=

�
M2 − 1

� 1

w

dw

dz
. (145)

(145) suggests that inside a bottle with a decreasing cross section (dA/dx < 0) the fluid
should accelerate and the gas should reach M = 1 at the bottle opening because here
its polynomial shape is defined as dA/dz(z=L) = 0.

57

Furthermore, (143) can be transformed to result in the non-dimensional relation be-
tween the Mach number and the fluid’s velocity, when using the one-dimensional form
of (140).

M(w) =
1�

1
w2 − κ0−1

2

(146)

Figure 19 confirms that for both points in time the fluid accelerates and reaches its
maximum Mach number after the bottle opening. However, while for the first point
in time M reaches 1 at around z = 5.24 cm, which is just 0.02 cm away from the end
of the bottle, at the later time it reaches its critical value sooner at around 4.76 cm.
This suggests that the evolution through time increases the discrepancy between the
simulation and the proposed system and therefore shows that the assumptions, especially
the steady flow condition, are unjustified.

Figure 19: Mach number distribution M(r, z, t) (right) and M(r = 0, z, t) (left) at time
t = 0.105ms (top) and t = 0.315ms (bottom) for a total cell number of 800
and Tr = 20 ➦C. M(qi) is calculated with (140) and M(v) with (146).

58

In spite of the previous fact, the left side of figure 19 shows that (146) can accurately
calculate at least the acceleration inside the bottle and the behavior near the discontinu-
ity, but fails at the given maxima. Note, that the similarities between the Mach number
and the temperature plots, especially for t=0.315ms, arise because the speed of sound
in its non-dimensional form, which is included in the definition of M , is equal to

√
T .

5.2 Fluid-Cork-Interaction

The characteristics of a flow can vary greatly when a solid object is inserted into the
domain. An additional challenge is the description of a moving body propelled by
the fluid around it. In this thesis the impermeable object is a cork with a density of
ρC = 240 kg/m3, [24], and a volume already determined by (120). The cork’s movement
must be updated before each time step and therefore again the solver.before step instance
is used, but this time calling the function update aux(solver,state). As the name suggests,
the given function updates the auxiliary fields in a way, that aux(0, :, :) is used for the
moving boundary conditions and aux(1, :, :) stores the cork’s velocity vw. After the
simulation plot mov(t,s,v,a,Dist,Dist2) provides the plots of the desired quantities.

The algorithm inside update aux starts by calculating the forces pushing onto the left
and right wall of the cork. Therefore the pressure of the neighboring cells is determined
by transforming (12). The forces are then evaluated by discretizing the following surface
integral

F (R) =

2π�
0

dφ

R�
0

dr r p(r) , → F (NC) = 2πΔr

NC�
i=int(N/2)

ri p(ri) , (147)

where R is the cork’s radius, NC is the biggest cell index still occupied by the cork, Δr
the grid distance and ri the cell center all in the r-direction. The cork’s non-dimensional
acceleration is calculated by dividing the total force acting on the cork by its mass.

aC =
Ftot

mC

=
F (Nl)− F (Nr)

κ0 ρC VC

(148)

Nl and Nr are the corresponding uppermost indices for the left and right wall respectively
and κ0 is added due to dimensional analysis.

The cork’s velocity vC and position sC of the left wall are updated by the transformation
of the truncated Taylor series expansion with varying time intervals (Δt �= const), [25],

sC(tn−1) = sC(tn)−Δtn−1 vC(tn) +
Δt2n−1

2
aC(tn) +O(Δt3n−1) ,

sC(tn+1) = sC(tn) + Δtn vC(tn) +
Δt2n
2

aC(tn) +O(Δt3n) ,

(149)

59

vC(tn−1) = vC(tn)−Δtn−1 aC(tn) +
Δt2n−1

2
ȧC(tn) +O(Δt3n−1) ,

vC(tn+1) = vC(tn) + Δtn aC(tn) +
Δt2n
2

ȧC(tn) +O(Δt3n) ,

(150)

where ȧC denotes the first derivative of aC .

Multiplying the first equation in (149) with Δtn, the second one with Δtn−1 and finally
adding both up, yields

sC(tn+1) = −sC(tn−1)αn+ sC(tn) (1+αn)+
aC(tn)

2
Δtn(Δtn+Δtn−1)+O(Δt3) , (151)

where αn = Δtn/Δtn−1.

Applying the same procedure for (150), but this time multiplying the time intervals
squared and subtracting the first from the second equation, results in

vC(tn+1) = vC(tn−1)α
2
n + vC(tn) (1− α2

n) + aC(tn)Δtn(1 + αn) +O(Δt3) . (152)

The thesis’ program stores the time steps, sC , vC and aC inside the corresponding arrays
t, s, v, a, to which a new entry is appended every time the cork’s values are updated.
According to (151) and (152), t, s, v must have two initial entries, so that these equations
can even be used. On the other hand, a does not have this requirement, therefore
whenever aC(tn) is calculated, all other values are updated for tn+1.

While the cork’s movement is stored before each time step, the auxiliary field
aux(0, :, :) is only changed, whenever the index of the left wall, calculated with

Ind x(sC(tn+1)), increases by 1. If this is the case, the cells previously occupied by the
cork are filled with the same values as the neighboring cells to avoid None values in
areas, where the fluid is now present. Finally, the first auxiliary field is set by the same
procedure as in aux init(), but this time only in the region of the cork.

Note, that aux(1, :, :), which stores the cork’s velocity, is also updated before each time
step and, unfortunately, must be assigned to every cell in the domain, although vC does
not vary in space. This unnecessary computation must be done because the normal
solver, which is a one-dimensional solver, works with a reduced auxiliary array
aux(1, :) = aux(1, :, j), where j is the constant index of the dimension, which is currently
not scanned through. Because j cannot be accessed by the solver and changes for every
new scanning process, the whole domain must be filled with the cork’s velocity and not
only one cell, which could then be addressed.

In the following figures the effects of a moving cork interacting with the surrounding
fluid are depicted as a density ρ(r, z, t), pressure p(r, z, t), Mach number M(r, z, t) and
temperature T (r, z, t) plot at some instances of time.

60

Figure 20: Density ρ(r, z, t), pressure p(r, z, t), Mach number M(r, z, t) and temperature
T (r, z, t) at t = 0.524ms for a total cell number of 800 and Tr = 20 ➦C.

Figure 21: Density ρ(r, z, t), pressure p(r, z, t), Mach number M(r, z, t) and temperature
T (r, z, t) at t = 1.049ms for a total cell number of 800 and Tr = 20 ➦C.

61

A number of different effects can be observed in figures 20 and 21. The main difference
between the density and the pressure is that while the latter is only considerably higher
in regions near the cork, besides the bottle’s inside, high density also occurs along the
main stream with the highest velocities. Along these lines Bernoulli’s principle, [26], is
sufficiently accurate to describe the behavior of decreasing pressure at least for some
points. This decrease can also be observed, when depicting the temperature of the main
stream. However, in this case there additionally exist regions of temperature minima,
which can be nearly 100 ➦C lower than other points on these lines (see figure 22(b)).

Figure 22: (a) An internally reflected pressure wave p(r, z, t) at t = 0.026ms
(b) The temperature T (r, z, t) at t = 0.315ms

for a total cell number of 800 and Tr = 20 ➦C.

As mentioned before, the Mach number and the temperature plots are also very similar.
Therefore it is no surprise that the region behind the cork and after the shock wave
visualizes the rapid decrease in velocity due to the given boundary conditions, as well
as the rapid increase in temperature.

Another effect can be found by observing the curvature of the main stream. In figure
20 the speed of the cork is still very small compared to the fluid’s velocity. Therefore
most of the gas is reflected by the cork’s left wall and the stream is curved backwards.
However, in figure 21 the increased speed and distance between the bottle and the cork
allow the majority of the fluid to flow around the object, hence a curvature in the other
direction occurs. The previously mentioned reflection can already be observed in the
first few microseconds after the cork popping as a pressure wave (see figure 22(a)).

A more expressive analysis of the cork’s movement is performed by depicting its accel-
eration, velocity and the position of the left wall as a function of time.

62

Figure 23: The cork’s position of the left wall sC , velocity vC and acceleration aC as a
function of time for a total cell number of 800 and Tr = 20 ➦C, displaying the
first 2ms.

While sC and vC are continuous due to the behavior of the Taylor series expansion, aC
still possesses the discrete nature of its derivation in (147). This fact is most prominent
at the start of the simulation, where the cork’s indices remain unchanged for a longer
period of time, due to the cork’s small speed, than at later points in time.

5.2.1 Distance between the Shock Wave and the Cork

To further understand the behavior of the emerging shock wave, the distances between
the bottle opening and the shock discontinuity and between the cork and the shock are
evaluated as a function of time and compared with a series of contour plots, considering
the pressure and Mach number at specific points in time. The position of the shock
wave is determined by calculating the Mach number along r = 0 and then finding the
global maximum between the bottle and cork. Whenever this maximum is reached, the
corresponding cell’s index is used to calculate the desired position.

63

Figure 24: (a) The distance between the bottle opening and the shock (blue) and between
the cork and the discontinuity (orange) for a total cell number of 800 and
Tr = 20 ➦C, displaying the first 2ms.
(b) The corresponding experiment from [1] for the blue graph.

While the cork is already moving, the shock wave, as [1] suggests, only starts to appear
after half a millisecond. Without a discontinuity being present, the shock numerically
appears to be at the same position as the bottle opening and therefore the orange graph
in figure 24 keeps increasing, while the blue one stays zero until 0.56ms. The shock
wave’s appearance is visualized in figure 25.

Figure 25: Close-up view of the pressure and Mach number at t = 0.577ms for a total
cell number of 800 and Tr = 20 ➦C.

A region of increased pressure and decreased velocity is then formed, which temporar-
ily becomes sharper and thinner, hence the distance between the shock and the cork
decreases.

64

Figure 26: Contour plot of the pressure and Mach number at t = 0.734ms for a total
cell number of 800 and Tr = 20 ➦C.

This behavior changes after the one millisecond mark. This is the time, when the Mach
disk disappears in [1], leading to a widening of the pressure wave and a gradual increase
in both distances.

Figure 27: Contour plot of the pressure and Mach number at t = 1.049ms for a total
cell number of 800 and Tr = 20 ➦C.

At approximately t=1.35ms the region behind the cork starts to disintegrate into two
high pressure areas, where the first one seems to remain stationary for a short period of
time and the second layer continues to move with the cork. Because the sudden decrease
in the Mach number always occurs behind the first pressure wave, the stationary behavior
of the first area explains the local maximum at t=1.4ms for the blue graph in figure
24.

Figure 28: Contour plot and close-up view of the pressure at t = 1.364ms for a total cell
number of 800 and Tr = 20 ➦C.

65

After the local maximum, the first layer even starts to retract, forming a Gaussian-
shaped area. Around t = 1.5ms the distance between the cork and the shock surpasses
the distance between the wave and the bottle, reaching a local minimum for the blue
graph shortly after. This retraction behavior also occurs in [1], but at an earlier time.

Figure 29: Contour plot and close-up view of the pressure at t = 1.521ms and
t = 1.678ms for a total cell number of 800 and Tr = 20 ➦C.

The mentioned Gaussian shape starts to expand in the r-direction and rapidly increases
its velocity in the z-direction, which explains the blue graph’s jump between t = 1.7ms
and t = 1.85ms. Moreover, the second layer widens one more time at t = 2ms up to the
point, where it disintegrates again into a third region. This process appears to repeat for
every millisecond, though a longer time interval would be needed to prove this claim.

Figure 30: Contour plot of the pressure at t = 1.836ms and t = 2.045ms for a total cell
number of 800 and Tr = 20 ➦C.

66

A similar behavior can be observed for the Mach number, in this case indicating regions
of low velocities.

Figure 31: Contour plot of the Mach number at t = 1.364ms, t = 1.678ms, t = 1.836ms
and t = 2.045ms for a total cell number of 800 and Tr = 20 ➦C.

Finally, a visual comparison of the experiment in [1] and the results of the simulation
can be achieved, as depicted in figures 32 and 33.

Figure 32: Comparison of the experiment performed in [1] and the present simulation
for the density between t = 0ms and t = 0.350ms for a total cell number of
800 and Tr = 20 ➦C.

67

Figure 33: Comparison of the experiment performed in [1] and the present simulation
for the density between t = 0.4ms and t = 1.0ms for a total cell number of
800 and Tr = 20 ➦C.

5.3 Unresolved Issues and Further Improvements

Although the present thesis provides a complete numerical simulation regarding the pro-
posed system in [1], there are numerous further improvements to be made and unresolved
issues worth discussing.

The biggest adaptation would be changing the used solver type. Instead of the Roe
solver, a more advanced n-wave-solver could be used to include all possible waves for a
system of n equations. This would allow to generalize the given Euler equations to be
able to describe a number of different gases and liquids, which could all interact with each
other, exchanging certain properties and quantities of the corresponding fluid. However,
this system would dramatically increase the complexity of the necessary equations and
therefore the computational power for simulating a certain number of time steps.

68

To counteract these requirements, the overall grid could be modified to be non-uniform,
so that the size of the grid cells is bigger in areas, where the fluid’s quantities are similar,
compared with their cell neighbors, and smaller in regions, where a lot of movement is
happening or a detailed depiction is desired. This would generally decrease the required
computational effort, with the expense of a more complex numerical algorithm. A sim-
pler way would be to simulate just the upper half of the bottle and simply mirror the
solution for the bottom half. This would be a logical step due to the given axial symme-
try. For a pure two-dimensional Cartesian system this procedure would not cause any
issues at all, but for the given system the present source term demands its own boundary
conditions for r = 0, if this value represents the bottom edge of the domain. This re-
quirement is not trivial to accomplish and therefore the longer duration of computation
is tolerated instead.

In this thesis the cork starts at rest with one cell of fluid between itself and the bottle
opening. This is necessary to fulfill the numerical implementation of the boundary
conditions, where the ghost cells of the bottle opening must each have at least one fluid
cell on their right side and for the cork’s cells on their left side. A more physical initial
placement of the cork would be to start inside the bottle. This in turn would require a
slim film of fluid between both objects and would inevitably cause some of the fluid to
exit the bottle before the cork has even started to move. Additionally, the film would
cause friction, which should also be considered.

While convergence, stability and accuracy were at least partly determined in chapter
5 and briefly discussed regarding Roe’s proposed solver, the latter can be considered
by high-resolution methods. Unfortunately, it was not possible to increase the system’s
accuracy by applying a standard flux-limiter. By modifying the core instances of the
CLAWPACK library, which are responsible for this implementation, a limiter could
achieve an anti-diffusive flux that could sharpen up Godunov’s method, [4]. Stability
also depends on the CFL-condition, where different values for cfl desired lead to distin-
guishable behaviors of the fluid, especially for fine details.

Finally, there are still unresolved issues, which should be addressed in a following work
or paper concerning similar systems. While the acceleration of the cork in figure 23
behaves as expected for the first millisecond, after 1.5ms aC starts to oscillate. The
reason for this behavior could be that after the separation of the two high pressure
areas, the first one moves towards the bottle, hence possessing a negative velocity. Due
to the conservation of momentum, the pressure wave could cause a push onto the cork
in the positive z-direction and therefore increases its acceleration temporarily. Another
observation, which was not explained in the previous section, is the retraction happening
at a later point in time in the simulation than [1] could determine. While the cork at
the start of the simulation is at rest, in the experiment the cork already has an initial
velocity when exiting the bottle opening. This fact could explain the earlier retraction.
However, both claims must be studied more thoroughly to determine their validity.

69

6 Conclusion

The simulation of a sudden gas discharge through a bottle opening is performed by
assuming a compressible Euler fluid in cylindrical coordinates undergoing an adiabatic
expansion. The numerical solution for each time step is found via Godunov’s method,
receiving the waves and corresponding fluctuations from a modified HLLE-solver. Due to
axial symmetry, the system’s domain can be reduced to a two-dimensional cross-section,
where a source term denotes the mixed-dimensional terms and which is incorporated in-
side the particular equation and solved by a second order Runge-Kutta method. While
the boundary conditions at the computational domains’ edges consider an undisturbed
outflow, the bottle’s and cork’s walls cause a reflection of the quantities’ values in accor-
dance with the no-penetration condition. The latter effect is numerically implemented
inside the normal solver and executed with the help of auxiliary fields.

Analyzing the unobstructed flowing fluid in section 5 validates the assumption of an
isentropic change of state at the bottle opening and disproves that the flow could be
considered steady. Furthermore, the Mach disk can be seen as a discontinuity inside the
distribution of the local Mach number and temperature, when illustrating the quantities’
values along the z-axis for a given point in time. Finally, the interaction between the fluid
and the incorporated cork is regarded as a propelled motion of the solid object due to
the pressure difference between its front and back end wall. While the cork’s acceleration
consists of discrete jumps, especially at the beginning due to the finite number of grid
cells, its velocity and position of the left wall are calculated with the truncated Taylor
series expansion with varying time steps and are therefore regarded as being continuous.
Finally, the distances between the bottle and the shock and between the cork and the
discontinuity are investigated. Hereby the appearance of the shock wave after half a
millisecond, its disintegration and the retraction behavior of the newly created second
wave can all be observed, when viewing the pressure and Mach number distributions at
certain points in time, as well as the time evolution of the corresponding distances.

The vision of this thesis is that a following paper or thesis could use the acquired knowl-
edge and the provided Python and Fortran programs to further investigate the behavior
of the Mach disk and especially the phase transition of the CO2 gas after its emission.
First of all, it should be validated if the transition really only occurs after the bottle
opening and not inside of it for every bottle geometry and initial condition. If this is not
the case, dry ice could damage the inner walls of the bottle, which would be devastating
considering a similar system such as a thrust nozzle. The second question would then
be, how to design the bottle opening’s geometry to minimize the interaction between
the wall and the dry ice particles for a given initial condition. Therefore the applied
equations must certainly consider inner friction and a multi-phase mixture.

70

7 Appendix

This section includes the table of all symbols and quantities used in this thesis, and three
code listings which are necessary for the numerical computation. Constants.py stores all
constants either in their dimensional or non-dimensional form. Custom Euler Solver.f90
includes the Roe solver and the algorithm to fulfill the internal no-penetration condition.
Main.py is the main file including all necessary functions and PyClaw’s classes to run the
simulation, as well as the instances which are responsible for plotting the resulting data.
Note, that a few quantities possess different names, such as κ0 being called gamma 0,
w → u and u → v, so that u describes the velocity in the z-direction and v the velocity in
the r-direction. Because u is always considered first, the entries 2 and 3 of the quantities
in (44) are swapped and of all the other vectors and matrices in later equations too,
which are derived from the first ones. This fact explains the different entries of the
source term.

Constants.py

import numpy as np

#Gas constant
R = 8.314

#I n i t a l va lues o f the environment
p0 = 1.013
rho 0 = 1.204
gamma 0 = 7 . / 5 .
T0 = 293.15
mu 0 = 1.827
lambda 0 = 0.0262

#Diameter o f the bo t t l e opening
d0 = 1.8

#Derived quan t i t i e s
c0 = np . sq r t (10✯✯5✯gamma 0✯p0/ rho 0)
E0 = 10✯✯5✯p0/(gamma 0−1.)
tau 0 = d0/c0 ✯ 0 .01 #in seconds

#Gas volume i n s i d e the bo t t l e
Vr = 25 .

#I n i t a l va lues i n s i d e the bo t t l e
pr = 7 .5 #10.2# f o r the second bo t t l e
Tr = 293.15 #303.15# f o r the second bo t t l e

#Density o f the cork
rho Cr = 240 .

#Dimens ion less qu an t i t i e s
p = pr/p0
T = Tr/T0
rho = p/T
E = p

#Dimens ion less l ength o f the bo t t l e
L = 15 . / (7 .✯ np . p i) ✯ Vr/d0✯✯3

#Dimens ion less dens i ty and volume o f the cork
rho C = rho Cr / rho 0
VC = 91.✯np . p i /150 .

#Heat capac i ty f o r constant pr e s su r e
cp 0 = gamma 0✯p0 ✯10✯✯5/((gamma 0−1.)✯ rho 0 ✯T0)

71

Symbol Description

Chapter 2:
d0 = 1.8 cm, [1] diameter of the bottle opening
L = 5.26 cm length of the gaseous region inside the bottle
p0 = 1.013 bar, [20] ambient pressure
T0 = 20 ➦C ambient temperature
ρ0 = 1.204 kg/m3, [21] ambient mass density of air
κ0 = 7/5, [22] heat capacity ratio of air
Tr = 20, 30 ➦C, [1] initial temperature of the internal gas
Vr = 25 ml, [1] initial volume of the internal gas
pr = 7.5 , 10.2 bar, [1] initial pressure of the internal gas
ρC = 240 kg/m3, [24] mass density of the cork

Chapter 3:
vi velocity
E energy density
ρ e internal energy density
M molar mass
ρ h internal enthalpy density
f degrees of freedom
V specific volume
s specific entropy
ρH total enthalpy density
xi spatial dimensions
rm position vector
t time
qi vector of unknown quantities
σij stress tensor
Qi heat flux
Dij strain rate tensor
∇i Nabla operator
δij Kronecker delta
Φ dissipation function
f ij , f i

l flux matrix and vector
Ψi source term

Aij
l speed matrix

B vector basis
r, φ, z cylindrical coordinates
êi unit vector
u, v, w velocity components
viw velocity of a solid wall
n̂i, t̂i normal and tangent unit vectors of a body’s surface

72

Symbol Description

R = 8.314 J/(K mol), [27] gas constant
cp, cV heat capacities for constant p and V
cp0 = 1004.53 J/(kg K) ambient heat capacity
c0 = 343.21m/s ambient speed of sound
τ0 = 52.45µs reference-time
µ̄, µ volume and dynamic viscosity
µ0 = 1.827 · 10−5 Pa s, [28] ambient dynamic viscosity
g0 = 9.81 m/s2, [29] gravitational acceleration on earth’s surface
λ0 = 0.0262 W/(m K), [30] ambient thermal conductivity

Sr = 1 Strouhal-number
Eu = 5/7 Euler-number
Fr = 817 Froude-number
Re = 4.07 · 105 Reynolds-number
Ec = 2/5 Eckert-number
Pr = 0.700 Prandtl-number

Chapter 4:
s wave speed
n̂m wave direction

λp eigenvalues of Aij
l

rip right eigenvectors of Aij
l

wp characteristic variables

T ij transformation matrix of Aij
l

Λij diagonal matrix of Aij
l

lip left eigenvectors of Aij
l

αp jump constant
W i

p p-th wave
qim middle state between two discontinuities
m cell index
ΔV volume of a grid cell
rim, r

i
m−1/2 center and left interface of the m-th cell

f i
in, f

i
out total fluxes into and out of a cell

Δt time step
F i approximation to the average flux over Δt
F i numerical flux vector
q̃i piecewise polynomial function
W i

p numerical p-th wave

73

Symbol Description

Δxm length of the m-th cell

Aij
− ΔQj, Aij

+ ΔQj left and right-traveling wave fluctuations

Âij approximation of Aij over two adjacent cells

Q̂i some average of Qi

zi Roe’s parameter vector
Zi average value of zi inside a cell

Âij , B̂ij, Ĉij linearization matrices
Z̄i discretized mean vector of zi

û, ŵ, Ĥ Roe averages
L non-dimensional length of the bottle
fB(x), fC(x) curvature function of the bottle’s or cork’s surface
xst, send start and end point of an object in the x-direction
VC volume of the cork
N total number of cell interfaces
ix index of xst

jbot, jtop arrays storing the indices of the object’s surface
Qi

h homogeneous solution of Qi

bj, aj l coefficients from the Butcher table
M last internal index of an object
NG number of ghost cells
D domain of dependence
r fixed step size ratio
ν Courant number

F̃ i fluxes based on the waves from the Riemann solution
F i

L,F i
H low and high order flux formula

Chapter 5:
M local Mach number
ṁ mass flow of the fluid
A cross section of the bottle
F force acting on one side of the cork
NC biggest cell index still occupied by the cork
mC mass of the cork
Nl, Nr NC on the left and right surface of the cork
Δr, ri grid distance and position of the cell center in the y-direction
sC , vC , aC position of the left wall, velocity and acceleration of the cork
s, v, a numerical arrays of sC , vC , aC
j constant index of the dimension which is not scanned through

74

Custom Euler Solver.f90

! ===
subrout ine rpn2 (ixy ,maxm,meqn ,mwaves ,maux ,mbc ,mx, ql , qr , auxl , auxr , wave , s , amdq , apdq)
! ===

! HLLE so l v e r f o r the Euler equat ions .
! This s o l v e r takes in to account i n t e r n a l r e f l e c t i n g boundar ies with in the domain .
! The aux array (1) conta ins the geometry : where i t i s equal to zero , a s o l i d ob j e c t e x i s t s .
! The f l u i d domain i s the reg ion , where aux i s equal to one .

! waves : 2
! equat ions : 4

! Conserved quan t i t i e s :
! 1 dens i ty
! 2 x−momentum
! 3 y−momentum
! 4 energy

imp l i c i t none

in tege r , i n t en t (in) : : ixy , maxm, meqn , mwaves , maux , mbc , mx
double p r e c i s i on , dimension (meqn,1−mbc :maxm+mbc) , i n t en t (inout) : : ql , qr
double p r e c i s i on , dimension (maux,1−mbc :maxm+mbc) , i n t en t (in) : : auxl , auxr
double p r e c i s i on , dimension (meqn , mwaves , 1−mbc :maxm+mbc) , i n t en t (out) : : wave
double p r e c i s i on , dimension (mwaves , 1−mbc :maxm+mbc) , i n t en t (out) : : s
double p r e c i s i on , dimension (meqn , 1−mbc :maxm+mbc) , i n t en t (out) : : amdq , apdq

double p r e c i s i o n : : rho l , rho r , u l , u r , v l , v r , E l , E r
double p r e c i s i o n : : p l , p r , H l , H r , c l , c r
double p r e c i s i o n : : s q rho l , sqrho r , u hat , v hat , H hat , c hat
double p r e c i s i o n : : s1 , s2 , rho m , rhou m , rhov m ,E m
in t e g e r : : rho , mu, mv, E
i n t e g e r : : i , j , m, mw

double p r e c i s i o n : : gamma
common /cparam/ gamma

! # Set mu to point to the component o f the system that corresponds
! # to the momentum in the d i r e c t i o n o f t h i s s l i c e , mv to the orthogona l
! # momentum :

rho = 1
E = 4
i f (ixy . eq . 1) then

mu = 2
mv = 3

e l s e
mu = 3
mv = 2

end i f

do i=2−mbc ,mx+mbc

! F i r s t handle boundar ies
i f ((auxl (1 , i −1) . eq . 0 . d0) . and . (auxl (1 , i) . eq . 1 . d0)) then

! Re f l e c t i n g boundary to the l e f t
do j =1,mbc

qr (1 , i−j) = q l (1 , i+j −1)
qr (mu, i−j) = −q l (mu, i+j −1)
qr (mv, i−j) = q l (mv, i+j −1)
qr (4 , i−j) = q l (4 , i+j −1)

! Cal led i f the cork ’ s v e l o c i t y i s not zero
i f ((auxr (2 , 2) . ne . 0d0) . and . (ixy . eq . 1)) then

qr (mu, i−j) = qr (mu, i−j) + 2d0✯ auxl (2 ,2)✯ qr (1 , i+j −1)
end i f

end do

e l s e i f ((auxl (1 , i) . eq . 0 . d0) . and . (auxl (1 , i −1) . eq . 1 . d0)) then
! Re f l e c t i n g boundary to the r i gh t
do j =1,mbc

q l (1 , i+j −1) = qr (1 , i−j)
q l (mu, i+j −1) = −qr (mu, i−j)
q l (mv, i+j −1) = qr (mv, i−j)
q l (4 , i+j −1) = qr (4 , i−j)

! Cal led i f the cork ’ s v e l o c i t y i s not zero
i f ((auxr (2 , 2) . ne . 0d0) . and . (ixy . eq . 1)) then

q l (mu, i+j −1) = q l (mu, i+j −1) + 2d0✯ auxl (2 ,2)✯ q l (1 , i−j)
end i f

end do

75

end i f

! Density
r h o l = qr (rho , i −1)
rho r = q l (rho , i)
! Ve loc i ty
u l = qr (mu, i −1) / r h o l
u r = q l (mu, i) / rho r
v l = qr (mv, i −1) / r h o l
v r = q l (mv, i) / rho r
! Energy
E l = qr (E, i −1)
E r = ql (E, i)
! Pressure
p l = E l − gamma✯(gamma−1d0)✯ r h o l ✯0 .5 d0 ✯(u l ✯✯2+ v l ✯✯2)
p r = E r − gamma✯(gamma−1d0)✯ rho r ✯0 .5 d0 ✯(u r ✯✯2+v r ✯✯2)

! Enthalpy
H l = E l / r h o l − (gamma−1d0)✯✯2 ✯0 .5 d0✯ (u l ✯✯2+ v l ✯✯2)
H r = E r / rho r − (gamma−1d0)✯✯2 ✯0 .5 d0✯ (u r ✯✯2+v r ✯✯2)
! Sound speed
c l = dsqrt (p l / r h o l)
c r = dsqrt (p r / rho r)

s q r h o l = dsqrt (r h o l)
s q rho r = dsqrt (rho r)

! Roe averages
u hat = (s q r h o l ✯ u l+sq rho r ✯ u r) / (s q r h o l+sq rho r)
v hat = (s q r h o l ✯ v l+sq rho r ✯ v r) / (s q r h o l+sq rho r)
H hat = (s q r h o l ✯H l+sq rho r ✯H r) / (s q r h o l+sq rho r)
c hat = dsqrt (H hat−(gamma−1d0)✯0 . 5 d0 ✯(u hat✯✯2+v hat ✯✯2))

! Speeds o f non−shear waves
s1 = min (u l − c l , u hat − c hat)
s2 = max(u r + c r , u hat + c hat)

! ”Middle ” s t a t e
rho m = (q l (mu, i) − qr (mu, i −1) − s2✯ q l (rho , i) + s1✯qr (rho , i −1))/(s1−s2)
rhou m = (q l (rho , i)✯ u r ✯✯2 − qr (rho , i −1)✯ u l ✯✯2 + (p r − p l)/gamma − s2✯ q l (mu, i) + s1 ✯qr (mu, i −1))/(s1−s2)
rhov m = (q l (mv, i)✯ u r − qr (mv, i −1)✯ u l − s2✯ q l (mv, i) + s1 ✯qr (mv, i −1))/(s1−s2)
E m = (u r ✯(E r+(gamma−1d0)✯ p r) − u l ✯(E l+(gamma−1d0)✯ p l) −s2✯E r + s1✯E l)/(s1−s2)

! The f i r s t wave
wave (rho , 1 , i) = rho m − qr (rho , i −1)
wave (mu, 1 , i) = rhou m − qr (mu, i −1)
wave (mv, 1 , i) = rhov m − qr (mv, i −1)
wave (E, 1 , i) = E m − qr (E, i −1)
! The speed o f the f i r s t wave
s (1 , i) = s1

! The second wave
wave (rho , 2 , i) = q l (rho , i) − rho m
wave (mu, 2 , i) = q l (mu, i) − rhou m
wave (mv, 2 , i) = q l (mv, i) − rhov m
wave (E, 2 , i) = q l (E, i) − E m
!The speed o f the second wave
s (2 , i) = s2

end do

do m=1,meqn
do i=2−mbc , mx+mbc

amdq(m, i) = 0 . d0
apdq (m, i) = 0 . d0
do mw=1,mwaves

i f (s (mw, i) . l t . 0 . d0) then
! The l e f t f l u c t u a t i o n s
amdq(m, i) = amdq(m, i) + s (mw, i)✯wave (m,mw, i)

e l s e
! The r i gh t f l u c t u a t i o n s

apdq (m, i) = apdq (m, i) + s (mw, i)✯wave (m,mw, i)
end i f

end do
end do

end do

end subrout ine rpn2

76

Main.py

import matp lo t l ib . pyplot as p l t
from clawpack import pyclaw
import numpy as np
from clawpack import riemann
import Constants as c

#Function o f the Bott l e
de f f B (x) :

r e turn x ✯✯2/(2 .✯ c . L✯✯2) − x/c .L + 1 .

#Function o f the Cork
de f f C (x) :

r e turn 0 .6 − x /20 .

#Evaluates the c l o s e s t index f o r any point along the x−ax i s
de f Ind x (x s t , x end) :

ERROR Management
i f x end < x s t + dx :

r a i s e ValueError (”x end must be equal or g r e a t e r than x s t+dx ”)
i f x end > x . upper :

r a i s e ValueError (”x end exceeded the domain ”)
i f x s t != x s t or x end != x end :

r a i s e ValueError (” x s t = ” + s t r (x s t) + ” and x end = ” + s t r (x end) + ” both must be a number ”)

#Returnes the corresponding index i f the abso lute d i s t ance i s at a minimum
def min (i s t , xp) :

l = 1000 .
f o r i in range (i s t ,M) :

abs l = abs (X[i ,0]−xp)
i f abs l >= l :

re turn i − 1
e l s e :

l = abs l

i n d e x l e f t = min (0 , x s t)
i nd ex r i g h t = min (i n d e x l e f t , x end)

return i n d e x l e f t , i n d ex r i gh t

#Evaluates the y−index above the funct ion ’ s value
#f o r a l l x−po s i t i o n s between x l and xr
de f Ind y (xl , xr , func) :

f = []

#F i l l i n g in the funct ion ’ s va lues at a l l i n t e r f a c e s
between x l and xr , exc lud ing the l a s t one
f o r i in range (xl , xr) :

f . append (func (X[i ,0]−X[xl , 0]))

index top = []

#Store s the index i f the y−po s i t i o n o f the c e l l i n t e r f a c e
#i s b igge r than the funct ion ’ s va lue at a given x−value
f o r i in range (l en (f)) :

f o r j in range (i n t (N/2) ,N) :
i f Y[0 , j] >= f [i] :

index top . append (j)
break

index top = np . array (index top)
index bot = N−index top−1

return index bot , index top

#Determines the i n i t a l va lues o f q
de f i n i t v a l u e s (value) :

#f i l l i n g the domain with ones
array = np . ones ((Mm,Nm))

#ix==0: f o r the bo t t l e
#e l s e : f o r the cork
de f i n i t (ix , j bo t , j t o p) :

f o r i in range (l en (j t o p)) :
i f i x == 0 . :

array [ix+i , j b o t [i] : j t o p [i]] = value

77

array [ix+i , j b o t [i]−tkn : j b o t [i]] = None
array [ix+i , j t o p [i] : j t o p [i]+tkn] = None

e l s e :
array [ix+i , j b o t [i] : j t o p [i]] = None

i n i t (b st , b bot , b top)

#The cork i s only cons ide red f o r the
#second s e t o f p l o t s
i f p l o t == 2 :

i n i t (c s t , c bot , c top)

return array

#Determines the i n i t i a l va lues o f the aux−f i e l d
de f a ux i n i t () :

f i l l i n g the aux−f i e l d with ones
array = np . ones ((Mm,Nm))

#Same procedure as f o r the prev ious None va lues
de f i n i t (ix , j bo t , j t o p) :

f o r i in range (l en (j t o p)) :
i f i x == 0 . :

array [ix+i , j b o t [i]−tkn : j b o t [i]] = 0
array [ix+i , j t o p [i] : j t o p [i]+tkn] = 0

e l s e :
array [ix+i , j b o t [i] : j t o p [i]] = 0

i n i t (b st , b bot , b top)

#The cork i s only cons ide red f o r the
#second s e t o f p l o t s
i f p l o t == 2 :

i n i t (c s t , c bot , c top)

return array

#I s r e s p on s i b l e f o r the 2D heat−maps
de f s e t p l o t (p lotdata) :

from clawpack . v i s c l aw import colormaps

Clear any old f i gu r e s , axes , i tems data
p lotdata . c l e a r f i g u r e s ()

de f d e f a u l t p l o t s e t t i n g s (p l o t f i g u r e , max) :

Set up f o r axes in t h i s f i g u r e :
p l o taxe s = p l o t f i g u r e . new plotaxes ()

#Conf igures s e t t i n g s to which VisClaw has no d i r e c t a c c e s s
de f a f t e r a x e s (cu r r en t da ta) :

from matp lo t l ib import pyplot as p l t

#Creates the t i t l e
name = p l o t f i g u r e . name . s p l i t (” ”)
t = cur r ent da ta . t ✯c . tau 0 ✯1000
p l t . t i t l e (name [0]+” at time t = ”+”{ : . 3 f }”. format (t)+” [ms] ” , f o n t s i z e =13)

p l t . x l ab e l (”[cm] ”)
p l t . y l ab e l (”[cm] ”)

#S ize o f the co l o rba r and i t s l a b e l
#0.032 , 0 .0235 and 0.029 were used f o r the f r a c t i o n
cb = p l t . c o l o rba r (f r a c t i o n =0.0235)
cb . s e t l a b e l (l a b e l=name [1] , l abe lpad=−18,y=1.07 , r o t a t i on =0.)

#Locat ion o f the axis ’ va lues
#x−ax i s :
l oc s , l a b e l s = p l t . x t i c k s ()
i f f l o a t (”{ : . 6 f }”. format (l o c s [−1])) != x . upper :

l o c s = l o c s [: −1]
A = []
f o r i in range (l en (l o c s)) :

A. append (”{ : . 1 f }”. format (l o c s [i] ✯ c . d0))
p l t . x t i c k s (l oc s , A)

#y−ax i s :
l oc s , l a b e l s = p l t . y t i c k s ()
i f f l o a t (”{ : . 6 f }”. format (l o c s [−1])) != y . upper :

l o c s = l o c s [1 : −1]
A = []

78

f o r i in range (l en (l o c s)) :
A. append (”{ : . 2 f }”. format (l o c s [i]✯ c . d0))

p l t . y t i c k s (l oc s ,A)

f i gno = p l o t f i g u r e . f i gno

p lo taxe s . a f t e r a x e s = a f t e r a x e s
p lo taxe s . s c a l ed = True # so aspect r a t i o i s 1

Set up f o r item on these axes :
p lo t i t em = plo taxe s . new plot i tem (p l o t t ype =’2 d pco lor ’)

p lot i t em . pcolor cmap = colormaps . y e l l ow r ed b l u e
p lot i t em . pco lor cmin = 0 .
p lot i t em . pcolor cmax = max

#I s needed because the co l o rba r was a l ready
#implemented i n s i d e a f t e r a x e s
p lot i t em . add co lo rbar = False

#Density p lo t
i f f i gno == 0 :

de f Dens (cu r r en t da ta) :
rho = cur r en t da ta . q [0 , : , :]
r e turn rho ✯ c . rho 0

p lot i t em . p l o t va r = Dens

#Pressure p lo t
e l i f f i gno == 1 :

de f Press (cu r r en t data) :
u = cur r en t da ta . q [1 , : , :] / cu r r en t da ta . q [0 , : , :]
v = cur r en t da ta . q [2 , : , :] / cu r r en t da ta . q [0 , : , :]
p = cur r en t da ta . q [3 , : , :] − c . gamma 0✯(c . gamma 0−1.)✯ cu r r en t da ta . q [0 , : , :] ✯ 0 . 5 ✯ (u✯✯2+v✯✯2)
return p ✯ c . p0

p lot i t em . p l o t va r = Press

#Mach number p lo t
e l i f f i gno == 2 :

de f a b s v e l o c i t y (cu r r en t da ta) :
u = cur r en t da ta . q [1 , : , :] / cu r r en t da ta . q [0 , : , :]
v = cur r en t da ta . q [2 , : , :] / cu r r en t da ta . q [0 , : , :]
T = cur r en t da ta . q [3 , : , :] / cu r r en t da ta . q [0 , : , :] − c . gamma 0✯(c . gamma 0−1 .)✯0 .5✯ (u✯✯2+v✯✯2)
return np . sq r t ((u ✯✯ 2 + v ✯✯ 2)/T)

p lot i t em . p l o t va r = ab s v e l o c i t y

#Temperature p lo t
e l s e :

de f Temp(cur r en t da ta) :
u = cur r en t da ta . q [1 , : , :] / cu r r en t da ta . q [0 , : , :]
v = cur r en t da ta . q [2 , : , :] / cu r r en t da ta . q [0 , : , :]
T = cur r en t da ta . q [3 , : , :] / cu r r en t da ta . q [0 , : , :] − c . gamma 0✯(c . gamma 0−1 .)✯0 .5✯ (u✯✯2+v✯✯2)
return T ✯ c .T0 − 273.15

p lot i t em . p l o t va r = Temp
plot i t em . pco lor cmin = − 200 .

#Only p lo t which has another c o l o r g rad i ent
p lot i t em . pcolor cmap = colormaps . b l u e y e l l ow r ed

p l o t f i g u r e 0 = plotdata . n ew p l o t f i gu r e (name=’Density [kg/mˆ3] ’ , f i gno=0)
d e f a u l t p l o t s e t t i n g s (p l o t f i gu r e 0 , max=c . rho 0 ✯c . rho)

p l o t f i g u r e 1 = plotdata . n ew p l o t f i gu r e (name=’Pressure [bar] ’ , f i gno=1)
d e f a u l t p l o t s e t t i n g s (p l o t f i gu r e 1 , max = c . pr)

p l o t f i g u r e 2 = plotdata . n ew p l o t f i gu r e (name=’Mach number ’ , f i gno=2)
d e f a u l t p l o t s e t t i n g s (p l o t f i gu r e 2 , max = 3 . 5)

p l o t f i g u r e 3 = plotdata . n ew p l o t f i gu r e (name=’Temperature [C] ’ , f i gno=3)
d e f a u l t p l o t s e t t i n g s (p l o t f i gu r e 3 , max = c . Tr−273.15)

return p lotdata

#Handles the source term with the
#gene ra l two−order Runge−Kutta−method
de f source term (so lve r , s tate , dt) :

q = s t a t e . q
rad = Yc
dt = so l v e r . dt

#The source term with ar r [1 , : , :]
#and arr [2 , : , :] be ing swapped

79

def Psi (a) :

rho = a [0 , : , :]
u = a [1 , : , :] / rho
v = a [2 , : , :] / rho
E = a [3 , : , :]
p = E − gamma✯(gamma−1.)✯ rho ✯0 .5✯ (u✯✯2 + v✯✯2)

ar r = np . empty (a . shape)

ar r [0 , : , :] = −rho✯v/ rad
ar r [1 , : , :] = −rho✯u✯v/ rad
ar r [2 , : , :] = −rho✯v✯✯2/ rad
ar r [3 , : , :] = −v✯(E+p✯(gamma−1.))/ rad

return ar r

k1 = Psi (q)
k2 = Psi (q+dt ✯0 .5✯ k1)
q = q + dt✯k2

s t a t e . q = q

#Calcu l a t e s the quan t i t i e s f o r the
#f i r s t s e t o f p l o t s
de f F low ca lc (so lve r , s t a t e) :

q = s t a t e . q

#Quant i t i e s f o r the bo t t l e opening at r=0
rho = q [0 , xb ,Nh]
u = q [1 , xb ,Nh]/ rho
v = q [2 , xb ,Nh]/ rho
p = q [3 , xb ,Nh] − c . gamma 0✯(c . gamma 0−1.)✯ rho ✯0 .5✯ (u✯✯2+v✯✯2)
T = p/rho

Press . append (p)
Temp. append (T)

#Necessary so that t h e i r s i z e s are the same as f o r t
i f l en (t) == 1 :

Press . append (p)
Temp. append (T)

dt = so l v e r . dt
t . append (t [−1]+dt)

#I f the de s i r ed point in time i s reached
i f t [−1] >= time [0] and time [1] :

time [0] = t [−1]✯ c . tau 0 ✯1000.

#Important so that the i f statement
#i s only c a l l e d once
time [1] = False

#Quant i t i e s along the x−ax i s f o r r=0
u = q [1 , : ,Nh] / q [0 , : ,Nh]
v = q [2 , : ,Nh]/ q [0 , : ,Nh]
p = q [3 , : ,Nh] − c . gamma 0 ✯ (c . gamma 0−1.) ✯ q [0 , : ,Nh] ✯ 0 .5 ✯ (u✯✯2+v✯✯2)
Temp2 [:] = p/q [0 , : ,Nh]

#Calu la t ion o f both M p l o t s
Mach [:] = np . sq r t ((u✯✯2+v✯✯2)/Temp2)
f o r i in range (num ce l l s x) :

#I f statement to avoid 1/0ˆ2
i f u [i] == 0 . :

M v [i] = 0 .
e l s e :

M v [i] = np . sq r t (1 . / (1 . / u [i]✯✯2 − 0 . 5✯ (c . gamma 0−1 .)))

#Updates the aux−f i e l d be f o r e each time step
de f update aux (so lve r , s t a t e) :

q = s t a t e . q

#The ac t ing f o r c e on a wal l
de f Force (ix , i y) :

#Quant i t i e s at a wal l f o r r > 0
u = q [1 , ix ,Nh : iy] / q [0 , ix ,Nh : iy]
v = q [2 , ix ,Nh : iy] / q [0 , ix ,Nh : iy]
p = q [3 , ix ,Nh : iy] − c . gamma 0✯(c . gamma 0−1.)✯q [0 , ix ,Nh : iy] ✯ 0 . 5 ✯ (u✯✯2+v✯✯2)
sum = 0 .

80

f o r i in range (Nh, iy) :
sum += Yc [0 , i]✯p [i−Nh]

return sum

#Total f o r c e d i f f e r e n c e
F = 2.✯np . p i ✯dy✯(Force (i c [0] , c top [0]) − Force (i c [1] , c top [Lc]))

acc = F/(c . gamma 0✯c . rho C✯c .VC)
a . append (acc) #a [i]

Necessary so that i t s s i z e i s the same as f o r t
i f l en (t) == 2 :

a . append (acc)

dt = so l v e r . dt
t . append (t [−1]+dt) #t [i +1]

dt = [t [−2]− t [−3] , t [−1]− t [−2]] #dt n , d t {n−1}
r = dt [1] / dt [0]
v e l = v [−2]✯ r ✯✯2 + v[−1]✯(1.− r ✯✯2) + a [−1]✯ dt [1]✯ (1 .+ r)
v . append (ve l) #v [i +1]
d i s = −s [−2]✯ r + s [−1]✯(1.+ r) + 0.5✯ a [−1]✯ dt [1] ✯ (dt [1]+ dt [0])
s . append (d i s) #s [i +1]

#aux [1 , : , :] s t o r e s the cork ’ s v e l o c i t y
s t a t e . aux [1 , : , :] = ve l

#Second argument i s not needed , t h e r e f o r e ”dummy”
ind c ,dummy = Ind x (s [−1] , s [−1]+dx)
#−1 to address the c e l l c ente r and not the i n t e r f a c e
i nd c −= 1
i f i nd c != i c [0] :

i f ind c−i c [0] > 1 :
r a i s e ValueError (”The Cork moved too f a s t ”)

#the wall ’ s i n d i c e s move by one
i c [0] += 1
i c [1] += 1

#F i l l the c e l l s , now occupied by the f l u i d , with va lues o f t h e i r l e f t ne ighbors
s t a t e . q [: , i c [0] , c bot [0] : c top [0]] = s t a t e . q [: , i c [0] −1 , c bot [0] : c top [0]]

#Update the aux−va lues
s t a t e . aux [0 , i c [0] : i c [1] −1 , :] = 1 .
f o r i in range (Lc+1):

s t a t e . aux [0 , i c [0]+ i +1, c bot [i] : c top [i]] = 0 .

#Mach Disk Movement , qu an t i t i e s a long x−ax i s
vx = q [1 , b end : i c [0]+1 ,Nh]/ q [0 , b end : i c [0]+1 ,Nh]
vy = q [2 , b end : i c [0]+1 ,Nh]/ q [0 , b end : i c [0]+1 ,Nh]
pr = q [3 , b end : i c [0]+1 ,Nh] −c . gamma 0✯(c . gamma 0−1.)✯q [0 , b end : i c [0]+1 ,Nh] ✯ 0 . 5 ✯ (vx✯✯2+vy✯✯2)
Te = pr/q [0 , b end : i c [0]+1 ,Nh]
Ma = np . sq r t ((vx✯✯2+vy ✯✯2)/Te)

#Returns the corresponding index i f M reaches i t s maximum
def d ind (ar r) :

max = −1.
f o r i in range (b end , i c [0]+1) :

i f a r r [i−b end] > max :
max = arr [i−b end]
ind = i

return ind

Dist . append (Xc [d ind (Ma) ,0]−Xc [b end , 0])
Dist2 . append (Xc [i c [0] , 0] −Xc [d ind (Ma) , 0])

#Creates the f i r s t s e t o f p l o t s
de f p l o t f l ow (t ,Temp,Temp2 , Press) :

#Transforms the quan t i t i e s i n to
#th e i r d imens ional form
t = c . tau 0 ✯ np . array (t)✯1000 .
Press = c . p0✯np . array (Press)
Temp = c .T0 ✯ np . array (Temp) − 273.15
Temp2 = c .T0 ✯ Temp2 − 273.15

#T(q) vs T(p) p lo t as a func t i on o f time
#va l i d a t i n g the ad i aba t i c expansion
p l t . f i g u r e ()
p l t . x l ab e l (” t [ms] ”)
p l t . y l ab e l (”T [C] ”)
p l t . t i t l e (”Temperature at the bo t t l e opening ”)
p l t . p l o t (t ,Temp, l a b e l=”T(q) ”)
exp = (c . gamma 0−1.)/ c . gamma 0

81

T i s en t = c . Tr ✯ (Press /c . pr)✯✯ exp − 273.15
p l t . p l o t (t , T isent , l a b e l=”T(p) ”)
p l t . l egend ()

#Measure the average e r r o r between the two temperatures
e r r = 0 .
f o r i in range (l en (Temp)) :

e r r += abs (Temp[i]−T i s ent [i])
e r r /= len (Temp)
pr in t (”N = ” , num ce l l s x , ” e r r = ” , err , ” dt = ” , d e l t a t)

#Temperature p lo t f o r r=0 at a given point in time
#showing the jump at the po s i t i o n o f the Mach d i sk
p l t . f i g u r e ()
p l t . x l ab e l (”[cm] ”)
p l t . y l ab e l (”T [C] ”)
ylim=−200 or −150 are used as the s t a r t i n g point
p l t . ylim (−200. ,50)
p l t . t i t l e (”Temperature f o r r=0 at t= ”+”{ : . 3 f }”. format (time [0])+” [ms] ”)
p l t . p l o t (Xc [: , 0] ✯ c . d0 ,Temp2)
p l t . axh l ine (y=0. , c o l o r=”black ” , l i n e s t y l e =”dotted ”)
p l t . axh l ine (y=20. , c o l o r=”red ” , l i n e s t y l e =”dotted ” , l a b e l=”T 0 = 20 C”)
p l t . axv l i n e (x=c .L✯c . d0 , c o l o r=”green ” , l i n e s t y l e =”dotted ” , l a b e l=”L = 5.26 cm”)
p l t . l egend (l o c=”lower r i gh t ”)

#M(q) vs M(v) p lo t f o r r=0 at a given point in time
#di sp rov ing that the f l u i d i s s t a t i ona ry
p l t . f i g u r e ()
p l t . x l ab e l (”[cm] ”)
p l t . y l ab e l (”M”)
p l t . t i t l e (”Mach f o r r=0 at t= ” + ”{ : . 3 f }”. format (time [0]) + ” [ms] ”)
p l t . p l o t (Xc [: , 0] ✯ c . d0 ,Mach , l a b e l=”M(q) ”)
p l t . p l o t (Xc [: , 0] ✯ c . d0 ,M v , l a b e l=”M(v) ”)
p l t . axh l ine (y=1. , c o l o r=”black ” , l i n e s t y l e =”dotted ”)
p l t . axv l i ne (x=c .L ✯ c . d0 , c o l o r=”green ” , l i n e s t y l e =”dotted ” , l a b e l=”L = 5.26 cm”)
p l t . l egend (l o c=”upper r i gh t ”)

#Show the p l o t s s imul taneous ly
p l t . show ()

#Creates the second s e t o f p l o t s
de f plot mov (t , s , v , a , Dist , Dist2) :

#Transforms the quan t i t i e s i n to
#th e i r d imens ional form
t = c . tau 0 ✯np . array (t)✯1000 .
s = c . d0✯np . array (s)
v = c . c0✯np . array (v)
Necessary so that i t s s i z e i s the same as f o r t
a . append (a [−1])
a = c . c0 ✯✯2/ c . d0✯np . array (a)✯0 . 1
Dist = c . d0✯np . array (Dist)
Dist2 = c . d0 ✯ np . array (Dist2)

#sc
p l t . f i g u r e ()
p l t . x l ab e l (” t [ms] ”)
p l t . y l ab e l (”[cm] ”)
p l t . t i t l e (” Pos i t i on o f the cork ”)
p l t . p l o t (t , s)

#vc
p l t . f i g u r e ()
p l t . x l ab e l (” t [ms] ”)
p l t . y l ab e l (”[m/ s] ”)
p l t . t i t l e (”Ve loc i ty o f the cork ”)
p l t . p l o t (t , v)

#ac
p l t . f i g u r e ()
p l t . x l ab e l (” t [ms] ”)
p l t . y l ab e l (”[km/ s ˆ 2] ”)
p l t . t i t l e (”Acce l e r a t i on o f the cork ”)
p l t . p l o t (t , a)

#d i s t anc e s Shock−Bott l e vs Cork−Shock
p l t . f i g u r e ()
p l t . x l ab e l (” t [ms] ”)
p l t . y l ab e l (”[cm] ”)
p l t . t i t l e (” Pos i t i on o f the shock wave ”)
p l t . p l o t (t , Dist , l a b e l=”d(Shock−Bott l e) ”)
p l t . p l o t (t , Dist2 , l a b e l=”d(Cork−Shock) ”)
p l t . l egend ()

82

#Show the p l o t s s imul taneous ly
p l t . show ()

########################
###START MAIN PROGRAM###

#Solver us ing the custom eu l e r s o l v e r
s o l v e r = pyclaw . ClawSolver2D (riemann . c u s t om eu l e r s o l v e r)

#Total c e l l number , a l s o 200 was used ,
#must be even so that the source term func t i on s proper ly
num ce l l s = 400

ymax = 2.5
num ce l l s y = num ce l l s
y = pyclaw . Dimension(−ymax , ymax , num ce l l s y , ”y ”)

#xmax=8 and 10 are used
xmax = 8.#10.#
#Same t o t a l c e l l number as f o r the y−ax i s
num ce l l s x = num ce l l s
x = pyclaw . Dimension (0 . , xmax , num ce l l s x , ”x ”)

domain = pyclaw . Domain ([x , y])
#4 eu l e r equat ions
s o l v e r . num eqn = 4
#2 waves f o r the Roe s o l v e r
s o l v e r . num waves = 2
#1 ghost c e l l needed f o r Godunov ’ s method
s o l v e r . num ghost = 1

#The order o f the s o l v e r d e f i n e s
#the number o f ghost c e l l s
s o l v e r . order = so l v e r . num ghost

#F i r s t aux f i e l d f o r boundary cond i t i on s
#Second one f o r the cork ’ s v e l o c i t y
num aux = 2

s t a t e = pyclaw . State (domain , s o l v e r . num eqn , num aux)

#Pos i t i on o f the c e l l i n t e r f a c e s
X,Y = s ta t e . g r id . p nodes
#Pos i t i on o f the c e l l c en t e r s
Xc ,Yc = s t a t e . g r id . p c en t e r s
#Total number o f c e l l i n t e r f a c e s
M,N = X. shape
#Index f o r r=0
Nh = in t (N/2)
#Total c e l l number
Mm,Nm = M−1,N−1
#Grid d i s t an c e s
dx , dy = s ta t e . g r id . d e l t a

#x−i n d i c e s o f the bot t l e ’ s wa l l s
b st , b end = Ind x (0 , c . L)
#y−i n d i c e s o f the bot t l e ’ s wa l l s
b bot , b top = Ind y (b st , b end , f B)
#Pos i t i on o f the cork ’ s l e f t wa l l
x c s t = c .L + dx
#x−i n d i c e s o f the cork ’ s wa l l s
c s t , c end = Ind x (xc s t , x c s t +2.)
#y−i n d i c e s o f the cork ’ s wa l l s
c bot , c top = Ind y (c s t , c end , f C)
#Number o f i n d i c e s along the x−ax i s
#occupied by the cork
Lc = len (c top)−1

#Gamma f o r a i r
gamma = c . gamma 0
s t a t e . problem data [”gamma”] = gamma

#Determines the s e t o f p l o t s
#p lo t =1: shows the quan t i t i e s without the cork
#plo t =2: with the cork
p lo t = 1

#Thickness o f the wal l
tkn = 2

#I n i t a l va lues f o r q
s t a t e . q [0 , : , :] = i n i t v a l u e s (c . rho)
s t a t e . q [1 , : , :] = 0 .
s t a t e . q [2 , : , :] = 0 .
s t a t e . q [3 , : , :] = i n i t v a l u e s (c .E)

83

#Auxi l i a ry f i e l d s
s t a t e . aux [0 , : , :] = aux i n i t ()
s t a t e . aux [1 , : , :] = 0 .

#Boundary cond i t i on s f o r the domain ’ s edges
s o l v e r . bc lower [0] = pyclaw .BC. extrap
s o l v e r . bc upper [0] = pyclaw .BC. extrap
s o l v e r . bc lower [1] = pyclaw .BC. extrap
s o l v e r . bc upper [1] = pyclaw .BC. extrap

#Only f o r Clawpack . Does not s e rve any computational purpose .
s o l v e r . aux bc lower [0] = pyclaw .BC. extrap
s o l v e r . aux bc upper [0] = pyclaw .BC. extrap
s o l v e r . aux bc lower [1] = pyclaw .BC. extrap
s o l v e r . aux bc upper [1] = pyclaw .BC. extrap

#Implements the source term
so l v e r . s t ep s ou r c e = source term

i f p l o t == 1 :
#xb i s the l a s t x−index occupied by
#the f l u i d i n s i d e the bo t t l e
xb = b end − 1
#time [0] : c e r t a i n po int in time : t1 =2. , t2=6.
#time [1] : dec ide s i f a statement i s c a l l e d or not
time = [6 . , True]
#Usual Python l i s t s , without a de f ined s i z e
#so that e n t r i e s can j u s t be appended
t = [0 .]
Temp = []
Press = []
#Numpy arrays with a f i x ed s i z e
Temp2 = np . empty (num ce l l s x)
Mach = np . empty (num ce l l s x)
M v = np . empty (num ce l l s x)

#Ca l l s the corresponding func t i on be f o r e each time step .
s o l v e r . b e f o r e s t e p = Flow ca lc

e l i f p l o t == 2 :
#Must s t a r t with 2 va lues f o r the Taylor−s e r i e s
t = [− s o l v e r . dt , 0 .]
i c = [c s t −1, c end]
s = [Xc [i c [0] , 0] , Xc [i c [0] , 0]]
v = [0 . , 0 .]
#Only a does not have t h i s requirement
a =[]
Dist = [0 . , 0 .]
Dist2 = [0 . , 0 .]

Ca l l s the corresponding func t i on be f o r e each time step .
s o l v e r . b e f o r e s t e p = update aux

#I n i t i a l i z i n g the c o n t r o l l e r
claw = pyclaw . Cont ro l l e r ()
claw . s o l v e r = s o l v e r
claw . s o l u t i o n = pyclaw . So lu t i on (s tate , domain)
claw . s e t p l o t = s e t p l o t
claw . keep copy = True

#The number o f c reated p l o t s f o r each quant i ty
claw . num output times = 40
#The f i n a l time , where the s imula t i on s tops
#t f i n a l= 40 , 20 , 10 are used
claw . t f i n a l = 10 .

#Runs the s imulat ion and measures the running time
import time as t t
s t a r t = t t . time ()
claw . run ()
end = t t . time ()
d e l t a t = end−s t a r t

#Plot s the f i r s t s e t without the cork
i f p l o t == 1 :

p l o t f l ow (t ,Temp,Temp2 , Press)

#Plot s the second s e t with the cork
e l i f p l o t == 2 :

plot mov (t , s , v , a , Dist , Dist2)

#After the one d imens iona l p l o t s
#f i n a l l y shows the 2D heat−maps
claw . p lo t ()

84

8 References

Note, that all websites were most recently visited in October 2021.

[1] Liger-Belair, G., Cordier, D., Georges, R.: Under-expanded supersonic CO2 freez-
ing jets during champagne cork popping, Science Advances, 5, 1-9, 2019.

[2] Henry’s law: https://en.wikipedia.org/wiki/Henry%27s law

[3] Braun, S.: Strömungslehre für TPh, lecture notes, TU Wien, 2016.

[4] Leveque, R.J.: Finite-Volume Methods for Hyperbolic Problems, Cambridge Uni-
versity Press, 2004.

[5] CLAWPACK homepage: https://www.clawpack.org/

[6] CLAWPACK download: https://github.com/clawpack/clawpack/releases/tag/v5.8.0

[7] PyCharm download: https://www.jetbrains.com/pycharm/download/

[8] PyCharmWSL: https://www.jetbrains.com/help/pycharm/using-wsl-as-a-remote-
interpreter.html

[9] Xming download: https://sourceforge.net/projects/xming/

[10] Custom Riemann solver: https://www.clawpack.org/pyclaw/problem.html

[11] Geometry: https://www.clawpack.org/pyclaw/geometry.html

[12] Riemann solver: https://www.clawpack.org/riemann.html

[13] State: https://www.clawpack.org/pyclaw/state.html

[14] Solution: https://www.clawpack.org/pyclaw/solution.html

[15] Controller: http://www.clawpack.org/pyclaw/controller.html

[16] Roe, P.L.: Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes, Journal of Computational Physics, 43, 357-372, 1981.

[17] Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On Godunov type methods near
low densities, Journal of Computational Physics, 92, 213-295, 1991.

[18] Einfeldt, B.: On Godunov-type methods for gas dynamics, SIAM Journal on Nu-
merical Analysis, 2, 294-317, 1988.

[19] Runge-Kutta-method: https://en.wikipedia.org/wiki/Runge-Kutta methods

[20] Ambient gas pressure: https://en.wikipedia.org/wiki/Atmospheric pressure

[21] Ambient air density: https://en.wikipedia.org/wiki/Density of air

85

https://en.wikipedia.org/wiki/Henry%27s_law
https://www.clawpack.org/
https://github.com/clawpack/clawpack/releases/tag/v5.8.0
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/help/pycharm/using-wsl-as-a-remote-interpreter.html
https://www.jetbrains.com/help/pycharm/using-wsl-as-a-remote-interpreter.html
https://sourceforge.net/projects/xming/
https://www.clawpack.org/pyclaw/problem.html
https://www.clawpack.org/pyclaw/geometry.html
https://www.clawpack.org/riemann.html
https://www.clawpack.org/pyclaw/state.html
https://www.clawpack.org/pyclaw/solution.html
http://www.clawpack.org/pyclaw/controller.html
https://en.wikipedia.org/wiki/Runge-Kutta_methods
https://en.wikipedia.org/wiki/Atmospheric_pressure
https://en.wikipedia.org/wiki/Density_of_air

[22] Heat capacity ratio: https://en.wikipedia.org/wiki/Heat capacity ratio

[23] Freezing point of dry ice: https://en.wikipedia.org/wiki/Dry ice

[24] Density of the cork: https://www.aqua-calc.com/page/density-table/substance/cork-
coma-and-blank-solid

[25] Sundqvist, H., Veronis, G.: A simple finite-difference grid with non-constant in-
tervals, Tellus, 22:1, 26-31, 1970.

[26] Bernoulli’s principle: https://en.wikipedia.org/wiki/Bernoulli%27s principle

[27] Gas constant: https://en.wikipedia.org/wiki/Gas constant

[28] Sutherland model: https://de.wikipedia.org/wiki/Sutherland-Modell

[29] Gravitational acceleration: https://en.wikipedia.org/wiki/Gravitational acceleration

[30] Ambient thermal conductivity: https://en.wikipedia.org/wiki/List of thermal con-
ductivities

86

https://en.wikipedia.org/wiki/Heat_capacity_ratio
https://en.wikipedia.org/wiki/Dry_ice
https://www.aqua-calc.com/page/density-table/substance/cork-coma-and-blank-solid
https://www.aqua-calc.com/page/density-table/substance/cork-coma-and-blank-solid
https://en.wikipedia.org/wiki/Bernoulli%27s_principle
https://en.wikipedia.org/wiki/Gas_constant
https://de.wikipedia.org/wiki/Sutherland-Modell
https://en.wikipedia.org/wiki/Gravitational_acceleration
https://en.wikipedia.org/wiki/List_of_thermal_conductivities
https://en.wikipedia.org/wiki/List_of_thermal_conductivities

	Abstract
	Discharge Flow Behavior out of a Cylindrical Bottleneck
	Physical-Mathematical Modeling
	Dimensional Analysis
	Governing Equations
	Hyperbolic Differential Equations
	Euler Equations
	Boundary and Initial Conditions

	Numerical Treatment
	Riemann Problem
	Finite Volume Methods
	Installation and Setup of CLAWPACK
	PyClaw's Framework
	Domain
	Riemann Solver
	State
	Solution
	Controller

	Configuration of the Numerical Simulation
	Roe Solver
	Geometry of the Bottle and the Cork
	Source Term due to Axial Symmetry
	Numerical Implementation of the Boundary Conditions
	CFL-Condition and High Resolution Methods

	Discharge Flow Analysis
	Mach Number Distribution
	Fluid-Cork-Interaction
	Distance between the Shock Wave and the Cork

	Unresolved Issues and Further Improvements

	Conclusion
	Appendix
	References

