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Abstract
A bilevel training scheme is used to introduce a novel class of regularizers, providing a
unified approach to standard regularizers TGV 2 and NsTGV 2. Optimal parameters
and regularizers are identified, and the existence of a solution for any given set of
training imaging data is proved by �-convergence under a conditional uniform bound
on the trace constant of the operators and a finite-null-space condition. Some first
examples and numerical results are given.
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1 Introduction

Image processing aims at the reconstruction of an original “clean” image starting from
a “distorted one”, namely from a datum which has been deteriorated or corrupted by
noise effects or damaged digital transmission. The key idea of variational formulations
in image-processing consists in rephrasing this problem as the minimization of an
underlying functional of the form

I(u) := ∥∥u − uη

∥
∥2
L2(Q)

+ Rα(u),

where uη is a given corrupted image, Q := (−1/2, 1/2)N is the N -dimensional unit
square (in image processing we usually take N = 2, i.e., Q represents the domain
of a square image) and Rα is a regularizing functional, with α denoting the intensity
parameter (which could be a positive scalar or a vector). Minimizing the functional
I allows one to reconstruct a “clean” image based on the functional properties of the
regularizer Rα .

Within the context of image denoising, for a fixed regularizerRα we seek to identify

uα,R := argmin
{∥
∥u − uη

∥
∥
2
L2(Q)

+ Rα(u) : u ∈ L2(Q)
}

.

An example is the ROF model (Rudin et al. 1992), in which the regularizer is taken
to beRα(u) := αT V (u), where T V (u) is the total variation of u [see, e.g. Ambrosio
et al. (2000, Chapter 4)], α ∈ R

+ is the tuning parameter, and we have

uα,T V := argmin
{∥
∥u − uη

∥
∥
2
L2(Q)

+ αT V (u) : u ∈ L2(Q)
}

. (1.1)

In view of the coercivity of the minimized functional, the natural class of com-
petitors in (1.1) is BV (Q), the space of real-valued functions of bounded variation in
Q. The trade-off between the denoising effects of the ROF-functional and its feature-
preserving capabilities is encoded by the tuning parameter α ∈ R

+. Indeed, high
values of α might lead to a strong penalization of the total variation of u, which in turn
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determines an over-smoothing effect and a resulting loss of information on the inter-
nal edges of the reconstructed image, while small values of α cause an unsatisfactory
noise removal.

In order to determine the optimal α, say α̃, in De Los Reyes et al. (2016, 2017)
the authors proposed a bilevel training scheme, which was originally introduced in
Machine Learning and later adopted by the imaging processing community (see Chen
et al. 2013, 2014; Domke 2012; Tappen et al. 2007). The bilevel training scheme is a
semi-supervised training scheme that optimally adapts itself to the given “clean data”.
To be precise, let (uη, uc) be a pair of given images, where uη represents the corrupted
version and uc stands for the original version, or the “clean” image. This training
scheme searches for the optimal α so that the recovered image uα,T V , obtained in
(1.1), minimizes the L2-distance from the clean image uc. An implementation of such
training scheme, denoted by (T ), equipped with total variation T V is

Level 1. α̃ ∈ argmin
{∥
∥uα,T V − uc

∥
∥
2
L2(Q)

: α ∈ R
+} , (T -L1)

Level 2. uα,T V := argmin
{∥
∥u − uη

∥
∥2
L2(Q)

+ αT V (u) : u ∈ BV (Q)
}

.

(T -L2)

An important observation is that the geometric properties of the regularizer T V
play an essential role in the identification of the reconstructed image uα,T V and may
lead to a loss of some fine texture in the image. The choice of a given regularizer
Rα is indeed a crucial step in the formulation of the denoising problem: on the one
hand, the structure of the regularizer must be such that the removal of undesired noise
effects is guaranteed, and on the other hand the disruption of essential details of the
image must be prevented. For these reasons, various choices of regularizers have been
proposed in the literature. For example, the second order total generalized variation,
TGV 2

α , defined as

TGV 2
α (u) := inf

{

α0 |Du − v|Mb(Q;RN ) + α1 |(sym∇)v|Mb(Q;RN×N ) :
v ∈ L1(Q;RN ), (sym∇)v ∈ Mb(Q;RN×N )

}

, (1.2)

has been characterized in Bredies et al. (2010), where Du denotes the distributional
gradient of u, (sym∇)v := (∇v + ∇T v)/2, Mb(Q;RN×N ) is the space of bounded
Radon measures in Q with values inRN×N , α0 and α1 are positive tuning parameters,
and α := (α0, α1). A further possible choice for the regularizer is the non-symmetric
counterpart of the TGV 2

α -seminorm defined above, namely the NsTGV 2
α functional

(see e.g., Valkonen et al. 2013; Valkonen 2017). The different regularizers have been
shown to have several perks and drawbacks for image reconstruction. An important
question is thus how to identify the regularizer that might provide the best possible
image denoising for a given class of corrupted images.
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To address this problem, it is natural to use a straightforward modification of
scheme (T ) by inserting different regularizers inside the training level 2 in (T -L1).
For example, one could set

Level 1. (R̃α) := argmin
{∥
∥uα,R − uc

∥
∥2
L2(Q)

: Rα ∈ {αT V , TGV 2
α , NsTGV 2

α

}}

,

Level 2. uα,R := argmin
{∥
∥u − uη

∥
∥2
L2(Q)

+ Rα(u) : u ∈ L1(Q)
}

. (1.3)

However, the finite number of possible choices for the regularizer within this train-
ing scheme would imply that the optimal regularizer R̃α would simply be determined
by performing scheme (T )finitelymany times, at each timewith a different regularizer
Rα . In turn, some possible texture effects for which an “intermediate” (or interpolated)
reconstruction between the one provided by, say, TGV 2

α and NsTGV 2
α , might bemore

accurate, would then be neglected in the optimization procedure. Therefore, one main
challenge in the setup of such a training scheme is to give a meaningful interpolation
between the regularizers used in (1.3), and also to guarantee that the collection of
the corresponding functional spaces exhibits compactness and lower semicontinuity
properties.

The aim of this paper is threefold. First, we propose a novel class of image-
processing operators, the PDE-constrained total generalized variation operators, or
PGV 2

α,B , defined as

PGV 2
α,B(u) := inf

{

α0 |Du − v|Mb(Q;RN ) + α1 |Bv|Mb(Q;RN×N ) :
v ∈ L1(Q;RN ), Bv ∈ Mb(Q;RN×N )

}

, (1.4)

for each u ∈ L1(Q;RN ), where B is a linear differential operator (see Sect. 2 and
Definition 3.5) and α := (α0, α1), with α0, α1 ∈ (0,+∞). We also define the space
of functions with bounded second order PGV 2

α,B-seminorms

BPGV 2
α,B(Q) :=

{

u ∈ L1(Q) : PGV 2
α,B(u) < +∞

}

.

Note that if B := sym∇, then the operator PGV 2
α,B defined in (1.4) coincides

with the operator TGV 2
α mentioned in (1.2). In fact, we will show that, under appro-

priate assumptions (see Definition 6.1), the class described in (1.4) provides a unified
approach to some of the standard regularizers mentioned in (1.3), generalizing the
results in Brinkmann et al. (2019) (see Sect. 7.2). Moreover, the collection of func-
tionals described in (1.4) naturally incorporates the recent PDE-based approach to
image denoising formulated in Barbu and Marinoschi (2017) via nonconvex optimal
control problem, thus offering a very general and abstract framework to simultane-
ously describe a variety of different image-processing techniques. Adding to themodel
higher-order regularizations which can be different from the symmetric gradient addi-
tionally allows to enhance image reconstruction in one direction more than in the
others, thus paving the way for furthering the study of anisotropic noise-reduction.
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The second main goal of this article is the study of a training scheme optimizing
the trade-off between effective reconstruction and fine image-detail preservation. That
is, we propose a new bilevel training scheme that simultaneously yields the optimal
regularizer PGV 2

α,B(u) in the class described in (1.4) and an optimal tuning parameter

α, so that the corresponding reconstructed image uα,B , obtained in Level 2 of the (T 2
θ )-

scheme (see (T 2
θ -L2) below), minimizes the L2-distance from the original clean image

uc. To be precise, in Sects. 3, 4, and 5 we study the improved training scheme T 2
θ for

θ ∈ (0, 1), defined as follows

Level 1. (α̃, B̃) := argmin

{

∥
∥uc − uα,B

∥
∥
2
L2(Q)

: α ∈
[

θ,
1

θ

]2

, B ∈ �

}

,

(T 2
θ -L1)

Level 2. uα,B := argmin
{∥
∥u − uη

∥
∥
2
L2(Q)

+ PGV 2
α,B(u), u ∈ BPGV 2

α,B(Q)
}

,

(T 2
θ -L2)

where� is an infinite collection of first order linear differential operatorsB (see Def-
initions 3.4, 5.1). We prove the existence of optimal solutions to (T 2

θ -L1) by showing
that the functional

Iα,B(u) := ∥∥u − uη

∥
∥2
L2 + PGV 2

α,B(u) (1.5)

is continuous in the L1 topology, in the sense of �-convergence, with respect to the
parameters α and the operators B (see Theorem 4.2). A simplified statement of our
main result (see Theorem 5.4) is the following.

Theorem 1.1 Let θ ∈ (0, 1). Then, the training scheme (T 2
θ )admits at least one solu-

tion (α̃, B̃) ∈ [θ, 1
θ

]2×�, and provides an associated optimally reconstructed image
u

α̃,B̃ ∈ BV (Q).

The collection � of operators B used in (T 2
θ -L1) has to satisfy several natural

regularity and ellipticity assumptions, which are fulfilled byB := ∇ andB := sym∇
(see Sect. 7.2.1). The general requirements on B that allow scheme (T 2

θ ) to have a
solution are listed on Assumptions 3.2 and 3.3. Later in Sect. 6, as the third main
contribution of this article, we provide in Definition 6.1 a collection of operators B
satisfying Assumptions 3.2 and 3.3 under some uniform bounds on the behavior of
their traces and under finiteness of their null spaces. A simplified statement of our
result is the following (see Theorem 6.5 for the detailed formulation).

Theorem 1.2 Let B be a first order differential operator such that there exists a
differential operator A for which (A ,B) is a training operator pair, namely A
admits a fundamental solution having suitable regularity assumptions, and the pair
(A ,B) fulfills a suitable integration-by-parts formula (see Definition 6.1 for the
precise conditions). Then B is such that the training scheme (T 2

θ ) admits a solution.

The requirements collected in Definition 6.1 and the analysis in Sect. 6 move from
the observation that a fundamental property that the admissible operators B must
satisfy is to ensure that the set of maps v ∈ L1(Q;RN ) such that Bv is a bounded
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Radon measure (henceforth denoted by BVB(Q;RN )) must embed compactly in
L1(Q;RN ). In the case in whichB coincides with ∇ or sym∇, a crucial ingredient is
Kolmogorov–Riesz compactness theorem (see Brezis 2011, Theorem 4.26 and Propo-
sition 6.6). In particular, forB = sym∇ the key point of the proof is to guarantee that
bounded sets F ⊂ BD(Q) satisfy

lim|h|→0
‖τh f − f ‖L1(RN ) = 0 uniformly in F ,

where τh f (·) := f (· − h). This in turn relies on the formal computation

τh f − f = δh ∗ f − f = δh ∗ (δ ∗ f ) − (δ ∗ f )

= δh ∗ ((curlcurlφ) ∗ f ) − (curlcurlφ) ∗ f

= curlcurl ((δh ∗ φ − φ) ∗ f ) ,

where φ is a fundamental solution for curlcurl, and where δ and δh denote the Dirac
deltas centered in the origin and in h, respectively. In the case in which B = sym∇
the conclusion then follows from the fact that one can perform an “integration
by parts” in the right-hand side of the above formula, and estimate the quantity
curlcurl ((δh ∗ φ − φ) ∗ f ) by means of the total variation of (sym∇) f and owing
to the regularity of the fundamental solution of curlcurl. The operator A in Theo-
rem 1.2 plays the role of curlcurl in the case in which sym∇ is replaced by a generic
operatorB. Definition 6.1 is given in such a way as to guarantee that the above formal
argument is rigorously justified for a pair of operators (A ,B).

Finally, in Sect. 7.2 we give some explicit examples to show that our class of reg-
ularizers PGV 2

α,B includes the seminorms TGV 2
α and NsTGV 2

α , as well as smooth
interpolations between them.

We remark that the task of determining not only the optimal tuning parameter but
also the optimal regularizer for given training image data (uη, uc), has been undertaken
in Davoli and Liu (2018) where we have introduced one dimensional real order TGVr

regularizers, r ∈ [1,+∞), as well as a bilevel training scheme that simultaneously
provides the optimal intensity parameters and order of derivation for one-dimensional
signals.

Our analysis is complemented by the very first numerical simulations of the pro-
posed bilevel training scheme. Although this work focuses mainly on the theoretical
analysis of the operators PGV 2

α,B and on showing the existence of optimal results for

the training scheme (T 2
θ ), in Sect. 7.3 a primal-dual algorithm for solving (T 2

θ -L2) is
discussed, and some preliminary numerical examples, such as image denoising, are
provided.

With this article we initiate our study of the combination of PDE-constraints and
bilevel training schemes in image processing. Future goals will be:

• the construction of a finite grid approximation in which the optimal result (α̃, B̃)

for the training scheme (T 2
θ )can be efficiently determined, with an estimation of

the approximation accuracy;
• spatially dependent differential operators and multi-layer training schemes. This
will allow to specialize the regularization according to the position in the image,
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providing a more accurate analysis of complex textures and of images alternating
areas with finer details with parts having sharpest contours (see also Fonseca and
Liu 2017).

This paper is organized as follows: in Sect. 2 we collect some notations and prelimi-
nary results. In Sect. 3 we analyze themain properties of the PGV 2

α,B-seminorms. The
�-convergence result and the bilevel training scheme are the subjects of Sects. 4 and
5, respectively. We point out that the results in Sects. 3 and 4 are direct generalizations
of the works in Bredies and Valkonen (2011), Bredies and Holler (1993). The novelty
of our approach consists in providing a slightly stronger analysis of the behavior of
the functionals in (1.5) by showing not only convergence of minimizers under conver-
gence of parameters and regularizers, but exhibiting also a complete �-convergence
result.

The expert Reader might skip Sects. 3–5, and proceed directly with the content of
Sect. 6. Section6 is devoted to the analysis of the space BVB for suitable differential
operators B. The numerical implementation of some explicit examples is performed
in Sect. 7.3.

2 Notations and Preliminary Results

We collect below some notation that will be adopted in connection with differential
operators. Let N ∈ N be given, and let Q := (−1/2, 1/2)N be the unit open cube
in R

N centered in the origin and with sides parallel to the coordinate axes. MN3
is

the space of real tensors of order N × N × N . Also, D′(Q,RN ) and D′(Q,RN×N )

stand for the spaces of distributions with values in R
N and R

N×N , respectively, and
R

N+ denotes the set of vectors in R
N having positive entries.

For every open setU ⊂ R
N , the notationB will be used for first order differential

operators B : D′(U ;RN ) → D′(U ;RN×N ) defined as

(Bv)l j :=
N
∑

i,k=1

Bi
l jk

∂

∂xi
vk for every v ∈ D′(U ;RN ), l, j = 1, . . . , N , (2.1)

where ∂
∂xi

denotes the distributional derivative with respect to the i-th variable, and

where Bi ∈ M
N3

for each i = 1, . . . , N .
Given a sequence {Bn}∞n=1 of first order differential operators and a first order

differential operatorB, with coefficients
{

Bi
n

}∞
n=1 and Bi , i = 1, . . . , N , respectively,

we say that Bn → B in �∞ if

‖Bn − B‖�∞ :=
N
∑

i=1

∥
∥
∥Bi

n − Bi
∥
∥
∥→ 0, (2.2)

where for B ∈ M
N3
, ‖B‖ stands for its Euclidean norm.
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3 The Space of Functions with Bounded PGV -Seminorm

3.1 The Space BVB and the Class of Admissible Operators

We generalize the standard total variation seminorm by using first order differential
operators B: D′(Q;RN ) → D′(Q;RN×N ) in the form (2.1).

Definition 3.1 We define the space of tensor-valued functions BVB(Q;RN ) as

BVB(Q;RN ) :=
{

u ∈ L1(Q;RN ) : Bu ∈ Mb(Q,RN×N )
}

, (3.1)

and we equip it with the norm

‖u‖BVB (Q;RN ) := ‖u‖L1(Q;RN ) + |Bu|Mb(Q;RN×N ) . (3.2)

We refer to Raiţă (2019), Raiţă and Skorobogatova (2020) for some recents results
on BVB-spaces for elliptic and cancelling operators, as well as to Kristensen and Raiţă
(2022) for a study of associated Young measures. We point out that in the same way in
which BV spaces relate to W 1,p-spaces, the spaces BVB are connected to the theory
of W 1,p

B -spaces, cf. (Gmeineder and Raiţă 2019; Gmeineder et al. 2019; Raiţă 2018,
2019). See alsoGuerra andRaiţă (2020) for a related compensated-compactness study.

In order to introduce the class of admissible operators,wefirst list some assumptions
on the operator B.

Assumption 3.2 1. The space BVB(Q;RN ) is a Banach space with respect to the
norm defined in (3.1).

2. The space C∞(Q,RN ) is dense in BVB(Q;RN ) in the strict topology. In other
words, for every u ∈ BVB(Q;RN ) there exists {un}∞n=1 ⊂ C∞(Q̄;RN ) such that

un → u strongly in L1(Q;RN ) and |Bun|Mb(Q;RN×N ) → |Bu|Mb(Q;RN×N ) .

3. (Compactness) The injection of BVB(Q;RN ) into L1(Q;RN ) is compact.

We point out that all requirements above are satisfied for B := ∇.

Assumption 3.3 The following compactness property applies to a collection of opera-
tors {Bn}∞n=1. For {vn,Bn}∞n=1 such thatBn satisfies Assumption 3.2 for every n ∈ N,
and

sup
{

‖Bn‖�∞ + ‖vn‖BVB n (Q;RN ) : n ∈ N

}

< +∞,

we assume that there existB and v ∈ BVB(Q;RN ) such that, up to a subsequence
(not relabeled),

vn → v strongly in L1(Q;RN ),

and
Bnvn

∗
⇀ Bv weakly∗ inMb(Q;RN×N ).
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Definition 3.4 We denote by � the collection of operators B defined in (2.1), with
finite dimensional null-space N (B), and satisfying Assumption 3.2.

In Sect. 6 we will exhibit a subclass of operators B ∈ � additionally fulfilling the
compactness and closure Assumption 3.3.

3.2 The PGV-Total GeneralizedVariation

We introduce below the definition of the PDE-constrained total generalized variation
seminorms.

Definition 3.5 Let u ∈ L1(Q) be given. For every α = (α0, α1) ∈ R
2+ and B:

D′(Q;RN ) → D′(Q;RN×N ),B ∈ �, we consider the seminorm

PGV 2
α,B(u)

:= inf
{

α0 |Du − v|Mb(Q;RN ) + α1 |Bv|Mb(Q;RN×N ) : v ∈ BVB(Q;RN )
}

,

(3.3)

where the space BVB is introduced in Definition 3.1.

We note that for all α ∈ R
2+, the seminorms PGV 2

α,B are topologically equivalent.

With a slight abuse of notation, in what follows we will write PGV 2
B instead of

PGV 2
α,B whenever the dependence of the seminorm on a specific multi-index α ∈ R

2+
will not be relevant for the presentation of the results.

We introduce below the set of functions with bounded PDE-generalized variation-
seminorms.

Definition 3.6 We define

BPGV 2
B(Q) :=

{

u ∈ L1(Q) : PGV 2
1,B(u) < +∞

}

,

and we write
‖u‖BPGV 2

B (Q) := ‖u‖L1(Q) + PGV 2
1,B(u).

We next show that the PGV 2
B-seminorm is finite if and only if the T V -seminorm

is. The next three propositions show some basic properties of the PGV 2 regularizers.
The expert Reader might skip their proof and proceed directly to Sect. 4.

Proposition 3.7 Let u ∈ L1(Q) and recall PGV 2
B(u) from Definition 3.5. Then,

PGV 2
B(u) < +∞ if and only if u ∈ BV (Q).

Proof We notice that by setting v = 0 in (3.3), we have

PGV 2
B(u) ≤ |Du|Mb(Q;RN ) (3.4)

for every u ∈ L1(Q). Thus, if u ∈ BV (Q) then PGV 2
B(u) < +∞.
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Conversely, assume that PGV 2
B(u) < +∞. Then, there exists v̄ ∈ BVB(Q) such

that
PGV 2

B(u) ≥ |Du − v̄|Mb(Q;RN ) + |Bv̄|Mb(Q;RN×N ) − 1.

It suffices to observe that

|Du|Mb(Q;RN ) ≤ |Du − v̄|Mb(Q;RN ) + ‖v̄‖L1(Q;RN )

≤ PGV 2
B(u) + 1 + ‖v̄‖L1(Q;RN ) < +∞.

�
We prove that the infimum problem in the right-hand side of (3.3) has a solution.

Proposition 3.8 Let u ∈ BV (Q) and letB satisfy Assumption 3.2. Then, for α ∈ R
2+

there exists a function v ∈ BVB(Q;RN ) attaining the infimum in (3.3).

Proof Let u ∈ BV (Q) and, without loss of generality, assume that α = (1, 1). In view
of Proposition 3.7 we have PGV 2

B(u) < +∞.
The existence of a minimizer v ∈ L1(Q;RN ) with Bv ∈ Mb(Q;RN×N ) fol-

lows from the Direct Method of the calculus of variations. Indeed, let {vn}∞n=1 ⊂
BVB(Q;RN ) be such that

|Du − vn|Mb(Q;RN ) + |Bvn|Mb(�;RN×N ) ≤ PGV 2
B(u) + 1/n

for every n ∈ N. Then,

‖vn‖L1(Q;RN ) ≤ |Du − vn|Mb(Q;RN ) + |Du|Mb(Q;RN )

≤ PGV 2
B(u) + |Du|Mb(Q;RN ) + 1/n, (3.5)

and
|Bvn|Mb(Q;RN×N ) ≤ PGV 2

B(u) + 1/n, (3.6)

for every n ∈ N. In view of Assumption 3.2, and together with (3.5) and (3.6), we
obtain a function v ∈ L1(Q;RN ) with Bv ∈ Mb(Q;RN×N ) such that, up to the
extraction of a subsequence (not relabeled), there holds

vn → v strongly in L1(Q;RN ),

and
lim inf
n→∞ |Bvn|Mb(Q;RN×N ) ≥ |Bv|Mb(Q;RN×N ) .

The minimality of v follows by lower-semicontinuity. �
We close this section by studying the asymptotic behavior of the PGV 2

B seminorms
in terms of the operator B for subclasses of � satisfying Assumption 3.3.
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Proposition 3.9 Let u ∈ BV (Q). Let {Bn}∞n=1 ⊂ � and {αn}∞n=1 ⊂ R
2+ be such that

Bn → B in �∞ and
αn → α ∈ R

2+. (3.7)

Assume that {Bn}∞n=1 satisfies Assumption 3.3. Then

lim
n→∞ PGV 2

αn ,Bn
(u) = PGV 2

α,B(u).

Proof We first claim that

lim inf
n→∞ PGV 2

αn ,Bn
(u) ≥ PGV 2

α,B(u). (3.8)

Indeed, by Proposition 3.8 for each n ∈ N there exists vn ∈ BVBn (Q;RN ) such
that, setting αn = (α0

n, α
1
n),

PGV 2
αn ,Bn

(u) = α0
n |Du − vn|Mb(Q;RN ) + α1

n |Bnvn|Mb(Q;RN×N ) .

From (3.4) and (3.7),we see that

α0
n |Du − vn|Mb(Q;RN ) + α1

n |Bnvn|Mb(Q;RN×N ) ≤ α0
n |Du| < +∞,

which from (3.7) implies that sup{‖vn‖BVB n (Q;RN ) + ‖Bn‖�∞} is finite. Therefore,
by Assumption 3.3 there exist B and v ∈ BVB(Q) such that vn → v strongly in
L1(Q;RN ) and

lim inf
n→∞ |Bnvn|Mb(Q;RN×N ) ≥ |Bv|Mb(Q;RN×N ) . (3.9)

Fix ε > 0.By (3.7), forn big enough there holdsα0
n ≥ (1−ε)α0, andα1

n ≥ (1−ε)α1.
Thus, by (3.9) we have

lim inf
n→∞ PGV 2

αn ,Bn
(u) = lim inf

n→∞
[

α0
n |Du − vn|Mb(Q;RN ) + α1

n |Bnvn|Mb(Q;RN×N )

]

≥ (1 − ε)α0lim inf
n→∞ |Du − vn|Mb(Q;RN ) + (1 − ε)α1

lim inf
n→∞ |Bnvn|Mb(Q;RN×N )

≥ (1 − ε)α0 |Du − v|Mb(Q;RN ) + (1 − ε)α1 |Bv|Mb(Q;RN×N )

≥ (1 − ε)PGV 2
α,B(u),

where in the last inequality we used (3.3). The arbitrariness of ε concludes the proof
of (3.8).

We now claim that

lim sup
n→∞

PGV 2
αn ,Bn

(u) ≤ PGV 2
α,B(u). (3.10)
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By Proposition 3.8 there exists v ∈ BVB(Q;RN ) such that

PGV 2
α,B(u) = α0 |Du − v|Mb(Q;RN ) + α1 |Bv|Mb(Q;RN×N ) .

In view of the density result in Assumption 3.2, Statement 2, we may assume that
v ∈ C∞(Q;RN ) and, for ε > 0 small,

PGV 2
α,B(u) ≥ α0 |Du − v|Mb(�;RN ) + α1 |Bv|Mb(�;RN×N ) − ε. (3.11)

Since

PGV 2
αn ,Bn

(u) ≤ α0
n |Du − v|Mb(Q;RN ) + α1

n |Bnv|Mb(Q;RN×N ) ,

we obtain

lim sup
n→∞

PGV 2
αn ,Bn

(u) ≤ α0 |Du − v|Mb(Q;RN ) + lim sup
n→∞

α1
n |Bnv|Mb(Q;RN×N )

≤ α0 |Du − v|Mb(Q;RN ) + α1 |Bv|Mb(Q;RN×N )

≤ PGV 2
α,B(u) + ε,

where in the last inequality we used (3.11). Claim (3.10) is now asserted by the
arbitrariness of ε > 0. �

4 0-Convergence of Functionals Defined by PGV -Total Generalized
Variation Seminorms

In this section we prove a �-convergence result with respect to the operator B. For
r > 0 we denote [see (2.2)]

(B)r := {B′ ∈ � : ∥∥B′ − B
∥
∥

�∞ ≤ r
}

. (4.1)

Throughout this section, let uη ∈ L2(Q) be a given datum representing a corrupted
image.

Definition 4.1 Let B ∈ �, α ∈ R
2+. We define the functional Iα,B:L1(Q) →

[0,+∞] as

Iα,B(u) :=
{∥
∥u − uη

∥
∥
2
L2(Q)

+ PGV 2
α,B(u) if u ∈ BV (Q),

+∞ otherwise.

The following theorem is the main result of this section.

Theorem 4.2 Let {Bn}∞n=1 ⊂ � satisfy Assumption 3.3, and let {αn}∞n=1 ⊂ R
2+be such

that Bn → B in �∞ and αn → α ∈ R
2+. Then the functionals Iαn ,Bn satisfy the

following compactness properties:
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(Compactness) Let un ∈ BV (Q), n ∈ N, be such that

sup
{

Iαn ,Bn (un) : n ∈ N
}

< +∞.

Then there exists u ∈ BV (Q) such that, up to the extraction of a subsequence (not
relabeled),

un
∗
⇀ u weakly∗ in BV (Q).

Additionally, Iαn ,Bn �-converges to Iα,B in the L1 topology. To be precise, for
every u ∈ BV (Q) the following two conditions hold:

(Liminf inequality) If
un → u in L1(Q)

then
Iα,B(u) ≤ lim inf

n→+∞ Iαn ,Bn (un).

(Recovery sequence) For each u ∈ BV (Q), there exists {un}∞n=1 ⊂ BV (Q) such
that

un → u in L1(Q)

and
lim sup
n→+∞

Iαn ,Bn (un) ≤ Iα,B(u).

We subdivide the proof of Theorem 4.2 into two propositions.
For B ∈ �, we consider the projection operator

PB : L1(Q;RN ) → N (B).

Note that this projection operator is well defined owing to the assumption that
N (B) is finite dimensional [see Brezis (2011, p. 38, Definition and Example 2) and
Breit et al. (2017, Subsection 3.1)].

Next we have an enhanced version of Korn’s inequality.

Proposition 4.3 Let B ∈ � and let r > 0 be small enough so that elements of (B)r
have finite dimensional kernel. Then, under Assumption 3.3 there exists a constant
C = C(B, Q, r), depending only onB, on the domain Q, and on r, such that

‖v − PB′(v)‖L1(Q;RN ) ≤ C
∣
∣B′v

∣
∣Mb(Q;RN×N )

, (4.2)

for all v ∈ L1(Q) and B′ ∈ (B)r .

Proof Suppose that (4.2) fails. Then there exist sequences {Bn}∞n=1 ⊂ (B)r and
{vn}∞n=1 ⊂ L1(Q) such that

∥
∥vn − PBn (vn)

∥
∥
L1(Q;RN )

≥ n |Bnvn|Mb(Q;RN×N )

for every n ∈ N. Up to a normalization, we can assume that

∥
∥vn − PBn (vn)

∥
∥
L1(Q;RN )

= 1 and |Bnvn|Mb(Q;RN×N ) ≤ 1/n (4.3)
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for every n ∈ N. Since {Bn}∞n=1 ⊂ (B)r , up to a subsequence (not relabeled), we
have Bn → B̃ in �∞, for some B̃ ∈ (B)r . Next, let

ṽn := vn − PBn (vn).

Note that for each n ∈ N

PBn (ṽn) = 0. (4.4)

Thus, by (4.3) we have

‖ṽn‖L1(Q;RN ) = 1 and |Bn ṽn|Mb(Q;RN×N ) ≤ 1/n. (4.5)

In view of Assumption 3.3, up to a further subsequence (not relabeled), there exists
ṽ ∈ BVB̃(Q;RN ) such that ṽn → ṽ strongly in L1(Q) and |B̃ṽ|Mb(Q;RN×N ) = 0.
Moreover, in view of (4.5), we also have ‖ṽ‖L1(Q;RN ) = 1.

By the joint continuity of the projection operator, by (4.4) we have

∥
∥PB̃ (ṽ)

∥
∥
L1(Q)

= ∥∥PB n (ṽn) − PB̃ (ṽ)
∥
∥
L1(Q)

≤ C‖Bn − B‖�∞ +‖ṽ − ṽn‖L1(Q) → 0.

Thus, PB̃(ṽ) = 0. However, |B̃ṽ|Mb(Q;RN×N ) = 0 implies that ṽ ∈ N [B̃] with
ṽ = PB̃(ṽ), and hence we must have ṽ = 0, contradicting the fact that ‖ṽ‖L1(Q;RN )

= 1. �
The following proposition is instrumental for establishing the liminf inequality.

Proposition 4.4 Let {Bn}∞n=1 ⊂ � satisfy Assumption 3.3, and let {αn}∞n=1 ⊂ R
2+ be

such that Bn → B in �∞ for B ∈ �, and αn → α ∈ R
2+. For every n ∈ N let

un ∈ BV (Q) be such that

sup
{

Iαn ,Bn (un) : n ∈ N
}

< +∞. (4.6)

Then there exists u ∈ BV (Q) such that, up to the extraction of a subsequence (not
relabeled),

un
∗
⇀ u weakly∗ in BV (Q) (4.7)

and
lim inf
n→∞ PGV 2

αn ,Bn
(un) ≥ PGV 2

α,B(u).

Proof Fix r > 0 and recall the definition of (B)r from (4.1). We claim that if r is
small enough then there exists Cr > 0 such that

‖u‖BPGV 2
B ′ (Q) ≤ ‖u‖BV (Q) ≤ Cr ‖u‖BPGV 2

B ′ (Q) , (4.8)

for all u ∈ BV (Q) and B′ ∈ (B)r .
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Indeed, by Definitions 3.5 and 3.6 we always have

‖u‖BPGV 2
B ′ (Q) ≤ ‖u‖BV (Q) ,

for all B′ ∈ � and u ∈ BV (Q).
The crucial step is to prove that the second inequality in (4.8) holds. Set

Nr (B) := {ω ∈ L1(Q;RN ) : there exists B′ ∈ (B)r for which ω ∈ N (B′)}.

We claim that there exists C > 0, depending on r , such that for each u ∈ BV (Q)

and ω ∈ Nr (B) we have

|Du|Mb(Q;RN ) ≤ C
(|Du − ω|Mb(Q;RN ) + ‖u‖L1(Q)

)

. (4.9)

Suppose that (4.9) fails. Thenwe find sequences {un}∞n=1 ⊂ BV (Q) and {ωn}∞n=1 ⊂
Nr (B) such that

|Dun|Mb(Q;RN ) ≥ n
(|Dun − ωn|Mb(Q;RN ) + ‖un‖L1(Q)

)

for every n ∈ N. Thus, up to a normalization, we can assume that

|Dun|Mb(Q;RN ) = 1 (4.10)

and
|Dun − ωn|Mb(Q;RN ) + ‖un‖L1(Q) ≤ 1/n, (4.11)

which implies that un → 0 strongly in L1(Q) and

|Dun − ωn|Mb(Q;RN ) → 0. (4.12)

By (4.10) and (4.11), it follows that |ωn|Mb(Q;RN ) is uniformly bounded, and
hence, up to a subsequence (not relabeled), there exists ω ∈ Mb(Q;RN ) such that

ωn
∗
⇀ ω inMb(Q;RN ). For every n ∈ N letB′

n ∈ (B)r be such that ωn ∈ N (B′
n).

Then B′
nωn = 0 for all n ∈ N. Since

∥
∥B′

n − B
∥
∥

�∞ < r , in particular the sequence
{

ωn,B′
n

}∞
n=1 ⊂ L1(Mb(Q;RN )) × � fulfills Assumption 3.3, and hence, upon

extracting a further subsequence (not relabeled), there holds

ωn → ω0 strongly in L1(Q;RN ).

Additionally, since un → 0 strongly in L1(Q), we infer that Dun → 0 in the sense
of distributions. Therefore, by (4.12) we deduce that ω0 = 0. Using again (4.11), we
conclude that

|Dun|Mb(Q;RN ) → 0,

which contradicts (4.10). This completes the proof of (4.9).
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We are now ready to prove the second inequality in (4.8), i.e.,

‖u‖BV (Q) ≤ Cr ‖u‖BPGV 2
B ′ (Q) (4.13)

for some constant Cr > 0, and for all B′ ∈ (B)r .
FixB′ ∈ (B)r , and by Proposition 3.8 let vB′ satisfy

PGV 2
B′(u) = |Du − vB′ |Mb(Q;RN ) + ∣∣B′vB′

∣
∣Mb(Q;RN×N )

. (4.14)

Since PB′ [vB′ ] ∈ Nr (B), we have

|Du|Mb(Q;RN ) ≤ C(|Du − PB ′ [vB ′ ]|Mb(Q;RN ) + ‖u‖L1(Q))

≤ C(|Du − vB ′ |Mb(Q;RN ) + |vB ′ − PB ′ [vB ′ ]|Mb(Q;RN ) + ‖u‖L1(Q))

≤ C(|Du − vB ′ |Mb(Q;RN ) + C ′ ∣∣B′vB ′
∣
∣
Mb(Q;RN×N )

+ ‖u‖L1(Q))

≤ (C + C ′)
[

|Du − vB ′ |Mb(Q;RN ) + ∣∣B′vB ′
∣
∣
Mb(Q;RN×N )

+ ‖u‖L1(Q)

]

= (C + C ′)
[

PGV 2
B ′ (u) + ‖u‖L1(Q)

]

,

where in the first inequality we used (4.9), the third inequality follows by (4.2), and
in the last equality we invoked (4.14). Defining Cr := C + C ′ + 1, we obtain

‖u‖BV (Q) = ‖u‖L1(Q) + |Du|Mb(Q;RN ) ≤ Cr (PGV 2
B ′ (u) + ‖u‖L1(Q)) = Cr ‖u‖BPGV 2

B ′ (Q)

and we conclude (4.13).
Now we prove the compactness property. Fix ε > 0. We first observe that, since

αn → α ∈ R
2+, for αn = (α0

n, α
1
n), and for n small enough there holds

α0
n ≥ (1 − ε)α0 and α1

n ≥ (1 − ε)α1. (4.15)

In particular, in view of (4.6) we have

(1 − ε)min{α0, α1} sup
{

‖un‖BPGV 2
B n

(Q) : n ∈ N

}

< +∞. (4.16)

SinceBn → B in �∞, choosing r > 0 small enough there exists N > 0 such that
Bn ⊂ (B)1 for all n ≥ N . Thus, by (4.8) and (4.16), we infer that

sup
{‖un‖BV (Q) : n ∈ N

} ≤ C1 sup
{

‖un‖BPGV 2
B n

(Q) : n ∈ N

}

< +∞,

and thus we may find u ∈ BV (Q) such that, up to a subsequence (not relabeled),

un
∗
⇀ u in BV (Q).
Additionally, again from Proposition 3.8, for every n ∈ N there exists vn ∈

BVBn (Q;RN ) such that,

PGV 2
αn ,Bn

(un) = α0
n |Dun − vn|Mb(Q;RN ) + α1

n |Bnvn|Mb(Q;RN×N ) .
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By (4.6) and (4.7), and in view of Assumption 3.3, we find v ∈ BVB(Q;RN ) such
that, up to a subsequence (not relabeled), vn → v strongly in L1. Therefore, we have

lim inf
n→∞ PGV 2

αn ,B n
(un) ≥ lim inf

n→∞ α0
n |Dun − vn |Mb(Q;RN ) + lim inf

n→∞ α1
n |Bnvn |Mb(Q;RN×N )

≥ (1 − ε)α0 |Du − v|Mb(Q;RN ) + (1 − ε)α1 |Bv|Mb(Q;RN×N )

≥ (1 − ε)PGV 2
α,B (u),

where in the second to last inequality we used Assumption 3.3 and (4.15). The
arbitrariness of ε concludes the proof of the proposition. �
Proposition 4.5 Let {Bn}∞n=1 ⊂ � satisfy Assumption 3.3, and let {αn}∞n=1 ⊂ R

2+ be
such thatBn → B in �∞ and αn → α ∈ R

2+. Then for every u ∈ BV (Q) there exists
{un}∞n=1 ⊂ BV (Q) such that un → u in L1(Q) and

lim sup
n→∞

PGV 2
αn ,Bn

(un) ≤ PGV 2
α,B(u).

Proof This is a direct consequence of Proposition 3.9 by choosing un := u. �
We close Sect. 4 by proving Theorem 4.2.

Proof of Theorem 4.2 Properties (Compactness) and (Liminf inequality) hold in view
of Proposition 4.4, and Property (Recovery sequence) follows from Proposition 4.5.

�

5 The Bilevel Training Schemewith PGV -Regularizers

In this section, we introduce a bilevel training scheme associated to our class of
regularizers and show its well-posedness. Let uη ∈ L2(Q) and uc ∈ BV (Q) be the
corrupted and clean images, respectively. Inwhat followswewill refer to pairs (uc, uη)

as training pairs. We recall that � was introduced in Definition 3.4.

Definition 5.1 We say that � ⊂ � is a training set if the operators in � satisfy
Assumption 3.3, and if � is closed and bounded in �∞.

Examples of training sets are provided in Sect. 7.We introduce the following bilevel
training scheme.

Definition 5.2 Let θ ∈ (0, 1) and let � be a training set. The two levels of the scheme
(T 2

θ )are

Level 1. (α̃, B̃) := argmin

{

∥
∥uc − uα,B

∥
∥2
L2(Q)

: α ∈
[

θ,
1

θ

]2

, B ∈ �

}

,

(T 2
θ -L1)

Level 2. uα,B := argmin
{∥
∥u − uη

∥
∥2
L2(Q)

+ PGV 2
α,B(u), u ∈ BV (Q)

}

.

(T 2
θ -L2)
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We first show that the Level 2 problem in (T 2
θ -L2) admits a solution for every given

uη ∈ L2(Q), and for every α ∈ R
2+.

Proposition 5.3 Let uη ∈ L2(Q). Let B ∈ �, and let α ∈ R
2+. Then there exists

uα,B ∈ BV (Q) such that

‖uα,B−uη‖2L2(Q)
+PGV 2

α,B (uα,B ) = min
{∥
∥u − uη

∥
∥2
L2(Q)

+ PGV 2
α,B (u) : u ∈ BV (Q)

}

.

Proof Without loss of generality, we assume that α := (1, 1). Let {un}∞n=1 ⊂ BV (Q)

be such that

∥
∥un − uη

∥
∥2
L2(Q)

+ PGV 2
B (un) ≤ inf

{

‖u − uη‖2L2(Q)
+ PGV 2

B (u) : u ∈ BV (Q)
}

+ 1/n,

(5.1)
for every n ∈ N, and let {vn} ⊂ BVB(Q) be the associated sequence of maps provided
by Proposition 3.8. In view of (5.1), there exists a constant C such that

‖un − uη‖2L2(Q)
+ |Dun − vn|Mb(Q;RN ) + |Bvn|Mb(Q;RN×N ) ≤ C (5.2)

for every n ∈ N. We claim that

sup
{‖vn‖L1(Q;RN ) : n ∈ N

}

< +∞. (5.3)

Indeed, if (5.3) does not hold, then, up to the extraction of a subsequence (not
relabeled), we have

lim
n→+∞ ‖vn‖L1(Q;RN ) = +∞.

Setting

ũn := un
‖vn‖L1(Q;RN )

and ṽn := vn

‖vn‖L1(Q;RN )

for every n ∈ N, (5.4)

and dividing both sides of (5.2) by ‖vn‖L1(Q), we deduce that

lim
n→+∞

⎡

⎣

∥
∥
∥
∥
∥
ũn − uη

‖vn‖L1(Q;RN )

∥
∥
∥
∥
∥

2

L2(Q)

+ |Dũn − ṽn |Mb(Q;RN ) + |Bṽn |Mb(Q;RN×N )

⎤

⎦ = 0.

(5.5)

In view of (5.4) and (5.5), and by Assumption 3.3, there exists ṽ ∈ BVB(Q;RN ),
with

‖ṽ‖L1(Q;RN ) = 1, (5.6)

such that
ṽn → ṽ strongly in L1(Q;RN ), (5.7)
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and
Bṽn

∗
⇀ Bṽ weakly∗ inMb(Q;RN×N ).

Additionally, (5.5) and (5.7) yield

ũn → 0 strongly in L2(Q), (5.8)

and

lim sup
n→+∞

|Dũn − ṽ|Mb(Q;RN ) ≤ lim
n→+∞ |Dũn − ṽn |Mb(Q;RN ) + lim

n→+∞ ‖ṽn − ṽ‖L1(Q;RN ) = 0.

(5.9)
Since by (5.8) Dũn → 0 in the sense of distribution, we deduce from (5.9) that

ṽ = 0. This contradicts (5.6), and implies claim (5.3).
By combining (5.2) and (5.3), we obtain the uniform bound

|Dun|Mb(Q;RN ) ≤ |Dun − vn|Mb(Q;RN ) + ‖vn‖L1(Q;RN ) ≤ C

for every n ∈ N and some C > 0. Thus, by (5.2) and Assumption 3.2 there exist
uB ∈ BV (Q) and v ∈ BVB(Q) such that, up to the extraction of a subsequence (not
relabeled),

un⇀uB weakly in L2(Q),

un
∗
⇀ uB weakly∗ in BV (Q),

vn → v strongly in L1(Q;RN ),

Bvn
∗
⇀ Bv weakly∗ inMb(Q;RN×N ).

In view of (5.1), and by lower-semicontinuity, we obtain the inequality

‖uB − u0‖2L2(Q)
+ |DuB − v|Mb(Q;RN ) + |Bv|Mb(Q;RN×N )

≤ inf
{∥
∥u − uη

∥
∥
2
L2(Q)

+ PGV 2
B(u) : u ∈ BV (Q)

}

.

�
Theorem 5.4 The training scheme (T 2

θ ) admits at least one solution (α̃, B̃) ∈
[

θ, 1/θ ]2 × �, and provides an associated optimally reconstructed image u
α̃,B̃ ∈

BV (Q).

Proof By the boundedness and closedness of � in �∞, up to a subsequence (not
relabeled), there exists (α̃, B̃) ∈ [θ, 1/θ ]2 × � such that αn → α̃ in R

2 and Bn →
B̃ in �∞. Therefore, in view of Theorem 4.2 and the Fundamental Theorem of �-
convergence (see, e.g. Dal Maso 1993), we have

uαn ,Bn

∗
⇀ u

α̃,B̃ weakly∗ in BV (Q) and strongly in L1(Q), (5.10)

123



41 Page 20 of 38 Journal of Nonlinear Science (2023) 33 :41

where uαn ,Bn and u
α̃,B̃ are defined in (T 2

θ -L2).
By (5.10), we have

∥
∥
∥u

α̃,B̃ − uc
∥
∥
∥
L2(Q)

≤ lim inf
n→∞

∥
∥uαn ,Bn − uc

∥
∥
L2(Q)

,

which completes the proof. �

6 Training Set 6[A ] Based on (A ,B) Training Operators Pairs

This section is devoted to providing a class of operatorsB belonging to� (see Defini-
tion 3.4), satisfying Assumption 3.3, and being closed with respect to the convergence

in (2.2). Recall that Q = (− 1
2 ,

1
2

)N
.

6.1 A Subcollection of5 Characterized by (A ,B) Training Operators Pairs

Let U be an open set in R
N , and let A : D′(U ;RN ) → D′(U ;RN ) be a d-th order

differential operator, defined as

A u :=
∑

|a|≤d

Aa
∂a

∂xa
u for every u ∈ D′(U ;RN ),

where, for every multi-index a = (a1, a2, . . . , aN ) ∈ N
N ,

∂a

∂xa
:= ∂a

1

∂xa
1

1

∂a
2

∂xa
2

2

· · · ∂a
N

∂xa
N

N

is meant in the sense of distributional derivatives, and Aa is a linear operator mapping
from R

N to R
N . Let B be a first order differential operator, B : D′(U ;RN ) →

D′(U ;RN×N ), given by

Bv :=
N
∑

i=1

Bi ∂

∂xi
v for every v ∈ D′(U ;RN ),

where Bi ∈ M
N3

for each i = 1, . . . , N , and where ∂
∂xi

denotes the distributional
derivative with respect to the i-th variable. We will restrict our analysis to elliptic pairs
(A ,B) satisfying the ellipticity assumptions below.

Definition 6.1 We say that (A ,B) is a training operator pair if B has finite
dimensional null-space N (B), and (A ,B) satisfies the following assumptions:

1. For every λ ∈ {−1, 1}N , the operator A has a fundamental solution Pλ ∈
L1(RN ;RN ) such that:

a. A Pλ = λδ, where δ denotes the Dirac measure centered at the origin;
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b. Pλ ∈ C∞(RN \ {0};RN ) and ∂a

∂xa Pλ ∈ L1
loc(R

N ;RN ) for every multi-index
a ∈ N

N with |a| ≤ d − 1 (where d is the order of the operator A ).

2. For every open setU ⊂ R
N such that Q ⊂ U , and for every u ∈ Wd−1,1(U ;RN )

and v ∈ C∞
c (U ;RN )

‖(A u)i ∗ vi‖L1(U ) ≤ CA

⎡

⎣
∑

|a|≤d−1

∥
∥
∥
∥

∂a

∂xa
u

∥
∥
∥
∥
L1(U ;RN )

⎤

⎦ |Bv|Mb(U ;RN×N ) ,

(6.1)

for every i = 1, . . . , N , where the constant CA depends only on the operator A .
The same property holds for u ∈ C∞

c (U ;RN ) and v ∈ BVB(U ;RN ) (see (3.1)).

Note that, in view of 1b. one has, directly, the following property: for every a ∈ N
N

with |a| ≤ d − 1, and for every open set U ⊂ R
N such that Q ⊂ U , we have

∑

|a|=d−1

∥
∥
∥
∥
τh

(
∂a

∂xa
Pλ

)

− ∂a

∂xa
Pλ

∥
∥
∥
∥
L1(U ;RN )

=: MA (U ; h) → 0 as |h| → 0,

(6.2)
where for h ∈ R

N , the translation operator τh : L1(RN ;RN ) → L1(RN ;RN ) is
defined by

τhw(x) := w(x + h) for every w ∈ L1(RN ;RN ) and for a.e. x ∈ R
N . (6.3)

Explicit examples of operators A and B satisfying Definition 6.1 are provided in
Sect. 7. Condition 2. in Definition 6.1 can be interpreted as an “integration by parts-
requirement”, as highlighted by the example below. Let N = 2, d = 2, B = ∇, and
let U ⊂ R

2 be an open set such that Q ⊂ U . Consider the following second order
differential operator

A u :=
(

∂2u1
∂x21

∂2u2
∂x22

)ᵀ
for every u = (u1, u2)

ᵀ ∈ D′(U ;R2).

Then, for every u ∈ W 2,1(U ;R2) and v ∈ C∞
c (U ;R2) there holds

‖(A u)i ∗ vi‖L1(U ) =
∥
∥
∥
∥
∥

∂2ui
∂x2i

∗ vi

∥
∥
∥
∥
∥
L1(U )

=
∥
∥
∥
∥

∂ui
∂xi

∗ ∂vi

∂xi

∥
∥
∥
∥
L1(U )

≤ ‖∇u‖L1(U ;R2×2) ‖∇v‖L1(U ;R2×2)

= ‖∇u‖L1(U ;R2×2) ‖Bv‖L1(U ;R2×2) ,

for every i = 1, 2. In other words, the pair (A ,B) satisfies (6.1) with CA = 1.
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Definition 6.2 For every A as in Definition 6.1 we denote by �A the following
collection of first order differential operators B,

�A := {B : (A ,B) is a training operator pair} .

The following extension result in BVB is a corollary of the properties of the trace
operator defined in Breit et al. (2017, Section 4).

Lemma 6.3 Let B ∈ �A , and let BVB(Q;RN ) be the space introduced in Defini-
tion 3.1. Then there exists a continuous extension operator T : BVB(Q;RN ) →
BVB(RN ;RN ) such that Tu = u almost everywhere in Q for every u ∈
BVB(Q;RN ).

Proof SinceN (B) is finite dimensional, in view of Breit et al. (2017, (4.9) and Theo-
rem 1.1) there exists a continuous trace operator tr : BVB(Q;RN ) → L1(∂Q;RN ).
By the classical results by E. Gagliardo (see Gagliardo (1957)) there exists a linear and
continuous extension operator E : L1(∂Q;RN ) → W 1,1(RN\Q;RN ). The statement
follows by setting

Tu := uχQ + E(tr(u))χRN \Q, (6.4)

where χQ and χRN \Q denote the characteristic functions of the sets Q and R
N \ Q,

respectively, and by Theorem Breit et al. (2017, Corollary 4.21). �
Remark 6.4 We point out that, as a direct consequence of Lemma 6.3, we obtain

|B(Tu)|Mb(R
N ;RN×N ) ≤ CB‖u‖BVB (Q;RN ). (6.5)

In particular, from (6.4) andTheoremBreit et al. (2017,Corollary 4.21), the constant
CB in the inequality above is obtained by the following estimate:

|B(T(u))|Mb(R
N ;RN×N ) ≤ |Bu|Mb(Q;RN×N ) + |B(E(tr(u)))|Mb(R

N \Q;RN×N )

≤ |Bu|Mb(Q;RN×N ) + ‖B‖�∞ CG‖tr(u)‖L1(∂Q;RN ) ≤ (1 + ‖B‖�∞ CGCTB )‖u‖BVB (Q),

whereCG is the constant associated to the classical Gagliardo’s extension inW 1,1 (see
Gagliardo 1957) and is thus independent ofB, whereasCTB is the constant associated
to the trace operator in BVB . Hence, CB = (1 + ‖B‖�∞ CGCTB)).

The main result of this section is the following.

Theorem 6.5 Let A be as in Definition 6.1. Let � and �A be the collections of
first order operators introduced in Definitions 3.4 and 6.2, respectively. Then every
operator B ∈ �A satisfies Assumption 3.2. Additionally, every subset of operators
in �A for which the constants in (6.5) are uniformly bounded fulfills Assumption 3.3.

We proceed by first recalling two preliminary results from the literature. The next
proposition, that may be found in Brezis (2011, Theorem 4.26), will be instrumental
in the proof of a regularity result for distributions with boundedB-total-variation (see
Proposition 6.9).
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Proposition 6.6 Let F be a bounded set in L p(RN ) with 1 ≤ p < +∞. Assume that

lim|h|→0
‖τh f − f ‖L p(RN ) = 0 uniformly in F .

Then, denoting by F�Q the collection of the restrictions to Q of the functions in F ,
the closure of F�Q in L p(Q) is compact.

We also recall some basic properties of the space BVB(Q;RN ) forB ∈ �A [see
Definition 3.1 and Breit et al. (2017, Section 2)].

Proposition 6.7 Let B ∈ �A . Let U be an open set in RN . Then

1. BVB(U ;RN ) is a Banach space with respect to the norm defined in (3.2);
2. C∞(U ,RN ) is dense in BVB(U ;RN ) in the strict topology, i.e., for every u ∈

BVB(U ;RN ) there exists {un}∞n=1 ⊂ C∞(U ,RN ) such that

un → u strongly in L1(U ;RN ) and |Bun|Mb(U ;RN×N ) → |Bu|Mb(U ;RN×N ) .

Before we establish Theorem 6.5, we prove a technical lemma.

Lemma 6.8 Let k ∈ N. Then there exists a constant C > 0 such that, for every h ∈ R
N

and w ∈ Wk,1
loc (RN ;RN ), there holds

lim sup
|h|→0

∑

|a|≤k

∥
∥
∥
∥
τh

( ∂a

∂xa
w
)

− ∂a

∂xa
w

∥
∥
∥
∥
L1(Q;RN )

≤ lim sup
|h|→0

C
∑

|a|=k

∥
∥
∥
∥
τh

( ∂a

∂xa
w
)

− ∂a

∂xa
w

∥
∥
∥
∥
L1(Q;RN )

,

where τh is the operator defined in (6.3).

Proof By the linearity of τh , we have

τh

( ∂a

∂xa
w
)

− ∂a

∂xa
w = ∂a

∂xa
(τhw − w).

On the one hand, by the Sobolev embedding theorem (see, e.g., Leoni 2009), we
have

∑

|a|≤k

∥
∥
∥
∥
τh

( ∂a

∂xa
w
)

− ∂a

∂xa
w

∥
∥
∥
∥
L1(Q;RN )

=
∑

|a|≤k

∥
∥
∥
∥

∂a

∂xa
(τhw − w)

∥
∥
∥
∥
L1(Q;RN )

≤ C ‖τh(w) − w‖L1(Q;RN ) + C
∑

|a|=k

∥
∥
∥
∥

∂a

∂xa
(τhw − w)

∥
∥
∥
∥
L1(Q;RN )

. (6.6)
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On theother hand, by the continuity of the translationoperator in L1 (see, e.g.,Brezis
(2011, Lemma 4.3) for a proof inRN , the analogous argument holds on bounded open
sets) we have

lim sup
|h|→0

‖τh(w) − w‖L1(Q;RN ) = 0. (6.7)

The result follows by combining (6.6) and (6.7). �
The next proposition shows that operators in �A satisfy Assumption 3.2.

Proposition 6.9 Let B ∈ �A , and let BVB(Q;RN ) be the space introduced in
Definition 3.1. Then the injection of BVB(Q;RN ) into L1(Q;RN ) is compact.

Proof For everyu ∈ BVB(Q;RN )we still denote byu its extension to BVB(2Q;RN )

provided by Lemma 6.3. In view of Proposition 6.7, for every u ∈ BVB(Q;RN ) we
then find a sequence of maps {vnu }∞n=1 ⊂ C∞(2Q;RN ) such that

‖vnu − u‖L1(2Q;RN ) +
∣
∣
∣

∥
∥Bvnu

∥
∥
L1(2Q;RN×N )

− |Bu|Mb(2Q;RN×N )

∣
∣
∣ ≤ 1

n
. (6.8)

With a slight abuse of notation, we still denote by vnu the C
d -extension of the above

maps to the whole RN (see e.g. Fefferman 2007), where d is the order of the operator
A . Without loss of generality, up to a multiplication by a cut-off function, we can
assume that vnu ∈ Cd

c (3Q;RN ) for every n ∈ N.
We first show that, setting

F :=
{

u ∈ L1(Q;RN ) : ‖u‖BVB (Q;RN ) ≤ 1
}

,

for every n ∈ N there holds

lim|h|→0
sup
u∈F

{∥
∥τhv

n
u − vnu

∥
∥
L1(2Q;RN )

}

= 0, (6.9)

where we recall τh from Theorem 6.6, and where for fixed u ∈ F , vnu is as above and
satisfying (6.8).

Let h ∈ R
N and let δh be the Dirac distribution centered at h ∈ R

N . By the
properties of the fundamental solution Pλ we deduce

τh(λiv
n
u,i ) = δh ∗ λiv

n
u,i = δh ∗ (λiδ ∗ vnu,i ) = δh ∗ ((A Pλ)i ∗ vnu,i

)

= (δh ∗ (A Pλ)i ) ∗ vnu,i = (A (δh ∗ (Pλ)))i ∗ vnu,i ,

for every i = 1, . . . , N , and every λ ∈ {−1, 1}N . Therefore, we obtain that

∥
∥τh(λiv

n
u,i ) − λiv

n
u,i

∥
∥
L1(2Q;RN )

= ∥∥(A (δh ∗ (Pλ)))i ∗ vnu,i − (A Pλ)i ∗ vnu,i

∥
∥
L1(2Q;RN )

= ∥∥(A (δh ∗ (Pλ) − Pλ))i ∗ vnu,i

∥
∥
L1(2Q;RN )
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≤ CA

⎡

⎣
∑

|a|≤d−1

∥
∥
∥
∥
τh

(
∂a

∂xa
Pλ

)

− ∂a

∂xa
Pλ

∥
∥
∥
∥
L1(2Q;RN )

⎤

⎦
∣
∣Bvnu

∣
∣Mb(2Q;RN×N )

(6.10)

for every λ ∈ {−1, 1}N , where in the last inequality we used the fact that τh Pλ − Pλ ∈
Wd−1,d(RN ;RN ) owing to Definition 6.1, the identity τh

(
∂a

∂xa Pλ

)

= ∂a

∂xa (τh Pλ), as

well as Definition 6.1, Assertion 2.
In particular, choosing λ̄ := (1, . . . , 1) we have

sup
u∈F

{∥
∥τh(v

n
u ) − vnu

∥
∥
L1(2Q;RN )

}

≤ CA

(

1 + 1

n

) ∑

|a|≤d−1

∥
∥
∥
∥
τh

(
∂a

∂xa
Pλ̄

)

− ∂a

∂xa
Pλ̄

∥
∥
∥
∥
L1(2Q;RN )

,

and, in view of (6.2) and Lemma 6.8, we conclude that

lim|h|→0
sup
u∈F

{∥
∥τh(v

n
u ) − vnu

∥
∥
L1(2Q;RN )

}

≤ CA

(

1 + 1

n

)

lim|h|→0

∑

|a|=d−1

∥
∥
∥
∥
τh

( ∂a

∂xa
Pλ̄

)

− ∂a

∂xa
Pλ̄

∥
∥
∥
∥
L1(2Q;RN )

= 0

for every n ∈ N, which yields (6.9).
By (6.8), for n ∈ N fixed, for every h ∈ R

N with |h| < 1, and for every u ∈ F
there holds

‖τhu − u‖
L1
(
3
2 Q;RN

) ≤ ∥∥τhu − τhv
n
u

∥
∥
L1
(
3
2 Q;RN

)

+ ∥∥τhvnu − vnu

∥
∥
L1( 32 Q;RN )

+ ∥∥vnu − u
∥
∥
L1
(
3
2 Q;RN

)

≤ 2
∥
∥vnu − u

∥
∥
L1(2Q;RN )

+ ∥∥τhvnu − vnu

∥
∥
L1(2Q;RN )

The thesis follows then by (6.8), (6.9), and Proposition 6.6. �
We close this subsection by proving a compactness and lower-semicontinuity result

for functions with uniformly bounded BVBn norms. We recall that the definition of
MA is found in (6.2).

Proposition 6.10 Let {Bn}∞n=1 ⊂ �A be such thatBn → B in �∞ and the constants
CBn in (6.5) are uniformly bounded. For every n ∈ N let vn ∈ BVBn (Q;RN ) be such
that

sup
{

‖vn‖BVB n (Q;RN ) : n ∈ N

}

< +∞. (6.11)

Then there exists v ∈ BVB(Q;RN ) such that, up to a subsequence (not relabeled),

vn → v strongly in L1(Q;RN ), (6.12)
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and
Bnvn

∗
⇀ Bv weakly∗ inMb(Q;RN×N ). (6.13)

Proof Let vn satisfy (6.11). With a slight abuse of notation we still indicate by vn
the BVBn continuous extension of the above maps to R

N (see Lemma 6.3). Let φ ∈
C∞
c (2Q;RN ) be a cut-off function such that φ ≡ 1 on Q, and for every n ∈ N let ṽn

be the map ṽn := φvn . Note that supp ṽn ⊂⊂ 2Q. Additionally, by Lemma 6.3 there
holds

‖ṽn‖BVB n (2Q;RN ) ≤ ‖vn‖L1(2Q;RN ) + |Bnvn|Mb(2Q;RN×N )

+
∥
∥
∥
∥
∥

N
∑

i=1

Bi
n

∂φ

∂xi

∥
∥
∥
∥
∥
L∞(2Q;MN3

)

‖vn‖L1(2Q;RN )

≤ C1 ‖vn‖BVB n (2Q;RN ) ≤ C2 ‖vn‖BVB n (Q;RN ) , (6.14)

where in the last inequality we used Lemma 6.3, and where the constants C1 and C2
depend only on the cut-off function φ. To prove (6.12) we first show that

lim|h|→0
sup
n∈N

{‖τh ṽn − ṽn‖L1(RN ;RN )

} = 0, (6.15)

where we recall τh from Theorem 6.6. Arguing as in the proof of (6.10), by (6.14) we
deduce that for |h| small enough, since suppŒ ⊂⊂ 2Q,

‖τh ṽn − ṽn‖L1(RN ;RN ) = ‖τh ṽn − ṽn‖L1(2Q;RN )

≤ C

⎡

⎣
∑

|a|≤d−1

∥
∥
∥
∥
τh

(
∂a

∂xa
Pλ

)

− ∂a

∂xa
Pλ

∥
∥
∥
∥
L1(2Q;RN )

⎤

⎦ |Bṽn|Mb(2Q;RN×N )

≤ C

⎡

⎣
∑

|a|≤d−1

∥
∥
∥
∥
τh

(
∂a

∂xa
Pλ

)

− ∂a

∂xa
Pλ

∥
∥
∥
∥
L1(2Q;RN )

⎤

⎦ ‖vn‖BVB (Q;RN×N )

for every n ∈ N. Property (6.15) follows by (6.2). Owing to Proposition 6.6, we deduce
(6.12).

We now prove (6.13). Let ϕ ∈ C∞
c (Q;RN×N ) be such that |ϕ| ≤ 1. Then

lim
n→∞

∫

Q
ϕ · d(Bnvn) = lim

n→∞

N
∑

i, j=1

∫

Q
ϕi j d

⎛

⎝

N
∑

k,l=1

(Bn)
k
i jl

∂(vn)l

∂xk

⎞

⎠

= lim
n→∞

N
∑

i, j,k,l=1

∫

Q
ϕi j d

(

(Bn)
k
i jl

∂(vn)l

∂xk

)

= − lim
n→∞

N
∑

i, j,k,l=1

∫

Q
(vn)l(Bn)

k
i jl

∂ϕi j

∂xk
dx
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= −
N
∑

i, j,k,l=1

∫

Q
vl(B)ki jl

∂ϕi j

∂xk
dx

where in the last step we used the fact that vn → v strongly in L1(Q) and Bn → B
in �∞.

This completes the proof of (6.13) and of the proposition. �
Proof of Theorem 6.5 LetB ∈ �A be given. The fact thatB satisfies Assumption 3.2
follows by Propositions 6.7 and 6.9. The fulfillment of Assumption 3.3 is a direct
consequence of Proposition 6.10. �

6.2 Training Schemewith Fixed andMultiple OperatorsA

In this subsectionwe provide a construction of training sets associated to a given differ-
ential operatorA , namely collection of differential operatorsB for which our training
scheme is well-posed (see Definitions 5.1 and 5.2). We first introduce a collection
�[A ] for a given operator A of order d ∈ N.

Definition 6.11 LetA be a differential operator of order d ∈ N. We denote by �̂[A ]
the set

�̂[A ] := {B ∈ �A : ‖B‖�∞ ≤ 1
}

.

The first result of this subsection is the following.

Theorem 6.12 LetA be a differential operator of order d ∈ N, and assume that�[A ]
is a non-empty subset of �̂[A ] which is closed in the �∞ convergence with respect of
the property of having finite-dimensional null space. Then the collection �[A ] is a
training set (see Definition 5.1).

Proof By the definition of �[A ] we just need to show that �[A ] is closed in �∞. Let
u ∈ C∞(Q;RN ) and {Bn}∞n=1 ⊂ �[A ] be given. Then, up to a subsequence (not
relabeled), we may assume that Bn → B in �∞. We claim that B ∈ �A .

The fact that N (B) is finite-dimensional follows by definition. To conclude the
proof of the theorem we still need to show that (A ,B) satisfies Definition 6.1, Asser-
tion 2. Let U be an open set in RN such that Q ⊂ U . Let u ∈ C∞

c (U ;RN×N ) and let
v ∈ BVB(U ;RN ). By Proposition 6.7 there exists {vk}∞k=1 ⊂ C∞(U ;RN ) such that

vk → v strongly in L1(U ;RN ) and |Bvk |Mb(U ;RN×N ) → |Bv|Mb(U ;RN×N ) .

(6.16)
Integrating by parts we obtain

∥
∥(A u)i ∗ (vk)i

∥
∥
L1(U ;RN )

≤ CA

⎡

⎣
∑

|a|≤d−1

∥
∥
∥
∥

∂a

∂xa
u

∥
∥
∥
∥
L1(U ;RN )

⎤

⎦ |Bnvk |Mb(U ;RN×N ) ,
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for every i = 1, . . . , N . Taking the limit as n → ∞ first, and then as k → ∞, since
Bn → B in �∞ and in view of (6.16), we conclude that

∥
∥(A u)i ∗ (vk)i

∥
∥
L1(U ;RN )

≤ CA

⎡

⎣
∑

|a|≤d−1

∥
∥
∥
∥

∂a

∂xa
u

∥
∥
∥
∥
L1(U ;RN )

⎤

⎦ |Bv|Mb(U ;RN×N ) .

The proof of the second part of Assertion 2 is analogous. This shows that (A ,B)

satisfies Definition 6.1 and concludes the proof of the theorem.

Remark 6.13 Wenote that the result of Theorem 6.12 still holds if we replace the upper
bound 1 in Definition 6.11 with an arbitrary positive constant.

We additionally point out that requiring that the finite-dimensional-kernel property
is preserved in the limit passage automatically ensures the existence of a lower bound
on the �∞-norms of the operators. In other words, the null operator is not included in
our analysis.

As a final remark, we stress that, if �̂[A ] contains an operator B̄ with finite-
dimensional null space, then a training set�[A ] ⊂ �̂[A ]being closed in the�∞-norm
with respect to the property of having finite-dimensional null space can be constructed
by taking the intersection of �̂[A ] with a small enough neighborhood of B̄ in the
�∞-topology.

In fact, denoting by Bi ∈ M
N3
, i = 1, . . . , N , the coefficients of B̄, the symbol of

B̄ is defined as

B[ξ ] :=
N
∑

i=1

ξi B
i for every ξ = (ξ1, . . . , ξN ) ∈ C

N \ {0}.

The condition of having finite-dimensional null space is equivalent to the so-called
C-ellipticity condition, which consists in the injectivity of the map B[ξ ] as a linear
map on C

N \ {0} for every ξ ∈ C
N\{0} [see Breit et al. (2017, Section 2.3)]. By

linearity, this, in turn, can be reduced to the condition of the map B[ξ ] being injective
on C

N \ {0} for every ξ in BC(0, 1) \ {0}, where BC(0, 1) is the unit ball centered in
the origin in the complex plane. In particular, it is a stable condition with respect to
small �∞-perturbations of the coefficients.

We now consider the case of multiple operators A .

Definition 6.14 We say that collection A of differential operators A is a training set
builder if

sup {CA : A ∈ A} < +∞ and lim|h|→0
sup {MA (h) : A ∈ A} = 0, (6.17)

where CA and MA (h) are defined in (6.1) and (7.5), respectively.
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We then define the class �[A] via

�[A] := convex hull

⎛

⎝
⋃

A ∈A
�[A ]

⎞

⎠,

where for every A ∈ A, �[A ] is the class defined in Definition 6.11.

We close this section by proving the following theorem.

Theorem 6.15 Let A be a training set builder. Then �[A] is a training set.

Proof The proof of this theorem follows the argument in the proof of Theorem 6.12
using the fact that the two critical constants MA (h) and CA , in (6.2) and (6.1),
respectively, are uniformly bounded due to (6.17). �

7 Explicit Examples and Numerical Observations

In this section we exhibit several explicit examples of operators A and training sets
�[A ], we provide numerical simulations and we make some observations derived
from them.

7.1 The Existence of Fundamental Solutions of OperatorsA

One important requirement in Definition 6.1 is the existence of the fundamental solu-
tion Pλ ∈ L1(RN ,RN ) of a given operator A . A result in this direction can be found
in Hsiao and Wendland (2008, p. 351, Section 6.3), where an explicit form of the
fundamental solution for Agmon-Douglis-Nirenberg elliptic systems with constant
coefficients is provided.

Remark 7.1 In the case in which N = 2, A has order 2 and satisfies the assumptions
in Hsiao and Wendland (2008, p. 351, Section 6.3), the fundamental solution Pλ can
be written as

Pλ(x, y) = 1

8π2 (�Ly)

∫

|η|=1,η∈R2
((x − y) · η)2 log |(x − y) · η| RA dωη, (7.1)

where L denotes the fundamental solution of Laplace’s equation, RA denotes a con-
stant depending on A , and the integration is taken over the unit circle |η| = 1 with
arc length element dωη.

In the special case in which

A w := �w + ∇(divw) for w ∈ D′(Q;R2), (7.2)

the fundamental solution Pα , with A Pα = αδ for α ∈ R
2, is given by

Pα(x) := 3α

8π
log

1

|x | + x

8π

α · |x |
|x |2 .
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We observe that ∇Pα is positively homogeneous of degree −1(= 1 − N ). Also,
since RA in (7.1) is a constant, ∇Pλ must have the same homogeneity as ∇Pα , which
is 1 − N .

Proposition 7.2 Let A be a differential operator of order d ∈ N, and assume that
its fundamental solution Pλ is such that ∂a

∂xa Pλ is positively homogeneous of degree
1− N for all multi-indexes a ∈ N

N with |a| = d − 1. Then property (6.2) is satisfied.

Proof Let s ∈ (0, 1) be fixed. Since ∂a

∂xa Pλ is positively homogeneous of degree 1−N
for all multi-indexes a ∈ N

N with |a| = d − 1, by Temam (1983, Lemma 1.4) we
deduce the estimate

∑

|a|=d−1

∣
∣
∣
∣
τh

(
∂a

∂xa
Pλ(x)

)

− ∂a

∂xa
Pλ(x)

∣
∣
∣
∣

≤ C
[

max
{

sup
{∣
∣
∣∇d−1Pλ(z)

∣
∣
∣ : |z| = 1

}

, sup
{∣
∣
∣∇d Pλ(z)

∣
∣
∣ : |z| = 1

}}]

· |h|s
[

1

|x |N−1+s
+ 1

|x + h|N−1+s

]

. (7.3)

for every x ∈ R
N , 0 ≤ s ≤ 1, and |h| ≤ 1/2, where the constant C is independent of

x and h.
Next, for every bounded open set U ⊂ R

N satisfying Q ⊂ U we have

∫

U

1

|x |N−1+s
dx ≤

∫

B(0,2)

1

|x |N−1+s
dx +

∫

U\B(0,2)

1

|x |N−1+s
dx

≤ 2π
∫ 2

0
r−sdr + 1

2N−1+s
|U \ B(0, 2)| < +∞, (7.4)

The analogous computation holds for 1
|x+h|N−1+s . Since Pλ is a fundamental solution

and A Pλ = λδ, we have that Pλ ∈ C∞(RN\B(0, ε)) for every ε > 0. In particular,

max
{

sup
{∣
∣
∣∇d−1P(z)

∣
∣
∣ : |z| = 1

}

, sup
{∣
∣
∣∇d P(z)

∣
∣
∣ : |z| = 1

}}

=: M < +∞.

(7.5)
This, together with (7.3) and (7.4), yields

∥
∥
∥
∥
∥
∥

∑

|a|=d−1

∣
∣
∣
∣
τh

(
∂a

∂xa
Pλ(x)

)

− ∂a

∂xa
Pλ(x)

∣
∣
∣
∣

∥
∥
∥
∥
∥
∥
L1(U ;RN )

≤ CM |h|s ,

for some C > 0, and thus

lim
h→∞

∥
∥
∥
∥
∥
∥

∑

|a|=d−1

∣
∣
∣
∣
τh

(
∂a

∂xa
Pλ(x)

)

− ∂a

∂xa
Pλ(x)

∣
∣
∣
∣

∥
∥
∥
∥
∥
∥
L1(U ;RN )

= 0,
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and (6.2) is established. �

Remark 7.3 As a corollary of Proposition 7.2 and Remark 7.1, we deduce that all
operatorsA satisfying the assumptions in Hsiao andWendland (2008, p. 351, Section
6.3) comply with Definition 6.1, Assertion 1. In particular, differential operators A
which can be written in the formA = B∗ ◦C , whereB∗ is the first order differential
operator associated to B and having as coefficients the transpose of the matrices Bi ,
i = 1, . . . , N , and where C is a differential operator of order d − 1 having constant
coefficients, are such that (A ,B) complies with Definition 6.1.

7.2 The Unified Approach to TGV2 and NsTGV2: An Example of 6[A ]

In this section we give an explicit construction of an operator A such that the semi-
norms NsTGV 2 and TGV 2, as well as a continuum of topologically equivalent
seminorms connecting them, can be constructed as operators B ∈ �[A ].

We start by recalling the definition of the classical symmetrized gradient,

Ev = ∇v + (∇v)T

2
=
[

∂1v1
(∂1v2+∂2v1)

2
(∂1v2+∂2v1)

2 ∂2v2

]

, (7.6)

for v = (v1, v2) ∈ C∞(Q;R2). Let

B1
sym =

[

1 0 1/2 0
0 1/2 0 0

]

and B2
sym =

[

0 0 1/2 0
0 1/2 0 1

]

,

and letBsym(v) be defined as in (2.1) with B1
sym and B2

sym as above. ThenBsym(v) =
Ev for all v ∈ C∞(Q;R2), and N (Bsym) is finite dimensional. In particular,

N (Bsym) =
{

v(x) = α
( x2

−x1

)

+ b : α ∈ R and b ∈ R
2
}

.

The first part of Definition 6.1 follows from Remark 7.3. Next we verify that (6.1)
holds. Indeed, choosing A as in (7.2), we first observe that

(A w) ∗ v =
N
∑

j=1

[

�w j + ∂ jdiv(w)
] ∗ v j =

N
∑

i, j=1

(∂iw j + ∂ jwi ) ∗ ∂iv j

= 1

2

N
∑

i, j=1

(∂iw j + ∂ jwi ) ∗ (∂iv j + ∂ jvi ) = 1

2
(Bsymw) ∗ (Bsymv),

(7.7)
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for everyw ∈ W 1,2(Q;R2) and v ∈ C∞
c (Q;R2). That is, for every open setU ⊂ R

N

such that Q ⊂ U we have

|(A w) ∗ v|Mb(U ;R2) ≤ 1

2

∣
∣(Bsymw) ∗ (Bsymv)

∣
∣Mb(U ;M2×2)

≤ 1

2
‖∇w‖L1(U ;M2×2)

∣
∣Bsym(v)

∣
∣Mb(U ;M2×2)

.

The same computation holds forw ∈ C∞
c (Q;R2) and v ∈ BVB(Q;R2). This proves

that Assertion 2 in Definition 6.1 is also satisfied.
We finally construct an example of a training set �[A ]. For every 0 ≤ s, t ≤ 1,

we define

Bt :=
[

1 0 t 0
0 (1 − t) 0 0

]

and Bs :=
[

1 0 s 0
0 1 − s 0 0

]

,

and we set

Bs,t (v) := Bt∂1v + Bs∂2v =
[

∂1v1 (1 − t)∂1v2 + (1 − s)∂2v1
t∂1v2 + s∂2v1 ∂2v2

]

. (7.8)

By a straightforward computation, we obtain thatN (Bs,t ) is finite dimensional for
every 0 ≤ s, t ≤ 1. Additionally, Assertion 1 in Definition 6.1 follows by adapting
the arguments in Remark 7.3. Finally, arguing exactly as in (7.7), we obtain that

(A w) ∗ v = (Bt,sw) ∗ (Bs,t (v)), for every w, v ∈ C∞(Q̄;R2),

which implies that

|(A w) ∗ v|Mb(Q;R2) ≤ ∥∥Bt,sw
∥
∥
L1(Q;M2×2)

∣
∣Bs,t (v)

∣
∣Mb(Q;M2×2)

≤ 2 ‖∇w‖L1(Q;RN×N )

∣
∣Bs,t (v)

∣
∣Mb(Q;M2×2)

.

Hence, we deduce again Statement 2 in Definition 6.1. Therefore, the collection
�[A ] given by

�[A ] := {Bs,t : 0 ≤ s, t ≤ 1
}

is a training set according to Definition 6.11. We remark that �[A ] includes the
operator TGV 2 (with s = t = 1/2) and the operator NsTGV 2 (with t = 0 and
s = 1), as well as a collection of all “interpolating” regularizers. In other words, our
training scheme (T 2

θ ) with training set �[A ] is able to search for optimal results in a
class of operators including the commonly used TGV 2 and NsTGV 2, as well as any
interpolation regularizer.

7.2.1 Comparison with Other Works

In Brinkmann et al. (2019) the authors analyze a range of first order linear opera-
tors generated by diagonal matrixes. To be precise, letting B = diag(β1, β2, β3, β4),

123



Journal of Nonlinear Science (2023) 33 :41 Page 33 of 38 41

Brinkmann et al. (2019) treats first order operators B defined as

Bv := Q · B · Q · (∇v)T ,

where

Q :=

⎡

⎢
⎢
⎣

0 1 −1 0
1 0 0 1

−1 0 0 1
0 1 1 0

⎤

⎥
⎥
⎦

and ∇v = [∂1v1, ∂1v2, ∂2v1, ∂2v2].

That is, instead of viewing ∇v as a 2 × 2 matrix as we do, in Brinkmann et al.
(2019) ∇v is represented as a vector in R4. In this way, the symmetric gradient Ev in
(7.6) can be written as

Ev = Q · diag(0, 1/2, 1/2, 1/2) · Q · (∇v)T =

⎡

⎢
⎢
⎣

1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

⎤

⎥
⎥
⎦

· [∂1v1, ∂1v2, ∂2v1, ∂2v2]T

= [∂1v1, 0.5(∂1v2 + ∂2v1), 0.5(∂1v2 + ∂2v1), ∂2v2].

However, the representation above does not allow to consider skewed symmetric
gradients Bs,t (v) with the structure introduced in (7.8). Indeed, let s = t = 0.2. We
have

B0.2,0.2(v) =
[

∂1v1 0.8∂1v2 + 0.8∂2v1
0.2∂1v2 + 0.2∂2v1 ∂2v2

]

.

Rewriting the matrix above as a vector in R4, we obtain

B0.2,0.2(v) = [∂1v1, 0.2(∂1v2 + ∂2v1), 0.8(∂1v2 + ∂2v1), ∂2v2]

=

⎡

⎢
⎢
⎣

1 0 0 0
0 0.8 0.8 0
0 0.2 0.2 0
0 0 0 1

⎤

⎥
⎥
⎦

· [∂1v1, ∂1v2, ∂2v1, ∂2v2]T .

That is, we would have

QB ′Q =

⎡

⎢
⎢
⎣

1 0 0 0
0 0.8 0.8 0
0 0.2 0.2 0
0 0 0 1

⎤

⎥
⎥
⎦

or B ′ =

⎡

⎢
⎢
⎣

0 0 0 0.3
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

⎤

⎥
⎥
⎦

,

which are not diagonal matrices. Hence, this example shows that our model indeed
covers more operators that those discussed in Brinkmann et al. (2019).
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Fig. 1 From left to right: the test image of a Pika; a noised version (with heavy artificial Gaussian noise);
the optimally reconstructed image with TGV regularizer; the optimally reconstructed image with PGV
regularizer

7.3 Numerical Simulations and Observations

Let A be the operator defined in Sect. 7.2, and let

�[A ] := {Bs,t : s, t ∈ [0, 1]}

where, for 0 ≤ s, t ≤ 1, Bs,t are the first order operators introduced in (7.8). As
we remarked before, the seminorm PGV 2

Bs,t
interpolates between the TGV 2 and

NsTGV 2 regularizers. We define the cost function C(α, s, t) to be

C(α, s, t) := ∥∥uα,Bs,t − uc
∥
∥
L2(Q)

. (7.9)

From Theorem 5.4 we have that C(α, s, t) admits at least one minimizer (α̃, s̃, t̃) ∈
R

+ × [0, 1] × [0, 1].
To explore the numerical landscapes of the cost function C(α, s, t), we consider the

discrete box-constraint

(α0, α1, s, t) ∈ {0.025, 0.05, 0.075, . . . , 1}
× {0.025, 0.05, 0.075, . . . , 1} × {0, 0.025, 0.05, . . . , 1} × {0, 0.025, 0.05, . . . , 1} .

(7.10)

We perform numerical simulations of the images shown in Fig. 1: the first image
represents a clean image uc, whereas the second one is a noised version uη, with heavy
artificial Gaussian noise. The reconstructed image uα,B in Level 2 of our training
scheme is computed by using the primal-dual algorithm presented in Chambolle and
Pock (2011).

It turns out that the minimum value of (7.9), taking values in (7.10), is achieved at
α̃0 = 0.072, α̃1 = 0.575, s̃ = 0.95, and t̃ = 0.05. The optimal reconstruction uα̃,Bs̃,t̃
is the last image in Fig. 1, whereas the optimal result with Bs,t ≡ E , i.e., uα̃,TGV , is
the third image in Fig. 1. Although the optimal reconstructed image uα̃,Bs̃,t̃

and uα̃,E
do not present too many differences to the naked eye, we do have that

C(α̃, s̃, t̃) < C(α̃, 0.5, 0.5)
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Table 1 Minimum cost value with different regularizers

Regularizer Optimal solution Minimum cost value

TGV 2 α̃0 = 0.074, α̃1 = 0.625 C(α̃, 0.5, 0.5) = 18.653

PGV 2 α̃0 = 0.072, α̃1 = 0.575, s̃ = 0.95, t̃ = 0.05 C(α̃, s̃, t̃) = 17.6478

The minimum value of the cost function for the PGV 2-regularizer is approximately 5% below that of the
TGV 2-regularizer

Fig. 2 From the left to the right: mesh and contour plot of the cost function C(ᾱ, s, t) in which ᾱ = (ᾱ0, ᾱ1)

is fixed, (s, t) ∈ [0, 1]2

(see also Table 1below). That is, the reconstructed image uα̃,Bs̃,t̃
is indeed “better” in

the sense of our training scheme (L2-difference).
To visualize the change of cost function produced by different values of (s, t) ∈

[0, 1]2, we fix ᾱ0 = 0.072 and ᾱ1 = 0.575 and plot in Fig. 2the mesh and contour plot
of C(ᾱ, s, t).

We again remark that the introduction of PGVα,B[k] regularizers into the training
scheme is onlymeant to expand the training choices, but not to provide a superior semi-
norm with respect to the popular choices TGV 2 or NsTGV 2. The fact whether the
optimal regularizer is TGV 2, NsTGV 2 or an intermediate regularizer is completely
dependent on the given training image uη = uc + η.

We conclude this sectionwith a further study of the numerical landscapes associated
to the cost function C(α, s, t). We consider also in this second example the discrete
box-constraint in (7.10), andwe analyze the images shown in Fig. 3: also in this second
example the first image represents the clean image uc, whereas the second one is a
noised version uη. The reconstructed image uα,B in Level 2 of our training scheme is
again computed by using the primal-dual algorithm presented in Chambolle and Pock
(2011).

We report that the minimum value of (7.9), taking values in (7.10), is achieved at
α̃0 = 5.6, α̃1 = 1.2, s̃ = 0.8, and t̃ = 0.2. The optimal reconstruction uα̃,Bs̃,t̃

is the
last image in Fig. 3, whereas the optimal result with Bs,t ≡ E , i.e., uα̃,TGV , is the
third image in Fig. 3. Although the optimal reconstructed image uα̃,Bs̃,t̃

and uα̃,TGV
do not present too many differences with respect to our eyesight, we do have, also in
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Fig. 3 From left to right: the test image of a space shuttle; a noised version (with artificial Gaussian noise);
the optimally reconstructed image uα̃,E , where α̃0 = 5.2, α̃1 = 1.9; the optimally reconstructed image
uα̃,B s̃,t̃

, where α̃0 = 5.6, α̃1 = 1.2, s̃ = 0.8, and t̃ = 0.2

0.5 1

0.5

1

Fig. 4 From left to right: mesh and contour plot of the cost function C(ᾱ, s, t) in which ᾱ = (ᾱ0, ᾱ1) is
fixed, (s, t) ∈ [0, 1]2. The function C(ᾱ, s, t) achieves the minimum at s̃ = 0.8 and t̃ = 0.2

this case, that ∥
∥
∥uα̃,Bs̃,t̃

− uc
∥
∥
∥
L2(Q)

<
∥
∥uα̃,TGV − uc

∥
∥
L2(Q)

.

Namely, the reconstructed image uα̃,Bs̃,t̃
is indeed “better” in the sense of our

training scheme (L2-difference).
To visualize the change of cost function produced by different values of (s, t) ∈

[0, 1]2, we fix ᾱ0 = 5.6 and ᾱ1 = 1.9 and plot in Fig. 4the mesh and contour plot of
C(ᾱ, s, t) as follows.

8 Conclusions

We have introduced a novel class of regularizers providing a generalization of TGV 2

to the case in which the higher-order operators can be different from the symmetric
gradient.After establishingbasic properties of this class of functionals,wehave studied
well-posedness of a bilevel learning scheme selecting the optimal regularizer in our
class in terms of a quadratic cost function. Eventually, we have shown some very
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first numerical simulations of our scheme. We point out that both examples in Figs. 1
and 3 do not present a clear distinction to the naked eye with respect to their TGV
counterpart although performing much better in terms of the cost-function landscapes.
We conjecture this behavior not to be the general case. Further numerical investigations
are beyond the scope of this paper and will be the subject of forthcoming works.
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Gmeineder, F., Raiţă, B., Van Schaftingen, J.: On limiting trace inequalities for vectorial differential

operators. Indiana Univ. Math. J. 70, 2133–2176 (2021)
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