
Available online at www.sciencedirect.com

i
fl
c
t
e
t
s
p

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 417 (2023) 116354
www.elsevier.com/locate/cma

Finite element and isogeometric stabilized methods for the
advection-diffusion-reaction equation

Konstantin Keyd,a, Michael R.A. Abdelmalikb,∗, Stefanie Elgetia,d, Thomas J.R. Hughesc,
Frimpong A. Baidooc

a Institute for Lightweight Design and Structural Biomechanics, TU Wien, Austria
b Department of Mechanical Engineering, Eindhoven University of Technology, Netherlands

c Computational Mechanics Group, Oden Institute, UT Austin, United States of America
d Chair for Computational Analysis of Technical Systems, RWTH Aachen University, Germany

Available online 2 September 2023

Abstract

We develop two new stabilized methods for the steady advection-diffusion-reaction equation, referred to as the Streamline
GSC Method and the Directional GSC Method. Both are globally conservative and perform well in numerical studies utilizing
linear, quadratic, cubic, and quartic Lagrange finite elements and maximally smooth B-spline elements. For the streamline GSC
method we can prove coercivity, convergence, and optimal-order error estimates in a strong norm that are robust in the advective
and reactive limits. The directional GSC method is designed to accurately resolve boundary layers for flows that impinge upon
the boundary at an angle, a long-standing problem. The directional GSC method performs better than the streamline GSC
method in the numerical studies, but it is not coercive. We conjecture it is inf-sup stable but we are unable to prove it at this
time. However, calculations of the inf-sup constant support the conjecture. In the numerical studies, B-spline finite elements
consistently perform better than Lagrange finite elements of the same order and number of unknowns.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The linear, steady ADR equation is ostensibly a very simple partial differential equation, but it has numerous
mportant physical applications and is also an important model equation for the study of nonlinear and more complex
ow phenomena. However, its stable and accurate numerical solution has, somewhat surprisingly, proven to be a
hallenge. The two limiting cases of AD and RD are much simpler, and there are effective methods for both, but
he full ADR equation represents a significant increase in difficulty. The study of stabilized methods for the ADR
quation began with Harari and Hughes [1]. This study was confined to one dimension but it was discovered that
here would need to be two stabilizing mechanisms, and two accompanying parameters to be determined. It was a
tep forward but indicated that the accurate numerical formulation of the ADR equation was more complicated than
reviously thought. The instabilities noted in Galerkin methods for advection were stronger than those produced
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by reaction, but controlling the interaction of advection and reaction was a much more complicated problem. [1]
was followed over the years by a number of studies that sought better solutions to the problem [2–17]. A complete
review of the history of this topic is presented in Hauke–Sangalli–Doweidar [18], who also produced a Variational-
Multiscale-inspired stabilized method that produced both good quality numerical results and was amenable to a
complete mathematical stability and convergence analysis, and resulting error estimates. This is the best and most
complete work to date. However, everything was restricted to linear elements.

This paper presents and analyses a new class of finite element and isogeometric stabilized methods for the
DR equation. We refer to these as GSC methods. (We apologize for all the acronyms and hope the reader will

patiently bear with us.) We begin with a study of the homogeneous, one-dimensional case assuming continuous,
piecewise linear, finite elements, which may be viewed alternatively as the first member of the Lagrange family
of finite elements or as the first member of the family of maximally smooth B-spline elements. For this case, it
is well known that a stabilized method must have at least two stabilization parameters associated with the two
exact solutions of the ADR equation. We note that for the two limiting cases, AD and RD, only one stabilization
parameter is required. The two stabilization parameters are denoted τA and τR and are associated with weighting

y the advection operator and reaction operator, respectively. The idea is seen to be similar to methods referred to
s GLS/GGLS, that is Galerkin Least-Squares/Galerkin Gradient Least-Squares [10]. However, GSC methods are a
ombination of standard SUPG for advection and the gradient of the residual weighted by the gradient of the reaction
erm. The advantage of this is that the same global conservation law1 as that for the exact ADR equation, and also
he Galerkin method, is obtained for GSC methods. Conservation is often viewed as a test for a well-formulated
umerical method. We note that [10] and the more recent method of Hauke-Sangalli-Doweidar [18] do not satisfy
his conservation law. With the GSC formulation we are able to identify stabilization parameters τA and τR such
hat the methods are nodally exact for the linear finite element model problem. This, in itself, is not a unique
ccomplishment as previous methods have obtained this attribute.

We then study the behavior of the GSC method for linear, quadratic, cubic, and quartic Lagrange and B-spline
nite elements on AD, RD, and ADR model problems using the exact same stabilization parameters τA and τR
btained for the linear element case. There is some evidence that stabilization parameters for higher-order elements
re not substantially different than those for linear elements (see Hughes and Sangalli [19]). However, this topic
arrants further study. In comparing these methods, we set the number of degrees of freedom to be the same for

ll calculations, resulting in element lengths being different in each case. Comparison is also made to the Galerkin
ethod. In addition, we performed convergence rate studies and found that optimal convergence rates are obtained

n H 1 for all cases. However, we observed two deficiencies. One is numerical sensitivity. We found in a Mathematica
mplementation of the parameter formulas that inaccurate results were obtained in certain circumstances. We attribute
his problem to expressions in the denominators of the formulas, which involve differences of hyperbolic functions
aking nearly the same large values, leading to significant errors in the differences. The second deficiency concerned
L2 convergence rates, which were not always optimal. Consequently, we developed alternative, approximate
tabilization parameters that corrected both deficiencies. The suite of one-dimensional problems was repeated for
he approximate stabilization parameters. We note that the approximate stabilization parameters no longer obtain
he nodally exact solutions for linear finite elements, but performed quite well for all cases. They are also more
fficient, eliminating all hyperbolic functions. We use the approximate formulas in place of the exact throughout
he remainder of the paper.

We present two GSC methods for multidimensions that generalize the one-dimensional method. The first, referred
o as the Streamline GSC Method, employs the streamline operator as in SUPG. The advective stabilization
arameter τA follows the usual generalization to multidimensions in which the advective velocity in one-dimension
s replaced by the Euclidean norm of the advective velocity. The reactive stabilization parameter τR is the same
s in one dimension. We begin our study of this method with numerical calculations of AD, RD, and ADR two-
imensional problems that have sharp boundary layers. As in the one-dimensional case, the B-spline elements
utperform the Lagrange elements on meshes that have an equal number of degrees of freedom.

We then proceed to perform a complete stability and convergence analysis of the streamline GSC method that is
pplicable to multidimensional and higher-order cases. We show that the method is coercive in a strong norm, the

1 The conservation law in question emanates from the weak form when we assume Neumann boundary conditions and set the weighting
function to a constant. All stabilization terms in GSC methods vanish in these cases and the variational equation reduces to the Galerkin
method.
2
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GSC norm, and achieves optimal error estimates in it. Furthermore, the convergence is robust in that it is uniform
nder conditions of advection and reaction dominance. We believe this is the first full functional analysis proof for
igher-order elements and B-spline elements of a stabilized method for the ADR equation.

The second method is referred to as the Directional GSC Method. This method was devised to address a problem
associated with sharp boundary layers when the flow is at an angle to the boundary. It has been repeatedly noted in
the literature that the SUPG method produces a substantial overshoot in this case for linear elements. At the same
time, if the flow is normal to the boundary, SUPG produces nodally exact results. We wished to preserve this property
when the flow was at an angle to the boundary. Our analysis revealed that the way to do this was to decompose
the advection and reaction weighting into two one-dimensional terms, each with its own stabilization parameters
τA and τR computed from the one-dimensional formula with the advective velocity component corresponding to
the flow in the principal directions of the element. We were not sure that this method would achieve the same
accuracy as the streamline GSC method but we were gratified to find that the results for the two-dimensional
problems previously considered were actually better. We were still concerned that these problems, which featured
uniform velocity fields skew to the mesh, did not provide sufficiently rigorous accuracy tests, so we considered a
problem of a non-uniform, rotating flow field in the advective limit. This is sometimes referred to as the “donut
problem”. The original variant was proposed in Brooks-Hughes [20]. It is well known that there is no stability issue
for this problem. For example, even the Galerkin method performs well for it. However, classical, over-stabilized,
full-upwind methods fail miserably. For this problem, the streamline GSC method reduces to SUPG and the results
are known to be essentially exact for all cases, so we studied just the directional GSC method and found that the
results were also essentially exact for all B-splines and Lagrange elements. Thus, we were encouraged to try to
develop a full functional analysis proof of stability, convergence, and error estimates, but we discovered that the
method was not coercive in what seemed to be the natural norm. We surmise that the method is inf-sup stable but
we did not succeed in proving this. In lieu of a proof, we present numerical studies of the inf-sup constant and find
it to be inf-sup stable in a strong norm.

The remainder of the paper is outlined as follows: We introduce the one-dimensional ADR problem in Section 2,
describe GSC stabilization in Section 3, and present one-dimensional numerical results and convergence rates in
Section 4. Section 5 describes the multidimensional streamline GSC method, numerical evaluations, and the stability
and convergence proof and error estimates. We note that the proof has some unique aspects to it which may be
of mathematical interest. Section 6 presents the directional GSC method, a suite of test problems, and numerically
computed inf-sup constants. All the simulation results were obtained using nutils [21], an open source Python
programming library. In Section 7, we draw conclusions and identify possible future directions.

2. Galerkin finite element methods for advection-diffusion-reaction problems

The steady advection-diffusion-reaction (ADR) differential operator for advective velocity a, diffusivity κ > 0,
and reactive rate r > 0, reads

Lu = ru + a · ∇u − ∇ · (κ∇u) , (1)

where u is assumed to be a twice-continuously-differentiable function. We frequently refer to two reduced cases,
the advection-diffusion (AD) operator, when r = 0, and the reaction–diffusion (RD) operator, when a = 0. The

ifferential operator is used to define nonhomogeneous ADR problems on d-dimensional domains Ω ⊂ Rd with
boundaries Γ = ∂Ω that are equipped with, for example, Dirichlet data:

Lu = f in Ω ,

u = g on Γ .
(2)

A homogeneous, one-dimensional ADR problem, with a, κ , r assumed constant, has an exact solution determined
s follows

u (x) ∼ exp (kx) , k ∈ R. (3)

alues for the parameters k can be computed by substituting the ansatz (3) into Eq. (1) and determining the roots
f the resulting characteristic equation

r + ak − κk2
= 0 (4)
3
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H⇒ k− =
a +

√
a2 + 4rκ

2κ
, k+ =

a −
√

a2 + 4rκ

2κ
. (5)

The exponential functions exp(k−x) and exp(k+x) are combined to obtain the exact solution:

u (x) = C0 exp (k−x) + C1 exp (k+x) ,

where the real constants C0, C1 are fixed by the boundary conditions. Note that both terms are monotone and, thus,
solutions do not oscillate. For example, the solution on the unit interval (Ω = [0; 1]), when equipped with the
Dirichlet boundary conditions u(0) = 0 and u(1) = 1, is given as

u (x) = exp
[
−

a (1 − x)

2κ

]
sinh (sx)

sinh s
, s =

√
a2 + 4rκ

2κ
. (6)

Such non-oscillating solutions of ADR problems may be approximated by finite element methods (FEM). The
alerkin FEM approximates the weak formulation of the differential ADR problem in Eq. (2) in terms of

Bh (uh, wh)
=
(
rwh, uh)

Ω
+
(
wh, a · ∇uh)

Ω
+
(
κ∇wh, ∇uh)

Ω
,

Lh (wh)
=
(
wh, f

)
Ω

,
(7)

where uh and wh are functions from the approximate solution manifold Sh and test function space Vh , respectively,
and the notation

( f1, f2)D =

∫
D

f1 f2 dD

is used to denote the integral of two functions f1, f2 over the domain D. Based on these forms, the approximate
weak formulation of the ADR problems in Eq. (2) reads

Bh (uh, wh)
= Lh (wh) for all wh

∈ Vh, (8)

where the approximate solution uh satisfies the Dirichlet conditions. For homogeneous Dirichlet data, Sh
= Vh and

therefore uh may be expanded in terms of basis functions ωB and corresponding coefficients dB :

uh (x) =

∑
B

ωB (x) dB .

Using these in Eq. (8) gives∑
B

Bh (ωB, ωA) dB = Lh (ωA) for all ωA, (9)

which can be solved for the vector of coefficients d.
Considering the homogeneous one-dimensional case with constant physical parameters, the Galerkin FEM can

be analyzed for linear basis functions that are defined on uniform meshes with element size h by considering its
computational stencils, i.e., the typical row of the associated systems of linear equations in Eq. (9). In particular,
the row that is associated with the basis function ωA, after multiplication with h

κ
, reads

h
κ

(r S0 + aS1 + κS2)

⎡⎣dA−1
dA

dA+1

⎤⎦ = 0, (10)

here the stencils

S0 =
h
6

[
1 4 1

]
,

S1 =
1
2

[
−1 0 1

]
,

S2 =
1
h

[
−1 2 −1

] (11)

orrespond to the discrete zeroth-, first-, and second-order terms in the differential operator L in Eq. (1). These
omputational stencils also give rise to a characteristic equation, similar to that of the differential operator in Eq. (4).
4
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In detail, the interpolation property of linear basis functions ωA at the corresponding nodes xA = h A

dA = uh(h A)

nd the form of the exact solution u in Eq. (3) suggests that the coefficients follow a power law in the nodal index
A:

dA ∼ θ A, θ ∈ R. (12)

This is substituted into the stencil in Eq. (10) yielding(
rh
κ

S0 +
ah
κ

S1 + hS2

)⎡⎣ 1
θ

θ2

⎤⎦ =

2∑
m=0

αmθm
= 0, (13)

here the coefficients

α0 =
Dah

6
−

Peh

2
− 1,

α2 = α0 + Peh =
Dah

6
+

Peh

2
− 1,

α1 = Dah − (α0 + α2) = Dah − 2α0 − Peh = 2
(

Dah

3
+ 1

)
orrespond to the first, last, and center terms of the computational stencils in Eq. (11) and the definitions

Dah =
rh2

κ
, Peh =

ah
κ

(14)

are the dimensionless element Damköhler number and element Péclet number, respectively. (Note: There are two
common definitions of Damköhler number. The one we utilize is frequently referred to as the second Damköhler

umber.) The two roots of the polynomial in Eq. (13) are

θ− =

−α1 +

√
α2

1 − 4α2α0

2α2
, θ+ =

−α1 −

√
α2

1 − 4α2α0

2α2
. (15)

f at least one of the roots is negative, i.e., θ < 0, oscillations of the approximate solutions uh are possible as
the power law in Eq. (12) then results in alternating signs of the coefficients dA. Such oscillations are indeed
encountered in practice when boundary layers are not resolved. For example, considering only the AD operator, the
roots in Eq. (15) simplify to

θAD
−

=
2 + |Peh |

2 − Peh
, θAD

+
=

2 − |Peh |

2 − Peh

and, therefore, oscillations may be encountered if |Peh | > 2. Similarly, for the RD operator, Eq. (15) simplifies to

θRD
−

=
2 (Dah + 3)

6 − Dah
+

√[
2 (Dah + 3)

6 − Dah

]2

− 1, θRD
+

=
2 (Dah + 3)

6 − Dah
−

√[
2 (Dah + 3)

6 − Dah

]2

− 1

and, thus, oscillations potentially occur if Dah > 6. Note that both conditions can be interpreted as constraints on
the size of the mesh parameter h. The consequences of not sufficiently resolving boundary layers are exemplified
in Fig. 2.1 for the Galerkin FEM applied to pure AD and RD problems.

Sufficiently refined meshes in practical engineering problems are often computationally intractable. Therefore,
techniques to eliminate or at least mitigate spurious oscillations are required. The goal is to improve stability and
accuracy simultaneously. The approaches developed to this end herein are referred to as GSC stabilization. We
consider two types, both of which may be considered generalizations of SUPG stabilization. The first is referred to
as Streamline GSC and is given by

Bh
GSC

(
uh, wh)

= Bh (uh, wh)
+
(
τR∇(rwh), ∇Luh)

Ω̃
+
(
τAa · ∇wh,Luh)

Ω̃
,

h ( h) h ( h) ( h ) ( h )

LGSC w = L w + τR∇(rw ), ∇ f

Ω̃
+ τAa · ∇w , f

Ω̃
,

5
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w

Fig. 2.1. Oscillating linear finite element solutions computed with the Galerkin method.

here τR and τA are the reactive and advective stabilization parameters and

Ω̃ =

⋃
e

Ω e

denotes the union of all element interiors Ω e, i.e., the boundaries of the elements e are excluded. Note that the
advective stabilization term is of SUPG type and the reactive stabilization term acts on the gradient of the residual.
The streamline GSC method leads to the following system of linear equations∑

B

Bh
GSC (ωB, ωA) dB = Lh

GSC (ωA) for all ωA. (16)

The next section considers choices of stabilization parameters τR , τA that yield non-oscillating approximate
solutions.

The second type of GSC method, directional GSC, will be described subsequently. In one dimension, the
streamline GSC and directional GSC methods are identical, and therefore in the following sections concerning
the one-dimensional problem, we just refer to the method as GSC.

3. Stabilization for one-dimensional advection-diffusion-reaction problems

The stabilization parameters τR , τA can be chosen for bases having the interpolation property such that the
solutions are nodally exact, that is, dA = uh(xA) = u(h A). Stabilization parameters can be determined for
homogeneous one-dimensional ADR problems with constant physical parameters in three steps. The approach
presented here is new in that it applies to higher-order nodal finite elements as well as linear elements. However,
we will develop it just for linear elements for simplicity and because that is all we will use in the remainder of
this paper. First, an analogue to Eq. (10), that is, the typical row of the linear equation system, is derived for
the GSC method. Second, the roots θ in the power law in Eq. (12) are replaced by exponential functions of the
two characteristic roots, exp(k−h) and exp(k+h). Third, the coefficients are accordingly replaced in the row that is
associated with the basis function ωA resulting in two equations[

rh
κ

S0 +
ah
κ

(1 − τAr) S1 + h
(

1 +
τRr2

κ
+

τAa2

κ

)
S2

]⎡⎣ 1
exp (k−h)

exp (2k−h)

⎤⎦ = 0,

[
rh
κ

S0 +
ah
κ

(1 − τAr) S1 + h
(

1 +
τRr2

κ
+

τAa2

κ

)
S2

]⎡⎣ 1
exp (k+h)

⎤⎦ = 0.

(17)
exp (2k+h)

6
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w

3

s

3

Note that these two equations, as well as the characteristic roots in Eq. (5), can be written in terms of the
dimensionless numbers in Eq. (14) as

2∑
m=0

αm exp

⎧⎨⎩m

⎡⎣ Peh

2
+

√(
Peh

2

)2

+ Dah

⎤⎦⎫⎬⎭ = 0,

2∑
m=0

αm exp

⎧⎨⎩m

⎡⎣ Peh

2
−

√(
Peh

2

)2

+ Dah

⎤⎦⎫⎬⎭ = 0,

(18)

ith the coefficients

α0 =
Dah

6
−

Peh

2
(1 − τAr) −

(
1 +

τRr2

κ
+

τAa2

κ

)
,

α2 = α0 + Peh (1 − τAr) =
Dah

6
+

Peh

2
(1 − τAr) −

(
1 +

τRr2

κ
+

τAa2

κ

)
,

α1 = Dah − (α0 + α2) = Dah − 2α0 − Peh (1 − τAr) = 2
(

Dah

3
+ 1 +

τRr2

κ
+

τAa2

κ

)
.

This pair of reformulated equations is considered in the following sections to solve for the stabilization parameters
τR , τA in terms of their nondimensional counterparts

χ =
r
h2 τR,

ζ =
a
h

τA.
(19)

.1. Advection-diffusion

First, consider the AD problem. Eq. (18) simplifies to
2∑

m=0

αm exp
{

m
[

Peh

2
+

Peh

2

]}
= 0,

2∑
m=0

αm exp
{

m
[

Peh

2
−

Peh

2

]}
= 0,

with the coefficients

α0 = −
Peh

2
−

(
1 +

τAa2

κ

)
,

α2 = α0 + Peh =
Peh

2
−

(
1 +

τAa2

κ

)
,

α1 = − (α0 + α2) = −2α0 − Peh = 2
(

1 +
τAa2

κ

)
.

Note that the second equation is always satisfied and the first equation yields the classical nondimensional advective
stabilization parameter for the AD problem

ζ AD
=

coth (0.5Peh)

2
−

1
Peh

(20)

hown in Fig. 3.1.

.2. Reaction-diffusion

Consider the RD problem. Eq. (18) simplifies to
2∑

αm exp
{

m
√

Dah

}
= 0,

2∑
αm exp

{
−m

√
Dah

}
= 0,
m=0 m=0

7
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o

s

Fig. 3.1. Exact nondimensional advective stabilization parameter ζAD for the GSC method for the AD problem in one dimension.

Fig. 3.2. Exact nondimensional reactive stabilization parameter χRD for the GSC method for the RD problem in one dimension.

with the coefficients

α0 =
Dah

6
−

(
1 +

τRr2

κ

)
,

α2 = α0 =
Dah

6
−

(
1 +

τRr2

κ

)
,

α1 = Dah − (α0 + α2) = Dah − 2α0 = 2
(

Dah

3
+ 1 +

τRr2

κ

)
.

Since α2 = α0, multiplying both sides of the first equation by exp(−2
√

Dah) yields the second equation and we

nly need to solve one of them to obtain the nondimensional reactive stabilization parameter for the RD problem

χRD
=

1
6

+
1

2
(
cosh

√
Dah − 1

) −
1

Dah
(21)

hown in Fig. 3.2.
8
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A
e
(
m
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f
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F

T
e

n

Fig. 3.3. Exact nondimensional stabilization parameters for the GSC method for the ADR problem in one dimension.

.3. Advection-diffusion-reaction

Consider the ADR problem. This time both equations in Eq. (18) must be solved. Their solutions are the
ondimensional stabilization parameters for the ADR problem

χ =
1
6

+
cosh (0.5Peh)

2
[

cosh
√

0.25Pe2
h + Dah − cosh (0.5Peh)

] −
1 + Pehζ

Dah
,

ζ =
Peh

Dah
−

sinh (0.5Peh)

cosh
√

0.25Pe2
h + Dah − cosh (0.5Peh)

(22)

nd are shown in Fig. 3.3.

. Results for one-dimensional advection-diffusion-reaction problems

GSC and Galerkin solutions of the AD and RD problems introduced in Section 2 as well as the corresponding
DR problem are shown in Fig. 4.1 for linear finite elements. Solutions for quadratic, cubic, and quartic Lagrange

lements, as well as maximally-smooth B-spline basis functions, are presented in Figs. 4.2, 4.3, and 4.4, respectively.
Note that for the higher-order basis functions we have again used the same stabilization parameters in the GSC
ethod that were derived for linear finite elements, which is motivated by the results of [19].) Each simulation has

5 degrees of freedom, meaning that the element sizes h increase with the order of the bases (but to a lesser extent
or B-splines than Lagrange elements). Galerkin FEM results show oscillations, as expected because the element
amköhler and Péclet numbers Dah and Peh are greater than thirteen and four, respectively. For higher-order basis

unctions, the figures show that B-spline solutions resolve the boundary layers better than Lagrange solutions. In
ll cases, the GSC method gives a monotone solution.

Convergence results for the L2 norm and H 1 semi-norm for the AD, RD, and ADR problems are shown in
Fig. 4.5. The corresponding convergence rates are listed in Table 4.1. The numbers of degrees of freedom were
1 + 4!2n where n = 0, . . . , 8, i.e., 25 (n = 0) and 6145 (n = 8) for the coarsest and finest simulations, respectively.

or the most part, the B-spline results are more accurate than the Lagrange results for the same polynomial order,
p. The H 1 convergence rates presented in Table 4.1 are optimal, that is, O(h p), but not all are O(h p+1) in L2.
he L2 rate of convergence is not determined by the derivation of the stabilization parameters, except for the linear
lement case, which is optimal because it is the nodal interpolate.

Given the sensitivity of the exact GSC stabilization parameters, as noted previously, we endeavored to create

umerically stable approximations to the exact ones. As will be seen, the approximate stabilization parameters

9
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a
i

Fig. 4.1. Linear finite element solutions computed with Galerkin and GSC methods for reactive rate r = 7.5 × 103 s−1, advective velocity
= 1.0 × 102 m s−1, and diffusivity κ = 1.0 m2 s−1. The stabilization parameters for one-dimensional AD, RD, and ADR problems are given

n Eqs. (20), (21), and (22), respectively.
10
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Fig. 4.2. Quadratic approximate solutions computed with Galerkin and GSC methods for reactive rate r = 7.5 × 103 s−1, advective velocity
= 1.0 × 102 m s−1, and diffusivity κ = 1.0 m2 s−1. The stabilization parameters for one-dimensional AD, RD, and ADR problems are given

n Eqs. (20), (21), and (22), respectively.
11
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Fig. 4.3. Cubic approximate solutions computed with Galerkin and GSC methods for reactive rate r = 7.5 × 103 s−1, advective velocity
= 1.0 × 102 m s−1, and diffusivity κ = 1.0 m2 s−1. The stabilization parameters for one-dimensional AD, RD, and ADR problems are given

n Eqs. (20), (21), and (22), respectively.
12



K. Key, M.R.A. Abdelmalik, S. Elgeti et al. Computer Methods in Applied Mechanics and Engineering 417 (2023) 116354

a
i

Fig. 4.4. Quartic approximate solutions computed with Galerkin and GSC methods for reactive rate r = 7.5 × 103 s−1, advective velocity
= 1.0 × 102 m s−1, and diffusivity κ = 1.0 m2 s−1. The stabilization parameters for one-dimensional AD, RD, and ADR problems are given

n Eqs. (20), (21), and (22), respectively.
13
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n
κ

r

Fig. 4.5. Convergence analyses (25, 49, 97, 193, 385, 769, 1537, 3073, and 6145 degrees of freedom) in the L2 norm and H1 semi-
orm for the one-dimensional GSC method for reactive rate r = 7.5 × 103 s−1, advective velocity a = 1.0 × 102 m s−1, and diffusivity
= 1.0 m2 s−1. The stabilization parameters for one-dimensional AD, RD, and ADR problems are given in Eqs. (20), (21), and (22),

espectively. Corresponding convergence rates are listed in Table 4.1.
14
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Table 4.1
Convergence rates for the one-dimensional GSC method in the L2 norm and H1 semi-norm based on the
two most refined simulations (3073 and 6145 degrees of freedom) for each case and basis (see Fig. 4.5). The
stabilization parameters for one-dimensional AD, RD, and ADR problems are given in Eqs. (20), (21), and (22),
respectively.

Order Basis AD RD ADR

L2 H1 L2 H1 L2 H1

Linear
B-spline/

2.000 1.000 2.000 1.000 2.000 1.000
Lagrange

Quadratic
B-spline 3.002 2.001 2.001 2.001 2.001 2.001
Lagrange 3.005 2.001 2.001 2.000 2.000 2.000

Cubic
B-spline 3.993 2.993 3.990 3.210 3.991 3.275
Lagrange 4.003 3.005 4.000 3.000 3.997 2.998

Quartic
B-spline 4.974 3.994 4.946 4.327 5.006 4.388
Lagrange 5.409 4.021 4.000 4.000 4.001 4.003

Fig. 4.6. Approximations to the exact nondimensional stabilization parameters in GSC methods depicted in Fig. 3.3.

achieve optimal convergence rates in L2 and H 1 for all cases considered. The approximate parameters are given by
the following formulas:

χ ≈
Da2

h

6Da2
h + 36Dah + 216 + 19.2323Pe2

h
,

ζ ≈
Peh

2 |Peh | + 12 + 0.392211Dah
.

(23)

he parameters in Eq. (23) approximate the nondimensional stabilization parameters in Eq. (22) quite well as
an be verified by considering their plots in Fig. 4.6 and by comparing their corresponding slices in Fig. 4.7 for
everal element Damköhler numbers Dah . Their precise forms are rationalized by considering Taylor and Laurent
xpansions, as follows:

The reactive limit Peh −→ 0 of the nondimensional reactive stabilization parameter χ in Eq. (22) is the RD
result χRD in Eq. (21) that can be well-approximated by the harmonic-mean-like expression

χRD
≈

Da2
h

6Da2
h + 36Dah + 216

, (24)

hich has the correct asymptotic value and first two derivatives for Dah −→ ∞. For the advective limit Dah −→ 0,
his approximation asymptotes to zero instead of ζAD

(the limit of the corresponding exact reactive stabilization
Peh

15
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Fig. 4.7. For element Damköhler numbers Dah ∈ {0, 50, . . . , 400}: slices of the exact and approximate nondimensional stabilization
parameters in GSC methods.

parameter χ , see Appendix A). The additional Pe2
h-contribution in Eq. (23) facilitates approximately obtaining the

asymptotic value ( 14−5e
6(e−1) , where e is Euler’s number) for the reactive-advective limit Dah −→ ∞, Peh −→ ∞.

The advective limit Dah −→ 0 of the nondimensional advective stabilization parameter ζ in Eq. (22) is the AD
result ζ AD in Eq. (20) that can be approximated by the following harmonic-mean-like formula:

ζ AD
≈

Peh

2 |Peh | + 12
. (25)

his ensures a zero value at Peh = 0, the correct limit ( 1
2 ) for Peh −→ ∞, the correct slope ( 1

12 ) at Peh = 0, and
smoothness of the approximation. Also, this approximation of ζ AD already conforms to the reactive limit Peh −→ 0

f the exact advective stabilization parameter ζ , because it vanishes for Peh = 0. The additional Dah-contribution
n Eq. (23) allows to approximately obtain an adequate asymptotic value ( e−2

e−1 , where e is Euler’s number) for the
reactive-advective limit Dah −→ ∞, Peh −→ ∞.

We repeated the above numerical evaluation for the approximate stabilization parameters. GSC and Galerkin
solutions of the AD, RD, and ADR problems are shown in Fig. 4.8 for linear finite elements. Note, the results are
no longer monotone for this case. Solutions for quadratic, cubic, and quartic Lagrange and maximally smooth B-
spline elements are presented in Figs. 4.9, 4.10, and 4.11, respectively. Using the approximate stabilization for linear
finite elements once again for higher-order elements, the solutions become more monotone as the order increases.
The corresponding convergence results and rates for the L2 norm and H 1 semi-norm are shown in Fig. 4.12 and
16
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Table 4.2
Convergence rates for the one-dimensional GSC method in the L2 norm and H1 semi-norm based on the two
most refined simulations (3073 and 6145 degrees of freedom) for each case and basis (see Fig. 4.12). The
stabilization parameters for one-dimensional ADR, RD, and AD problems are approximated according to Eqs.
(23), (24), and (25), respectively.

Order Basis AD RD ADR

L2 H1 L2 H1 L2 H1

Linear
B-spline/

1.998 1.000 2.000 1.000 1.999 1.000
Lagrange

Quadratic
B-spline 3.002 2.001 3.002 2.001 3.003 2.001
Lagrange 3.004 2.001 3.000 2.000 3.003 2.000

Cubic
B-spline 3.993 2.993 3.994 2.994 3.988 2.989
Lagrange 3.993 3.005 4.000 3.000 3.994 3.003

Quartic
B-spline 4.973 3.994 4.571 3.995 4.990 3.988
Lagrange 5.426 4.020 5.000 4.000 5.226 4.018

listed in Table 4.2. For the approximate stabilization parameters, all the convergence rates are optimal, although for
quartic B-splines in the RD case it is ostensibly suboptimal, that is, 4.571. However, examination of the convergence
results revealed that the optimal convergence rate of 5 was obtained for several meshes prior to the most refined
one, where the accuracy was approximately 14 digits and likely affected by round-off errors.

This section tested two sets of formulas that were derived for linear finite elements corresponding to exact
nd approximate stabilization parameters. The exact formulas guarantee nodal exactness for linear basis functions
n one-dimensional problems, but they did not yield optimal convergence rates for higher-order basis functions for
eactive problems and involve exponential functions that are computationally challenging. The approximate formulas
id not yield nodal exactness for linear basis functions in one-dimensional problems, but they resulted in optimal
onvergence rates for all basis functions and are robust and computationally efficient. In conclusion, we advocate
he use of the exact formulas for linear finite elements but the approximate formulas in all other cases. They are
sed in the multidimensional problems throughout the remainder of this paper.

. Streamline GSC method

To obtain numerical results with the streamline GSC method for multidimensional problems, the one-dimensional
tabilization parameters τR , τA must be generalized to multiple dimensions. Consistent with the generalization of

the element Péclet number

Peh =
∥a∥2 h

κ
,

the advective velocity a is represented by its Euclidean norm ∥a∥2, i.e.,

τA =
h

∥a∥2
ζ.

he streamline GSC method is schematically illustrated in Table 5.1. The black arrow in the diagram represents
he velocity a and indicates that the stabilization is performed in the streamline direction.

We consider the classic Advection-Skew-to-Mesh problem depicted in Fig. 5.1. In particular, we consider the
nit square and a flow angle θ = 30◦. Numerical results for the streamline GSC method, using the approximate

stabilization parameters described previously, are presented in Fig. 5.2 along with results for the Galerkin method for
which the faint icon indicates that no stabilization is added. Exactly the same stabilization parameters are employed
for all quadratic, cubic, and quartic Lagrange and B-spline elements shown in Figs. 5.3, 5.4, and 5.5, respectively.
We utilize 625 degrees of freedom in each simulation, meaning that the element sizes h increase with the order of
the bases. Galerkin FEM results show oscillations as expected because the element Damköhler and Péclet numbers
are greater than thirteen and forty, respectively. For higher-order basis functions, B-spline solutions resolve the
boundary layers better than Lagrange solutions, which are overly diffuse. In all cases the streamline GSC method
performs well. Minimum and maximum values of the solutions for the AD, RD, and ADR problems are listed
17
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Fig. 4.8. Linear finite element solutions computed with Galerkin and GSC methods for reactive rate r = 7.5 × 103 s−1, advective velocity
= 1.0 × 102 m s−1, and diffusivity κ = 1.0 m2 s−1. The stabilization parameters for one-dimensional ADR, RD, and AD problems are

pproximated according to Eqs. (23), (24), and (25), respectively.

n Table 5.2. Note that the minima and maxima for B-spline elements are always smaller in magnitude than for
agrange elements.

We will now provide a proof of stability and convergence for the streamline GSC method in the multidimensional
etting for arbitrary-order finite elements.
18
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a
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Fig. 4.9. Quadratic approximate solutions computed with Galerkin and GSC methods for reactive rate r = 7.5 × 103 s−1, advective velocity
= 1.0 × 102 m s−1, and diffusivity κ = 1.0 m2 s−1. The stabilization parameters for one-dimensional ADR, RD, and AD problems are

pproximated according to Eqs. (23), (24), and (25), respectively.
19
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Fig. 4.10. Cubic approximate solutions computed with Galerkin and GSC methods for reactive rate r = 7.5 × 103 s−1, advective velocity
= 1.0 × 102 m s−1, and diffusivity κ = 1.0 m2 s−1. The stabilization parameters for one-dimensional ADR, RD, and AD problems are

pproximated according to Eqs. (23), (24), and (25), respectively.
20
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Fig. 4.11. Quartic approximate solutions computed with Galerkin and GSC methods for reactive rate r = 7.5 × 103 s−1, advective velocity
a = 1.0 × 102 m s−1, and diffusivity κ = 1.0 m2 s−1. The stabilization parameters for one-dimensional ADR, RD, and AD problems are
approximated according to Eqs. (23), (24), and (25), respectively.
21
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Fig. 4.12. Convergence analyses (25, 49, 97, 193, 385, 769, 1537, 3073, and 6145 degrees of freedom) in the L2 norm and H1 semi-norm for
he one-dimensional GSC method for reactive rate r = 7.5 × 103 s−1, advective velocity a = 1.0 × 102 m s−1, and diffusivity κ = 1.0 m2 s−1.
he stabilization parameters for one-dimensional ADR, RD, and AD problems are approximated according to Eqs. (23), (24), and (25),

espectively. Corresponding convergence rates are listed in Table 4.2.
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Table 5.1
Schematic representation of the streamline GSC method and its key parameters.

Streamline GSC

Dimensionless numbers
Dah =

rh2

κ

Peh =
∥a∥2h

κ

Reactive stabilization
τR∇(rwh )
τR =

h2

r χ

χ : Eq. (23)

Advective stabilization
τAa · ∇wh

τA =
h

∥a∥2
ζ

ζ : Eq. (23)

Fig. 5.1. Schematic of the Advection-Skew-to-Mesh test case.
23
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v

Fig. 5.2. Linear finite element solutions computed with Galerkin and streamline GSC methods for reactive rate r = 7.5 × 103 s−1, advective
elocity a = −1.0 × 103 m s−1 [cos 30◦, sin 30◦

]
, and diffusivity κ = 1.0 m2 s−1.
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a

Fig. 5.3. Quadratic approximate solutions computed with the streamline GSC method for reactive rate r = 7.5 × 103 s−1, advective velocity

= −1.0 × 103 m s−1 [cos 30◦, sin 30◦
]
, and diffusivity κ = 1.0 m2 s−1.
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a

Fig. 5.4. Cubic approximate solutions computed with the streamline GSC method for reactive rate r = 7.5 × 103 s−1, advective velocity

= −1.0 × 103 m s−1 [cos 30◦, sin 30◦
]
, and diffusivity κ = 1.0 m2 s−1.
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a

Fig. 5.5. Quartic approximate solutions computed with the streamline GSC method for reactive rate r = 7.5 × 103 s−1, advective velocity

= −1.0 × 103 m s−1 [cos 30◦, sin 30◦
]
, and diffusivity κ = 1.0 m2 s−1.
27
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Table 5.2
Minimum and maximum values of the streamline GSC solutions in Figs. 5.2, 5.3, 5.4, and 5.5.

Order Basis AD RD ADR

min max min max min max
·10−2

·10−4
·10−2

Linear
B-spline/

−1.596 1.126 −139.5 1.000 −28.85 1.000
Lagrange

Quadratic
B-spline −3.184 1.052 −48.54 1.000 −9.596 1.000
Lagrange −12.50 1.125 −1250 1.000 −12.50 1.000

Cubic
B-spline −2.911 1.047 −2.830 1.000 −2.618 1.000
Lagrange −6.413 1.076 −641.3 1.000 −6.413 1.000

Quartic
B-spline −2.538 1.039 −7.531 1.000 −1.728 1.000
Lagrange −4.167 1.078 −416.7 1.000 −4.394 1.000

5.1. Mathematical analysis of the streamline GSC method

Theorem 5.1. Assume

1. The terms r, a, and κ are element-wise constant and h is uniform across the domain Ω .2

2. The following inverse estimates are satisfied for all wh
∈ Vh:∇wh

2
Ω̃

≤
C1

h2

wh
2
Ω̃

, (26)∇∇wh
2
Ω̃

≤
C2

h2

∇wh
2
Ω̃

, (27)∇∆wh
2
Ω̃

≤
C3

h2

∆wh
2
Ω̃

. (28)

3. There exists ũh
∈ Sh such that η := u − ũh satisfies the estimate

|η|
2
H s (Ω̃)

≤ cint h2(k+1−s)
∥u∥

2
Hk+1(Ω) . (29)

4. The stabilization parameters are given by

τR =
h2

r
χs =

h2

r
Da2

h

αDa2
h + β Pe2

h + γ
,

τA =
h

∥a∥2
ζs =

h
∥a∥2

Peh

2Peh + 2Dah + 4C2

=
h2

4κ

1
Peh

2 +
Dah

2 + C2

=
1

2r +
2∥a∥2

h +
4C2κ

h2

,

(30)

where α ≥ 8
√

C2 C3, β ≥ 8 C1 C2, and γ > 0.

2 The proof also applies to quasi-uniform mesh refinement with changes to constants.
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P

t

5. The stability norm is defined aswh
2

GSC :=

r
1
2 wh

2

Ω̃
+

κ 1
2 ∇wh

2

Ω̃
+

τ 1
2
A a · ∇wh

2

Ω̃

+

τ 1
2

R r∇wh
2

Ω̃

.

Then the streamline GSC method satisfies an error estimate given by

∥e∥2
GSC ≤ κ C (1 + Dah + Peh) ∥u∥

2
Hk+1(Ω) h2k, (31)

where e := u − uh and the constant C depends on C1, C2, C3, and cint .

Remark 5.2. For constant r, ∥a∥2, and κ , the stability norm can be rewritten as

∥e∥2
GSC = κ

( r
κ

∥e∥2
Ω̃

+ ∥∇e∥2
Ω̃

+ Pehζs
â · ∇e

2
Ω̃

+ Dahχs ∥∇e∥2
Ω̃

)
,

where a = ∥a∥2 â. We thus see that the left-hand side of (31) has terms of order O(Dah) and O(Peh) just like the
right-hand side. So, even at large element Damköhler and Péclet numbers, the bound provided by the right-hand
side of (31) remains reasonably close to ∥e∥2

GSC . One might say the left-hand and right-hand sides are balanced in
terms of the Damköhler and Péclet numbers. This is in contrast to the error estimate for the Galerkin method

κ
( r
κ

∥e∥2
Ω̃

+ ∥∇e∥2
Ω̃

)
≤ κ C

(
1 + Dah + Pe2

h

)
∥u∥

2
Hk+1(Ω) h2k,

where only the right-hand side grows with increasing element Damköhler or Péclet number thus leading to a very
poor stability and error estimate in such situations.

Remark 5.3. The choice of the stabilization parameters τR and τA in Eq. (30) builds on the approximations in
Eq. (23). We note that Eq. (23) is derived for linear elements and that because C2 = 0 for linear elements, the
restriction on α and β is α ≥ 0 and β ≥ 0. Thus the choice of α = 6, β = 19.2323 and γ = 216 in Eq. (23) is
valid from the point of view of Theorem 5.1. Due to the way in which χs is used in the ensuing lemma and proof,
one can easily check that an order O(Dah) term in the denominator of χs will have no effect on the end result. A
similar line of reasoning can be applied when comparing ζs in Eq. (30) to ζ in Eq. (23).

Lemma 5.4 (Stability).

Bh
GSC(wh, wh) ≥

1
2

wh
2

GSC . (32)

roof. We have that

Bh
GSC(wh, wh) =

r
1
2 wh

2

Ω̃
+

κ 1
2 ∇wh

2

Ω̃
+

τ 1
2
A a · ∇wh

2

Ω̃

+

τ 1
2

R r∇wh
2

Ω̃

−(
τAa · ∇wh, κ∆wh)

Ω̃
+
(
τAa · ∇wh, rwh)

Ω̃
+(

τRr∇wh, ∇(a · ∇wh)
)
Ω̃

−
(
τRr∇wh, ∇(κ∆wh)

)
Ω̃

.

(33)

The first four terms define our stability norm ∥·∥
2
GSC and our goal is to subsume the last four terms into those terms

hat make up the stability norm. We recall that r , a, and κ are assumed element-wise constant.
Starting with the τA terms,

−
(
τAa · ∇wh, rwh)

Ω̃
≥ −

1
2

(
2
3

τ 1
2
A a · ∇wh

2

Ω̃

+
3
2
τAr

r
1
2 wh

2

Ω̃

)

≥ −
1
3

τ 1
2
A a · ∇wh

2

−
3
8

r
1
2 wh

2

Ω̃
.

Ω̃

29
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with the last step taking advantage of the fact that τA ≤
1
2r . Likewise,

−
(
τAa · ∇wh, κ∆wh)

Ω̃
≥ −

1
2

(
1
3

τ 1
2
A a · ∇wh

2

Ω̃

+ 3τAκ

κ 1
2 ∆wh

2

Ω̃

)

≥ −
1
2

(
1
3

τ 1
2
A a · ∇wh

2

Ω̃

+
3τAκC2

h2

κ 1
2 ∇wh

2

Ω̃

)

≥ −
1
6

τ 1
2
A a · ∇wh

2

Ω̃

−
3
8

κ 1
2 ∇wh

2

Ω̃
,

where the very last inequality takes advantage of the fact that τA ≤
h2

4C2κ
.

For the τR terms, a bit more detail is required:(
τRr∇wh, ∇(a · ∇wh)

)
Ω̃

≥ −
1
4

τ 1
2

R r∇wh
2

Ω̃

−

τ 1
2

R a · ∇∇wh

2

Ω̃

(
Peter-Paul with ε =

1
2

)
≥ −

1
4

τ 1
2

R r∇wh
2

Ω̃

− τR ∥a∥
2
2

C2

h2

∇wh
2
Ω̃

(
using Eq. (27)

)
≥ −

1
4

τ 1
2

R r∇wh
2

Ω̃

− τR ∥a∥
2
2

C2C1

rh4

r
1
2 wh

2

Ω̃

(
using Eq. (26)

)
≥ −

1
4

τ 1
2

R r∇wh
2

Ω̃

− C1C2
Pe2

h

Da2
h
χs

r
1
2 wh

2

Ω̃

(
using

∥a∥
2
2 h2

r2h4 =
Pe2

h

Da2
h

)
≥ −

1
4

τ 1
2

R r∇wh
2

Ω̃

−
C1C2

β

r
1
2 wh

2

Ω̃

(
using

Pe2
h

αDa2
h + β Pe2

h + γ
≤

1
β

)
≥ −

1
4

τ 1
2

R r∇wh
2

Ω̃

−
1
8

r
1
2 wh

2

Ω̃
.

The last line is true provided that

β ≥ 8C1C2.

The last term becomes

−
(
τRr∇wh, ∇(κ∆wh)

)
Ω̃

≥ −
1

16

κ 1
2 ∇wh

2

Ω̃
− 4τ 2

Rr2
κ 1

2 ∇∆wh
2

Ω̃

(
Peter-Paul with ε =

1
8

)
≥ −

1
16

κ 1
2 ∇wh

2

Ω̃
− 4τ 2

Rr2 C3C2

h4

κ 1
2 ∇wh

2

Ω̃

(
Eqs. (28) and (27)

)
≥ −

1
16

κ 1
2 ∇wh

2

Ω̃
− 4C2C3χ

2
s

κ 1
2 ∇wh

2

Ω̃

≥ −
1

16

κ 1
2 ∇wh

2

Ω̃
−

4C2C3

α2

κ 1
2 ∇wh

2

Ω̃

(
using χs ≤

1
α

)
≥ −

1
16

κ 1
2 ∇wh

2

Ω̃
−

1
16

κ 1
2 ∇wh

2

Ω̃

provided α ≥ 8
√

C2C3.
As such the choice of suitable α and β ensures that the method is coercive with

Bh
GSC(wh, wh) ≥

1
2

wh
2

GSC . □

Proof of Theorem 5.1. We first note that the error e = u − uh can be decomposed into the interpolation error
η = u − ũh , which measures how well the solution space can approximate the exact solution, and the numerical
method error eh

:= (ũh
− uh) ∈ Vh , which measures how well the method approximates the best-fit interpolate. We

will prove the error estimates for eh and η separately. Starting with eh , we make use of stability (32) along with
30
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Galerkin orthogonality to get

1
2

eh
2

GSC ≤
⏐⏐Bh

GSC(eh, η)
⏐⏐

≤ |(reh, η)Ω̃ | + |(a · ∇eh, η)Ω̃ | + |(κ∇eh, ∇η)Ω̃ | + |(τAa · ∇eh, rη)Ω̃ |

+ |(τAa · ∇eh, a · ∇η)Ω̃ | + |(τAa · ∇eh, κ∆η)Ω̃ | + |(τRr∇eh, r∇η)Ω̃ |

+ |(τRr∇eh, ∇(a · ∇η))Ω̃ | + |(τRr∇eh, ∇(κ∆η))Ω̃ |.

Using Cauchy–Schwarz and the Peter-Paul inequalities we obtain

1
2

eh
2

GSC ≤
1
2

(
ε1

r
1
2 eh
2

Ω̃
+ (ε2 + ε4 + ε5 + ε6)

τ 1
2
A a · ∇eh

2

Ω̃

+ (ε3 + ε9)
κ 1

2 ∇eh
2

Ω̃

+(ε7 + ε8)
τ 1

2
R r∇eh

2

Ω̃

+ ε−1
1

r
1
2 η

2

Ω̃
+ ε−1

2

τ−
1
2

A η

2

Ω̃

+ε−1
3

κ 1
2 ∇η

2

Ω̃
+ ε−1

4

τ 1
2
A rη

2

Ω̃

+ ε−1
5

τ 1
2
A a · ∇η

2

Ω̃

+ε−1
6

τ 1
2
A κ∆η

2

Ω̃

+ ε−1
7

τ 1
2

R r∇η

2

Ω̃

+ε−1
8

τ 1
2

R ∇(a · ∇η)
2

Ω̃

+ ε−1
9

τRrκ
1
2 ∇∆η

2

Ω̃

)
.

We then let ε1 =
1
2 , ε2 = ε4 = ε5 = ε6 =

1
8 and ε7 = ε8 = ε3 = ε9 =

1
4 to geteh

2
GSC ≤ C

(κ 1
2 ∇η

2

Ω̃
+

r
1
2 η

2

Ω̃
+

τ−
1
2

A η

2

Ω̃

+

τ 1
2
A rη

2

Ω̃

+

τ 1
2
A a · ∇η

2

Ω̃

+

τ 1
2
A κ∆η

2

Ω̃

+

τ 1
2

R r∇η

2

Ω̃

+

τ 1
2

R ∇(a · ∇η)
2

Ω̃

+

r τR κ
1
2 ∇∆η

2

Ω̃

)
.

We go through each of the τA and τR terms to determine their convergence rates.τ−
1
2

A η

2

Ω̃

From Eq. (30), we have that

τA ≥
h2

4κ

1

3 max
{

Peh
2 ,

Dah
2 , C2

} .

Thusτ−
1
2

A η

2

Ω̃

≤
12κ

h2 max
{

Peh

2
,

Dah

2
, C2

}
cint h2(k+1)

∥u∥
2
Hk+1(Ω)

≤

(
12 cint κ max

{
Peh

2
,

Dah

2
, C2

})
∥u∥

2
Hk+1(Ω) h2k .

τ
1
2
A rη

2

Ω̃

Note that τA ≤ min
{

1
2r , h

2∥a∥2
, h2

4C2κ

}
. In particular, τA ≤

1
2r and thusτ 1

2
A rη

2

Ω̃

≤ cint
r
2

∥u∥
2
Hk+1(Ω) h2(k+1)

≤
Dah cintκ

2
∥u∥

2
Hk+1(Ω) h2k .
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F

τ 1
2
A a · ∇η

2

Ω̃
Because τA ≤

h
2∥a∥2τ 1

2
A a · ∇η

2

Ω̃

≤ τA ∥a∥
2
2 ∥∇η∥

2
Ω̃

≤
∥a∥2 h

2κ  
Peh

2

κ ∥∇η∥
2
Ω̃

≤ cint κ
Peh

2
∥u∥

2
Hk+1(Ω) h2k .

τ
1
2
A κ∆η

2

Ω̃

We use τA ≤
h2

4C2κτ 1
2
A κ∆η

2

Ω̃

≤
h2

4C2κ
κ2

∥∆η∥
2
Ω̃

≤
cintκ

4C2
∥u∥

2
Hk+1(Ω) h2k .

τ
1
2

R r∇η

2

Ω̃τ 1
2

R r∇η

2

Ω̃

=
rh2

κ
κχs ∥∇η∥

2
Ω̃

≤ κ
Dah

α
cint ∥u∥

2
Hk+1(Ω) h2k .

or the second line, we use the fact that χs ≤
1
α

.τ 1
2

R ∇(a · ∇η)
2

Ω̃τ 1
2

R ∇(a · ∇η)
2

Ω̃

≤ τR ∥a∥
2
2 ∥∇∇η∥

2
Ω̃

=
h2

r
χs ∥a∥

2
2 ∥∇∇η∥

2
Ω̃

= κ
Pe2

h Dah

α Da2
h + β Pe2

h + γ
h2

∥∇∇η∥
2
Ω̃

.

Because Pe2
h Dah

α Da2
h+β Pe2

h+γ
≤

Dah
β

, we then have thatτ 1
2

R ∇(a · ∇η)
2

Ω̃

≤ κ
Dah

β
h2

∥∇∇η∥
2
Ω̃

≤
Dah

β2 κcint ∥u∥
2
Hk+1(Ω) h2k .

r τR κ
1
2 ∇∆η

2

Ω̃r τR κ
1
2 ∇∆η

2
= κr2τ 2

∥∇∆η∥
2

Ω̃
R Ω̃
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w

(
m
a
i

T

= κχ2
s h4

∥∇∆η∥
2
Ω̃

≤
cint κ

α2
∥u∥

2
Hk+1(Ω) h2k,

here we used the fact that χs ≤
1
α

in the last step.
To complete the proof, we collect results

∥η∥
2
GSC =

r
1
2 η

2

Ω̃
+

κ 1
2 ∇η

2

Ω̃
+

τ 1
2
A a · ∇η

2

Ω̃

+

τ 1
2

R r∇η

2

Ω̃

,

r
1
2 η

2

Ω̃
≤ κcint Dah ∥u∥

2
Hk+1(Ω) h2k,κ 1

2 ∇η

2

Ω̃
≤ κcint ∥u∥

2
Hk+1(Ω) h2k,τ 1

2
A a · ∇η

2

Ω̃

≤ κcint Peh ∥u∥
2
Hk+1(Ω) h2k,τ 1

2
R r∇η

2

Ω̃

≤ κcint Dah ∥u∥
2
Hk+1(Ω) h2k .

Combining all the above inequalities we have shown thateh
+ η

2
GSC ≤ κ C (1 + Dah + Peh) ∥u∥

2
Hk+1(Ω) h2k . □

6. Directional GSC method

We have found that results are improved by a variant of the GSC method that we refer to as the Directional
GSC Method,

Bh
GSC

(
uh, wh)

= Bh (uh, wh)
+
(
τR∇(rwh), ∇Luh)

Ω̃
+
(
τAa · ∇wh,Luh)

Ω̃
,

Lh
GSC

(
wh)

= Lh (wh)
+
(
τR∇(rwh), ∇ f

)
Ω̃

+
(
τAa · ∇wh, f

)
Ω̃

.

Note that τR and τA are now square matrices and the streamline GSC method is obtained for τR = τRI and τA = τAI
where I denotes the d-dimensional identity matrix, d being the spatial dimension). In contrast, the directional GSC
ethod computes stabilization parameters based on the element principal axes. One approach to define such principal

xes ẽj is presented in Appendix B for two-dimensional problems. Accordingly, changing from Euclidean axes ei
s achieved by inverting the orthogonal change-of-basis matrix TĨ, e.g., for the advective velocity a:

ã = TT
Ĩ a.

he transformed components ãi of the advective velocity are then used to define the element Péclet numbers with
respect to the principal axes

˜Peh
i
=

ãi h
κ

.

Next, diagonal stabilization matrices are determined and subsequently transformed from the principal to Euclidean
axes

τR = TĨdiag
(

h2

r
χ̃ i
)

TT
Ĩ and τA = TĨdiag

(
h
ãi

ζ̃ i
)

TT
Ĩ .

The directional and streamline GSC methods are schematically illustrated and compared in Table 6.1. The black
arrows in the diagram of the GSC method represents the transformed velocity components ãi and indicate that
the stabilization is performed along the element principal axes. We note that in all our computations, the element
principal axes are aligned with the global coordinate axes.

We consider the Advection-Skew-to-Mesh problem (see Fig. 5.1) for the directional GSC method using the
approximate stabilization parameters for all cases. Numerical results for the linear finite element solutions of the
33
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Table 6.1
Schematic representation of the streamline and directional GSC methods and their
key parameters.

Streamline Directional

Dimensionless numbers
Dah =

rh2

κ

Peh =
∥a∥2h

κ
˜Peh

i
=

ãi h
κ

Reactive stabilization
τR∇(rwh ) τR∇(rwh )

τR =
h2

r χ τR = TĨdiag
(

h2

r χ̃ i
)

TT
Ĩ

χ : Eq. (23) χ̃ i : Eq. (23) with Peh replaced by ˜Peh
i

Advective stabilization
τAa · ∇wh τAa · ∇wh

τA =
h

∥a∥2
ζ τA = TĨdiag

(
h
ãi ζ̃

i
)

TT
Ĩ

ζ : Eq. (23) ζ̃ i : Eq. (23) with Peh replaced by ˜Peh
i

two GSC methods are presented in Fig. 6.1. The quadratic, cubic, and quartic B-spline and Lagrange solutions for
the directional GSC method are presented in Figs. 6.2, 6.3, and 6.4, respectively. In all these simulations, we use
625 degrees of freedom to solve the problem. The directional GSC method better captures the different interactions
between reaction and the advective velocity components corresponding to the direction of flow when compared
to the streamline GSC method. The minimum and maximum values for the AD and ADR problems are listed in
Table 6.2 and a comparison to Table 5.2 shows that the directional GSC method performs either about the same
as the streamline GSC method or improves upon it.3 Note that the minima and maxima for B-spline elements are
always smaller in magnitude than those for Lagrange elements.

6.1. Advection in a rotating flow field

The advective velocity is proportional to
[
0.5 − x1, x0 − 0.5

]
and leads to the rotation of a sin2[2π (x0 − 0.5)]

ill-like profile for x0 ∈ [0.5, 1], x1 = 0.5 about the center of the unit square with homogeneous Dirichlet boundary
onditions. The domain is composed of four patches and the profile is enforced by means of a Dirichlet boundary
ondition at the slit between the first and fourth quadrant of the square (see Fig. 6.5). Results for the directional
SC method using 625 degrees of freedom are reported in Fig. 6.6. This is a test of accuracy rather than stability
f the method. All results are very accurate, and essentially similar to the streamline GSC method, which for this
ase (r = 0) reduces to the classical SUPG method. This shows that the directional GSC method maintains the
ccuracy of the streamline method in situations with a variable direction of flow.

.2. Numerical stability analysis of the directional GSC method

We perform a numerical inf-sup stability analysis of the directional GSC method for the AD problem:

a · ∇u − κ∆u = f, x ∈ Ω ,

u = g, x ∈ Γ .

3 The minima of the Lagrange element solutions result from interpolating the discontinuous boundary conditions in the corners and are
thus the same for both methods.
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Fig. 6.1. Linear finite element solutions computed with directional and streamline GSC methods for reactive rate r = 7.5 × 103 s−1, advective
elocity a = −1.0 × 103 m s−1 [cos 30◦, sin 30◦

]
, and diffusivity κ = 1.0 m2 s−1.

he directional GSC method takes the form

Bh
GSC

(
uh, wh)

= Bh (uh, wh)
+
(
τAa · ∇wh,Luh)

Ω̃
,

Lh
GSC

(
wh)

= Lh (wh)
+
(
τAa · ∇wh, f

)
Ω̃

.

ith the definition

A = (τAa) ⊗ a

ne can show that there exists a vector y ∈ Rd such that yT
· A · y < 0. This demonstrates the bilinear form for

dvection-dominant problem is not coercive.
Given a bilinear form B (·, ·) and some norms ∥·∥Stab and |||·||| defined on a test space V and its discrete counterpart

h
⊂ V such that

B
(
wh, v

)
≤ C

wh
 |||v||| for all v ∈ V, wh

∈ Vh, (Boundedness) (34)
Stab
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a

o

Fig. 6.2. Quadratic approximate solutions computed with the directional GSC method for reactive rate r = 7.5 × 103 s−1, advective velocity
= −1.0 × 103 m s−1 [cos 30◦, sin 30◦

]
, and diffusivity κ = 1.0 m2 s−1.

inf
vh∈Vh

sup
wh∈Vh

B
(
wh, vh

)wh


Stab

vh


Stab

≥ γ > 0, (inf − sup stability) (35)

ne can show thatu − uh


Stab ≤ ∥η∥Stab +
C
γ

|||η|||, (36)

where η is the interpolation error for the discrete test space Vh .
We show inf-sup stability numerically following the method outlined by Bathe et al. [22]. We shall compare the

inf-sup constants produced by the directional GSC method, the streamline GSC method (i.e., SUPG since r = 0),
and the unstabilized Galerkin method. Given a basis {ω } ⊂ Vh defined on rectangular elements, we can define
A

36



K. Key, M.R.A. Abdelmalik, S. Elgeti et al. Computer Methods in Applied Mechanics and Engineering 417 (2023) 116354

a

m

Fig. 6.3. Cubic approximate solutions computed with the directional GSC method for reactive rate r = 7.5 × 103 s−1, advective velocity
= −1.0 × 103 m s−1 [cos 30◦, sin 30◦

]
, and diffusivity κ = 1.0 m2 s−1.

atrices for the three methods from their corresponding bilinear forms with entries given by

M AB = Bh (ωA, ωB)

MDGSC
AB = M AB + (τ1a1 ∂1ωA + τ2a2 ∂2ωA , a · ∇ωB − κ∆ωB)Ω̃

MSGSC
AB = M AB + (τa · ∇ωA , a · ∇ωB − κ∆ωB)Ω̃

where

τi =
h
ai

(
1
2

coth(0.5Pei
h) −

1
Pei

h

)
, τ =

h
∥a∥2

(
1
2

coth(0.5Peh) −
1

Peh

)
For all three methods above, we define the following common stability norm as a basis of comparison

∥v∥
2
Stab :=

κ 1
2 ∇v

2
+

τ 1
2 a · ∇v

2
+

σ 1
2

1 a1 ∂1v + σ
1
2

2 a2 ∂2v

2

,

Ω Ω Ω
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w

b

F

Fig. 6.4. Quartic approximate solutions computed with the directional GSC method for reactive rate r = 7.5 × 103 s−1, advective velocity
a = −1.0 × 103 m s−1 [cos 30◦, sin 30◦

]
, and diffusivity κ = 1.0 m2 s−1.

here σi =
τ2
i
τ

, from which we can define a corresponding matrix Θ with entries

Θ AB = (κ∇ωA, ∇ωB) + (τ a · ∇ωA, a · ∇ωB) +(
σ

1
2

1 a1 ∂1ωA + σ
1
2

2 a2 ∂2ωA , σ
1
2

1 a1 ∂1ωB + σ
1
2

2 a2 ∂2ωB

)
.

Given a discretization that leads to the matrices M and Θ , one can show that the left-hand side of (35) is
ounded below by the square root of the minimum eigenvalue,

√
λmin, to the problem(

MTΘ−1 M
)

z = λΘ z. (37)

urthermore, as the inequality (34) for all three methods can be proved with respect to the norm

|||v|||
2

:=

κ 1
2 ∇v

2
+

τ−
1
2 v

2
+

τ 1
2 a · ∇v

2
+

τ 1
2 κ∆v

2
,

Ω̃ Ω̃ Ω̃ Ω̃
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Table 6.2
Minimum and maximum values of the directional GSC solutions in Figs. 6.1, 6.2, 6.3, and 6.4.
The corresponding values for the streamline GSC method are listed in Table 5.2.

Order Basis AD ADR

min max min max
·10−2

·10−2

Linear
B-spline/

−1.107 1.062 −6.910 1.000
Lagrange

Quadratic
B-spline −2.351 1.060 −1.253 1.000
Lagrange −12.50 1.125 −12.50 1.000

Cubic
B-spline −2.112 1.055 −1.373 1.000
Lagrange −6.413 1.093 −6.413 1.000

Quartic
B-spline −1.971 1.048 −1.867 1.000
Lagrange −4.167 1.104 −4.167 1.000

Fig. 6.5. Schematic of the “donut problem”.
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f

Fig. 6.6. Approximate solutions computed with B-spline and Lagrange basis functions of up to fourth order for the directional GSC method
or advective velocity a = 1.0 × 107 m s−1 [0.5 − x1, x0 − 0.5

]
and diffusivity κ = 1.0 m2 s−1.
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Fig. 6.7. We discretize the domain using B-splines (h =
1
8 ) and calculate

√
λmin from Eq. (37) for the directional GSC method, the

streamline GSC method (i.e., SUPG), and the Galerkin method. We find that the directional and streamline GSC methods are stable whereas
the Galerkin method is unstable as the global Péclet number is increased.

the inequality (36) shows that the larger the minimum eigenvalue obtained, the more stable the method.
For the test of stability, the problem setup is a variation of the Advection-Skew-to-Mesh problem (see Fig. 5.1).

The advective velocity is fixed at a = (cos(30◦), sin(30◦))T while diffusivity κ is allowed to vary in order to
control the global Péclet number for the problem Pe :=

∥a∥2
κ

=
Peh

h . We use maximally smooth B-splines of
order p ∈ {1, 2, 3, 4} defined on a uniform mesh with element size h. The reason for using these is the slower
degree-of-freedom growth rate during h- and p-refinement when compared to Lagrange elements. This is a very
important consideration due to the computational cost of finding eigenvalues to Eq. (37).

We present two sets of results. In the first set, we fix the discretization (h =
1
8 ) and look at the behavior of the

minimum eigenvalue as the global Péclet number is increased. The results from linears up to quartic splines (see
Fig. 6.7) consistently show that the directional GSC method and the streamline GSC method each yield a bound that
remains relatively stable over a very large range of Pe with the directional GSC method yielding a slightly larger
minimum eigenvalue than the streamline GSC method. The minimum eigenvalue of the Galerkin method tends to
decrease with increasing Pe and ends up being at least an order of magnitude smaller than that of the stabilized
methods. For splines of odd order,

√
λmin in the Galerkin method appears to decrease monotonically, while for

splines of even order, it eventually settles at a fixed value.
In the second set of results, we fix the global Péclet number (Pe = 103) and calculate

√
λmin for decreasing

element sizes h. The significant computational resources required only allowed us to perform this calculation for
linear and quadratic splines. The results are depicted in Fig. 6.8. In both cases at larger h, we find that the directional
41
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Fig. 6.8. We fix the global Péclet number at 103 and calculate the square root of the minimum eigenvalue
√

λmin while successively refining
he B-spline-based discretization of the domain. Initially, only the directional GSC and streamline GSC methods are stable whereas the
alerkin method is unstable. The Galerkin method stabilizes when the mesh is sufficiently refined.

nd streamline GSC each produce a
√

λmin that is at least an order of magnitude larger than that produced by the
alerkin method. Additionally, the directional and streamline GSC methods show relatively little change in

√
λmin

over the full range of refinements. That said, the directional GSC method gives a slightly larger value for the
minimum eigenvalue than the streamline GSC method for larger values of h. As the mesh is refined (h → 0), the

inimum eigenvalue for all three methods converge. This is to be expected because as the element Péclet number
Peh decreases, the need for stabilization disappears.

. Conclusions

We have presented two new methods for solving the steady advection-diffusion-reaction (ADR) equation, the
treamline GSC Method and the Directional GSC Method. Both methods utilize stabilization concepts emanating
rom one-dimensional analysis of linear finite elements (linear B-splines) but their generalization to multidimensions
iffer. As the name suggests, the streamline GSC method employs SUPG stabilization for advection, but adds
gradient weighting of the reaction term times the gradient of the residual. The directional GSC method splits

he weighting into one-dimensional advection and diffusion operators. We evaluated the methods numerically on
series of advection- and reaction-dominated problems for linear, quadratic, cubic, and quartic Lagrange and

-spline elements. The directional GSC method improves upon the deficiency of overshooting/undershooting in
ultidimensional boundary layer problems that has long been noted in SUPG and similar methods, especially for

inear finite elements.
All the numerical results may be described as satisfactory but the B-spline elements consistently outperform the

agrange elements when the same number of unknowns is used. For the streamline GSC method, we are able to
rove (coercive) stability, convergence, and an optimal-order error estimate in the GSC norm. The error estimate is
obust even for dominant advection and reaction due to the strength of the GSC norm. The directional GSC method
s not coercive but we conjecture it is inf-sup stable. We support this with numerical computations of the inf-sup
onstant in a strong norm.

We think the GSC methods are a positive step in the solution of ADR problems. We are particularly encouraged
y the performance of the directional GSC method. However, a functional analysis proof of stability is lacking.
nother shortcoming is the reliance on the stabilization results of one-dimensional linear finite elements for higher-
rder cases. There are opportunities to improve upon this in several ways. First, an analysis of higher-order
ne-dimensional finite and B-spline elements is needed for the full ADR equation. This is a topic that we are
ery interested in and hope to pursue in future work. Second, the generalizations from one dimension to multiple
imensions is ad hoc and needs a more fundamental basis. This has been an open problem for many years. Third,
lthough the boundary-layer overshooting/undershooting problem associated with flows at an angle to the boundary
eems to be alleviated by the directional GSC method, there are still overshoots/undershoots at corners where
42
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h

D

A

I

A

a

two boundaries come together. These arise all too often in practical engineering calculations. Finally, there is
nothing in these methods that directly addresses the issue of monotonicity. This has been a difficult area for finite
elements although, as can be seen, the present GSC methods perform well. Monotonicity and accuracy are competing
attributes and finite elements and B-spline elements have had significant success with the latter, but not the former.
However, in some applications, strict monotonicity is essential and there are very few finite element methods that
achieve it; the elements are always very low-order, typically linear triangles, and the methods are always nonlinear.
We refer the reader to the comprehensive and excellent recent review paper on this topic by Barrenechea, John, and
Knobloch [23]. This is another important area of research.
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ppendix A. Limits of stabilization parameters for vanishing reaction

To find the limits of the exact nondimensional stabilization parameters χ , ζ for vanishing reaction, i.e., Dah −→

0, the series expansion

cosh
√

0.25Pe2
h + Dah = cosh (0.5Peh) +

sinh (0.5Peh)

Peh
Dah +

Peh cosh (0.5Peh) − sinh (0.5Peh)

2Pe3
h

Da2
h +(

Pe2
h + 12

)
sinh (0.5Peh) − 6Peh cosh (0.5Peh)

6Pe5
h

Da3
h +

O
(
Da4

h

)
,

is substituted into their definitions in Eq. (22)

ζ =

Peh

[
cosh

√
0.25Pe2

h + Dah − cosh (0.5Peh)

]
− Dah sinh (0.5Peh)

Dah

[
cosh

√
0.25Pe2

h + Dah − cosh (0.5Peh)

]
nd

χ =
1
6

+
Da2

h cosh (0.5Peh)

2Da2
h

[
cosh

√
0.25Pe2

h + Dah − cosh (0.5Peh)

] −

(
Dah + Pe2

h

) [
cosh

√
0.25Pe2

h + Dah − cosh (0.5Peh)

]
− Dah Peh sinh (0.5Peh)

Da2
h

[
cosh

√
0.25Pe2

h + Dah − cosh (0.5Peh)

]
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A

a

t

b

R

to obtain

ζ =
[Peh cosh (0.5Peh) − 2 sinh (0.5Peh)] Da2

h + O
(
Da3

h

)
Peh sinh (0.5Peh) Da2

h + O
(
Da3

h

)
Dah→0
−−−−→

coth (0.5Peh)

2
−

1
Peh

= ζ AD

and

χ =
1
6

−
1 + O (Dah)

6 + O (Dah)
−

[sinh (0.5Peh) − Peh cosh (0.5Peh)] Da3
h + O

(
Da4

h

)
2Pe2

h sinh (0.5Peh) Da3
h + O

(
Da4

h

)
Dah→0
−−−−→

1
Peh

[
coth (0.5Peh)

2
−

1
Peh

]
=

ζ AD

Peh
.

Note that the nondimensional advective stabilization parameter ζ converges to the well-known SUPG result for
vanishing reaction r .

ppendix B. Principal axes of tensor-product elements in two dimensions

The principal axes ẽj of tensor-product elements — that have the parametric domains Ω̃ e and are mapped to Eu-
clidean space by endomorphisms x — are given as the orthonormal eigenvectors of the symmetric-positive-definite
inertia matrices

Ĩ =

∫
Ω̃e

(
x − x̄e) (x − x̄e)T J e dξ,

where

x̄e
=

1
V e

∫
Ω̃e

xJ e dξ

re the elements’ centroids,

V e
=

∫
Ω̃e

J e dξ

he elements’ volumes and J e the elements’ Jacobian determinants. Coordinates ã with respect to these principal
axes can be transformed to the coordinates a with respect to the Euclidean axes ei fulfilling

ẽj =

∑
i

Ti j
Ĩ

ei

y means of the change-of-basis matrix TĨ:

a = TĨã.
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