
Species classification of cork oak and stone pine trees using 
airborne laser scanning and individual tree detection 

D. N. Cosenza1, P. Soares1, M. Tomé1, J. M. C. Pereira1, J. M. N. Silva1 

1Forest Research Centre, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon,  

Email: dncosenza@gmail.com;{paulasoares; magatome; jmcpereira; joaosilva}@isa.ulisboa.pt 

1. Introduction

Cork oak (Quercus suber L.) woodlands are important ecosystems in Mediterranean countries. They 

provide wood and non-wood materials, regulate water quality, prevent soil erosion, and provide cultural 

services for the community (Bugalho et al. 2011). This ecosystem is particularly valuable for Iberian 

economies, where 80% of global cork are produced (50% in Portugal, and 30% in Spain, APCOR 2019). 

Such importance made Portugal implement rigid protection laws to control exploitation of the cork oaks. 

The felling of cork oaks might be punishable by a fine, and authorized cuts (e.g., for road construction) 

must be compensated by the plantation of trees in an area 1.25 times larger than the intervened area. 

However, cork oak trees are frequently mixed with stone pines (Pinus pinea L.), which are used for cone 

and pine kernel production. The spatial heterogeneity of both species in the stands creates difficulties to 

traditional forest inventory. An alternative is using remote sensing techniques to collect tree-level data. 

In this case, individual tree detection (ITD) using remote sensing must be used along with species 

classification algorithms.  

Airborne laser scanning (ALS) and ITD data are widely applied for tree species classification 

(Fassnacht et al. 2016). The process involves isolating trees in the point clouds and computing metrics 

to be used as predictors in classification models. Different approaches can be used for supervised 

classification, namely the linear discriminant analysis (LDA), k-nearest neighbors (kNN), random forest 

(RF), artificial neural networks (ANN), and support vector machines (SVM) – see Korpela et al. (2010) 

and Deng et al. (2016). Most research compared these approaches for the case of boreal and temperate 

forests. However, to the best of our knowledge, there is still limited information regarding their 

effectiveness in Iberian woodlands. Thus, this study aims to benchmark different classification 

approaches to distinguish between cork oak and stone pine trees in pure and mixed stands. We tested 

LDA, kNN, RF, ANN, and SVM assessing for classification accuracy with different training data sizes. 

2. Methods

The study area was in the Alentejo region, in mid-south Portugal. The forest stands were in powerline 

wayleaves (Figure 1a). High-density ALS data (>45 returns m-2) were collected using a helicopter flying 

at low altitude. ALS data analysis was conducted using lidR package (Roussel et al. 2020), so please see 

the package documentation for further details about ALS data processing. Trees were segmented based 

on Silva et al. (2016) algorithm. Visual inspection was conducted to select 1000 cork oaks and 1000 

stone pines trees to build the training data (Figure 1b).  Packalén et al. (2012) simulated annealing 

algorithm was used to select 15 predictor metrics (Table 1). The selections were based on the Kappa 

coefficient, where Kappa=(po-pe)/(1-pe), po is the relative observed agreement, and pe is the probability 

of chance agreement. LDA was trained using the MASS package (Venables and Ripley 2002), kNN with 

yaImpute (Crookston and Finley 2008), RF with randomForest (Liaw and Wiener 2002), ANN with 

nnet (Venables and Ripley 2002), and SVM with e1071 (Meyer et al. 2020). kNN was trained using 

k=5, inverse distance weighting, and distance metric computed using Euclidean distance (kNN_Euc), 

Mahalanobis (kNN_Mah), most similar neighbor (kNN_MSN), and random forest (kNN_RF). ANN 

was trained using a single hidden layer with 10 neurons. All other model hyperparameters were set to 

package default. 

Random and balanced samples of the original dataset were used to compare models. We tested 

training data sizes of 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 600, 800, 1000, 1500, and 2000 

trees. The models were compared using the Kappa statistic and overall accuracy (i.e., percentage of 

agreement) computed by 10-fold cross-validation repeated 100 times for each training data size.  
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Figure 1: a) Images of the area; b) Examples of cork oak (top row) and stone pine (bottom row) trees. 

Table 1. ALS metrics used in the models. 

Type Metrics* 

LDA h35, h45, h60, h80, h95, hd3, hd8, hsmean, hmax, hsd, hkurt, idq90, isd, curv, line 

kNN_Euc h20, h45, h55, h85, h90, hd4, hd6, hsd, hamean, hsmean, hcmean, hskew, imax, idq90, plan 

kNN_Mah h10, h45, h75, h85, h90, hd1, hd4, hd6, hd7, hd8, ha2m, idq30, imean, iskew, sphe 

kNN_MSN hd5, hd7, hd8, hd9, hmean, hamean, hcmean, hsd, ha2m, imean, isd, iskew, λm, line, sphe 

kNN_RF h5, h15, h60, h85, hd2, hd3, hmax, ha2m, idq10, ikurt, imean, isd, line, sphe, hori 

RNA h5, h10, h20, h40, h75, hd1, hd2, hd6, hd7, hd9, hdq70, isd, iskew, hori, plan 

RF h30, h40, h85, h90, hd2, hd6, hd7, hmean, isd, hcv, idq10, idq90, ikurt, isd, line 

SVM h30, h35, h50, h60, h65, h85, hd8, hskew, imax, isd, idq10, λl, line, sphe, anis 
*Prefixes h and i indicate return height and intensity metrics and subscripts indicate the following statistics: x-th percentile (x), maximum 

(max), mean (mean), square mean (smean), cubic mean (cmean), kurtosis (kurt), skewness (skew), standard deviation (sd), coefficient of 

variation (cv), interquartile distance range (iqr), percentage below the x-th height fraction (dx) in a total of 10 fractions, percentage of returns 

above 2 m (pa2m), percentage or returns above mean (amean), percentage below the x-th height percentile (qx); vertical complexity index 
(vci); eigen-based metrics: (λs), medium (λm), and largest (λl) eigen values, anisotropy (aniso), curvature (curv), horizontality (horiz), linearity 

(line), planarity (plan), and sphericity (spher). 

3. Results and discussion

Each approach had similar patterns for Kappa and overall accuracy (Figure 2). kNN_RF performed the 

best but comparable to RF and SVM. ANN had an intermediary performance. LDA, kNN_Mah, and 

kNN_MSN had poor and similar performances, while kNN_Euc performed the poorest. All approaches 

improved performance rapidly when more training data were used, but marginal improvements were 

noted after 400-600 training trees. For instance, when using >600 trees kNN_RF, RF, and SVM had 

Kappa values between 0.70-0.75 and 85-87% of accuracy, ANN had between 0.65-0.70 for Kappa and 

82-84% of accuracy, and the others between 0.48-0.58 and 74-79%.  

Figure 2: Kappa coefficient (left) and overall accuracy (right) for different training data sizes. 

kNN_RF has been successfully used to classify tree species in boreal forests (Vauhkonen et al. 

2010), and SVM, RNA, and RF in temperate forests (Deng et al. 2016). The advantage of RF and 

kNN_RF is their ability to handle high-dimensional datasets. However, Åkerblom et al. (2017) obtained 

better results with kNN_Euc distance than with SVM. Differently from Åkerblom et al. (2017), we did 

not tune the model hyperparameters, which might explain our poor performance for kNN_Euc. The 

minimal training data size was in line with the literature, where Korpela et al. (2010) found accuracies 

around 87% using kNN_MSN and just 300 training trees in boreal forests. Other factors might affect 
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the accuracy of the classification algorithms, such as the point density, ALS metrics, and forest structure. 

Our analysis involved only two classes, so it is likely that less effective results are achieved if more 

species are included. The effect of the ITD algorithm was also not considered, but the experience 

suggests this would not be significant if well-calibrated algorithms are used. Furthermore, our study 

involves sparse broad leave and conifer trees, so it is possible that analyses based on satellite images 

also provide satisfactory results for a more cost-effective inventory. All these topics must be addressed 

in further studies for the case of woodlands and mixed stands of cork oak and other species. 

4. Conclusion

kNN_RF, RF, and SVM were the best models to distinguish cork oak from stone pine trees using ALS 

and ITD. Balanced training data of 400 trees allowed training models with Kappa ≥0.7 and overall 

accuracy >83%. 
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