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Abstract
Previous studies suggest that flood-rich and flood-poor periods are present in many flood peak discharge series around the

globe. Understanding the occurrence of these periods and their driving mechanisms is important for reliably estimating

future flood probabilities. We propose a method for detecting flood-rich and flood-poor periods in peak-over-threshold

series based on scan-statistics and combine it with a flood typology in order to attribute the periods to their flood-generating

mechanisms. The method is applied to 164 observed flood series in southern Germany from 1930 to 2018. The results

reveal significant flood-rich periods of heavy-rainfall floods, especially in the Danube river basin in the most recent

decades. These are consistent with trend analyses from the literature. Additionally, significant flood-poor periods of

snowmelt-floods in the immediate past were detected, especially for low-elevation catchments in the alpine foreland and

the uplands. The occurrence of flood-rich and flood-poor periods is interpreted in terms of increases in the frequency of

heavy rainfall in the alpine foreland and decreases of both soil moisture and snow cover in the midlands.
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1 Introduction

Hydrological time series such as discharge, flood or pre-

cipitation series are affected by climate and anthropogenic

activities (e.g. Seibert and McDonnell 2010; Zhang et al.

2016; Prosdocimi et al. 2015; Blöschl et al. 2019b). Sta-

tistical models of time series may account for non-sta-

tionarities induced by these drivers either by adjusting the

observed time series (e.g. de-trending) or by including non-

stationarity in the model. In both cases, it is important to

understand whether and when any non-stationarities occur

and their magnitude.

Many studies in hydrology have dealt with the non-

stationarity problem through trend detection and change-

point estimation, using statistical tests such as the Mann–

Kendall- or the Wilcoxon-test (e.g. Kundzewicz et al.

2005; Mangini et al. 2018; Garcia-Marin et al. 2020).

However, results are heavily affected by the length of the

observation period and the assumptions made in the anal-

ysis (Yang et al. 2005; Kundzewicz et al. 2005). One such

assumption is the absence of cyclic or periodical behaviour

of the stochastic processes (Koutsoyiannis 2003). Cyclic

behaviour can be identified as decreasing or increasing

trends if only relatively short sequences of transitions from

high to low values (or vice versa) are analysed (Cohn and

Lins 2005). An example of such a cyclic behaviour are

flood-rich and flood-poor periods, which are usually

defined as periods with an unusually large (or low) number

of flood events. Typical methods (Liu and Zhang 2017;

Merz et al. 2016) compare the number of observed events

within a certain time span with the expected occurrence of

events under the assumption of independent, identically

distributed [iid] data or some other time-homogeneous

stochastic process. In contrast to trends, flood-rich and

flood-poor periods do not necessarily show a monotonic

increase or decrease, and in contrast to change-points, e.g.

in mean or variance, may vary between periods. Identifying

and explaining flood-rich periods is challenging and has
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been named as one of the Unsolved Problems in Hydrology

(Blöschl et al. 2019a).

Flood-rich and flood-poor periods can be investigated

for annual maximum peak discharges [AMS] and Peak-

over-Threshold series [POT]. In many flood time series,

accumulations of floods or extended periods of absence of

large floods are visible. This questions the assumption of

iid data. However, so far, to the best of our knowledge, no

consistent detection methods for these two perspectives are

available in hydrology, i.e. having the same methodologi-

cal approach for the different kinds of flood samples. Such

tests are able to distinguish between a random accumula-

tion and a systematic deviation from the iid assumption.

In POT-series, a flood event is interpreted as an

observed (usually daily) discharge above a prescribed

magnitude (implying that the prevalence of flood-rich and

flood-poor periods may differ between magnitudes). The

usual reference condition is a time-homogeneous Poisson

Process as the null hypothesis (e.g. Mudelsee et al. 2004;

Silva et al. 2012; Merz et al. 2016; Liu and Zhang 2017;

Albrecher et al. 2019). Clustering beyond what could rea-

sonably be expected from a time-homogeneous Poisson

process is usually interpreted as flood-rich or flood-poor

periods. The two most common methodologies for

detecting flood-rich and flood-poor periods in POT series

include the dispersion index (e.g. Vitolo et al. 2009) of

annual flood occurrences, which can indicate clustering at

the annual scale, but does not provide an estimate of the

time of occurrence of the anomaly (Liu and Zhang 2017).

The other common methodology proposed by Mudelsee

et al. (2004) based on the non-parametric estimation of a

time-varying intensity of a Poisson Process has been used

in a number of studies on the clustering of floods (Silva

et al. 2012; Merz et al. 2016; Liu and Zhang 2017;

Albrecher et al. 2019). Merz et al. (2016) provide proce-

dures for the evaluation of the statistical significance of this

approach. The methodology requires the specification of a

number of parameters including a kernel function and a

bandwidth, and (optionally) the generation of pseudo-data

to reduce boundary effects. Confidence intervals are built

via bootstrapping and the bandwidth corresponds to the

time window which is investigated with respect to clus-

tering, but the association is not exact. Other methodolo-

gies for detecting temporal flood or more generally

hydrological clustering in POT-series include regression

based approaches (e.g. Villarini et al. 2013), other indices

of dispersion (e.g. Serinaldi and Kilsby 2013) and

approaches based on dependence of the parent process

(Iliopoulou and Koutsoyiannis 2019).

In the context of AMS, Lun et al. (2020) identify flood

peaks above prescribed magnitudes and suggest a proce-

dure based on scan statistics to detect flood-rich and flood-

poor periods. They use a time-homogeneous Bernoulli

Process as the reference condition, because quantile

exceedances of an iid-process result in a stationary Ber-

noulli Process (independent from the marginal distribu-

tion). A flood-rich (flood-poor) period is identified as a

coherent time segment with unusually many (few) thresh-

old-exceedances. The only parameter in this procedure is

the time window. In this paper, we propose an approach to

detect flood-rich and flood-poor periods based on scan

statistics similar to Lun et al. (2020), but for POT-series.

The AMS approach does not allow for multiple flood

events within single years and thus contains less informa-

tion. The approach proposed here is consistent with the one

for AMS and allows the evaluation of the statistical sig-

nificance of anomalies in the context of a hypothesis test

with the same hypothesis as of Lun et al. (2020). Also, the

time frame for the investigation of clustering can be chosen

explicitly and the only input parameter is the time frame

for the investigation of clustering. Here, we interpret

clustering as significant deviations from a time-homoge-

neous Poisson process.

Additionally, we attribute the flood-rich and flood-poor

periods to their generating processes by the use of flood

types. There exist numerous possibilities to define flood

types, e.g., focusing on the meteorological processes or

catchment dynamics (Tarasova et al. 2019). Here, we apply

a flood typology based on the hydrographs of the events to

characterize the meteorological reasons for flood genera-

tion (Fischer et al. 2019). This flood classification is par-

ticularly useful for long time series with sparse

meteorological and catchment data. However, the use of

flood-type-specific time series requires the extension of the

AMS theory introduced by Lun et al. (2020) as floods of a

given type may not occur in each year and floods of dif-

ferent types may have vastly different return periods for

similar discharges. Each time series of flood events of a

given flood type has to be considered as POT-series with a

varying number of events per year and quantile-based

thresholds are applied to isolate flood events with large

peaks.

The combination of statistical tests that detect flood-rich

and -poor periods with flood types offers the possibility to

obtain flood-type-specific information of changes, either in

frequency or in magnitude. We present a methodology for

detecting flood-rich and flood-poor periods, which has been

extended to case of POT-series relevant for hydrological

applications. The flood-rich and flood-poor periods are

investigated for different flood types. The methodology is

applied to 164 catchments in Bavaria, Southern Germany.

The following research questions are addressed:

• Do flood-rich and flood-poor periods exist for floods of

different types in Southern Germany and do they differ?
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• Which were the dominating flood types of the flood-rich

and flood-poor periods?

• Are small and large floods different in terms of their

flood-rich and flood-poor periods and their types?

• Are the overall tendencies (increasing/decreasing fre-

quency of small/large floods) of the detected periods

consistent with previously detected flood trends from

literature?

We find significant differences in the occurrence of

flood-rich and flood-poor periods between flood types and

how these depend on the geomorphology and hydrology of

the catchments.

2 Data

We considered stream gauges in Bavaria, Southern Ger-

many. Some of the catchments extend to the Czech

Republic and to Austria. Daily mean discharges as well as

monthly maximum peaks (quasi-instantaneous discharges)

were used in the investigation. For a catchment to be

selected from the available data base, the observation

period had to span at least 30 years, which applied to 164

catchments. The observation periods of the selected

catchments vary between 31 and 90 years. All catchments

include the period 1989–2019 and at least span the years

1930–2010. A minimum record length of 30 years was

considered as this is regarded as the climate-scale, which

apparently is sufficiently long for investigating clustering

or trends (Dimitriadis and Koutsoyiannis 2015). Catchment

sizes range from 42 to 47,518 km2. The physiography

ranges from alpine catchments with a mean elevation of

roughly 2000 m a.s.l. in the South to upland catchments in

the North and East and lowland catchments with mean

elevations of 300 m a.s.l. in the centre of the study region

(Fig. 1a). All catchments belong to one of three major river

basins: the Danube, the Main (tributary of the Rhine River)

and the Saale (tributary of the Elbe River). The Federal

State of Bavaria has identified five natural areas in this

region (https://www.lfu.bayern.de/natur/naturraeume/

index.htm), which are defined according to similarity in

geomorphology, climate, hydrology, land use, flora and

fauna (Fig. 1b). The natural area assigned to a catchment

was defined as the natural area with the largest proportion

in the catchment area. Since the ‘‘Western Uplands’’ only

contain three catchments, which was considered to be

insufficient for statistical analyses, these three catchments

were reassigned to the neighbouring ‘‘South-Western

Uplands’’ class. The catchments are distributed relatively

uniformly across the natural areas, with 25 catchments

belonging to the Alps, 50 catchments to the Alpine fore-

land, 34 catchments to the Eastern Uplands and 55

catchments to the South-Western Uplands. All catchments

were checked for inconsistencies, such as the impacts of

dams, by visual inspection of the discharge time series.

Daily precipitation and temperature series were derived

from the E-OBS 0.1-degree grid data set (Cornes et al.

2018) and, together with the elevation zones in 100 m

steps, served as input for an HBV-model (Bergström 1995)

to simulate daily snowmelt. We applied a lumped version

of the model, where snowmelt was estimated by the

degree-day method. The first year of daily discharges of

each catchment was used as warm-up period, with the first

60% of the time series serving as calibration period and the

last 40% serving as a validation period. For parameter

optimisation, the BOBYQA algorithm (Powell 2009) was

applied using 15 runs with 1000 repetitions each per

catchment. An average a Nash–Sutcliffe Efficiency of

0.738 indicated a sufficient performance of the model in

the validation period.

3 Methodology

3.1 Flood event separation and flood-type
classification

For constructing POT series, we applied the semi-auto-

mated flood event separation algorithm of Fischer et al.

(2021), which uses the 3-day-window variance of the daily

discharges to define flood events. For each identified flood

event, we identified the instantaneous peak from monthly

maximum discharges instead of daily series to avoid

smoothing effects (Ding et al. 2015). On average, between

two and four events per year were identified for each

catchment.

In a second step, the flood events were classified into

flood types according to their hydrograph shape and the

amount of snowmelt contributing to the direct runoff vol-

ume. We applied the classification of Fischer et al. (2019),

which requires daily discharges, precipitation and snow-

melt as input. It uses the flood timescale (Gaál et al. 2012)

to distinguish between the hydrograph shapes of rainfall-

induced floods (\ 20% snowmelt in the total amount of

runoff-generating precipitation) and applies a clustering

approach to define snowmelt-impacted floods ([ 20%

snowmelt). For this purpose, the rainfall-induced floods are

ordered according to their flood timescales. Then, the

ordered sample is divided into three groups and the sum of

the coefficients of determiniation of the linear regression

between flood peak and volume for each group is calcu-

lated. The grouping that results in the maximum sum is

then selected for the rainfall-induced flood types, where the

events in the group with smallest flood timescales are given

type R1 and those in the group with the largest flood
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timescales are given type R3. For the snowmelt-induced

floods, a kMeans clustering on the sum of snowmelt, the

sum of precipitation and the runoff coefficient is applied to

distinguish between rain-on-snow and snowmelt-driven

floods. The flood classification resulted in the following

five flood types associated with different peak-volume-re-

lationships and differing amounts of contributing snowmelt

to distinguish flood-generating meteorological conditions

(Fischer et al. 2019):

• R1: flood events with small volumes (i.e. flashy

hydrographs), frequently associated with heavy-rainfall

events of high intensity and short duration

• R2: flood events with balanced peak-volume relation-

ships, frequently associated with medium duration

rainfall of 5–10 days with medium intensity

• R3: flood events with large volume but comparably

small, often multiple peaks, frequently associated with

long-duration rainfall of low intensity and frequently

wet soils

• S1: Rain-on-snow floods, where high amounts of

rainfall occur together with snowmelt

• S2: Snowmelt-induced floods with only small contri-

butions of rainfall.

There exist various approaches to define flood types,

focusing on meteorological, atmospheric or catchment

processes (Tarasova et al. 2019). Here, we chose the

hybrid-hydrograph-based classification of Fischer et al.

(2019). It is easily applicable to long records of discharge

data, requiring only discharge, precipitation and tempera-

ture or snowmelt data for the separation of flood events.

However, it does not explicitly take into account the

catchment state, i.e. the soil moisture.

An overview of the (empirical) mean occurrence fre-

quency of each flood type and the average return period is

given in Table 1.

3.2 Flood frequency analysis of flood types

Flood frequency analysis for the respective flood types,

which is required for the definition of T-year thresholds for

the detection of flood-rich and flood-poor periods, was

performed using the method of Fischer (2018): consider a

sample of flood events X
ðjÞ
1 ; . . .;X

ðjÞ
nj of flood type j,

j ¼ 1; . . .; 5, with sample size nj for a given catchment. We

define the type-specific threshold uj for the POT-approach

as three times the weighted mean monthly discharge, where

the weights are chosen according to the relative frequency

of flood type j in the respective month. This threshold

selection was validated in previous studies to result in

samples with behavior in line with extreme value theory

(Fischer et al. 2019; Fischer and Schumann 2021). Of

course other choices for the threshold are possible (Lang

et al. 1999), e.g. according to a pre-defined mean number

of events per year, a quantile or residual-life plots, though

the chosen one is based on German guidelines on how to

define a flood (DWA 2012). The distribution of the

exceedances of the threshold uj of POT-series of flood type

j, Gj, is modelled by the Generalized Pareto Distribution

with parameter set hj. The annual distribution function of

each flood type then is derived by the total probability

theorem (Cunnane 1973; Stedinger et al. 1993) as:

Fig. 1 Study catchments in southern Germany with DEM (a) and

natural area (b). Catchment boundaries are given in black, gauge

locations are given as black dots. The inset map shows the location of

the study area in Europe. For areas outside of the federal state of

Bavaria, no natural areas are available and these are left blank
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FjðxÞ ¼
X

k� 0

Pjðl ¼ kÞðGjðx; hj; ujÞÞk;

where Pjðl ¼ kÞ is the probability that the annual number l

of flood peaks of type j above the threshold uj is equal to k.

Pjðl ¼ kÞ is modelled by the Poisson distribution.

3.3 Scan statistics for peak-over-threshold series

Flood events are interpreted as realisations of a Poisson

Process. A priori, we assume that there is no clustering

among flood events, which we interpret as a time-homo-

geneous Poisson process. Flood-rich and -poor periods are

interpreted as coherent periods in time for an observed

POT-series with unusually many (few) flood events (i.e.

clustering). How many (few) events would be statistically

significance is evaluated with a scan statistic, following

Glaz et al. (2001), which is equivalent to a statistical

hypothesis test with null hypothesis ‘‘Homogenous Poisson

process with constant intensity’’.

Let YðtÞ refer to a Poisson Process with constant

intensity k over the interval ½0; TÞ, where 0 refers to the

beginning of the observation period of a flood series and T

to the end. For a given window x, let YtðxÞ refer to the

number of events in the interval ½t; t þ xÞ, i.e.

Yðt þ xÞ � YðtÞ, which follows a Poisson distribution with

parameter kx (e.g. Theorem 6.8.2. in Grimmett and

Stirzaker, 2020). Finally, let

Sx ¼ max
0� t� T�x

YtðxÞð Þ: ð1Þ

Sx denotes the largest number of events observed in any

subinterval of length x over ½0; TÞ and is the continuous

unconditional scan statistic. Additionally, let XðiÞ refer to

the arrival time of the ith event and letWk be the size of the

smallest subinterval containing k events

Wk ¼ min
i� 1

Xðiþk�1Þ � XðiÞ
� �

:

The distributions of these statistics are related

PðSx � kÞ ¼ PðWk �xÞ

For given k; T; k and x, these probabilities are denoted

as P�ðk; kT ;x=TÞ. Small values of the probabilities cor-

respond to a statistically significant result in a Likelihood

Ratio test of constant intensity of events (time-homoge-

neous Poisson Process) versus a pulse alternative (Naus

1966; Chapter 14 and 15 in Glaz et al. 2001). The p value

of the test is given by the probability P�ðkobs; kT ;x=TÞ,
where T; k and x are fixed a priori and kobs is obtained

from an observed series of floods. It should be mentioned

that the distribution of the scan statistic and the corre-

sponding p-values is discrete; not every significance level

can be obtained.

This procedure is a prospective scanning procedure and

assumes that the total number of observed events in ½0; TÞ
is itself random. For a POT-series of flood events, the total

number of events is known, so for the investigation of

clustering a retrospective procedure should be employed.

The continuous conditional scan statistic is the same as in

Eq. (1) but instead of the intensity k, the total number of

events N in ½0; TÞ is known. The corresponding probabili-

ties are denoted as Pðk;N;x=TÞ. Conditional on

fYðtÞ ¼ Ng, the arrival times of a homogeneous Poisson

Process are uniformly distributed over ½0; TÞ (e.g. Theo-

rem 6.8.11. in Grimmett and Stirzaker 2020).

A period is identified as flood-rich if the corresponding

p-value of the conditional scan statistic is below a ¼ 0:05.

The magnitude of the p-values depends on the parameters

of the procedure (N;x and T) (T, N and k result from the

data) and the choice of the window length x is crucial. We

employ a multiple window scan statistic to avoid strict

assumptions on the length of flood-rich periods and account

for the fact that we examine multiple window lengths at the

same time (Wu et al. 2013). For window sizes

x1\. . .\xM , the distribution of the multiple window scan

statistic is given by

P Sxj\kj; for all j ¼ 1; . . .;M
� �

:

With k1\. . .\kM , the complementary probability gives

the p-value for the respective test for flood-rich periods. If

a flood-rich period is detected via a multiple window

procedure, different window sizes xi may cause this result.

For the sake of presentation, the significance of these

Table 1 Average number of flood events per year and quartiles of the return period (calculated with AMS) per flood type

Flood type Average no. events per year 5%-Quantile return period Median return period 95%-Quantile return period

R1 1.26 1.06 1.31 8.24

R2 0.6 1.05 1.29 7.28

R3 0.23 1.10 1.46 8.12

S1 0.57 1.06 1.39 6.51

S2 0.23 1.44 1.47 4.21
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periods is then evaluated separately for the different win-

dow lengths xi. Subsequently, flood-rich periods are plot-

ted for each window length that would have led to a

significant result in a single window procedure (see e.g.

Fig. 3).

Flood-poor periods are defined by an improbably long

absence of events, which is not symmetric to the case of

flood-rich periods. By defining

Dx ¼ min
0� t�T�x

YtðxÞð Þ and Vk ¼ max
i� 1

Xðiþk�1Þ � XðiÞ
� �

and noting that PðDx � kÞ ¼ PðVk �xÞ (Chapter 18.4.
in Glaz et al. 2001) we can define a flood-poor period as

unusually long stretches of time without events by fixing

k ¼ 0. No multiple windows are needed.

One major challenge in the application of scan statistics

for cluster detection is their computational aspects. For

given series, we look at the k ? 1-th order gaps Wk and Vk

to avoid scanning infinitely many windows. Given the

longest window without events, the p-values for flood-poor

periods can be calculated exactly (for the case with no

exceptions, i.e. k = 0), see e.g. Parzen (1960, p. 306). For

flood-rich periods, this is not the case. Whereas the dis-

tribution of the discrete scan statistic for observations of a

Bernoulli Process can be evaluated exactly (Fu 2001), for

the continuous scan statistic, applicable to realizations of a

Poisson Process, the distribution can only be evaluated

exactly for restricted ranges of parameters (Fu et al. 2012).

Numerous approximations exist (Naus 1982; Chapters 10

and 11 in Glaz et al. 2001) and the distribution of the

continuous scan statistic is the limiting distribution of a

discrete scan statistic (Fu et al. 2012; Wu et al. 2013), but

this approach is computationally expensive. Therefore, we

rely on simulations to produce p-values for the detection of

flood-rich periods (nsim = 10,000). The accuracy of this

procedure was tested and compared with approximations

(namely the approximations from Naus 1982), yielding

reliable results, and the number of simulations is increased

for observed p-values close to the significance level

(nsim = 100,000).

We illustrate the procedure by a simple example of

N = 10 observed events over the interval 1960; 2010½ �,
representing 51 years of data (Fig. 2). To facilitate the

reproducibility of this example, the event times can be

found in Table 2. We apply a threshold of 1300 m3/s and

use a window of 10 years to scan for flood-rich periods.

The largest number of events found in such a window is 7,

in a period stretching from 1975 to 1985. In continuous

time, we observe infinitely many such windows, only one

is shown in Fig. 2, for the sake of presentation. The cor-

responding p-value is roughly 0.02, indicating that

observing such a period is rather unlikely for a homoge-

neous Poisson Process. The tail probabilities of the

corresponding scan statistic for different values of k in this

example can be found in Table 3 in the ‘‘Appendix’’. We

observe a period of roughly 21.5 years without events at

the end of the series. The probability of observing a flood-

poor period of at least this length (p value) in a realization

of a homogeneous Poisson Process is roughly 0.04.

4 Results

The method of scan-statistics for POT series was applied to

each flood type and catchment separately. Each flood-type-

sample was treated as a POT series. This way, type-specific

results were obtained. The window lengths for the detec-

tion of flood-rich periods were chosen as 10, 20 and

30 years to detect the different spectra of flood-rich peri-

ods. Since the minimum length of the observation period of

all catchments was 31 years, longer windows were not

considered for comparability. We considered a significance

level of 5%, which is statistical standard.

Examples for the detection of flood-rich and -poor

periods are given in Fig. 3, where two gauges were

selected, Unterköblitz at the Naab River (a tributary of the

Upper Danube) and Leucherhof at the Baunach River, a

tributary of the upper Main. The first catchment belongs to

the natural area ‘‘Alpine foreland’’, while the latter belongs

to the ‘‘South-Western Uplands’’. In Fig. 3a, for short-

rainfall floods (R1), in the years 1980–2015 there occurred

a significant flood-rich period. This flood-rich period was

mainly driven by the elevated frequency of events in the

years 2001–2010, since for this period all three window

lengths, 10, 20 and 30 years, simultaneously delivered a

significant flood-rich period. The whole period between the

years 1980–2015 was significant for this flood type. In

Fig. 3b, the opposite is demonstrated for flood type S2,

which is associated with snowmelt-impacted floods. Here,

a flood-poor period was detected in the period 1985–2009.

4.1 Temporal occurrence of flood-rich and -poor
periods

For the first analysis, we considered all flood types jointly

(Fig. 4) to facilitate the comparison with existing trend

studies.

Figure 4 demonstrates that the highest number of flood-

rich and flood-poor periods were identified in the Alpine

foreland. In the last 40 years, flood-rich periods were

detected in up to 20% of all catchments and a similar

percentage of catchments showed flood-poor periods. In

the years between 1930 and 1950, few flood-rich and flood-

poor periods were detected in 4% and 10% of the catch-

ments, respectively. Similarly, in the Eastern Uplands,

flood-rich periods only occurred in the recent decades. In
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the Alps, a flood-poor period was detected for one gauge

only. In the South-Western Uplands, flood-poor periods

tend to dominate over flood-rich periods. The detected

flood-rich and flood-poor periods are not overly sensitive

with respect to the chosen window size: similar results are

obtained when changing the window sizes to 7 years (and

its multiples) (Fig. 8 in the ‘‘Appendix’’), a window length

associated with the cyclic occurrence of the El-Nino

Southern Oscillation (Fredriksen 2020).

In order to shed light on the generating mechanism, we

stratified the floods by their flood types (Fig. 5). Overall,

Fig. 5 gives a similar pattern as Fig. 4, but there are clear

differences between the flood types.

For short rainfall floods (R1), which are (frequently)

related to heavy-rainfall events, flood-rich periods were

detected with elevated frequency for the most recent

30–40 years for catchments in the Alpine foreland (12%),

Eastern Uplands (8%) and South-Western Uplands (4%).

For the Alpine forelands, flood-rich periods of this flood

type also occurred in the early years of the observation

period, though less frequently. Flood-poor periods of R1-

floods occurred rarely, some of them around 1950. A sig-

nificant number of catchments with flood-poor periods of

medium-duration rainfall-floods (R2), occurred between

1950 and 1980 in the Alpine foreland. For long-duration

rainfall-floods (R3), mostly flood-poor periods occurred.

Again, the largest number of catchments with such periods

was in the Alpine foreland, where the number of anomalies

increased between 1990 and 2010. For the South-Western

Uplands, almost constant frequencies of about 5% occur-

red. Similarly, for the snow-impacted floods only flood-

poor periods emerge. For rain-on-snow floods (S1), the

highest frequencies of flood-poor periods occurred around

1990, mostly in the South-Western Uplands. For snowmelt-

floods (S2), large numbers of flood-poor periods were

detected in the period 1985–2010 for both South-Western

Uplands (12%) and Alpine foreland (8%). When differen-

tiating between the window sizes considered in this study

for the detection of flood-rich periods, it becomes evident

that a higher number of catchments with a flood-rich period

of short-rainfall floods in the Alpine forelands had a sig-

nificant period of 30 years compared to those with a

10-year-period (Fig. 9 in the ‘‘Appendix’’). For this region,

long-term changes appeared.

The results revealed that there exist significant differ-

ences between the flood types. While for heavy-rainfall-

induced floods mostly flood-rich period occurred in the

recent years, snow-impacted floods and especially snow-

melt-floods were characterised by flood-poor periods for

the same period.

4.2 Spatial occurrence of flood-rich and -poor
periods

In order to analyse the spatial patterns in more detail, Fig. 6

shows maps of flood-rich and flood-poor periods for two

subregions of the study area. Figure 6a reveals that the

flood-poor periods of short rainfall-floods (R1) in the per-

iod 1930–1960 detected in Fig. 5 occurred in the central

parts of the Danube basin in the Alpine foreland, while the

flood-rich periods were more concentrated on catchments

in the lower part of the Danube close to the German-

Fig. 2 Illustration of the

conditional scan statistic applied

to POT-series. Series of daily

discharges (blue in background)

and events (here as an example:

discharges over 1300 m3 s-1)

plotted as black points and bars

at bottom. Blue background

indicates a detected flood-rich

period, red background

indicates detected flood-poor

period
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Austrian border in the period 1980–2020. This implies that

there exist spatial differences of flood anomalies within a

natural area. The flood-poor periods in the period

1930–1960 of medium-duration rainfall-floods also occur-

red in the central parts of the Danube basin, while the

flood-poor periods of long-duration rainfall floods in the

period 1950–2010 occurred in the lower Danube basin. For

the South-Western Uplands (Fig. 6b), the flood-poor peri-

ods for the snowmelt floods were especially pronounced.

For both snowmelt flood types, these periods occurred

between 1980 and 2010 in the central parts belonging to the

flatter parts of the Main basin.

4.3 Occurrence of flood-rich and -poor periods
for large flood peaks

So far, we investigated flood clustering for all available

flood events, defined by threshold-exceedances of daily

Fig. 3 Examples of detected

flood-rich and -poor periods

(5% significance level) for flood

type R1 (floods caused by heavy

rainfall) at Unterköblitz/Naab

gauge (a) and for flood type S2

(snowmelt floods) at

Leucherhof/Baunach gauge (b).
Vertical lines represent

occurrence of flood events of

the respective flood types in the

given years on the x-axis. The

red-shaded parts are the

detected flood-poor periods,

while the blue shaded parts are

the detected flood-rich periods.

The different shades of blue

indicate the different window

length 10, 20 and 30 years

(from dark to light blue)

Alpine foreland Alps Eastern Uplands South−Western Uplands
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Fig. 4 Relative frequency (number of stations with anomaly in the

respective year divided by the number of all stations with data in this

period) of significant flood-rich and flood-poor periods for all flood

events in the study area stratified by natural areas. Flood-rich periods

were identified using 10-, 20-, and 30-year-windows. To avoid

multiple counting, a significant flood-rich period was counted only

once, no matter how many windows were significant for the

respective year. Annual frequency of catchments with flood-poor

periods is stacked on top of flood-rich periods

1402 Stochastic Environmental Research and Risk Assessment (2023) 37:1395–1413

123



discharge series. In this section, we apply higher thresholds

to the samples and only consider flood peaks above these

thresholds. We use two thresholds corresponding to floods

with 5- and 10-year return period of the respective flood

type. More specifically, we used the statistics given in

Sect. 3.2 to estimate the type-specific quantile corre-

sponding to a return period of 5 respectively 10 years. All

events with flood peaks above this threshold were analysed

for flood-rich and -poor periods (Fig. 7). This application is

similar to the one proposed in Lun et al. (2020), where

T-year thresholds were used to investigate flood-rich and -

poor periods in the AMS. In contrast to our previous

results, here the focus is on large events.

In general, the number of catchments affected by flood-

rich periods decreases with increasing threshold. These

findings were already reported by Lun et al. (2020), who

explained them by the higher sensitivity of the Scan-

statistics to the thresholds and the decreasing availability of

data for the detection of clustering. The general tendency is

maintained for all thresholds: For short-rain floods (R1),

flood-rich periods were mostly detected in the last

30–40 years, while flood-poor periods occurred with higher

frequency in the period 1940–1970. The number of

catchments affected by flood-poor periods of snowmelt

floods (S2) decreases with increasing thresholds, implying

that large snowmelt-floods did not show flood-poor periods

as often as small floods. However, snowmelt-floods rarely

produce large peaks in general (Table 1).

5 Discussion

5.1 Does a coherence between trends and flood-
rich or -poor periods exist?

Several studies analysed trends in the study region. Petrow

and Merz (2009) investigated AMS and POT series (3

events per year) of either annual, winter or summer flood

peaks in Bavaria in the period 1951–2002. Applying the

Mann–Kendall test with a 10%-significance level, the

authors found increasing trends for several catchments in

the Danube (POT, AMS) and Main (AMS) river basins, in

both winter (Danube, Main) and summer (Danube). This is

consistent with our findings of flood-rich periods of short-

rainfall floods (R1), mainly in summer, for the Alpine

foreland and the Eastern Uplands in the last 30 years, as

these flood-rich periods at the end of the observation period

can be interpreted as trends. Mangini et al. (2018), who

Alpine foreland Alps Eastern Uplands South−Western Uplands
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Fig. 5 Same as Fig. 4 but stratified by flood type

Stochastic Environmental Research and Risk Assessment (2023) 37:1395–1413 1403

123



1404 Stochastic Environmental Research and Risk Assessment (2023) 37:1395–1413

123



considered AMS and POT (1–6 six events per year) flood

series in the period 1965–2005, similarly reported

increasing trends (10% significance level) in small alpine

catchments in southern Bavaria (AMS) and generally

increasing trends for the magnitude but not the frequency

(POT) of flood peaks in Bavaria. Again, their results are

consistent with ours, since we found several flood-rich

periods in the Alpine foreland, the Eastern Uplands and the

South-Western Uplands at the end of the observation per-

iod (1985–2018), which can be interpreted as trends. Hat-

termann et al. (2019), who considered AMS flood series in

the period of 1951–2008 using the Mann–Kendall test

(10% significance level), also found increasing trends for

catchments in the lower Danube and the Main river basin in

Bavaria, but also decreasing trends for catchments in close

proximity to the higher regions of the Alps. These

decreasing trends can be linked to the flood-poor periods

we found for the snow-impacted flood events in the Alpine

foreland in the period 1980–2020. A reason, why these

trends have been evaluated as significant by Hattermann

et al. (2019) but not in the previously mentioned studies

may be the longer observation period of Hattermann et al.

(2019). Our results also imply a change in the timing of

floods especially for the Alps and alpine foreland. While

snow-melt floods in winter and spring now occur less often

(increasing frequency of flood-poor periods for floods of

type S1 and S2, see Fig. 5), the frequency of short-rainfall

floods in the summer has increased (increasing frequency

of flood-rich periods for floods of type R1, see Fig. 5). This

shift in the timing of floods from winter to summer in the

Alps and the alpine foreland is in line with the seasonality

analysis of Blöschl et al. (2017) based on annual floods.

The detected flood-rich and flood-poor periods are also

consistent with the findings of Lun et al. (2020) for AMS

series in Southern Germany. The detected flood-rich peri-

ods for large flood peaks are consistent with our findings of

flood-rich periods of heavy-rainfall floods, which are often

associated with high flood peaks (Fischer et al. 2019).

5.2 Which were the mechanisms causing
the flood-rich and flood-poor periods?

When linking the detection of significant flood-rich and -

poor periods to the five flood types, interesting patterns

appeared that can shed light on the underlying flood-gen-

erating processes. The flood types and their hydrological

interpretation are discussed in detail in Fischer et al.

(2019). In our manuscript, we present an analysis related to

this topic, as we investigate flood clustering for floods of

these flood types. Our results indicate that flood clustering

manifests very differently for different flood types (e.g.

Fig. 5). For example, flood-rich periods occurred for many

catchments in the Alpine foreland in the most recent dec-

ades for short-rainfall floods (R1) (Fig. 5). These results

are in line with analyses of Winterrath et al. (2017), who

found an increasing number of heavy rainfall events—as

defined by the German Weather Service (DWD)—in this

region. They suggest that this increase has a direct impact

on the flood risk in this region. The detected periods are

comparably long with a period of 30 years, which is similar

to many studies on cyclic behaviour of extreme rainfall

around the globe (see Gregersen et al., 2015, and the ref-

erences therein). This granularity of our results would not

be achievable, if we did not account for different flood

types in our POT-series (like in e.g. Merz et al., 2016 or

Liu and Zhang, 2017) or if we worked with different data,

e.g. annual maxima (Lun et al., 2020).

Catchments affected by flood-rich periods of short-

rainfall floods (R1) are mainly concentrated in the Danube

basin at the northern fringe of the Alps, where Vb storm

tracks (van Bebber 1882) are often relevant for major

floods (Hofstätter et al. 2016, 2018). Vb storm tracks carry

atmospheric moisture from the Mediterranean to South-

East Germany and the surrounding regions (Blöschl et al.

2013). Hofstätter and Blöschl (2019) have found that

cyclones associated with Vb tracks tend to cluster in time.

For medium-duration rainfall floods (R2), no pro-

nounced spatial patterns of flood-rich and -poor periods

were detected. However, several significant flood-poor

periods occurred in the most recent years in the South-

Western Uplands for floods with large peaks. This may be

related to drier soils resulting from higher evaporation

(Quesada et al. 2012; Copernicus 2018).

For long-duration rainfall-floods (R3), for all natural

areas except the Alps, significant flood-poor periods were

detected in the last decades. One explanation may again be

a tendency of the region towards drier soils. Dry soils may

be more relevant for medium-duration floods than for long-

duration floods as there is less opportunity for the soil to

wet up during the event (Grillakis et al. 2016).

Flood-poor periods occurred in the last 30–40 years for

snow-impacted floods (S1 and S2), (Figs. 5, 7), especially

in the flat parts of the Main river basin. These results can

clearly be explained by the shallower snow packs in the

low elevation catchments of this region (Kreyling and

Hunry 2011), which tends to reduce snowmelt. The

reduced frequency of snowmelt and rain-on-snow floods

bFig. 6 Gauges with flood-rich or flood-poor periods stratified by flood

type and 20-year time periods for the Alpine foreland (a) and the

South-Western Uplands (b). A catchment was labelled ‘‘flood-rich’’

or ‘‘flood-poor’’ if at least for one year in the 20-year period such an

anomaly occurred. Light grey dots are gauges without such an

anomaly in the respective period. Inset maps show where the

catchments are located in Bavaria (in grey)
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floods can have an impact on reservoir operation and water

availability. Normally, spring floods with large volumes fill

the reservoirs but this may now occur less frequently, thus

potentially causing water shortages. However, this only has

an impact on low elevation catchments. For high-elevation

catchments, long-lasting snow packs still occur and hence

snow-induced floods (S1 and S2) occur as frequently as at

the beginning of the last century.

5.3 Are small and large floods different in terms
of their flood-rich and flood-poor periods
and their types?

We compared the occurrence of flood-rich and flood-poor

periods for small and large floods by considering all flood

events of a flood type in one case, and only those above a

threshold corresponding to either the 5-year or 10-year

flood in another case. The results indicate that the occur-

rence of such periods indeed depends on the peak magni-

tude. For short-rain floods (R1), flood-rich periods were

detected for all flood events of this type for almost all

natural areas. However, when only considering events with

peaks larger than the 10-year flood, significant flood-rich

periods were no longer detected. This implies that,

although there exist periods with an unusually large num-

ber of floods of a given type, this is not the case for the

largest floods. This finding is important in a flood man-

agement context, as the frequent reoccurrence of large

floods completely changes flood management policies

(Viglione et al. 2014). For long-duration rainfall floods

(R3), the detected flood-rich periods of all floods and large

floods were similar, indicating that these flood-rich periods

are mainly caused by large flood peaks.

Flood-poor periods occurred for both large and small

flood peaks. In the Alps, flood-poor periods for the large

floods tended to occur more frequently in recent years.

Both short-rain floods and snowmelt-floods were involved

in this change. In other natural areas, there was also an

increase in flood-poor periods for large floods, especially

for the years 1950–1990. During this time period, flood-

poor periods of short- and medium-duration-rainfall floods

(R1 and R2) were detected in the South-Western Uplands

and flood-poor periods of flood type R3 (associated with

long-duration rainfall) in the Eastern Uplands. However,

this phenomenon does not continue into recent years,

instead, the number of flood-poor periods of these flood

types decreases for most natural areas.

Overall, these results emphasize the need for treating

changes in the frequency and the magnitude of floods

differently, in particular when considering flood types.

5.4 Limitations of the proposed methodology

The flood events considered here have been identified and

classified by the approach of Fischer et al. (2021) and

Fischer et al. (2019). There are many other possible flood

typologies (Tarasova et al. 2019). Limitations of the sep-

aration and classification approaches applied here are dis-

cussed in Fischer et al. (2021) and Fischer et al. (2019).

The proposed methodology based on scan-statistics has

several advantages compared to existing methods: it is

easily adaptable to different flood magnitudes, it provides a

statistical test, it can be applied to several different window

lengths simultaneously, and it can be applied to both POT

and AMS. However, there are also limitations to be

considered.

First, when treating all catchments jointly, the problem

of multiple testing and spatial dependency arises, as in the

case of trend tests. Multiple hypothesis testing may result

in a large number of incorrect rejections of local null

hypotheses if not accounted for. Often, this problem is

avoided by applying the Bonferroni-rule, where the p-value

of each test is divided by the number of all tests, or the

false discovery rate (Benjamini and Hochberg 1995).

However, these procedures require a continuous distribu-

tion of the local test statistics, which is not the case for the

scan-statistic. Other approaches, such as the false detection

rate for discrete test statistics require the entire distribution

of the test statistic (Chen et al. 2018), which is computa-

tionally expensive. Similar to Lun et al. (2020), we there-

fore decided to apply the scan-statistics, keeping in mind

that the results may be affected by multiple testing. The

overall high frequency of catchments with detected flood-

rich or flood-poor periods suggests that there is significance

in the results despite spatial correlation.

Another consideration is the high dependence of the

outcome on the observation period which is a problem with

almost all clustering procedures. If the observation period

is too short or the observation period begins or ends during

a flood-rich or flood-poor period, the test may not be able

to detect it. To reduce the associated uncertainty, we

defined a minimum observation length of 30 years in this

paper which is regarded as the climate-scale and thus also

defines the maximum length that should be investigated for

bFig. 7 Relative frequency (number of stations with anomaly in the

respective year divided by the number of stations with data in this

period) of significant flood-rich and -poor periods for all flood events

in the study area stratified by flood-type (rows) and natural area

(columns) with application of 5-year flood thresholds (a) and 10-year

flood thresholds (b). Flood-rich periods were identified using 10-, 20-,

and 30-year-windows. If a flood-rich period was detected for any of

these windows, the respective year was counted. Annual frequency of

catchments with flood-rich is stacked on top of flood-poor periods.

The asterisks highlight the most pronounced differences from the case

without quantile-threshold (Fig. 5)
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the detection of clustering (Dimitriadis and Koutsoyiannis

2015).

Finally, only one flood-rich and one flood-poor period is

considered for each series. In reality, several such

anomalies may occur, e.g. caused by cyclic behaviour. In

its current form, the proposed test is not designed to detect

multiple occurrences, but it is possible to extend the

methodology to analyse an unusually high number of non-

overlapping clusters with elevated event frequency (Sec-

tion 17 in Glaz et al., 2001).

5.5 Clustering and dependence

The reference condition for the detection procedure of

flood-rich and flood-poor periods in this paper is a time-

homogeneous Poisson process, implying a time-constant

intensity of events, defined as threshold exceedances, as

well as their independence in time (independence of

increments of the process). This reference condition is

usually motivated by asymptotic results for peak-over-

threshold series derived from a stationary process, such as

mean daily discharges (Coles et al. 2001), frequently used

in hydrological applications (Lang et al. 1999) and has

been used for detecting flood-rich and flood-poor periods in

other publications (e.g. Liu and Zhang 2017; Merz et al.

2016). Here, two potential issues arise: Firstly, asymptotic

results might not be adequate in hydrological applications,

such as threshold exceedances derived from daily flows.

Secondly, while a time-homogeneous Poisson process for

the arrival times of threshold exceedances is an asymp-

totically valid model under some (short-range) dependence

conditions of the underlying process (Novak 2019), this

might no longer be the case for long-range dependent

processes. A common procedure to obtain approximately

independent events is declustering (p. 99 in Coles et al.

2001): Threshold exceedances that are close in time are

interpreted as a cluster, and only one exceedance of the

cluster is counted as an event. Here, some process-based

knowledge can inform the formation of clusters (e.g. the

recession time of a flood-event hydrograph, see e.g. Lang

et al. 1999). However, even after applying such a filtering

procedure, some dependence can remain in the resulting

exceedance process, especially in the case of long-range

dependence of the underlying process.

Mathematically, the clustering of threshold exceedances

in the present context can be explained both via a non-

stationary signal (as modelled in the procedure of this

manuscript) as well as dependence among events, due to

dependence in the underlying process. The latter possibility

is explored in detail in Iliopoulou and Koutsoyiannis

(2019), where the authors point out that the resulting

clustering in POT-events can be explained by long-range

dependence of the underlying process from which the

threshold exceedances are derived. Long-range dependence

is known to manisfest in persistent behaviour of the time

series. Given that time series of many natural phenomena

show behavior suggesting long-range dependence of the

underlying processes (Dimitriadis et al. 2021), persistence

offers an alternative explanation to non-stationarites for the

clustering of extremes (if clustering is defined as patterns

that are inconsistent with an iid-process). Yet, long-range

dependence remains hard to detect in hydrological time

series, especially when the observation period is short

(Barunik and Kristoufek 2010). Whether or not long-range

dependence occurs in hydrological time series, and if it is

pre-asymptotic behaviour only or whether any physical

processes exist that can explain such a statistical model,

remains a frequently discussed topic (e.g. Klemes 1974;

Salas et al. 1979; Mesa and Poveda 1993; Beran 1994;

Koutsoyiannis 2011).

6 Conclusions

Several previous studies have raised concerns that flood-

rich and flood-poor periods may exist in discharge series.

These anomalies may substantially affect the statistical and

deterministic modelling and investigation of floods. In this

paper, scan-statistics for POT-series are combined with

flood types to detect and attribute these periods. With this

approach, we propose a statistical test for the detection of

flood-rich and flood-poor periods in POT-series. Addi-

tionally, we discuss possible underlying hydrological and

meteorological mechanisms for the observed flood-rich and

flood-poor periods. Clustering in this study corresponds to

the timing of flood occurrences being inconsistent with a

time-homogeneous Poisson process. Of course, other

assumptions on clustering may also be valid but are not

covered by this approach.

The results show evidence for the existence of flood-rich

and flood-poor periods in the POT series in Southern

Germany. However, the occurrence of such periods

depends on the location and the flood type. The results also

revealed that there is an increase in the occurrence of

heavy-rainfall floods in the most recent years while snow-

impacted floods and those caused by long-duration rainfall

decreased in frequency. This is in line with several studies,

including studies that indicate a shift in the seasonality of

annual floods (Blöschl et al. 2017; Tabari 2020), and cli-

mate projections. These shifts in timing and the changes in

the hydrograph shape of the floods as indicated by the flood

types have a crucial impact on flood risk. In line with these

results, flood frequency increases in summer for several

catchments in the study area with large peaks and heavy-

rainfall floods, while in spring there will be fewer floods

with large volumes and therefore reservoirs may no longer
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be filled. Possible reasons may be an increase of the fre-

quency of heavy-rainfall in this region (Winterrath et al.

2017) and decreasing soil moisture in lower elevation

catchments (Quesada et al., 2012), though this remains

speculative.

The flood anomalies detected here are consistent with

trend studies in the study region. It seems that flood-rich

periods at the end of an observation period and increasing

trends are often correlated, so one can easily be interpreted

as the other. Similarly, flood-rich periods at the beginning

of an observation period correlate with a decreasing trend.

It is clear that the observation period plays a crucial role as

it can mask cyclic behaviour.

This research has revealed patterns of flood-rich and

flood-poor periods aligned with changing hydrological and

meteorological conditions in the study region. The lines of

reasoning presented here primarily apply to the study area

in Bavaria. The next step could be to extend the study

region, e.g., to Europe, similar to Lun et al. (2020) but for

POT-series and with attribution of these anomalies.

Moreover, additional data such as soil moisture could be

considered to explain the detected flood-poor periods in

more depth.

Appendix

See Tables 2, 3 and Figs. 8, 9.

Table 2 Event times of flood discharges over 1300 m3 s-1 in Fig. 2

Event 1 2 3 4 5 6 7 8 9 10

Date 1967-06-

26

1969-05-

26

1977-06-

26

1978-05-

16

1980-07-

25

1981-04-

30

1982-07-

16

1983-06-

11

1984-06-

12

1988-07-

10

Table 3 Distribution of the continuous conditional scan statistic for the example in Fig. 2 given by the tail probabilities P k;N;x=Tð Þ

k 1 2 3 4 5 6 7 8 9 10

PApprox 1.0000 0.9998 0.9875 0.8137 0.4021 0.1150 0.0205 0.0023 0.0001 0.0000

PSim 1.0000 1.0000 1.0000 0.9030 0.4335 0.1184 0.0201 0.0022 0.0001 0.0000

Probabilities correspond to observing at least k events in a window of length x, given N events over the period 0;T½ Þ. For the example: N ¼ 10,

T ¼ 18263 (number of days from 1.1.1960 until including 31.12.2009) and x ¼ 10� 365. PApprox corresponds to the probabilities obtained by

the approximation in Naus (1982) and PSim corresponds to probabilities obtained via simulations (nsim = 100,000). All numbers are rounded to 4

digits

Stochastic Environmental Research and Risk Assessment (2023) 37:1395–1413 1409

123



Alpine foreland Alps Eastern Uplands South−Western Uplands

R1

R2

R3

S1

S2

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

20
10

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

F
re

qu
en

cy
 (

%
)

flood−poor                    flood−rich                   

Fig. 8 Same as Fig. 5 but with window lengths 7, 14 and 21 years
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