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Abstract
Monadically stable and monadically NIP classes of structures were initially studied in the context of
model theory and defined in logical terms. They have recently attracted attention in the area of
structural graph theory, as they generalize notions such as nowhere denseness, bounded cliquewidth,
and bounded twinwidth.

Our main result is the – to the best of our knowledge first – purely combinatorial characterization
of monadically stable classes of graphs, in terms of a property dubbed flip-flatness. A class C of
graphs is flip-flat if for every fixed radius r, every sufficiently large set of vertices of a graph G ∈ C

contains a large subset of vertices with mutual distance larger than r, where the distance is measured
in some graph G′ that can be obtained from G by performing a bounded number of flips that swap
edges and non-edges within a subset of vertices. Flip-flatness generalizes the notion of uniform
quasi-wideness, which characterizes nowhere dense classes and had a key impact on the combinatorial
and algorithmic treatment of nowhere dense classes. To obtain this result, we develop tools that also
apply to the more general monadically NIP classes, based on the notion of indiscernible sequences
from model theory. We show that in monadically stable and monadically NIP classes indiscernible
sequences impose a strong combinatorial structure on their definable neighborhoods. All our proofs
are constructive and yield efficient algorithms.
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1 Introduction

An important open problem in structural and algorithmic graph theory is to characterize
those hereditary graph classes for which the model checking problem for first-order logic
is tractable1 [23, Section 8.2]. A result of Grohe, Kreutzer, and Siebertz [24] states that
for monotone graph classes (that is, classes closed under removing vertices and edges), the
limit of tractability is precisely captured by the notion of nowhere denseness, introduced
by Nešetřil and Ossona de Mendez [29]. Examples of nowhere dense classes include the
class of planar graphs, all classes that exclude a fixed minor, and classes with bounded
expansion. Whereas these classes are sparse (for instance, they exclude some fixed biclique
as a subgraph), the aforementioned problem seeks to generalize the result of Grohe, Kreutzer,
and Siebertz to classes that are not necessarily sparse. Indeed, there are known hereditary
graph classes that are not sparse, and for which the model checking problem is tractable,
such as transductions of classes of bounded local cliquewidth [5], transductions of nowhere
dense classes [16], or classes of ordered graphs (that is, graphs equipped with a total order)
of bounded twinwidth [6].

So far, a complete picture is understood in two contexts: for monotone graph classes, where
tractability coincides with nowhere denseness, and for hereditary classes of ordered graphs,
where tractability coincides with bounded twinwidth. Despite the apparent dissimilarity of
the combinatorial definitions of nowhere denseness and bounded twinwidth, those notions
can be alternatively characterized in a uniform way in logical terms by the following notion,
originating in model theory. Unless mentioned otherwise, all formulas are first-order formulas.

Say that a class C of graphs transduces a class D of graphs if for every H ∈ D there is
some G ∈ C from which H can be obtained by performing the following steps: (1) coloring
the vertices of G arbitrarily (2) interpreting a fixed formula φ(x, y) (involving the edge
relation and unary relations for the colors), thus yielding a new graph φ(G) with the same
vertices as G and edges uv such that φ(u, v) holds, and finally (3) taking an induced subgraph
of φ(G). The transducability relation on graph classes is transitive, and classes that do not
transduce the class of all graphs are called monadically NIP. For instance, the class of all
bipartite graphs transduces the class of all graphs: to obtain an arbitrary graph G, consider
its 1-subdivision, obtained by placing one vertex on each edge of G, thus yielding a bipartite
graph H; then the formula φ(x, y) expressing that x and y have a common neighbor defines
a graph on V (H) containing G as an induced subgraph. Hence, the class of bipartite graphs
is not monadically NIP. On the other hand, all the graph classes mentioned earlier – nowhere
dense classes and transductions thereof, classes of bounded twinwidth, or transductions of
classes with bounded local cliquewidth – are monadically NIP. This suggests that monadic
NIP might constitute the limit of tractability of the model checking problem. More precisely,
the following has been conjectured2.

▶ Conjecture 1 ([1]). Let C be a hereditary class of graphs. Then the model checking problem
for first-order logic is fixed parameter tractable on C if and only if C is monadically NIP.

Quite remarkably, among monotone graph classes, classes that are monadically NIP
correspond precisely to nowhere dense classes [2], and among hereditary graph classes of
ordered graphs, classes that are monadically NIP correspond precisely to classes of bounded

1 more precisely, fixed parameter-tractable, that is, solvable in time f(|φ|) · |G|c, where φ is the input
formula and G is the input graph, for some function f : N → N and constant c

2 To the best of our knowledge the conjecture was first explicitly discussed during the open problem
session of the Algorithms, Logic and Structure Workshop in Warwick, in 2016, see [1].
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twinwidth [6]. One may tweak the definition of monadic NIP classes by considering other
logics than first-order logic. For instance, for the counting extension CMSO2 of monadic
second-order logic, one recovers precisely the notion of classes of bounded cliquewidth [9],
or classes of bounded treewidth if only monotone classes are considered. Thus, variations
on the definition of monadic NIP recover important notions from graph theory: nowhere
denseness, bounded twinwidth, bounded treewidth, and bounded cliquewidth.

Note that both implications in Conjecture 1 remain open. The conjecture is so far
confirmed for monotone graph classes [24] (where monadically NIP classes are exactly the
nowhere dense classes) and for hereditary classes of ordered graphs [6], tournaments [22],
interval graphs and permutation graphs [7], (where monadically NIP classes are exactly the
classes of bounded twinwidth). As a special important case, the conjecture predicts that all
monadically stable graph classes are tractable. A class C is monadically stable if it does not
transduce the class of all half-graphs, that is, graphs with vertices a1, b1, . . . , an, bn such that
ai is adjacent to bj if and only if i ⩽ j. Although much more restrictive than monadically
NIP classes, monadically stable classes include all nowhere dense classes [2], and hence also
all classes D that transduce in a nowhere dense class C (called structurally nowhere dense
classes [19]). Those include dense graph classes, such as for instance squares of planar graphs.
In fact, it is conjectured [30] that every monadically stable class of graphs is structurally
nowhere dense.

These outlined connections between structural graph theory and model theory have
recently triggered the interest to generalize combinatorial and algorithmic results from
nowhere dense classes to structurally nowhere dense, monadically stable and monadically
NIP classes, and ultimately to efficiently solve the model checking problem for first-order
logic on these classes [5, 6, 19, 13, 21, 27, 30, 31, 32]. Logical results on monadically stable
and monadically NIP classes in model theory include [3, 34, 8, 4].

Contribution

As discussed above, many central graph classes such as those with bounded cliquewidth,
twinwidth or nowhere dense classes can be characterized both from a structural (i.e., graph
theoretic) and a logical perspective. While monadically stable and monadically NIP graph
classes are naturally defined via logic, structural characterizations have so far been elusive. In
this work we take a step towards a structure theory for monadically stable and monadically
NIP classes of graphs, which is the basis for their future algorithmic and combinatorial
treatment, in particular, a tool for approaching Conjecture 1, as we discuss later.

Flatness. Our main result, Theorem 3, provides a purely combinatorial characterization of
monadically stable graph classes in terms of flip-flatness. Flip-flatness generalizes uniform
quasi-wideness3, introduced by Dawar in [10] in his study of homomorphism preservation
properties. Uniform quasi-wideness was proved by Nešetřil and Ossona de Mendez [29]
to characterize nowhere dense graph classes and is a key tool in the combinatorial and
algorithmic treatment of these classes. To foster the further discussion, let us formally define
this notion.

3 Another reasonable name for flip-flatness would be flip-wideness. We avoided this name to prevent
confusion with the recently introduced graph parameter flip-width [37], which is studied in the same
context.

ICALP 2023
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delete • delete •

flip (•, •) flip (•, •)

uniform quasi-wideness:

flip-flatness:

Figure 1 An example of uniform quasi-wideness (flip-flatness). Among the yellow vertices, we
find a still large set of green vertices, that is distance-7 independent after deleting a bounded number
of red vertices (performing a bounded number of flips between sets of red and blue vertices). Two
key properties are illustrated: 1. the higher the desired independence distance, the more operations
have to be performed; 2. we cannot hope to make all the yellow vertices distance-r independent
with a bounded number of operations.

A set of vertices is distance-r independent in a graph if any two vertices in the set are
at distance greater than r. A class of graphs C is uniformly quasi-wide if for every r ∈ N
there exists a function Nr : N → N and a constant s ∈ N with the following property. For
all m ∈ N, G ∈ C , and A ⊆ V (G) with |A| ⩾ Nr(m), there exists S ⊆ V (G) with |S| ⩽ s

and B ⊆ A \ S with |B| ⩾ m such that B is distance-r independent in G− S (see the top
of Figure 1). Intuitively, for uniformly quasi-wide classes, in sufficiently large sets one can
find large subsets that are distance-r independent after the deletion of a constant number of
vertices. Uniform quasi-wideness is only suitable for the treatment of sparse graphs. Already
very simple dense graph classes, such as the class of all cliques, are not uniformly quasi-wide.

Inspired by the notion of uniform quasi-wideness, Jakub Gajarský and Stephan Kreutzer
proposed the new notion of flip-flatness. Roughly speaking, flip-flatness generalizes uniform
quasi-wideness by replacing in its definition the deletion of a bounded size set of vertices by
the inversion of the edge relation between a bounded number of (arbitrarily large) vertex sets.
Let us make this definition more precise. A flip in a graph G is specified by a pair of sets
F = (A,B) with A,B ⊆ V (G). We write G⊕ F for the graph with the same vertices as G,
and edges uv such that uv ∈ E(G) xor (u, v) ∈ (A×B)∪ (B×A). For a set F = {F1, . . . ,Fn}
of flips, we write G⊕ F for the graph G⊕ F1 ⊕ · · · ⊕ Fn.

▶ Definition 2. A class of graphs C is flip-flat if for every r ∈ N there exists a function
Nr : N → N and a constant sr ∈ N such that for all m ∈ N, G ∈ C , and A ⊆ V (G) with
|A| ⩾ Nr(m), there exists a set F of at most sr flips and B ⊆ A with |B| ⩾ m such that B
is distance-r independent in G⊕ F .
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Intuitively, for flip-flat classes in sufficiently large sets one can find large subsets that
are distance-r independent after a constant number of flips (see bottom of Figure 1). For
example the class of all cliques is flip-flat, requiring only a single flip to make the whole
vertex set distance-∞ independent. Our main result is the following purely combinatorial
characterization of monadic stability.

▶ Theorem 3. A class of graphs is monadically stable if and only if it is flip-flat.

Notably, our proof is algorithmic and yields polynomial bounds in the following sense.

▶ Theorem 4. Every monadically stable class C of graphs is flip-flat, where for every r, the
function Nr is polynomial. Moreover, given an n-vertex graph G ∈ C , A ⊆ V (G), and r ∈ N,
we can compute a subset B ⊆ A and a set of flips F that makes B distance-r independent in
G⊕ F in time O(fC (r) · n3) for some function fC .

Just as uniform quasi-wideness provided a key tool for the algorithmic treatment of
nowhere dense graph classes, in particular for first-order model checking [24], we believe that
the characterization by flip-flatness will provide an important step towards the algorithmic
treatment of monadically stable classes. We leave as an open question whether a similar
characterization of monadically NIP classes exists.

Indiscernible sequences. Our study is based on indiscernible sequences, which are a fun-
damental tool in model theory. An indiscernible sequence is a (finite or infinite) sequence
I = (ā1, ā2, . . .) of tuples of equal length of elements of a fixed (finite or infinite) structure,
such that any two finite subsequences of I that have equal length, satisfy the same formulas.
More generally, for a set of formulas ∆, the sequence I is ∆-indiscernible if for each formula
φ(x̄1, . . . , x̄k) from ∆ either all subsequences of I of length k satisfy φ, or no subsequence
of length k satisfies φ. For example, any enumeration of vertices forming a clique or an
independent set in a graph is ∆-indiscernible for ∆ = {E(x1, x2)} containing only the edge
relation. Also, any increasing sequence of rationals in the structure (Q, <) is ∆-indiscernible
for ∆ being the set of all formulas. We use indiscernible sequences to obtain new insights
about monadically stable and monadically NIP classes.

It was shown by Blumensath [4] that in monadically NIP classes, any fixed element
interacts with the tuples of an indiscernible sequence in a very regular way. We give a new
finitary proof of Blumensath’s result. Building on this, we develop our main technical tool,
Theorem 11, where we show that the regular properties of the indiscernible sequences extend
to their disjoint definable neighborhoods (see Section 3.2 for details). A result similar to
Theorem 11, also for disjoint definable neighborhoods in monadically NIP classes, plays a
key role in [6, 35].

Apart from powering our algorithmic proof of flip-flatness, Theorem 11 has already found
further applications in monadically stable classes of graphs: it was recently used to obtain
improved bounds for Ramsey numbers [14] and to prove an algorithmic game-characterization
of these classes, called Flipper game [20]. The paper [20] provides two proofs for this game
characterization. One is constructive and algorithmic and builds on our work. The other
builds on model theoretic tools; it is non-constructive but self-contained and highlights
additional properties of monadically stable graph classes, including a second (though non-
constructive) proof of Theorem 3. The algorithmic version of the Flipper game plays a crucial
role for proving that the first-order model checking problem is fixed parameter tractable for
structurally nowhere dense classes of graphs [16]. This suggests that our developed techniques
may be an important tool towards resolving Conjecture 1.

ICALP 2023
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2 Preliminaries

We use standard notation from graph theory and model theory and refer to [11] and [25] for
extensive background. We write [m] for the set of integers {1, . . . ,m}.

Relational structures and graphs. A (relational) signature Σ is a set of relation symbols,
each with an associated non-negative integer, called its arity. A Σ-structure A consists of
a universe, which is a non-empty, possibly infinite set, and interpretations of the symbols
from the signature: each relation symbol of arity k is interpreted as a k-ary relation over the
universe. By a slight abuse of notation, we do not differentiate between structures and their
universes and between relation symbols and their interpretations. By C we denote classes
of structures over a fixed signature. Unless indicated otherwise, C may contain finite and
infinite structures.

A monadic extension Σ+ of a signature Σ is any extension of Σ by unary predicates. A
unary predicate will also be called a color. A monadic expansion or coloring of a Σ-structure A
is a Σ+-structure A+, where Σ+ is a monadic extension of Σ, such that A is the Σ-reduct
of A+, that is, the Σ-structure obtained from A+ by removing all relations with symbols
in Σ+ \ Σ. When C is a class of Σ-structures and Σ+ is a monadic extension of Σ, we
write C [Σ+] for the class of all possible Σ+-expansions of structures from C .

A graph is a finite structure over the signature consisting of a binary relation symbol E,
interpreted as the symmetric and irreflexive edge relation.

First-order logic. We say that two tuples ā, b̄ of elements are φ-connected in a structure A
if A |= φ(ā, b̄). We call the set NA

φ (ā) = {b̄ ∈ A|ȳ| : A |= φ(ā, b̄)} the φ-neighborhood of ā.
We simply write Nφ(ā) when A is clear from the context.

Let Φ(x̄) be a finite set of formulas with free variables x̄. A Φ-type is a conjunction τ(x̄)
of formulas in Φ or their negations, such that every formula in Φ occurs in τ either positively
or negatively. More precisely, τ(x̄) is a formula of the following form, for some subset A ⊆ Φ:∧

φ∈A

φ(x̄) ∧
∧

φ∈Φ\A

¬φ(x̄).

Note that for every |x̄|-tuple ā of elements of A, there is exactly one Φ-type τ(x̄) such
that A |= τ(ā).

Stability and NIP. While we already defined monadic stability and NIP in terms of
transductions in the introduction, let us also give the equivalent original definition. A
formula φ(x̄, ȳ) has the k-order property on a class C of structures if there are A ∈ C and
two sequences (āi)1⩽i⩽k, (b̄i)1⩽i⩽k of tuples of elements of A, such that for all i, j ∈ [k]

A |= φ(āi, b̄j) ⇐⇒ i ⩽ j.

The formula φ is said to have the order property on C if it has the k-order property for
all k ∈ N. The class C is called stable if no formula has the order-property on C . A class C

of Σ-structures is monadically stable if for every monadic extension Σ+ of Σ the class C [Σ+]
is stable.

Similarly, a formula φ(x̄, ȳ) has the k-independence property on a class C if there are
A ∈ C , a size k set A ⊆ A|x̄| and a sequence (b̄J )J⊆A of tuples of elements of A such that for
all J ⊆ A and for all ā ∈ A

A |= φ(ā, b̄J) ⇐⇒ ā ∈ J.
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We then say that A is shattered by φ. We define the independence property (IP), classes
with the non-independence property (NIP classes), and monadically NIP classes as expected.
Note that every (monadically) stable class is (monadically) NIP. Baldwin and Shelah proved
that in the definitions of monadic stability and monadic NIP, one can alternatively rely
on formulas φ(x, y) with just a pair of singleton variables, instead of a pair of tuples of
variables [3, Lemma 8.1.3, Theorem 8.1.8].

We call a relation R definable on a structure A if R = {ā ∈ A|x̄| : A |= φ(ā)} for some
formula φ(x̄). The following is immediate from the previous definitions.

▶ Lemma 5. Let C be a monadically stable (monadically NIP) class of Σ-structures, let Σ+

be a monadic extension of Σ and let D be the hereditary closure of any expansion of C [Σ+]
by definable relations. Then also D is monadically stable (monadically NIP).

A formula φ(x, ȳ) has pairing index k on a class C of structures if there is A ∈ C and
two sequences (aij)1⩽i<j⩽k and (b̄i)1⩽i⩽k such that for all 1 ⩽ i < j ⩽ k and ℓ ∈ [k]

A |= φ(aij , b̄ℓ) ⇐⇒ ℓ ∈ {i, j}.

We require that x is a single free variable, while ȳ is allowed to be a tuple of variables.
Intuitively, from a graph theoretic perspective, if a formula has unbounded pairing index on
a class C , then it can encode arbitrarily large 1-subdivided cliques in C , where the principal
vertices are represented by the tuples b̄ℓ and the subdivision vertices are represented by single
elements aij . As discussed in the introduction, this is sufficient to encode arbitrary graphs
in C by using an additional color predicate. In this case, C cannot be monadically NIP. The
above reasoning is formalized in the following characterization.

▶ Lemma 6. A class C of Σ-structures is monadically NIP if and only if for every monadic
extension Σ+ of Σ every Σ+-formula φ(x, ȳ) has bounded pairing index on C [Σ+].

Indiscernible sequences. Let A be a Σ-structure and φ(x̄1, . . . , x̄m) a formula. We say
a sequence (āi)1⩽i⩽n of tuples from A (where all x̄i and āj have the same length) is a
φ-indiscernible sequence of length n, if for every two sequences of indices i1 < · · · < im and
j1 < · · · < jm from [n] we have

A |= φ(āi1 , . . . , āim
) ⇐⇒ A |= φ(āj1 , . . . , ājm

).

For a set of formulas ∆ we call a sequence ∆-indiscernible if it is φ-indiscernible for
all φ ∈ ∆. For finite ∆, by (iteratively applying) Ramsey’s theorem we can extract a
∆-indiscernible sequence from any sequence. In general structures however, in order to
extract a large ∆-indiscernible sequence we must initially start with an enormously large
sequence. To the best of our knowledge the following theorem goes back to Ehrenfeucht and
Mostowski [17].

▶ Theorem 7. Let ∆ be a finite set of formulas. There exists a function f such that every
sequence of elements of length at least f(m) (in a structure with a signature matching ∆)
contains a ∆-indiscernible subsequence of length m.

In stable classes we can efficiently find polynomially large (that is, f(m) = mO(1))
indiscernible sequences of elements (see also [28, Theorem 3.5]). In the full version of the
paper we observe that the run time is essentially bounded by the time it takes to evaluate
the formulas from ∆ on a small polynomial part of the input structure.

ICALP 2023
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3 Technical overview

Our work is organized as follows. Section 3.1 introduces useful combinatorial properties of
indiscernibles in monadically NIP classes. We extend those properties in Section 3.2, where
we prove our main tool, Theorem 11. We use this tool in Section 3.3 to prove flip-flatness.
Due to space constraints, we mostly provide proof sketches, which should convey the key
ideas. All missing proofs can be found in the full version of the paper [15].

3.1 Indiscernibles in monadically stable and monadically NIP classes
In classical model theory, instead of classes of finite structures, usually infinite structures
are studied. For a single infinite structure A, we say A is (monadically) stable/NIP, if the
class {A} is (monadically) stable/NIP. In this context, an indiscernible sequence is usually
assumed to be of infinite length and indiscernible over the set of all first-order formulas.
Using Ω to denote the set of all first-order formulas, we will denote the latter property as
Ω-indiscernibility.

It is well-known that indiscernible sequences can be used to characterize stability and NIP
for infinite structures. To characterize NIP, define the alternation rank of a formula φ(x̄, ȳ)
over a sequence I in a structure A as the maximum k such that there exists a (possibly non-
contiguous) subsequence (ā1, . . . , āk+1) of I and a tuple b̄ ∈ A|x̄| such that for all i ∈ [k] we
have A |= φ(b̄, āi) ⇐⇒ A |= ¬φ(b̄, āi+1). A structure A is NIP if and only if every formula has
finite alternation rank over every Ω-indiscernible sequence in A [33, Theorem 12.17]. Stable
classes can be characterized in a similar way. We say the exception rank of a formula φ(x̄, ȳ)
over a sequence I in a structure A is the maximum k such that there exists a tuple b̄ ∈ A|x̄|

such that for k distinct tuples āi ∈ I we have A |= φ(b̄, āi) and for k other distinct tuples
āi ∈ I we have A |= ¬φ(b̄, āi). A structure A is stable if and only if every formula has finite
exception rank over every Ω-indiscernible sequence in A [33, Corollary 12.24].

Hence, NIP and stablility can be characterized by the interaction of tuples of elements
with indiscernible sequences. For monadically NIP structures, Blumensath [4] shows that
the interaction of single elements with indiscernible sequences is even more restricted.

▶ Theorem 8 ([4, Corollary 4.13]). In every monadically NIP structure A, for every for-
mula φ(x, ȳ), where x is a single free variable, and Ω-indiscernible sequence (āi)i∈N of
|ȳ|-tuples the following holds: for every element b ∈ A there exists an exceptional index
ex(b) ∈ N and two truth values t<(b), t>(b) ∈ {0, 1} such that

for all i < ex(b) : A |= φ(b, āi) ⇐⇒ t<(b) = 1, and
for all i > ex(b) : A |= φ(b, āi) ⇐⇒ t>(b) = 1.

See Figure 2 for examples. In particular, the alternation rank of the formulas φ(x, ȳ) with
a single free variable x over every Ω-indiscernible sequence in a monadically NIP structure is
at most 2.

Theorem 8 will be a crucial tool for proving flip-flatness. However, as we strive for
algorithmic applications, we have to develop an effective, computable version that is suitable
for handling classes of finite structures. Instead of requiring Ω-indiscernibility, we will
specifically consider ∆-indiscernible sequences with respect to special sets ∆ = ∆Φ

k that we
define soon. These sets ∆Φ

k will strike the right balance of being on the one hand sufficiently
rich to allow us to derive structure from them, but on the other hand sufficiently simple such
that we can efficiently evaluate formulas from ∆Φ

k , making our flip-flatness result algorithmic.
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a1 a2 a3 a4 a5

b

. . .. . .

a1 a2 a3 a4 a5

b

. . .. . .

Figure 2 Two monadically NIP structures. On the left: the infinite half-graph, where Theorem 8
applies for the edge relation with t<(b) = 0 and t>(b) = 1. On the right: the infinite matching,
where we have t<(b) = t>(b) = 0 but a differing truth value at index ex(b) = 3.

Fix a finite set Φ(x, ȳ) of formulas of the form φ(x, ȳ) where x is a single variable. A
Φ-pattern is a finite sequence (φi)1⩽i⩽k′ , where each formula φi(x, ȳ) is a boolean combination
of formulas φ(x, ȳ) ∈ Φ(x, ȳ). Given a Φ-pattern (φi)i∈[k′], the following formula expresses
that, for a given sequence of k′ tuples, each of length |ȳ|, there is some element that realizes
that pattern (see Figure 3 for an example):

γ(φ1,...,φk′ )(ȳ1, . . . , ȳk′) = ∃x.
∧

i∈[k′]

φi(x, ȳi).

For a finite set of formulas Φ(x, ȳ) and an integer k we define ∆Φ
k to be the set of all

formulas γ(φ1,...,φk′ ), where (φ1, . . . , φk′) is a Φ-pattern of length k′ ⩽ k. Note that the
set ∆Φ

k is finite, as (up to equivalence) there are only finitely many boolean combinations of
formulas in Φ. We write ∆φ

k for ∆{φ}
k .

v1 v2 v3 v4 v5

Figure 3 Example of an {E}-pattern: a graph satisfying G |= γ(E,E,¬E,E,¬E)(v1, v2, v3, v4, v5).

We can now state a finitary version of Theorem 8 as follows. For the convenient use
later on, we state the result not for single formulas φ but for Φ-types.

▶ Theorem 9. For every monadically NIP class C of structures and finite set of formulas
Φ(x, ȳ) there exist integers n0 and k, such that for every A ∈ C the following holds. If
I = (āi)1⩽i⩽n is a ∆Φ

k -indiscernible sequence of length n ⩾ n0 in A, and b ∈ A, then there
exists an exceptional index ex(b) ∈ [n] and Φ-types τ−(x, ȳ) and τ+(x, ȳ) such that

A |= τ−(b, āi) holds for all 1 ⩽ i < ex(b), and
A |= τ+(b, āi) holds for all ex(b) < i ⩽ n.

Our proof uses different tools than [4]. It is combinatorial, fully constructive, and gives
explicit bounds on n0 and k as well as the required set of formulas ∆Φ

k . One may alternatively
finitize Theorem 8 via compactness, but then we do not obtain these crucial properties.

For the more restricted monadically stable classes we can give even stronger guarantees:
for every element b ∈ A, the types do not alternate and we have τ− = τ+.

▶ Theorem 10. For every monadically stable class C of structures and finite set of formu-
las Φ(x, ȳ) there exist integers n0 and k, such that for every A ∈ C the following holds. If
I = (āi)1⩽i⩽n is a ∆Φ

k -indiscernible sequence of length n ⩾ n0 in A, and b ∈ A, then there
exists an exceptional index ex(b) ∈ [n] and a Φ-type τ , such that

A |= τ(b, āi) for all i ∈ [n] with i ̸= ex(b).
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Building on Theorem 9, we give a full proof of Theorem 10. In order to give an intuition
about the interaction of monadic stability and ∆Φ

k -indiscernibility, we sketch a standalone
proof here.

Proof sketch of Theorem 10. For simplicity, we will focus on the case were Φ is a singleton
set {φ(x, ȳ)}. Let k be the smallest number such that the bound for the pairing index of φ
and ¬φ on C is less than k. Such a bound exists since C is in particular monadically NIP. As-
sume towards a contradiction that there exists a sufficiently long ∆φ

k -indiscernible sequence I
in a structure A ∈ C and an element b ∈ A that is φ-connected to at least two tuples in I

and not φ-connected to at least two other tuples in I. By symmetry, we can assume that b is
not φ-connected to the majority of I. We therefore find a length-k subsequence ā1, . . . , āk

of I and two distinct indices i0, j0 ∈ [k], such that b is φ-connected exactly to the i0th and
j0th element of ā1, . . . , āk. We say that the i0th and j0th element are φ-paired by b. Our
goal is to derive a contradiction by finding also for every other pair i, j of indices an element
that φ-pairs them, witnessing that φ has pairing index at least k in C .

In stable classes, every sufficiently long ∆φ
k -indiscernible sequence I is also totally ∆φ

k -
indiscernible: This means that every permutation I ′ of I is again ∆φ

k -indiscernible, with
the formulas from ∆φ

k taking the same truth values on I ′ as on I. Intuitively speaking,
if permuting two elements in an indiscernible sequence would change the truth value of a
formula, then this formula orders these two elements and by indiscernibility also orders a large
part of the sequence, contradicting stability. A proof of the statement for Ω-indiscernibles
can be found in [36, Lemma 9.1.1].

The formula γ(ȳ1, . . . , ȳk) := “ȳi0 and ȳj0 are φ-paired by some element” is contained
in ∆φ

k and holds on ā1, . . . , āk, as witnessed by b. By total indiscernibility, we may permute
ā1, . . . , āk and the formula still holds. By swapping ai0 with ai and aj0 with aj , we obtain
for arbitrary i, j that “āi and āj are φ-paired by some element”. This witnesses that φ has
pairing index at least k, a contradiction. ◀

For the more general monadically NIP case, we cannot rely on total indiscernibility.
Instead, we bound the alternation rank by pairing tuples located around alternation points,
leading to a similar but more involved reasoning.

nowhere dense

monadically stable
monadically NIP

homogenous single exception single alternation

Figure 4 All types of neighborhoods a vertex (top) can have in indiscernible sequences (bottom)
in different graph classes.
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We conclude this section by mentioning that a behavior similar to Theorem 10 was already
observed in [26] for the edge relation in nowhere dense classes. Considering only the edge
relation, we depict the different possible behavior of vertices towards indiscernible sequences
in different classes of graphs in Figure 4. In monadically NIP (or stable) classes, the same
six (or four) patterns apply for connections with respect to any formula φ(x, y).

3.2 Disjoint definable neighborhoods
In the previous section we have seen that in monadically stable and monadically NIP
classes, every element is very homogeneously connected to all but at most one element of
an indiscernible sequence. At a first glance, this exceptional behavior towards one element
seems to be erratic and standing in the way of combinatorial and algorithmic applications.
However, it turns out that it can be exploited to obtain additional structural properties.

The key observation is that elements that are “exceptionally connected” towards a single
element of an indiscernible sequence, inherit some of the good properties of that sequence.
We will give a simple example to demonstrate this idea. Let G be a graph containing certain
red vertices R and blue vertices B, such that the edges between R and B describe a matching
(see Figure 5, left).

Figure 5 Examples of one-to-one and many-to-one connections in a graph. On the left: a
matching. On the right: a star forest.

Given a formula φ(x1, . . . , xq), define

φ̂(x1, . . . , xq) := ∃b1, . . . , bq ∈ B.φ(b1, . . . , bq) ∧
∧

i∈[q]

E(xi, bi).

Take a φ̂-indiscernible sequence R′ among R. Obviously, every vertex in the blue
neighborhood B′ of R′ has one exceptional connection towards R′, that is, towards its unique
matching neighbor in R′. It is now easy to see that B′ is a φ-indiscernible sequence in G:
for every sequence of red vertices a1, . . . , aq ∈ R′ and their unique blue matching neighbors
b1, . . . , bq ∈ B′ we have G |= φ̂(a1, . . . , aq) if and only if G |= φ(b1, . . . , bq).

This example sketches how first-order definable one-to-one connections towards elements
of an indiscernible sequence preserve indiscernibility. The more general case however is the
many-to-one case, where we have a set of elements, each of which is exceptionally connected
to a single element of an indiscernible sequence I, while allowing multiple elements to be
exceptionally connected to the same element of I (think, for example, of R and B being the
centers and leaves of a star-forest as depicted in Figure 5, right). Our notion of such many-
to-one connections will be that of disjoint α-neighborhoods. Recall, that for a formula α(x̄, y),
the α-neighborhood Nα(ā) of a tuple ā is defined as the set of all b satisfying α(ā, b). We
say a sequence J of |x̄|-tuples has disjoint α-neighborhoods if Nα(ā1) ∩Nα(ā2) = ∅ for all
distinct ā1, ā2 ∈ J .

As the main technical tool of this paper, we prove for monadically NIP classes that every
sequence of disjoint α-neighborhoods contains a large subsequence that exerts strong control
over its neighborhood. This lifts the strongly regular behaviour of idiscernible sequences
to sequences of disjoint α-neighborhoods. The main result of this section, Theorem 11, is
the backbone of our flip-flatness proof and states the following. In every large sequence of
disjoint α-neighborhoods, we will find a still-large subsequence such that the φ-connections

ICALP 2023



125:12 Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

of every element a towards all α-neighborhoods in the subsequence can be described by a
bounded set of sample elements in the following sense. After possibly omitting one exceptional
neighborhood at index ex(a) depending on a, the φ-connections are completely homogeneous
(in the stable case) or alternate at most once (in the NIP case). A related (but orthogonal)
result was also proved in [38, Lemma 64] using tools from model theory.

a

φ

α

ā1 ā2 āex(a) ā4 ā5

s<(a) = s1 s>(a) = s3

. . . . . . . . .

s1 s2 s3

I =

S =

Figure 6 A visualization of Theorem 11. On the bottom: a sequence I with disjoint α-
neighborhoods. On the top right: a small set of sample elements S. The φ-neighborhoods of the
elements in S in the α-neighborhood of I are colored accordingly. Note that their φ-neighborhoods
can overlap. The φ-neighborhood of a in the α-neighborhood of I is equal to the φ-neighborhood
of s<(a) = s1 before the exceptional index ex(a). After it, it is equal to the φ-neighborhood of
s>(a) = s3. For the α-neighborhood of āex(a) we make no claims.

▶ Theorem 11. For every monadically NIP class of structures C , and formulas φ(x, y) and
α(x̄, y), there exists a function N : N → N and an integer k such that for every m ∈ N
every structure A ∈ C and every finite sequence of tuples J ⊆ A|x̄| of length N(m) whose α-
neighborhoods are disjoint the following holds. There exists a subsequence I = (āi)1⩽i⩽m ⊆ J

of length m and a set S ⊆ A of at most k sample elements such that for every element a ∈ A
there exists an exceptional index ex(a) ∈ [m] and a pair s<(a), s>(a) ∈ S such that

for all 1 ⩽ i < ex(a) : Nα(āi) ∩Nφ(a) = Nα(āi) ∩Nφ(s<(a)), and
for all ex(a) < i ⩽ m : Nα(āi) ∩Nφ(a) = Nα(āi) ∩Nφ(s>(a)).

If a ∈ Nα(āi) for some āi ∈ I, then i = ex(a).

If C is monadically stable, then s<(a) = s>(a) for every a ∈ A.

A visualization of the NIP case of Theorem 11 is provided in Figure 6. An important
ingredient of the proof is the following Ramsey-type result due to Ding et al. [12, Corollary 2.4].
We say a bipartite graph with sides a1, . . . , aℓ and b1, . . . , bℓ forms

a matching of order ℓ if ai and bj are adjacent if and only if i = j for all i, j ∈ [ℓ],
a co-matching of order ℓ if ai and bj are adjacent if and only if i ̸= j for all i, j ∈ [ℓ],
a ladder of order ℓ if ai and bj are adjacent if and only if i ⩽ j for all i, j ∈ [ℓ].

We call two distinct vertices u and v twins in a graph G they have the same neighborhood
with regard to the edge relation, i.e. NG

E (u) \ {v} = NG
E (v) \ {u}.
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▶ Theorem 12 ([12, Corollary 2.4]). There exists a function Q : N → N such that for
every ℓ ∈ N and for every bipartite graph G = (L,R,E) without twins, where L has size at
least Q(ℓ), contains a matching, co-matching, or ladder of order ℓ as an induced subgraph.

Equipped with Theorem 10 from the previous subsection and the above Theorem 12, we
will now give a proof sketch of the monadically stable case of Theorem 11.

Proof sketch of Theorem 11 (monadically stable case). We will build the sequence I by
inductively extracting indiscernible subsequences Ii of J and growing a set of sample elements
Si = {s1, . . . , si}. During the induction, we maintain the following invariant: every two dis-
tinct sample elements from Si have pairwise different φ-neighborhoods in the α-neighborhood
of every tuple of Ii. We start with I0 = J and S0 = ∅ where this trivially holds. Let us now
describe the inductive construction of Ii+1 and Si+1. We first add a constant symbol for
every element in Si to the signature of A. This extended signature will allow us to express
for all j ∈ [i] the formula ψj(x, ȳ) stating that x has the same φ-neighborhood as sj in the
α-neighborhood of ȳ, i.e., Nα(ȳ) ∩Nφ(x) = Nα(ȳ) ∩Nφ(sj). We collect all these formulas
into the set Φ = {ψj : j ∈ [i]} and build Ii+1 by extracting a ∆Φ

k -indiscernible sequence
from Ii, for the appropriate value of k given by Theorem 10. Now by Theorem 10, for every
element b ∈ A, there exists a Φ-type τ(x, ȳ) such that b is τ -connected to all but at most one
tuple from Ii+1. Since the Φ-types capture information about the connections relative to
vertices in Si, one of the following two cases applies for every b ∈ A.
1. The φ-neighborhood of b is different to the φ-neighborhood of every element of Si in the

α-neighborhood around all but at most one tuple of Ii+1.
2. For some j ∈ [i], the φ-neighborhood of b is equal to the φ neighborhood of sj in the

α-neighborhood around all but at most one tuple of Ii+1 (whose index will ex(b)).
If the first case applies for some b ∈ A, then we can build Si+1 by setting si+1 := b, which
satisfies our invariant (after we possibly drop one more element from Ii+1). If the second
case applies for every b ∈ A, every element is represented by Si, and the construction stops
with I := Ii+1 and S := Si.

It now remains to show that the construction stops after less than k steps for some k
depending only on C , φ, and α. To this end, we show that for every ℓ ∈ N, there exists
k ∈ N with the following property. If there exists Ik and Sk satisfying the invariant of our
construction, then we can derive a formula ψ from φ and α which has pairing index at least ℓ
in an expansion of A with a constant number of colors (in the full proof we use 3 colors).
As C is monadically NIP, the pairing index of ψ is bounded, which also yields a bound for k.

Assume we are given Ik and Sk, such that all the elements from Sk have different
φ-neighborhoods, in the α-neighborhoods around the tuples of Ik. By choosing k large
enough, repeated application of Theorem 12 and the pigeonhole principle, we find a subset
S′ = {s1, . . . , sℓ2} of Sk and a subsequence I ′ = {ā1, . . . , āℓ} of Ik with the following
property. For each j ∈ [ℓ], there exists a subset N ′

j of the α-neighborhood of āj , such that
the φ-connections from S′ to the N ′

j all form a matching, all form a co-matching, or all form
a ladder. Assume the φ-connections form a matching. Let us now show that the formula

ψ(x, ȳ) := ∃z ∈ Nφ(x) ∩Nα(ȳ). R(z)

has pairing index at least ℓ in the class C extended with an additional unary predicate R.
The situation is depicted in Figure 7. The formulas φ and α interpret a large 1-subdivided
biclique in A as follows. The tuples from I ′ and the elements from S′ form the principle
vertices. The subdivision vertices are formed by

⋃
i∈[ℓ] N

′
i . Due to the assumed matchings,

each subdivision element has exactly one incoming φ-connection from S′. Due to the tuples
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α

φ
S′

N ′
i N ′

j

I ′āi āj

sij

Figure 7 Pairing the elements of I ′.

in I ′ having disjoint α-neighborhoods, each subdivision element has exactly one incoming
α-connection from the elements of I ′. Since I ′ has size ℓ and S′ has size ℓ2 we can assign
to every pair āi, āj ∈ I ′ a unique element sij ∈ S′. By marking with the predicate R the
two unique subdivision elements from Nφ(sij) ∩ N ′

i and Nφ(sij) ∩ N ′
j , we get that sij is

ψ-connected only to āi and āj among I ′. As desired, S′ and I ′ witness that ψ has pairing
index at least ℓ.

In case the φ-connections form a co-matching or a ladder, we can replace φ with a derived
formula φ′, such that the φ′-connections form a matching in a coloring of A, which completes
the proof sketch for the size bound of S.

Lastly, in order to ensure that a ∈ Nα(āi) implies i = ex(a), we can augment the
formula ψj(x, ȳ) in the construction to return false whenever x is contained in Nα(ȳ). This
way, we enforce the single exception given by Theorem 10 to be on ai. ◀

To prove the more general NIP case, we replace Theorem 10 with Theorem 9, which
introduces the possibility for a vertex a to be sampled by two vertices s<(a) and s>(a),
alternating around ex(a). We also have to slightly adapt the search for the next sample
element sj using an additional indiscernibility argument.

3.3 Flatness in monadically stable classes of graphs
In this section we use Theorem 11 to characterize monadically stable graph classes in terms
of flip-flatness. We start with the forward direction, restated for convenience.

▶ Theorem 4. Every monadically stable class C of graphs is flip-flat, where for every r, the
function Nr is polynomial. Moreover, given an n-vertex graph G ∈ C , A ⊆ V (G), and r ∈ N,
we can compute a subset B ⊆ A and a set of flips F that makes B distance-r independent in
G⊕ F in time O(fC (r) · n3) for some function fC .

Partial proof. Let C be a monadically stable class of graphs and r ∈ N. We want to show
that in every graph G ∈ C , in every set A ⊆ V (G) of size Nr(m) we find a subset B ⊆ A

of size at least m and a set F of at most sr flips such that B is distance-r independent in
G⊕ F . We will first inductively describe how to obtain the set of vertices B and the set of
flips F and bound the runtime and values for Nr and sr later. In the base case we have
r = 0. We can pick B := A and F := ∅ and there is nothing to show.

In the inductive case we assume the result is proved for r and extend it to r + 1. Let
r = 2i+ p for some i ∈ N and parity p ∈ {0, 1}. Apply the induction hypothesis to obtain sr

flips Fr and a set Ar that is distance-r independent in Gr := G⊕ Fr. Note that for every
fixed number t of flips, since flips are definable by coloring and a quantifier-free formula,
the class Ct of all graphs obtainable from graphs of C by at most t flips is monadically
stable by Lemma 5. Hence, Gr comes from the monadically stable class Csr

. Our goal is to
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find a set of flips F ′
r+1 (of fixed finite size which will determine the number sr+1) together

with a set Ar+1 ⊆ Ar, that is distance-(r + 1) independent in Gr+1 := Gr ⊕ F ′
r+1. Then

Gr = G⊕ Fr+1 with Fr+1 = Fr ∪ F ′
r+1.

Since the elements in Ar have pairwise disjoint distance-i neighborhoods, we can apply
Theorem 11 to Ar with φ(x, y) = E(x, y) and α(x, y) = dist⩽i(x, y). Since we are in the
monadically stable case, this yields a subset Ar+1 ⊆ Ar and a small set of sample vertices S
such that for every vertex a ∈ V (G) there exists s(a) ∈ S and ex(a) ∈ Ar+1 such that a has
the same edge-neighborhood as s(a) in the distance-i neighborhoods of all elements from
Ar+1 \ {ex(a)}. We now do a case distinction depending on whether r is even or odd.

The odd case: r = 2i + 1. For every s ∈ S let Cs be the set containing every vertex a
for which we have s(a) = s and that is at distance at least i+ 1 from every vertex in Ar+1.
Let Ds be the set containing every edge-neighbor of s that is at distance exactly i from one
of the vertices in Ar+1. We now build the set of flips F ′

r+1 by adding for every sample vertex
s ∈ S the flip (Cs, Ds).

Let us now argue that Ar+1 is distance-(r + 1) independent in Gr+1 := Gr. We only flip
edges in Gr between pairs of vertices a, b such that a has distance (in Gr) at least i+1 and b has
distance exactly i to Ar+1. It follows that Ar+1 remains distance-(2i+1) independent in Gr+1.
Assume towards a contradiction that there exists a path P = (a, a1, . . . , ai, u, bi, . . . , b1, b) of
length r + 1 = 2i + 2 between two vertices a, b ∈ Ar+1 in Gr+1. The distance between a

and ai (resp. b and bi) is not affected by the flips. Only the connection between ai (resp. bi)
and u can possibly be impacted. Additionally, note that u ∈ Cs(u).

Since a and b are distinct we have that either ex(u) ̸= a or ex(u) ̸= b. By symmetry
we can assume the former case. As ai is in the distance-i neighborhood of a, we have
Gr |= E(u, ai) ⇐⇒ Gr |= E(s(u), ai). Observe that if E(s(u), ai) holds in Gr, then
ai ∈ Ds(u) and therefore the edge (u, ai) was removed by the flips and is not in Gr+1.
Similarly, if E(s(u), ai) does not hold in Gr, then ai ̸∈ Ds(u) and the edge (u, ai) was not
introduced by any flip. We can conclude that P is not a path in Gr+1, and that Ar+1 is
distance-(r + 1) independent in Gr+1.

The even case and runtime analysis. The even distance creates a symmetry that requires
additional care to handle, but otherwise proceeds similarly to the odd case. The arguments
concerning size bounds and runtimes can be found there as well. The runtime bound crucially
uses the fact that we take ∆Φ

k -indiscernible sequences only with respect to formulas Φ that
can be evaluated in polynomial time. ◀

We have shown that for graph classes, monadic stability implies flip-flatness. We now show
that the reverse holds as well. We will use the following statement, which is an immediate
consequence of Gaifman’s locality theorem [18]. For an introduction of the locality theorem
see for example [23, Section 4.1].

▶ Corollary 13 (of [18, Main Theorem]). Let φ(x, y) be a formula. Then there are numbers
r, t ∈ N, where r depends only on the quantifier-rank of φ and t depends only on the signature
and quantifier-rank of φ, such that every (colored) graph G can be vertex-colored using t
colors in such a way that for any two vertices u, v ∈ V (G) with distance greater than r in G,
G |= φ(u, v) depends only on the colors of u and v. We call r the Gaifman radius of φ.

▶ Lemma 14. Every flip-flat class of graphs is monadically stable.
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Proof sketch of Lemma 14. Assume towards a contradiction that there exists a class C

that is not monadically stable but flip-flat. Then there exists a formula σ(x, y) and a graph
G ∈ C , such that σ defines an order on a large vertex set A in a coloring G+. Let r be
the Gaifman radius of σ. By flip-flatness there exists a (still large) subset B of A and a
bounded size set of flips F , such that B is distance-r independent in H := G+ ⊕ F . Let H+

be the graph where we have marked the flips F with colors in H. We can rewrite σ to a
formula σ′ of the same quantifier rank such that for all u, v ∈ V (G) we have H+ |= σ′(u, v)
if and only if G+ |= σ(u, v). In particular, σ′ orders B in H+. By Corollary 13 and the
pidgeonhole principle, there must be two distinct vertices u, v ∈ B such that H+ |= σ′(u, v)
if and only if H+ |= σ′(v, u). However as σ′ orders B, we also have H+ |= σ′(u, v) if and
only if H+ ̸|= σ′(v, u); a contradiction. ◀

From Theorem 4 and Lemma 14 we conclude the following.

▶ Theorem 3. A class of graphs is monadically stable if and only if it is flip-flat.
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