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1. Introduction
Three-dimensional characterization of trees and their structure plays a pivotal role in forestry-related 
applications. It facilitates the estimation of biomass, monitoring of forest inventory, and helps to assess 
forest-fire risks (Vicari et al., 2019; Terryn et al., 2020). For tree-specific studies, e.g., phenotyping-
related or orchard yield measurement, localized acquisition by terrestrial laser scans (TLS) is a common 
choice (Ferrara et al., 2018; Li and Liu, 2019). However, such data acquisition source is inefficient and 
related analyses are challenged by the volume of data as well as the non-uniform shape of trees.  

It is customary to approach point-cloud based tree-modeling by reconstructing their shape and then 
applying geometric completion steps through predefined rules and heuristics (Livny et al., 2010). 
However, some have identified the separation of leaves from branches as the preparatory step that 
precedes such reconstruction (Danson et al., 2014; Chaudhury and Godin, 2020). Though the separation 
of that kind has been approached by classifying the intensity channel (Danson et al., 2014), it is common 
to use local geometric cues, such as normal similarity, point density, and arrangement to facilitate this 
task (Vicari  et al., 2019; Krishna Moorthy et al., 2020; Wang, 2020). When considering reconstruction, 
the scanned trees would generally appear bare of leaves leaving the focus to its structure.   Capitulating 
on its cylindrical form, local fitting has seen some popularity (e.g., Burt et al., 2019), while others have 
attempted to identify a skeletal form by using node connectivity approaches, with the aid of octree- or 
voxel-based structures (Bucksch and Lindenbergh, 2008; Zhao et al., 2015). As they encode 
sophisticated logic, they may exhibit sensitivity to varying point densities. Alternative approaches 
iteratively converge to the skeletal form, where a Laplacian-based contraction has been applied by Cao 
et al. (2010), and L1-median skeleton form by Wang et al. (2016); Mei et al. (2017). 

Figure 1: Tree related point-clouds, (left) TLS data acquired ∼50 m from object, (middle) handheld 
scanner (GEO-SLAM ZEB Revo RT), acquired 2 m from object; (right) bird view of the collected 

data, colored by elevation. 

Most approaches utilize TLS data as their source, suggesting that the point clouds they process are 
dense and that the noise level is limited. When considering actual tree modeling on a larger scale, the 
use of stationary TLS is cumbersome and nonscalable. Instead, we consider in this paper a model that 
is driven by handheld scanning devices, which offer greater flexibility yet come at a cost of decreased 
resolution and accuracy (Figure. 1). Such characteristics limit the ability to perform leaf-wood 
separation in a simple manner and to identify the tree directly from the point cloud. They also require a 
greater focus on density-related effects and the impact of noise on the reconstruction. 
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2. Data and Methods
For our evaluation handheld scanning data of an almond orchard was collected (Figure 1). For the 
modelling, our proposed approach is structure-based where due to the noisy data, we consider the L1-
median curve extraction (Equation 1) as our framework. 

Given a pointset Q, our aim is to identify a set of characteristic skeleton points X subject to: 
𝑎𝑟𝑔𝑚𝑖𝑛 ห𝑥௜ െ 𝑞௝ห𝜃൫ห𝑥௜ െ 𝑞௝ห൯ ൅ 𝑅ሺ𝑋ሻ (1) 

where 𝜃ሺ𝑟ሻ ൌ exp ቀെ
௥మ

௛మቁ is a weight function and ℎ is a density related term, 𝑞௝ ∈ 𝑄 is a point in the 
original set 𝑄 and 𝑅ሺ𝑋ሻ is regularization term (Huang et al., 2013). In evaluating affecting factors on 
the reconstruction, we demonstrate in Figure (2) how a direct application of a size-adaptive version of 
this form, where the value of ℎ is increased between cycles, exhibits sensitivity in the presence of clutter. 
To filter the foliage, we evaluate leaf-removal models, particularly the recent one by Wang (2020), where 
local normal and proximity are considered as differentiating attributes. Figure (3) shows that because of 
the high-level of noise, results are partial, even when the normal similarity criterion is relaxed. Realizing 
these limiting factors when considering sparser and noisy data than that provided by TLS, our proposed 
approach places greater focus on robust measures and functions when quantifying features, while 
limiting the effect of derivatives in our evaluation. For that, we derive a shape-preserving model to 
attenuate the noise. Then, we show have a focus on neighborhood definition allows to robustify the 
feature computation for the presence of noise, clutter, and shape variation. In addition, and under the 
realization that the wood-leaf separation is a binary clustering form, we cast this problem as a graph-
cuts formulation, demonstrating how it allows us to yield an optimal form. Using content aware 
modeling of both the overall tree point-cloud and then of its geometry, we provide a computationally 
efficient and reliable characterization of the sought form. 

3. Results and Discussion
The application of our model is demonstrated in Figure (4) where we show how the trunk and branches 
are separated from the rest of the data and eliminate the clutter from the pointset. Additionally, in 
adapting the L1-median form, we demonstrate the application of a regularization form that encourages 
compliance with the overall trend of the surrounding neighborhood points. This facilitates convergence 
to the skeletal form within a small number of iterations. 

Figure 2: Skeleton extraction from the raw data using L1-median approach, a) seed points, b) 
intermediate results showing lack of convergence, c) extracted skeleton. 

Figure 3. Wood-Leaf separation using Wang (2020). Thresholds are given according to the 
optimized configuration (0.1-0.2). Leaves and wood points are colored green and brown, 
respectively. 
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Figure 4. Our approach – (a-c) Wood-Leaf separation (leaves – green, trunk – black), (d-e) 
skeletonization results. 
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