
Using Mixed-Radix Decomposition to Enumerate Computational
Resources of Deeply Hierarchical Architectures
Philippe Swartvagher

TU Wien

Vienna, Austria

swartvagher@par.tuwien.ac.at

Sascha Hunold

TU Wien

Vienna, Austria

hunold@par.tuwien.ac.at

Jesper Larsson Träff

TU Wien

Vienna, Austria

traff@par.tuwien.ac.at

Ioannis Vardas

TU Wien

Vienna, Austria

vardas@par.tuwien.ac.at

ABSTRACT

Current HPC architectures are deeply hierarchical (racks, nodes,

sockets, NUMA domains, caches, . . .), and the mapping of MPI pro-

cesses to cores can significantly influence application performance.

To study hierarchy effects on MPI application performance, we pro-

pose a procedure for expressing mappings by enumerating cores in

the hierarchy in different orders. We explore two use cases: MPI

rank reordering for applications using subcommunicators, and core

selection for applications not using all cores on a node.

Results of micro-benchmarks executing collective operations in

subcommunicators show a performance difference up to a factor

4 between the best and the worst rank orderings. By changing

the rank orders, we observe a performance impact for the Splatt

application. The evaluation of the strong scalability of a conjugate

gradient benchmark shows that considering all hierarchy levels in

the core selection policy can give better performance than using

only options available with common MPI application launchers.

CCS CONCEPTS

• Computing methodologies→ Distributed algorithms; Mas-

sively parallel algorithms; Parallel programming languages.

KEYWORDS

MPI, collective communication operations, process mapping, rank

reordering, hierarchical topology

ACM Reference Format:

Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, and Ioannis

Vardas. 2023. Using Mixed-Radix Decomposition to Enumerate Computa-

tional Resources of Deeply Hierarchical Architectures. In Workshops of The
International Conference on High Performance Computing, Network, Storage,
and Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3624062.3624109

This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike International 4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0785-8/23/11.

https://doi.org/10.1145/3624062.3624109

1 INTRODUCTION

Modern parallel systems to run High-Performance Computing ap-

plications are built very hierarchically: compute nodes are grouped

into racks, cabinets, or islands, they feature multiple processors,

which are organized in different Non-Uniform Memory Access

(NUMA) domains and shared caches. Carefully mapping applica-

tion processes to these resources is crucial for performance. Indeed,

links between resources on each level of the hierarchy have different

capacities and can handle more or less contention. Each application

(or even each application input) has its own optimal mapping which

depends on its computation and communication pattern as well as

on system characteristics. These system characteristics include the

hierarchy (e.g., number of cores per NUMA domain), the commu-

nication performance between two MPI processes, depending on

where they are mapped in the system, or the performance under

contention, etc. The data access pattern and the communication

scheme of an application, e.g., whether it is more compute-bound,

latency-bound, or bandwidth-bound are properties that influence

the choice of the best mapping. Given all the constraints to consider,

while taking the topology of the system into account, the task of

mapping application processes to cores to reach the best possible

performance is very complex.

Taking the increasing number of hierarchy levels in HPC sys-

tems and current numbers of cores per processor into consideration,

we propose in this paper a technique to express different process

mappings by enumerating the compute cores in different orders.

Especially, we consider the case of MPI applications executing si-

multaneously collective operations in different subcommunicators.

To generate different enumeration orders, we apply mixed-radix de-

composition to MPI_COMM_WORLD ranks. This technique has several

interesting properties: it is simple to implement, it is application-

oblivious while taking into account all the levels of the system

hierarchy, and it allows more mapping schemes than options avail-

able with regular MPI job launchers, such as mpirun or Slurm’s

srun. We apply this algorithm to two use cases: MPI rank reorder-

ing and core selection for Slurm jobs. Our algorithm gives control

over how MPI processes belonging to a communicator are spread

over the resources composing the system. To characterize and dis-

tinguish the possible rank orders and the resulting mappings of

communicators, we propose two metrics: the ring cost and the per-
centages of process pairs per level. The former reflects the order of

enumerated processes inside a communicator and the latter shows

405

https://orcid.org/0000-0003-3786-7364
https://orcid.org/0000-0002-5280-3855
https://orcid.org/0000-0002-4864-9226
https://orcid.org/0000-0001-5461-556X
https://doi.org/10.1145/3624062.3624109
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3624062.3624109
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624109&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, and Ioannis Vardas

how much processes belonging to a communicator are spread over

the available resources. The experimental evaluations of different

rank orders generated by our algorithm show that collective op-

erations executed in subcommunicators can be very sensitive to

the chosen mapping. We study the impact of rank order inside a
communicator on the collective application performance and we

compare two scenarios: Onewhere a single communicator performs

collective operations to another where multiple communicators

perform collective operations concurrently. As a real-world use

case, our technique allows to apply a rank reordering that improves

performance of the Splatt application by 32% compared to the

default mapping Slurm would set up. Finally, we evaluate the strong

scaling of a conjugate gradient benchmark, using the cores selected

by our algorithm.

Our algorithm requires as input a permutation of the different

hierarchy levels to generate the new mapping. For a system hierar-

chy featuring ℎ levels, there are ℎ! different permutations. We do

not recommend to evaluate all ℎ! permutations to find the best one.

The goal of this paper is to present an efficient algorithm allowing

to express specific mappings and explore possible use cases.

The rest of the paper is organized as follows: Section 2 presents

relatedwork on rank reordering. Section 3 explains the enumeration

algorithm that we propose and two possible use cases. The impact

of our algorithm is evaluated in Section 4, and Section 5 concludes.

2 RELATEDWORK

Rank reordering is closely related to the process-to-core mapping

problem, which consists in finding an efficient placement of MPI

processes on available computing units. The goal is usually to mini-

mize communication costs by mapping MPI processes that commu-

nicate together close to each other (for instance, inside the same

socket). This problem is NP-hard [10] and an extensive work al-

ready covers this topic [9]. A naive solution is to test all possible

permutations and to select the most efficient one. However, if there

are 𝑝 processes to map on 𝑛 computing units (with 𝑝 ≤ 𝑛), there are
𝑛!
(𝑛−𝑝)! (or 𝑛! if 𝑝 = 𝑛) mapping combinations to evaluate, which

is usually not feasible in a reasonable time. To tackle this issue,

Denoyelle et al. [5] propose a method to reduce the space of can-

didate process mappings to evaluate. The algorithm we present

in this paper also reduces the search space, since the number of

mappings it can generate depends on the depth of the hierarchy ℎ

(always lower than 6 in our experiments) and not on the number

of computing units 𝑛 (up to 2048 in our experiments). Hence, we

reduce the size of the search space from 𝑛! to ℎ!. This reduction is

possible as we assume that permutations of MPI processes inside

the same lowest level of the hierarchy (e.g., inside a NUMA node)

have no impact on performance.

Another common technique is to provide the communication

matrix of a program and the description of the system to a process

mapping tool, which will return a process mapping minimizing

communication costs for this program. The communication ma-

trix can be built beforehand or at runtime [11]. Once an efficient

mapping is known, the rank reordering step changes ranks of MPI

processes to match the mapping. The work we present in this paper

is oblivious to the communication matrix (for now). Communica-

tion matrices can help to determine a better mapping, while our

technique can help to set up this mapping.

Kwon et al. [16] enumerate computing cores using a space-filling

curve to map MPI processes to cores while preserving locality for

communications. Li et al. [17] use a Morton space-filling curve to

improve cache locality of all-to-all MPI communication patterns.

Our technique is similar to a space-filling curve, because it enu-

merates all computing units in a specific and regular order, yet the

main differences are that the construction is not iterative and our

technique enumerates all computing cores in a hierarchical level

before going to the next level.

The MPI standard offers also several routines to assist the map-

ping step [24]: Cartesian [7] or distributed graph [18] topologies

define communication relationships between processes. When cre-

ating such virtual topologies, it is possible to request a rank reorder-
ing to better match the system topology. The creation of subcom-

municators can also take into account the hierarchy of the machine,

with the guided and unguided modes of MPI_Comm_split_type
introduced in Version 4 of the MPI standard [6].

To improve performance of collective operations, the underlying

algorithms can be improved by taking into account the hierarchy of

the system [3, 12, 13]. To consider both collective and point-to-point

communication in the mapping decision, collective operations can

be decomposed into point-to-point communications [26].

For collectives in subcommunicators, Mirsadeghi and Af-

sahi build a communicator dedicated to MPI_Allgather opera-

tions, with reordered ranks according to an algorithm to mini-

mize distance between MPI processes of the communicator [19].

Bhatele et al. propose a tool to efficiently map on a torus network

applications that do collective operations in subcommunicators [2].

In contrast, our work stands apart by proposing a generic algo-

rithm to enumerate computing units in different orders, taking the

system hierarchy into account.

3 ENUMERATION ALGORITHM

This section presents our enumeration algorithm based on a mixed-

radix decomposition, its use in MPI, how we characterize the dif-

ferent mappings obtained with this algorithm, and how we use it

to generalize Slurm’s mapping functionality.

3.1 Mixed-radix Decomposition

A mixed-radix numeral system is a way of expressing numbers

with a numerical base that varies from position to position. Given a

sequence of integers (ℎ𝑖)𝑖≥1, all strictly greater than 1, any positive

integer 𝑟 can be decomposed into a unique sequence of coordinates

(𝑐𝑖)𝑖≥0 following Equation (1):

𝑟 = 𝑐0 +
|ℎ |−1∑︁
𝑖=1

𝑐𝑖

𝑖−1∏
𝑗=0

ℎ 𝑗 . (1)

In everyday life, the most common mixed system is the one used

to measure time: the quantity 3 weeks, 2 days, 9 hours, 22 minutes
and 32 seconds is equal to 32 + 22 × 60 + 9 × 60 × 60 + 2 × 24 × 60 ×
60 + 3 × 7 × 24 × 60 × 60 = 2 020 952 seconds. Thus, the number

2 020 952 can be decomposed into the coordinates [32, 22, 9, 2, 3] in

406

Using Mixed-Radix Decomposition to Enumerate Computational Resources of Deeply Hierarchical Architectures SC-W 2023, November 12–17, 2023, Denver, CO, USA
Using Mixed-Radix Decomposition to Enumerate Computational Resources of Deeply Hierarchical Architectures SC-W 2023, November 12–17, 2023, Denver, CO, USA

N
o
d
e
0

S
o
c
k
e
t
0

Core 0

Rank 0

Core 1

Rank 1

Core 2

Rank 2

Core 3

Rank 3

S
o
c
k
e
t
1

Core 0

Rank 4

Core 1

Rank 5

Core 2

Rank 6

Core 3

Rank 7

N
o
d
e
1

S
o
c
k
e
t
0

Core 0

Rank 8

Core 1

Rank 9

Core 2

Rank 10

Core 3

Rank 11

S
o
c
k
e
t
1

Core 0

Rank 12

Core 1

Rank 13

Core 2

Rank 14

Core 3

Rank 15

Figure 1: Example of a system with hierarchy J2, 2, 4K, with

one MPI process per core.

Algorithm 1 Get coordinates of a rank number

Inputs: ℎ : hierarchy, 𝑟 : rank

Output: 𝑐 : coordinates

1: 𝑐 ← []
2: for 𝑖 = |ℎ | − 1 to 0 do

3: 𝑐 [𝑖] = 𝑟 % ℎ[𝑖] ⊲ Modulo operation

4: 𝑟 = 𝑟 // ℎ[𝑖] ⊲ Integer division

5: end for

chooses to enumerate the image by line, pixel, and color value.

However, the programmer can also choose another enumeration

of the values forming the image: different orders may change the

1-dimensional coordinate of each value of the image.

Our rank reordering algorithm relies on this mixed-radix de-

composition. Decomposed integers are MPI ranks, radixes are the

number of elements in each level of the system hierarchy and

changing the order of these radixes gives a new rank value.

In current hierarchical HPC systems, each component features

a constant number of sub-components: e.g., a compute node has

several processors, a processor has several NUMA domains, and

a NUMA domain encompasses several cores. These numbers of

sub-components are the mixed-radix base for the decomposition of

MPI ranks. Figure 1 presents a system featuring two compute nodes,

each with two sockets, where each socket comprises four cores.

This hierarchy is denoted as ℎ = J2, 2, 4K. Given this hierarchy ℎ

and an initial rank numbering, each rank 𝑟 can be decomposed

into a set of coordinates 𝑐 with Algorithm 1. These coordinates

can be seen as the coordinates of the core in the multi-dimensional

space defined by the hierarchy levels; for instance, rank 10 on

Figure 1 is decomposed into coordinates [1, 0, 2] because it is on
the node 1 (node dimension), on the socket 0 (socket dimension)

and on the core 2 (core dimension). If the initial rank numbering

does not enumerate all cores before going to the next socket of the

same node and then the next node (like on Figure 1), the obtained

coordinates will not correspond to those of the core and will break

the remaining of the reordering algorithm.

With the hierarchy ℎ, the coordinates 𝑐 of a rank value, and

a permutation function 𝜎 , we can get a new rank value 𝑟 with

Algorithm 2 Compute a rank from coordinates

Inputs: ℎ : hierarchy, 𝑐 : coordinates, 𝜎 : permutation

Output: 𝑟 : rank

1: 𝑟 ← 0

2: 𝑓 ← 1

3: for 𝑖 = 0 to |ℎ | − 1 do
4: 𝑟 = 𝑟 + 𝑐 [𝜎 [𝑖]] × 𝑓

5: 𝑓 = 𝑓 × ℎ[𝜎 [𝑖]]
6: end for

Table 1: Examples of different orders, applied to rank 10 (de-

composed into coordinates [1, 0, 2]), on a hierarchy J2, 2, 4K.

Order

Permuted

coordinates

Permuted

hierarchy

New rank

[0, 1, 2] [1, 0, 2] J2, 2, 4K 9

[0, 2, 1] [1, 2, 0] J2, 4, 2K 5

[1, 0, 2] [0, 1, 2] J2, 2, 4K 10

[1, 2, 0] [0, 2, 1] J2, 4, 2K 12

[2, 0, 1] [2, 1, 0] J4, 2, 2K 6

[2, 1, 0] [2, 0, 1] J4, 2, 2K 10

Equation (2):

𝑟 = 𝑐𝜎 (0) +
|ℎ |−1∑︁
𝑖=1

𝑐𝜎 (𝑖)

𝑖−1∏
𝑗=0

ℎ𝜎 (𝑗) . (2)

The permutation function 𝜎 : J0, |ℎ |K ↦→ J0, |ℎ |K defines in which

order the different levels of the hierarchy will be enumerated. Al-

gorithm 2 computes the rank value following Equation (2).

Permutations (also called orders in this paper) are noted like

[2, 0, 1], which means 𝜎 (0) = 2, 𝜎 (1) = 0 and 𝜎 (2) = 1. The inverse

of Algorithm 1 is Algorithm 2 applied with the order [2, 1, 0] (for
a level hierarchy with 3 levels). For a hierarchy with 𝑛 levels (i.e.,

|ℎ | = 𝑛), there are 𝑛! different orders. Table 1 provides an example

to show the impact of different orders applied to the initial rank 10:

as described in Algorithm 2, the permutation is used to change the

order of both coordinates and hierarchy levels. Figure 2 illustrates

the different orders on the same hierarchy and initial ranks than

on Figure 1 (only reordered ranks are represented for more read-

ability). The order producing the original enumeration is [2, 1, 0]
(cf. Figure 2f), as previously mentioned.

3.2 First Use Case: Rank Reordering in MPI

Thismixed-radix decomposition can be used to reorder ranks ofMPI

processes in the MPI_COMM_WORLD communicator. It is more difficult

to reorder smaller communicators, since they may contain only a

subset of processes and not be spread on the whole system, making

some hierarchy levels in the mixed-radix base useless, and there is

no guarantee the initial rank numbering in any other communicator

than MPI_COMM_WORLD respects the conditions of Algorithm 1.

Reordering MPI_COMM_WORLD can be done in two ways. The first

method creates a new communicator containing all processes (i.e.,

all processes have the same color) by calling MPI_Comm_split
with the reordered rank as the key, to specify for each process its

Figure 1: Example of a system with hierarchy J2, 2, 4K, with

one MPI process per core.

the mixed-radix system J60, 60, 24, 7K. This example was given by

Knuth, who discusses mixed-radix systems in detail [15, p. 208-209].

Programmers also manipulate mixed-radix systems when they

need to index in one dimension a multidimensional array, e.g., an

image with dimensions 𝑤 × ℎ, where the color of each pixel is

encoded using three values. In this example, the third color value

of a pixel located at (12, 20) can be stored in the cell numbered

2+12×3+20×𝑤 ×3 of a one-dimensional array, if the programmer

chooses to enumerate the image by line, pixel, and color value.

However, the programmer can also choose another enumeration

of the values forming the image: different orders may change the

1-dimensional coordinate of each value of the image.

Our rank reordering algorithm relies on this mixed-radix de-

composition. Decomposed integers are MPI ranks, radixes are the

number of elements in each level of the system hierarchy and

changing the order of these radixes gives a new rank value.

In current hierarchical HPC systems, each component features

a constant number of sub-components: e.g., a compute node has

several processors, a processor has several NUMA domains, and

a NUMA domain encompasses several cores. These numbers of

sub-components are the mixed-radix base for the decomposition of

MPI ranks. Figure 1 presents a system featuring two compute nodes,

each with two sockets, where each socket comprises four cores.

This hierarchy is denoted as ℎ = J2, 2, 4K. Given this hierarchy ℎ

and an initial rank numbering, each rank 𝑟 can be decomposed

into a set of coordinates 𝑐 with Algorithm 1. These coordinates

can be seen as the coordinates of the core in the multi-dimensional

space defined by the hierarchy levels; for instance, rank 10 on

Figure 1 is decomposed into coordinates [1, 0, 2] because it is on
the node 1 (node dimension), on the socket 0 (socket dimension)

and on the core 2 (core dimension). If the initial rank numbering

does not enumerate all cores before going to the next socket of the

same node and then the next node (like on Figure 1), the obtained

coordinates will not correspond to those of the core and will break

the remaining of the reordering algorithm.

With the hierarchy ℎ, the coordinates 𝑐 of a rank value, and

a permutation function 𝜎 , we can get a new rank value 𝑟 with

Algorithm 1 Get coordinates of a rank number

Inputs: ℎ : hierarchy, 𝑟 : rank

Output: 𝑐 : coordinates

1: 𝑐 ← []
2: for 𝑖 = |ℎ | − 1 to 0 do

3: 𝑐 [𝑖] = 𝑟 % ℎ[𝑖] ⊲ Modulo operation

4: 𝑟 = 𝑟 // ℎ[𝑖] ⊲ Integer division

5: end for

Algorithm 2 Compute a rank from coordinates

Inputs: ℎ : hierarchy, 𝑐 : coordinates, 𝜎 : permutation

Output: 𝑟 : rank

1: 𝑟 ← 0

2: 𝑓 ← 1

3: for 𝑖 = 0 to |ℎ | − 1 do
4: 𝑟 = 𝑟 + 𝑐 [𝜎 [𝑖]] × 𝑓

5: 𝑓 = 𝑓 × ℎ[𝜎 [𝑖]]
6: end for

Table 1: Examples of different orders, applied to rank 10 (de-

composed into coordinates [1, 0, 2]), on a hierarchy J2, 2, 4K.

Order

Permuted

coordinates

Permuted

hierarchy

New rank

[0, 1, 2] [1, 0, 2] J2, 2, 4K 9

[0, 2, 1] [1, 2, 0] J2, 4, 2K 5

[1, 0, 2] [0, 1, 2] J2, 2, 4K 10

[1, 2, 0] [0, 2, 1] J2, 4, 2K 12

[2, 0, 1] [2, 1, 0] J4, 2, 2K 6

[2, 1, 0] [2, 0, 1] J4, 2, 2K 10

Equation (2):

𝑟 = 𝑐𝜎 (0) +
|ℎ |−1∑︁
𝑖=1

𝑐𝜎 (𝑖)

𝑖−1∏
𝑗=0

ℎ𝜎 (𝑗) . (2)

The permutation function 𝜎 : J0, |ℎ |K ↦→ J0, |ℎ |K defines in which

order the different levels of the hierarchy will be enumerated. Al-

gorithm 2 computes the rank value following Equation (2).

Permutations (also called orders in this paper) are noted like

[2, 0, 1], which means 𝜎 (0) = 2, 𝜎 (1) = 0 and 𝜎 (2) = 1. The inverse

of Algorithm 1 is Algorithm 2 applied with the order [2, 1, 0] (for
a level hierarchy with 3 levels). For a hierarchy with 𝑛 levels (i.e.,

|ℎ | = 𝑛), there are 𝑛! different orders. Table 1 provides an example

to show the impact of different orders applied to the initial rank 10:

as described in Algorithm 2, the permutation is used to change the

order of both coordinates and hierarchy levels. Figure 2 illustrates

the different orders on the same hierarchy and initial ranks than on

Figure 1 (only reordered ranks are represented for more readability).

w is [2, 1, 0] (cf. Figure 2f), as previously mentioned.

3.2 First Use Case: Rank Reordering in MPI

Thismixed-radix decomposition can be used to reorder ranks ofMPI

processes in the MPI_COMM_WORLD communicator. It is more difficult

407

SC-W 2023, November 12–17, 2023, Denver, CO, USA Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, and Ioannis VardasSC-W 2023, November 12–17, 2023, Denver, CO, USA Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, and Ioannis Vardas

0 4 8 12

2 6 10 14

1 5 9 13

3 7 11 15

(a) Order [0, 1, 2]
cyclic:cyclic

0 2 4 6

8 10 12 14

1 3 5 7

9 11 13 15

(b) Order [0, 2, 1]
cyclic:block

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

(c) Order [1, 0, 2]
Not possible

0 2 4 6

1 3 5 7

8 10 12 14

9 11 13 15

(d) Order [1, 2, 0]
block:cyclic

0 1 2 3

8 9 10 11

4 5 6 7

12 13 14 15

(e) Order [2, 0, 1]
plane=4

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(f) Order [2, 1, 0]
block:block

Figure 2: All possible orders for a J2, 2, 4K hierarchy. Numbers represent reordered ranks of processes in MPI_COMM_WORLD;
processes with the same color belong to the same subcommunicator. Below each order is the value to pass to the Slurm

--distribution option to achieve the same rank mapping; order [1, 0, 2] cannot be achieved with the use of this option.

new rank in this communicator. The reordered rank is computed

by applying Algorithm 2 on the coordinates of the process rank in

MPI_COMM_WORLD, obtained with Algorithm 1. Then, the application

can use this new communicator instead of MPI_COMM_WORLD. Thus,
this method may require modifications in existing applications. The

second method is to use a rankfile, a file describing on which core

should be mapped which process with the given MPI_COMM_WORLD
rank. This method is transparent for applications, since the rank of

each MPI process in the MPI_COMM_WORLD has already its reordered

value. However, rankfiles are not available with all MPI launchers.

Our reordering algorithm needs a hierarchy description. The hi-

erarchy information passed to the decomposition algorithm should

reflect the actual hardware hierarchy of the system executing the

MPI application. Thus, the number of levels in the hierarchy and

the size of each level can be gathered with tools such as hwloc [4] or
directly with MPI routines, by splitting communicators according

to the hardware hierarchy [6]. However, it can also be interesting

to manually provide a hierarchy that can include more or less levels

than in the reality. Adding a fake level (e.g., a socket containing
16 cores can be faked as containing 2 components with 8 cores

each) allows to explore more ordering possibilities. Although it is

not exploited in the present work, the hierarchy can also include

levels outside of nodes, like cabinets or the topology of the network,

especially if it is a tree. The two constraints regarding the hierarchy

are (1) the product of all numbers describing the hierarchy must

be equal to the number of MPI processes, and (2) this hierarchy

of the system must be homogeneous: it cannot be used for MPI

applications running on a mix of compute nodes with different

topologies, e.g., a set of compute nodes with 32 cores and others

with 48. Hence, including the network hierarchy in the hierarchy

description requires more constraints: the allocated compute nodes

must be contiguous leaves of the network tree and their number

has to be equal to the total number of nodes plugged to the selected

switches (i.e., if the full hierarchy description is J2, 3, 16, 2, 2, 8K
with the first three numbers describing the network hierarchy, the

number of compute nodes has to be 2 × 3 × 16 = 96) and the com-

pute nodes have to entirely fill all selected switches (i.e., selected

switches cannot contain compute nodes that are not part of our

job).

Once MPI_COMM_WORLD has reordered ranks, subcommunicators

can be created, for instance by taking as color the quotient of

the division of the reordered rank in MPI_COMM_WORLD by the size

of child communicators. According to the order used to reorder

ranks, processes belonging to same new subcommunicators will

be more or less spread across all compute nodes or packed inside

a single level of the hierarchy. The different colors in Figure 2

represent four different subcommunicators of size 4, where the

numbers correspond to the reordered ranks of each MPI process

in MPI_COMM_WORLD. One can notice how changing the order can

map the same subcommunicator to different cores, because of the

different rank numbering of the global communicator.

3.3 Characterizing Orderings

As illustrated by Figure 2, different orders can give similar mappings

of communicators. For instance, with orders [2, 0, 1] and [2, 1, 0]
communicators containing ranks 0, 1, 2, 3 and 12, 13, 14, 15 are

mapped onto the same cores, and communicators containing ranks

4, 5, 6, 7 and 8, 9, 10, 11 only exchange the sockets they are mapped

to. If there is no inter-communicator communications, exchanging

the mapping of communicators in these two configurations will not

change performance of communications: being mapped on a socket

of the first or the second compute node does not change anything

to communications done inside a socket. Thus, orders [2, 0, 1] and
[2, 1, 0] can be considered as similar and evaluating performance

with both of them can be redundant since they will exhibit the

same performance (as long as there is no inter-communicator com-

munications). Orders [0, 1, 2] and [1, 0, 2] look also similar, but the

order of ranks inside subcommunicators is different. This difference

can impact performance of collective operations, as it will be seen

further in Section 4.1.

Intuitively visualizing how an order maps subcommunicators

can be difficult only from the order. We propose two metrics to

characterize the obtained mapping: the ring cost and the percentages
of process pairs per level.

Ring cost. This metric helps to understand how rank numbers

are assigned to processes belonging to a subcommunicator. It is

computed as the cost of a ring communication pattern. For example,

in a communicator with four processes, the ring cost is the total

duration of data transmission from rank 0 to rank 1, then from rank

1 to rank 2, and so on until rank 4 receives the data. The communica-

tion cost between two processes depends on their relative position

in the hierarchy: if they are inside the same lowest hierarchy level

(e.g., a NUMA node), the communication cost is 1. However, if the

Figure 2: All possible orders for a J2, 2, 4K hierarchy. Numbers represent reordered ranks of processes in MPI_COMM_WORLD;
processes with the same color belong to the same subcommunicator. Below each order is the value to pass to the Slurm

--distribution option to achieve the same rank mapping; order [1, 0, 2] cannot be achieved with the use of this option.

to reorder smaller communicators, since they may contain only a

subset of processes and not be spread on the whole system, making

some hierarchy levels in the mixed-radix base useless, and there is

no guarantee the initial rank numbering in any other communicator

than MPI_COMM_WORLD respects the conditions of Algorithm 1.

Reordering MPI_COMM_WORLD can be done in two ways. The first

method creates a new communicator containing all processes (i.e.,

all processes have the same color) by calling MPI_Comm_split
with the reordered rank as the key, to specify for each process its

new rank in this communicator. The reordered rank is computed

by applying Algorithm 2 on the coordinates of the process rank in

MPI_COMM_WORLD, obtained with Algorithm 1. Then, the application

can use this new communicator instead of MPI_COMM_WORLD. Thus,
this method may require modifications in existing applications. The

second method is to use a rankfile, a file describing on which core

should be mapped which process with the given MPI_COMM_WORLD
rank. This method is transparent for applications, since the rank of

each MPI process in the MPI_COMM_WORLD has already its reordered

value. However, rankfiles are not available with all MPI launchers.

Our reordering algorithm needs a hierarchy description. The hi-

erarchy information passed to the decomposition algorithm should

reflect the actual hardware hierarchy of the system executing the

MPI application. Thus, the number of levels in the hierarchy and

the size of each level can be gathered with tools such as hwloc [4] or
directly with MPI routines, by splitting communicators according

to the hardware hierarchy [6]. However, it can also be interesting

to manually provide a hierarchy that can include more or less levels

than in the reality. Adding a fake level (e.g., a socket containing
16 cores can be faked as containing 2 components with 8 cores

each) allows to explore more ordering possibilities. Although it is

not exploited in the present work, the hierarchy can also include

levels outside of nodes, like cabinets or the topology of the network,

especially if it is a tree. The two constraints regarding the hierarchy

are (1) the product of all numbers describing the hierarchy must

be equal to the number of MPI processes, and (2) this hierarchy

of the system must be homogeneous: it cannot be used for MPI

applications running on a mix of compute nodes with different

topologies, e.g., a set of compute nodes with 32 cores and others

with 48. Hence, including the network hierarchy in the hierarchy

description requires more constraints: the allocated compute nodes

must be contiguous leaves of the network tree and their number

has to be equal to the total number of nodes plugged to the selected

switches (i.e., if the full hierarchy description is J2, 3, 16, 2, 2, 8K
with the first three numbers describing the network hierarchy, the

number of compute nodes has to be 2 × 3 × 16 = 96) and the com-

pute nodes have to entirely fill all selected switches (i.e., selected

switches cannot contain compute nodes that are not part of our

job).

Once MPI_COMM_WORLD has reordered ranks, subcommunicators

can be created, for instance by taking as color the quotient of

the division of the reordered rank in MPI_COMM_WORLD by the size

of child communicators. According to the order used to reorder

ranks, processes belonging to same new subcommunicators will

be more or less spread across all compute nodes or packed inside

a single level of the hierarchy. The different colors in Figure 2

represent four different subcommunicators of size 4, where the

numbers correspond to the reordered ranks of each MPI process

in MPI_COMM_WORLD. One can notice how changing the order can

map the same subcommunicator to different cores, because of the

different rank numbering of the global communicator.

3.3 Characterizing Orderings

As illustrated by Figure 2, different orders can give similar mappings

of communicators. For instance, with orders [2, 0, 1] and [2, 1, 0]
communicators containing ranks 0, 1, 2, 3 and 12, 13, 14, 15 are

mapped onto the same cores, and communicators containing ranks

4, 5, 6, 7 and 8, 9, 10, 11 only exchange the sockets they are mapped

to. If there is no inter-communicator communications, exchanging

the mapping of communicators in these two configurations will not

change performance of communications: being mapped on a socket

of the first or the second compute node does not change anything

to communications done inside a socket. Thus, orders [2, 0, 1] and
[2, 1, 0] can be considered as similar and evaluating performance

with both of them can be redundant since they will exhibit the

same performance (as long as there is no inter-communicator com-

munications). Orders [0, 1, 2] and [1, 0, 2] look also similar, but the

order of ranks inside subcommunicators is different. This difference

can impact performance of collective operations, as it will be seen

further in Section 4.1.

Intuitively visualizing how an order maps subcommunicators

can be difficult only from the order. We propose two metrics to

408

Using Mixed-Radix Decomposition to Enumerate Computational Resources of Deeply Hierarchical Architectures SC-W 2023, November 12–17, 2023, Denver, CO, USA

characterize the obtained mapping: the ring cost and the percentages
of process pairs per level.

Ring cost. This metric helps to understand how rank numbers

are assigned to processes belonging to a subcommunicator. It is

computed as the cost of a ring communication pattern. For example,

in a communicator with four processes, the ring cost is the total

duration of data transmission from rank 0 to rank 1, then from rank

1 to rank 2, and so on until rank 4 receives the data. The communica-

tion cost between two processes depends on their relative position

in the hierarchy: if they are inside the same lowest hierarchy level

(e.g., a NUMA node), the communication cost is 1. However, if the

communication has to cross several hierarchy level (e.g., one level

when the sender and receiver processes are on different NUMA

nodes, but still inside the same socket), the communication cost

increases by 1 for each level it has to cross. When the ring cost is

low, it means ranks are assigned sequentially (processes inside the

same hierarchy levels get contiguous rank numbers) and the ring

communication pattern benefits from locality. On the contrary, if

the ring cost is high, ranks are assigned in a more round-robin fash-

ion and communications in the ring pattern always cross several

levels of the hierarchy. For example, in Figure 2, considering the

orders [0, 1, 2] and [1, 0, 2], the communicator containing ranks 0,

1, 2, 3 is mapped with both orders on the same set of cores, but the

cores have different ranks inside this subcommunicator: the order

[0, 1, 2] has a ring cost of 9 and the order [1, 0, 2] has a ring cost

of 7.

Percentages of process pairs per level. This metric represents

the percentage of process pairs of a communicator that commu-

nicate inside each level of the hierarchy. For each level, process

pairs communicating inside the level are counted, excluding process

pairs fitting into a smaller level of the hierarchy. For example, on

Figure 2, for the order [2, 1, 0], the percentages are [100, 0, 0]: all
pairs of processes in a subcommunicator can communicate inside

the lowest level of the hierarchy. For the order [1, 0, 2], the percent-
ages are [0, 33.3, 66.7]: none of the processes pairs belonging to a

subcommunicator can communicate by staying inside the lowest

level, one third of the pairs have to cross only one level and two

thirds have to cross two levels. This set of percentages helps to

quantify how communicators are mapped on available resources:

if percentages for the lower levels of the hierarchy are high (like

for the order [2, 1, 0]), it means the mapping is packed: processes
belonging to the same communicator cover a minimum of higher

level resources (e.g., a minimum of compute nodes) and feature

high locality; on the contrary, if percentages for the higher levels

are high (like for order [1, 0, 2]), it means the mapping is spread: the
set of processes belonging to a communicator covers the maximum

of resources (e.g., one process per compute node).

Both metrics are independent: the ring cost can distinguish two

orders with the same percentages of process pairs per level.

3.4 Second Use Case: Add More Distributions

for Slurm

Commands of the Slurm job scheduler have an option

--distribution to specify which cores should be selected

to execute jobs. It is possible to change the distribution policy of

two hierarchy levels: at the compute node level or socket level.

The two main distribution policies are block: all cores of a compute

node (or a socket) are filled with job processes before going to the

next compute node (or a socket); and cyclic: cores are selected in a

round-robin fashion. Captions of rank mappings in Figure 2 show

the policies that can be used to achieve presented rank mappings.

The main limitation of this --distribution option is the pos-

sible levels of hierarchy to apply a distribution policy: only the

compute node and the socket levels are available. It is not possible

to change process distribution in other hierarchy levels, such as

NUMA node, L3 cache or even fake levels like explained previously.
When a Slurm job uses all cores of granted compute nodes, it

is possible to use rank reordering inside the MPI application, such

as explained in Section 3.2. However, when the number of MPI

processes is lower than the total number of cores available on

granted compute nodes (e.g., the job uses only half of the core

per compute node), rank reordering can still be done in the MPI

application, but the cores where processes are mapped are already

chosen by Slurm.

It is possible to instruct Slurm which cores to use on each

compute node with the option --cpu-bind=map_cpu:list, where
list is an explicit comma-separated list of core physical IDs. This

option applies to all compute nodes. The order of core IDs in the list

has an impact on the MPI rank mapping. The list can be generated

with Algorithm 3: after computing the number of cores per com-

pute nodes (Lines 2 to 5), it iterates over all cores and keeps cores

selected by the permutation 𝜎 , by applying Algorithms 1 and 2. By

manually providing the hierarchy ℎ to Algorithm 3, we are able to

consider any level of the hierarchy, extending Slurm’s capabilities.

Algorithm 3 Generate list of cores for --cpu-bind=map_cpu

Inputs: ℎ : hierarchy of one compute node, 𝜎 :

permutation, 𝑛 : number of cores to use

Output: 𝑙 : list of core physical IDs

1: 𝑙 ← []
2: 𝑁 ← 1 ⊲ Will be the total number of cores on a node

3: for 𝑖 = 0 to |ℎ | − 1 do
4: 𝑁 = 𝑁 × ℎ[𝑖]
5: end for

6: for 𝑐 = 0 to 𝑁 − 1 do
7: 𝑟 ← ComputeNewRank(ℎ, 𝑐, 𝜎) ⊲ Apply Alg. 1 and 2

8: if 𝑟 < 𝑛 then

9: 𝑙 [𝑟] ← 𝑐 ⊲ Core 𝑐 will be on 𝑟 th position in the array 𝑙

10: end if

11: end for

For applications that do not use all cores of compute nodes, the

mixed-radix decomposition technique can be used for two distinct

steps: (1) selecting cores and (2) reordering the MPI ranks. For the

first step, Algorithm 3 produces, in some cases, the same set of

cores in a different order, leading to a different MPI rank mapping.

One could choose to keep only distinct sets of cores and then apply

MPI rank reordering, as explained in Section 3.2. Yet, this would

lead to more combinations to evaluate. The hierarchy used for the

second step has also to match the hierarchy formed by the set of

cores chosen in the first step. For example, with 2 compute nodes

409

SC-W 2023, November 12–17, 2023, Denver, CO, USA Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, and Ioannis Vardas

as on Figure 1, if the first step selects all cores of the first socket on

both nodes, the hierarchy for the second step will be J2, 4K; if the
first step selects two cores per socket, the hierarchy will be J2, 2, 2K.
Since the depth of these two hierarchies is different, the number of

possible orders for reordering MPI ranks is also different.

4 EVALUATION

We evaluated the impact of our enumeration algorithmwith custom

micro-benchmarks, a real-world application and a conjugate gradi-

ent benchmark. To generate all possible orders for a given hierarchy

(i.e., all permutations 𝜎 of |ℎ | elements), we use Heap’s algorithm [8]

and the Python function itertools.permutations().

Machine descriptions. We conducted our experiments on two

clusters: Hydra and LUMI . Hydra is our local cluster, consisting

of 32 compute nodes with two 16-core Intel Xeon Gold 6130F

CPUs (2.1GHz), with 96 GB of RAM, which are interconnected

with two Intel Omni-Path HFI Silicon 100 Series network inter-

faces. Unless stated otherwise, only one NIC is used to mimic a

standard cluster setup. For Hydra, we describe its hierarchy as

Jnumber of compute nodes, 2, 2, 8K: each compute node has two

sockets and we insert a fake level to split the 16 cores per socket

into two groups and thus explore more mapping possibilities

(sub-NUMA clustering is disabled). LUMI is a Finnish HPE Cray

supercomputer, where the nodes that we used have two AMD

EPYC 7763 CPUs at 2.45 GHz with 64 cores each, 256 GB of

RAM is partitioned in 8 NUMA nodes and each NUMA node

has two L3 caches. The compute nodes are interconnected with a

HPE Slingshot-11 200 Gbps network. LUMI ’s hierarchy is noted

Jnumber of compute nodes, 2, 4, 2, 8K. Hyperthreads are disabled
on Hydra and are not used on LUMI . We used OpenMPI 4.1.4 with

gcc 10.2 on Hydra and Cray flavors of MPICH 8.1.23 with clang
15 on LUMI .

4.1 Micro-benchmarks

4.1.1 Description. We evaluated the impact of different rank re-

orderings on the performance of collective operations executed in

subcommunicators. The experimental protocol is the following:

(1) Reorder ranks of MPI_COMM_WORLD in a new communicator.

(2) Create several subcommunicators, all containing the same

number of processes.

(3) In the first subcommunicator only, measure the performance

of the specified collective operation.

(4) Finally, in all subcommunicators simultaneously, execute the

specified collective operation and measure its performance.

Rank reordering and subcommunicator creation are performed

as explained in Section 3.2: process ranks in MPI_COMM_WORLD are
reordered according to the chosen order in a new communicator,

then this communicator is split using the color reordered_rank
% subcomm_size. We distinguish the case when either only one

communicator or all communicators perform collective operations

simultaneously to evaluate the performance difference according

to the number of processes communicating simultaneously.

All kinds of collective operations can be evaluated with this

protocol, but we choose to evaluate only non-rooted collectives

(MPI_Alltoall, MPI_Allreduce and MPI_Allgather), since with

rooted collectives (such as MPI_Bcast or MPI_Reduce), the choice
of the root process can have an impact on performance and would

add another dimension to the results. Moreover, non-rooted collec-

tive operations are usually more communication-intensive, thus

they are good candidate to evaluate their performance according

to MPI rank mapping. Due to lack of space, we present in this pa-

per mostly results for MPI_Alltoall operation; other results are
available online [23]. The choice of the algorithm to execute these

collective operations (e.g., Bruck, pair-wise, etc.) is left free to the

MPI implementation: we do not force a specific algorithm to be

always used (results with a fixed algorithm show similar trends).

To measure performance of these collective operations, they are

executed until a defined time period has elapsed (0.5 s for these

experiments), to reach a steady state between all processes. The

initial synchronization between processes to start the time window

is done with a call to MPI_Barrier. Even if it is not the most precise

way, we believe that the duration of the time window mitigates

the possible extra delay introduced by this method. The number of

iterations of the collective operations executed by each communi-

cator, as well as the actual duration of the time window are used to

compute the average duration of one collective call.

4.1.2 Results. In the following figures, the size indicated on

the 𝑥-axis is the amount of data involved in the collective,

i.e., size of the communicator × count × sizeof(datatype)
(here the used MPI datatype is MPI_BYTE) for MPI_Alltoall,
MPI_Allreduce, and MPI_Allgather. The bandwidth on the𝑦-axis
is computed as this amount of data divided by the average duration

of one collective operation. In each figure, the left plot represents

performance when only one subcommunicator (the ‘first’ one, con-

taining the lowest process rank values of MPI_COMM_WORLD, i.e., blue
communicators depicted on Figure 2) executes the benchmarked

operation, the right one when all subcommunicators execute simul-

taneously the operation. The plotted curves show the average of

bandwidths reported by all processes with rank 0 in each subcom-

municators. Error areas are bounded by the first and last deciles

among averages reported by all subcommunicators (hence, there is

no error area on plots with only one communicator). To ease the

reading of the figures, only a subset of possible orders are presented,

other orders perform similarly to the orders shown here. Legend

items show the permutation used to reorder ranks, as well as the

ring cost and percentages of process pairs per topology level for

one communicators in the specified order (cf. Section 3.3).

Figure 3 shows the performance of MPI_Alltoall operations

on 16 Hydra nodes with 16 MPI processes per communicator. When

there is only one subcommunicator executing the collective opera-

tion, the most spread order [0, 1, 2, 3], mapping each process of the

subcommunicator on a different compute node, gives the highest

bandwidth of 7731 MB/s with a data amount of 3.8 MB (i.e., each

process contributes 245 KB to the collective operation). When 32

subcommunicators simultaneously execute MPI_Alltoall opera-
tions, this order gives the worst performance (not exceeding 360

MB/s) and the best mapping is now [3, 2, 1, 0], the most packed one

(all 16 MPI processes belonging to the same subcommunicator are

mapped inside the same socket), giving a maximum bandwidth of

3527 MB/s. The rank order inside subcommunicators has no impact

on performance of MPI_Alltoall: orders [1, 3, 2, 0] and [3, 1, 0, 2]

410

Using Mixed-Radix Decomposition to Enumerate Computational Resources of Deeply Hierarchical Architectures SC-W 2023, November 12–17, 2023, Denver, CO, USA

map processes on the same resources (percentages of process pairs

per level are the same) but assign MPI ranks in different orders

(ring costs are 45 and 17 respectively), yet they present the same

performance. We observe similar behaviors on Figure 4, which uses

only 4 subcommunicators, but with 128 processes each.

Similar observations can be made on Figure 5, depicting the

performance of MPI_Alltoall operation on 16 LUMI nodes, with
16 processes per communicator. For data size larger than 8 MB, the

best order is [0, 1, 2, 3, 4], yet for data sizes between 2 and 8 MB, less

spread orders [1, 2, 3, 0, 4] and [3, 2, 1, 4, 0] give superior bandwidth.
The performance results of MPI_Allreduce on 16 Hydra nodes

(Figure 6) and MPI_Allgather on 16 LUMI nodes (Figure 7) show
that both communicator mapping and rank order inside communi-

cators impact the bandwidth of these collective operations.

4.1.3 Common Observations. Although the results on the evalu-

ated platforms are all different and it is difficult to generalize, some

common observations can be made.

Packedmappings have constant performance regardless the

number of simultaneous communicators executing collective oper-

ations. Orders that benefit from locality by mapping processes of

the same communicator on a low number of higher-level resources

(such as [3, 2, 1, 0] on figures 3 and 4) exhibit the same performance

when only one communicator executes a MPI_Alltoall operation

or when all communicators execute this operation simultaneously.

This is expected: with a packed order, communicators use all re-

sources of the lowest levels (e.g., all cores of a NUMA node), hence

additional communicators will not share resources of lowest levels

and will not disturb other communicators (i.e., the next communi-

cator will use the next NUMA node and will not share the NUMA

node already taken by another communicator).

Spread mappings are usually better for single small com-

municators.As observed in all left plots of previous figures, spread

mappings (like [0, 1, 2, 3] on Hydra, or [0, 1, 2, 3, 4] on LUMI) are
better when only one small communicator executes MPI_Alltoall
operations. It may not reach the peak performance, but these map-

pings are less impacted by contention for larger messages, as shown

on Figure 5.

Rank ordering inside communicators can have an im-

pact, even for non-rooted collective operations. Especially

for MPI_Allgather and MPI_Allreduce, the enumeration order

inside a communicator to assign ranks can have an impact on the

performance of the collective operation. See for instance Figure 7:

orders [0, 1, 2, 3, 4] and [1, 2, 3, 0, 4] map communicators to the same

set of cores (same percentages of process pairs per level), but rank

orders inside communicators are different (different ring costs).

We can observe the order [1, 2, 3, 0, 4] allows higher performance

for MPI_Allgather operations than [0, 1, 2, 3, 4]. The same hap-

pens with MPI_Allreduce on 16 Hydra nodes with 64 processes

per communicators (Figure 6): orders [0, 1, 2, 3] and [2, 1, 0, 3] have
similar communicator mappings but different rank ordering inside

communications and they lead to different performance, mostly

due to the collective algorithm.

4.2 A Real-world Application: Splatt

To test the impact of our rank reordering algorithm, we were look-

ing for proxy applications that use non-rooted collective operations

in subcommunicators that are smaller than MPI_COMM_WORLD. Pos-
sible candidates are listed in literature that studies the use of MPI

features by proxy applications [14, 22]. Unfortunately, all of these

applications either do not use small communicators, do not employ

the collective operationswe are interested in, or they do not perform

enough communication to demonstrate significant performance

differences based on the communicator mapping.

Splatt (The Surprisingly ParalleL spArse Tensor Toolkit [21]) is a
C library and a set of command-line utilities to apply operations on

tensors, using non-rooted collective operations on small subcommu-

nicators. We measured the performance of the Canonical Polyadic

Decomposition (CPD) operation according to the order used to

reorder ranks of MPI_COMM_WORLD. Indeed, we follow a black-box

approach: we do not modify the application, instead, we change

the rank mapping of MPI_COMM_WORLD in a transparent way for

the application. Splatt uses several communicators with different

sizes and the characteristics of these communicators depend on

several factors: the input tensor, the number of MPI processes, etc.

Therefore, we evaluate the performance of each order.

Figure 8 shows durations of the CPD operation obtained with all

possible rank reorderings on 32 Hydra nodes with one MPI process

per core and nell-1 as input tensor, from the Frostt collection [20].

The order [1, 3, 2, 0] is the mapping that Slurm would setup by de-

fault on Hydra, identical to --distribution=block:cyclic. Bars
represent the average of 3 runs and error bars highlight the best

and the worst durations. In the configuration of Figure 8a, only

one network interface is used. The Slurm default mapping is one of

the inefficient rank mappings: the CPD operation lasts 32.58 s. The

best mapping is [0, 3, 1, 2] with 22.09 s, improving the default Slurm

mapping by 32%. With two network interfaces per compute node

(Figure 8b), all orders are in average faster than with only one NIC

(22.9 s vs. 27.4 s), the worst mapping is [2, 3, 0, 1] (26.25 s) and the

best one is still [0, 3, 1, 2] (19.79 s), improving the worst mapping by

25 % and the Slurm one by 19 %. The general performance improve-

ment when using two NICs instead of only one is expected: it allows

higher network bandwidth and thus network communications are

less a bottleneck for the application performance.

To confirm performance differences are actually coming from

time saved on MPI operations, we profiled Splatt execution with

mpisee [25], a profiling tool focusing on communicators. mpisee
shows us that during an execution on 32 nodes with 1024 MPI pro-

cesses and the tensor nell-1 as input data, Splatt uses 3 commu-

nicators containing all 1024 MPI processes, 8 communicators with

256 processes each and 64 communicators containing 16 processes.

Most time-consuming collective operations executed inside these

communicators are MPI_Alltoallv, MPI_Bcast, MPI_Allreduce,
MPI_Reduce, MPI_Alltoall, MPI_Scan, and MPI_Gather. The du-
rations of the CPD operation are mainly correlated with the du-

ration of MPI_Alltoallv operations executed on communicators

with 16 processes, with a Pearson’s correlation coefficient of 0.98

and 0.92 when respectively one and two network interfaces are

used. This strong correlation shows the performance difference of

CPD operations when different rank orders are used originates from

the duration of MPI_Alltoallv operations, which are impacted by

rank mapping, as the previous micro-benchmarks of the similar

MPI_Alltoall operation showed.

411

SC-W 2023, November 12–17, 2023, Denver, CO, USA Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, and Ioannis Vardas

16 KB 128 KB 1 MB 8 MB 64 MB 512 MB
Size

0

2000

4000

6000

8000

Ba
nd

wi
dt

h
(M

B/
s)

1 simultaneous comm.

16 KB 128 KB 1 MB 8 MB 64 MB 512 MB
Size

32 simultaneous comm. Enumeration order
(ring cost - % of process pairs per level)

0-1-2-3 (60 - 0.0, 0.0, 0.0, 100.0)
2-1-0-3 (40 - 0.0, 6.7, 13.3, 80.0)
1-3-0-2 (45 - 46.7, 0.0, 53.3, 0.0)
1-3-2-0 (45 - 46.7, 0.0, 53.3, 0.0)
(Slurm default mapping)
3-1-0-2 (17 - 46.7, 0.0, 53.3, 0.0)
3-2-1-0 (16 - 46.7, 53.3, 0.0, 0.0)

Figure 3: 16 Hydra nodes, 512 MPI processes, MPI_Alltoall, 16 processes per communicator, OpenMPI 4.1.4

16 KB 128 KB 1 MB 8 MB 64 MB 512 MB
Size

250

500

750

1000

1250

Ba
nd

wi
dt

h
(M

B/
s)

1 simultaneous comm.

16 KB 128 KB 1 MB 8 MB 64 MB 512 MB
Size

4 simultaneous comm. Enumeration order
(ring cost - % of process pairs per level)

0-1-2-3 (508 - 0.8, 1.6, 3.1, 94.5)
2-1-0-3 (348 - 0.8, 1.6, 3.1, 94.5)
1-3-0-2 (388 - 5.5, 0.0, 6.3, 88.2)
3-1-0-2 (164 - 5.5, 0.0, 6.3, 88.2)
1-3-2-0 (384 - 5.5, 6.3, 12.6, 75.6)
(Slurm default mapping)
3-2-1-0 (152 - 5.5, 6.3, 12.6, 75.6)

Figure 4: 16 Hydra nodes, 512 MPI processes, MPI_Alltoall, 128 processes per communicator, OpenMPI 4.1.4

16 KB 128 KB 1 MB 8 MB 64 MB 512 MB
Size

0

2500

5000

7500

10000

12500

15000

Ba
nd

wi
dt

h
(M

B/
s)

1 simultaneous comm.

16 KB 128 KB 1 MB 8 MB 64 MB 512 MB
Size

128 simultaneous comm.
Enumeration order
(ring cost - % of process pairs per level)

0-1-2-3-4 (75 - 0.0, 0.0, 0.0, 0.0, 100.0)
1-2-3-0-4 (60 - 0.0, 6.7, 40.0, 53.3, 0.0)
3-2-1-4-0 (38 - 0.0, 6.7, 40.0, 53.3, 0.0)
3-4-0-1-2 (30 - 46.7, 53.3, 0.0, 0.0, 0.0)
4-3-2-1-0 (16 - 46.7, 53.3, 0.0, 0.0, 0.0)
(SLURM default mapping)

Figure 5: 16 LUMI nodes, 2048 MPI processes, MPI_Alltoall, 16 processes per communicator, CrayMPI 8.1.23

16 KB 128 KB 1 MB 8 MB 64 MB 512 MB
Size

0
10000
20000
30000
40000
50000
60000

Ba
nd

wi
dt

h
(M

B/
s)

1 simultaneous comm.

16 KB 128 KB 1 MB 8 MB 64 MB 512 MB
Size

8 simultaneous comm. Enumeration order
(ring cost - % of process pairs per level)

0-1-2-3 (252 - 0.0, 1.6, 3.2, 95.2)
2-1-0-3 (172 - 0.0, 1.6, 3.2, 95.2)
1-3-0-2 (192 - 11.1, 0.0, 12.7, 76.2)
3-1-0-2 (80 - 11.1, 0.0, 12.7, 76.2)
1-3-2-0 (190 - 11.1, 12.7, 25.4, 50.8)
(Slurm default mapping)
3-2-1-0 (74 - 11.1, 12.7, 25.4, 50.8)

Figure 6: 16 Hydra nodes, 512 MPI processes, MPI_Allreduce, 64 processes per communicator, OpenMPI 4.1.4

412

Using Mixed-Radix Decomposition to Enumerate Computational Resources of Deeply Hierarchical Architectures SC-W 2023, November 12–17, 2023, Denver, CO, USA

16 KB 128 KB 1 MB 8 MB 64 MB 512 MB
Size

0

500

1000

1500

Ba
nd

wi
dt

h
(M

B/
s)

1 simultaneous comm.

16 KB 128 KB 1 MB 8 MB 64 MB
Size

8 simultaneous comm.
Enumeration order
(ring cost - % of process pairs per level)

0-1-2-3-4 (1275 - 0.0, 0.4, 2.4, 3.1, 94.1)
1-2-3-0-4 (1035 - 0.0, 0.4, 2.4, 3.1, 94.1)
3-4-0-1-2 (555 - 2.7, 3.1, 0.0, 0.0, 94.1)
3-2-1-4-0 (669 - 2.7, 3.1, 18.8, 25.1, 50.2)
4-3-2-1-0 (305 - 2.7, 3.1, 18.8, 25.1, 50.2)
(SLURM default mapping)

Figure 7: 16 LUMI nodes, 2048 MPI processes, MPI_Allgather, 256 processes per communicator, CrayMPI 8.1.23

0-
1-

2-
3

0-
1-

3-
2

0-
2-

1-
3

0-
2-

3-
1

0-
3-

1-
2

0-
3-

2-
1

1-
0-

2-
3

1-
0-

3-
2

1-
2-

0-
3

1-
2-

3-
0

1-
3-

0-
2

1-
3-

2-
0

2-
0-

1-
3

2-
0-

3-
1

2-
1-

0-
3

2-
1-

3-
0

2-
3-

0-
1

2-
3-

1-
0

3-
0-

1-
2

3-
0-

2-
1

3-
1-

0-
2

3-
1-

2-
0

3-
2-

0-
1

3-
2-

1-
0

Order

0
5

10
15
20
25
30
35

Du
ra

tio
n

(s
)

Slurm
default mapping

(a) With 1 NIC per compute node

0-
1-

2-
3

0-
1-

3-
2

0-
2-

1-
3

0-
2-

3-
1

0-
3-

1-
2

0-
3-

2-
1

1-
0-

2-
3

1-
0-

3-
2

1-
2-

0-
3

1-
2-

3-
0

1-
3-

0-
2

1-
3-

2-
0

2-
0-

1-
3

2-
0-

3-
1

2-
1-

0-
3

2-
1-

3-
0

2-
3-

0-
1

2-
3-

1-
0

3-
0-

1-
2

3-
0-

2-
1

3-
1-

0-
2

3-
1-

2-
0

3-
2-

0-
1

3-
2-

1-
0

Order

0
5

10
15
20
25
30
35

Du
ra

tio
n

(s
)

Slurm
default mapping

(b) With 2 NICs per compute node

Figure 8: Impact of process mapping of Splatt executions on 32 Hydra nodes (1024 MPI processes, OpenMPI 4.1.4)

4.3 Strong Scaling of Conjugate Gradient

In this experiment, we evaluate the strong scaling on one LUMI
compute node of the conjugate gradient (CG) benchmark provided

by the NAS Parallel Benchmark [1]. While keeping a constant

problem size, we increase the number of MPI processes and change

their mapping with the technique described in Section 3.4.

The results are depicted in Figure 9. For each tested number of

MPI processes, all enumerations using a different set of cores or

in a different order are evaluated. Bars correspond to the median

duration of 5 executions and error bars delimit the best and worst

durations. For a given number of MPI processes, orders with bars

of the same color use the same set of cores, but with a different MPI

rank mapping. Next to each set of bars using the same set of cores,

we put the core IDs, to better understand how the processes are

mapped. For instance, with 2 processes, order [0, 1, 2, 3] selects the
first core of each socket; with 8 processes, [0, 1, 2, 3] and [1, 0, 2, 3]
(the first blue ones) select the first core of each NUMA node.We also

highlight the default mapping Slurm performs and display what

should be the application runtime if perfect scaling was achieved.

With 4 processes, the best performance is reached with order

[2, 1, 0, 3], which uses one core per L3 cache, in the L3 caches of the

two first NUMA nodes of the first socket. With 8 processes, the best

performance is again achieved with orders using one core per L3

cache of the first socket: [1, 2, 0, 3] and [2, 1, 0, 3]. With 16 processes,

the best strategy is to use two cores per L3 cache of the first socket

(orders [1, 2, 3, 0] and [2, 1, 3, 0]). From 16 processes, CG does not

scale anymore, the parallel efficiency decreases: the duration of the

perfect scaling is never reached, regardless of the mapping. One

can also notice that the default Slurm mapping exhibits almost

always the longest duration. Especially, using more processes and

an inefficient process mapping can degrade the performance com-

pared to fewer processes and the best mapping: For instance, with

8 processes and order [3, 0, 1, 2], CG lasts 22.5 s while with only 4

processes and order [2, 1, 0, 3] it lasts 17.3 s; even worse, with 32

processes and the default Slurm mapping, it lasts 9.4 s while with

only 8 processes, the best order [1, 2, 0, 3] gives a duration of 8.1 s.

This shows that CG can achieve better performance using only one

fourth of the cores with a better mapping.

The set of selected cores has more impact on performance than

the MPI rank ordering inside a set of cores: for example, with 32

cores, the duration with the first 6 blue orders, using the first two

cores of each L3 cache, ranges between 3.2 s and 4.6 s while with

the green orders, using the first 16 cores of both sockets, it ranges

between 12.1 s and 14.4 s. Note that in this experiment, as explained

in Section 3.4, we use mixed-radix decomposition only to select

cores and keep orders with same sets of cores with different rank

mappings. Keeping only distinct set of cores and then test different

rank mappings would lead to more combinations to evaluate.

This experiment shows an application of our mixed-radix decom-

position technique to select cores on a compute node, with more

413

SC-W 2023, November 12–17, 2023, Denver, CO, USA Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, and Ioannis Vardas

0-1-2-3
1-0-2-3
2-0-1-3
3-0-1-22

pr
oc

. 0,64
0,16

0,8
0,1

0-1-2-3
0-2-1-3
2-0-1-3
0-3-1-2
1-0-2-3
2-1-0-3
2-3-0-1
3-0-1-2

4
pr

oc
.

0,16,64,80
0,8,64,72
0,1,64,65

0,16,32,48
0,8,16,24

0,1,8,9
0-3

0-1-2-3
1-0-2-3
0-2-1-3
2-0-1-3
0-2-3-1
2-0-3-1
0-3-1-2
1-2-0-3
2-1-0-3
1-3-0-2
2-3-0-1
3-0-1-2

8
pr

oc
.

0,16,32,48,64,80,96,112

0,8,16,24,64,72,80,88

0,1,8,9,64,65,72,73
0-3,64-67

0,8,16,24,32,40,48,56
0,1,16,17,32,33,48,49

0-3,8-11
0-7

0-1-2-3
0-2-1-3
1-0-2-3
1-2-0-3
2-0-1-3
2-1-0-3
0-1-3-2
1-0-3-2
0-2-3-1
2-0-3-1
0-3-1-2
3-0-1-2
1-2-3-0
2-1-3-0
1-3-0-2
2-3-0-1
3-2-0-1
3-1-0-2

16
 p

ro
c.

0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120

0,1,16,17,32,33,48,49,64,65,80,81,96,97,112,113

0-3,8-11,64-67,72-75

0-7,64-71

0,1,8,9,16,17,24,25,32,33,40,41,48,49,56,57
0-3,16-19,32-35,48-51

0-15
0-7,16-23

0-1-2-3
0-2-1-3
1-0-2-3
1-2-0-3
2-0-1-3
2-1-0-3
0-1-3-2
1-0-3-2
0-2-3-1
0-3-2-1
2-0-3-1
2-3-0-1
3-0-2-1
3-2-0-1
0-3-1-2
3-0-1-2
1-2-3-0
2-1-3-0
1-3-0-2
3-1-0-2
2-3-1-0
3-2-1-0

32
 p

ro
c.

0,1,8,9,16,17,24,25,32,33,40,41,48,49,56,57,64,65,
72,73,80,81,88,89,96,97,104,105,112,113,120,121

0-3,16-19,32-35,48-51,64-67,80-83,96-99,112-115

0-15,64-79

0-7,16-23,64-71,80-87

0-3,8-11,16-19,24-27,32-35,40-43,48-51,56-59

0-7,16-23,32-39,48-55

0-31

0-1-2-3
0-2-1-3
1-0-2-3
1-2-0-3
2-0-1-3
2-1-0-3
0-1-3-2
0-3-1-2
1-0-3-2
1-3-0-2
3-0-1-2
3-1-0-2
0-2-3-1
0-3-2-1
2-0-3-1
2-3-0-1
3-0-2-1
3-2-0-1
1-2-3-0
1-3-2-0
2-1-3-0
2-3-1-0
3-1-2-0
3-2-1-0

64
 p

ro
c.

0-3,8-11,16-19,24-27,32-35,40-43,48-51,56-59,64-67,
72-75,80-83,88-91,96-99,104-107,112-115,120-123

0-7,16-23,32-39,48-55,64-71,80-87,96-103,112-119

0-31,64-95

0-63

0 5 10 15 20 25 30 35
Duration (s)

0-1-2-3
0-1-3-2
0-2-1-3
0-2-3-1
0-3-1-2
0-3-2-1
1-0-2-3
1-0-3-2
1-2-0-3
1-2-3-0
1-3-0-2
1-3-2-0
2-0-1-3
2-0-3-1
2-1-0-3
2-1-3-0
2-3-0-1
2-3-1-0
3-0-1-2
3-0-2-1
3-1-0-2
3-1-2-0
3-2-0-1
3-2-1-0

12
8

pr
oc

.

0-127

Perfect scaling
Slurm default mapping

Figure 9: Strong scaling of the CG benchmark (class C) on

one LUMI compute node (CrayMPI 8.1.23), with different

mappings. Different color bars represent the different sets of

used cores; numbers on the right of bars are used core IDs.

possible policies (in our case the policies are the orders) than Slurm

permits.

5 CONCLUSION

As modern HPC systems feature deeper hierarchies, we propose

a technique that enumerates the computing units, considers the

hierarchical topology of the system and follows a specified order.

We present two use cases: reordering MPI ranks of an application

and selecting cores for Slurm jobs that do not use all cores per

compute node. Both use cases allow to explore more mapping

possibilities than the one provided by options of MPI job launchers

(MPI implementation or Slurm), by taking into account all hierarchy

levels the user provides.

Micro-benchmarks executing collective operations in subcom-

municators show that packed mappings have constant performance

regardless of the number of communicators simultaneously execut-

ing the collective operation, spread mappings are better for small

communicators when only one communicator executes the collec-

tive operation and rank reordering inside communicators can have

an impact on performance of non-rooted collectives. Regarding

real-world applications, our rank-reordering algorithm allowed to

find a mapping that outperforms by 32 % the default mapping setup

by Slurm for the Splatt application. The evaluation of a conjugate

gradient showed that carefully selecting a few cores can give better

performance than inefficient mapping with more cores.

The goal of this paper was to highlight possible applications

of mixed-radix decomposition to mapping problems in HPC. The

presented use cases could be directly integrated into MPI imple-

mentations or job schedulers. MPI runtimes could offer the possible

rank orderings as process sets available as MPI sessions, introduced

in the Version 4 of the MPI standard. Slurm could provide options

with a feature similar to --distribution, but which accepts a

hierarchy and an order to select cores and/or attribute MPI ranks.

Since the goal of this work is not to try all possible enumerations,

future directions regarding this work fall mainly into two categories:

understanding performance and automatically applying the best

order. Micro-benchmarks showed that performance with different

orders can vary according to the evaluated cluster: we would like

to better understand which application properties and cluster char-

acteristics impact the performance obtained with different orders.

This knowledge could help to predict which order is the most suit-

able for the used system and applications. We plan to implement

strategies in MPI libraries to reorder ranks and create communi-

cators (especially by splitting them) in a hierarchy-sensitive way,

to achieve better parallel performance. Finally, we are interested

in making our algorithm more general and dynamic: being able

to follow an order for a set of communicators and another order

for remaining communicators and to have subcommunicators with

different sizes.

Software Availability. A public companion
1
contains the instruc-

tions to reproduce our study.

1
https://gitlab.tuwien.ac.at/philippe.swartvagher/paper-mpi-rank-reordering-r13y,

archived on https://www.softwareheritage.org/ with the ID

swh:1:dir:a14ef5edfeeb677e396c9986dc90eae0042c03cd

414

https://gitlab.tuwien.ac.at/philippe.swartvagher/paper-mpi-rank-reordering-r13y
https://www.softwareheritage.org/

Using Mixed-Radix Decomposition to Enumerate Computational Resources of Deeply Hierarchical Architectures SC-W 2023, November 12–17, 2023, Denver, CO, USA

ACKNOWLEDGMENTS

This work was partially supported by the Austrian Science Fund

(FWF): project P 31763-N31. We acknowledge the EuroHPC Joint

Undertaking for awarding this project access to the EuroHPC super-

computer LUMI, hosted by CSC (Finland) and the LUMI consortium

through a EuroHPC Regular Access call.

REFERENCES

[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,

R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,

V. Venkatakrishnan, and S. K. Weeratunga. 1991. The NAS Parallel Bench-

marks—Summary and Preliminary Results. In Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing (Albuquerque, NewMexico, USA) (Supercomputing
’91). 158–165. https://doi.org/10.1145/125826.125925

[2] Abhinav Bhatele, Todd Gamblin, Steven H. Langer, Peer-Timo Bremer, Erik W.

Draeger, Bernd Hamann, Katherine E. Isaacs, Aaditya G. Landge, Joshua A. Levine,

Valerio Pascucci, Martin Schulz, and Charles H. Still. 2012. Mapping Applications

with Collectives over Sub-Communicators on Torus Networks. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis (Salt Lake City, Utah) (SC ’12). IEEE Computer Society Press,

Washington, DC, USA, Article 97, 11 pages.

[3] Amanda Bienz, Luke Olson, andWilliamGropp. 2019. Node-Aware Improvements

to Allreduce. In 2019 IEEE/ACM Workshop on Exascale MPI (ExaMPI). 19–28.
https://doi.org/10.1109/ExaMPI49596.2019.00008

[4] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,

Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. 2010.

hwloc: a Generic Framework for Managing Hardware Affinities in HPC Appli-

cations. In PDP 2010 - The 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Computing, IEEE (Ed.). https://doi.org/10.1109/

PDP.2010.67

[5] Nicolas Denoyelle, Emmanuel Jeannot, Swann Perarnau, Brice Videau, and Pete

Beckman. 2021. Narrowing the Search Space of Applications Mapping on Hierar-

chical Topologies. In PMBS21 Workshop - 12th IEEE International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance Computer
Systems, In conjunction with SC21. https://doi.org/10.1109/PMBS54543.2021.00018

[6] Brice Goglin, Emmanuel Jeannot, Farouk Mansouri, and Guillaume Mercier.

2018. Hardware topology management in MPI applications through hierarchical

communicators. Parallel Comput. 76 (2018), 70–90. https://doi.org/10.1016/j.

parco.2018.05.006

[7] William D. Gropp. 2019. Using node and socket information to implement MPI

Cartesian topologies. Parallel Comput. 85 (2019), 98–108. https://doi.org/10.1016/

j.parco.2019.01.001

[8] B. R. Heap. 1963. Permutations by Interchanges. Comput. J. 6, 3 (Nov. 1963),

293–298. https://doi.org/10.1093/comjnl/6.3.293

[9] Torsten Hoefler, Emmanuel Jeannot, and Guillaume Mercier. 2014. An Overview

of Process Mapping Techniques and Algorithms in High-Performance Computing.

InHigh Performance Computing on Complex Environments, Emmanuel Jeannot and

Julius Zilinskas (Eds.). Wiley, 75–94. https://doi.org/10.1002/9781118711897.ch5

[10] Torsten Hoefler and Marc Snir. 2011. Generic Topology Mapping Strategies for

Large-Scale Parallel Architectures. In Proceedings of the International Conference
on Supercomputing (Tucson, Arizona, USA) (ICS ’11). 75–84. https://doi.org/10.

1145/1995896.1995909

[11] Emmanuel Jeannot and Richard Sartori. 2023. An introspection monitoring

library to improve MPI communication time. The Journal of Supercomputing (16

Feb 2023). https://doi.org/10.1007/s11227-023-05084-8

[12] Krishna Kandalla, Hari Subramoni, Abhinav Vishnu, and Dhabaleswar K. Panda.

2010. Designing topology-aware collective communication algorithms for large

scale InfiniBand clusters: Case studies with Scatter and Gather. In 2010 IEEE
International Symposium on Parallel & Distributed Processing, Workshops and Phd
Forum (IPDPSW). 1–8. https://doi.org/10.1109/IPDPSW.2010.5470853

[13] Nicholas Karonis, Bronis Supinski, Ian Foster, Ewing Lusk, and John Bresnahan.

2000. Exploiting Hierarchy in Parallel Computer Networks to Optimize Collec-

tive Operation Performance. Proceedings of the International Parallel Processing
Symposium, IPPS (03 2000). https://doi.org/10.1109/ipdps.2000.846009

[14] Benjamin Klenk and Holger Fröning. 2017. An Overview ofMPI Characteristics of

Exascale Proxy Applications. In High Performance Computing: 32nd International
Conference, ISC High Performance 2017, Julian M. Kunkel, Rio Yokota, Pavan Balaji,

and David Keyes (Eds.). Frankfurt, Germany, 217–236. https://doi.org/10.1007/

978-3-319-58667-0_12

[15] D.E. Knuth. 1997. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms. Addison-Wesley.

[16] Oh-Kyoung Kwon, Ji-hoon Kang, Seungchul Lee, Wonjung Kim, and Junehwa

Song. 2023. Efficient Task-Mapping of Parallel Applications Using a Space-Filling

Curve. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (Chicago, Illinois) (PACT ’22). 384–397. https://doi.org/

10.1145/3559009.3569657

[17] Shigang Li, Yunquan Zhang, and Torsten Hoefler. 2018. Cache-Oblivious MPI

All-to-All Communications Based on Morton Order. IEEE Transactions on Parallel
and Distributed Systems 29, 3 (2018), 542–555. https://doi.org/10.1109/TPDS.2017.

2768413

[18] Guillaume Mercier and Emmanuel Jeannot. 2011. Improving MPI Applications

Performance on Multicore Clusters with Rank Reordering. In Proceedings of the
18th European MPI Users’ Group Conference on Recent Advances in the Message
Passing Interface (EuroMPI’11). 39–49.

[19] Seyed H. Mirsadeghi and Ahmad Afsahi. 2016. Topology-Aware Rank Reordering

for MPI Collectives. In 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 1759–1768. https://doi.org/10.1109/IPDPSW.

2016.139

[20] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and

George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse Tensors
and Tools. http://frostt.io/

[21] Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George Karypis.

2015. SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication. In

2015 IEEE International Parallel and Distributed Processing Symposium. 61–70.

https://doi.org/10.1109/IPDPS.2015.27

[22] Nawrin Sultana, Martin Rüfenacht, Anthony Skjellum, Purushotham Bangalore,

Ignacio Laguna, and Kathryn Mohror. 2021. Understanding the use of message

passing interface in exascale proxy applications. Concurrency and Computation:
Practice and Experience 33, 14 (2021). https://doi.org/10.1002/cpe.5901

[23] Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, and Ioannis Vardas.

2023. Results of MPI mixed-radix decomposition reordering algorithm. https:

//doi.org/10.5281/zenodo.8272970

[24] J.L. Träff. 2002. Implementing the MPI Process Topology Mechanism. In SC
’02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing. 28–28.
https://doi.org/10.1109/SC.2002.10045

[25] Ioannis Vardas, Sascha Hunold, Jordy I. Ajanohoun, and Jesper Larsson Träff.

2022. mpisee: MPI Profiling for Communication and Communicator Structure. In

2022 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 520–529. https://doi.org/10.1109/IPDPSW55747.2022.00092

[26] Jin Zhang, Jidong Zhai, Wenguang Chen, and Weimin Zheng. 2009. Process

Mapping for MPI Collective Communications. In Proceedings of the 15th In-
ternational Euro-Par Conference on Parallel Processing (Euro-Par ’09). 81–92.
https://doi.org/10.1007/978-3-642-03869-3_11

415

https://doi.org/10.1145/125826.125925
https://doi.org/10.1109/ExaMPI49596.2019.00008
https://doi.org/10.1109/PDP.2010.67
https://doi.org/10.1109/PDP.2010.67
https://doi.org/10.1109/PMBS54543.2021.00018
https://doi.org/10.1016/j.parco.2018.05.006
https://doi.org/10.1016/j.parco.2018.05.006
https://doi.org/10.1016/j.parco.2019.01.001
https://doi.org/10.1016/j.parco.2019.01.001
https://doi.org/10.1093/comjnl/6.3.293
https://doi.org/10.1002/9781118711897.ch5
https://doi.org/10.1145/1995896.1995909
https://doi.org/10.1145/1995896.1995909
https://doi.org/10.1007/s11227-023-05084-8
https://doi.org/10.1109/IPDPSW.2010.5470853
https://doi.org/10.1109/ipdps.2000.846009
https://doi.org/10.1007/978-3-319-58667-0_12
https://doi.org/10.1007/978-3-319-58667-0_12
https://doi.org/10.1145/3559009.3569657
https://doi.org/10.1145/3559009.3569657
https://doi.org/10.1109/TPDS.2017.2768413
https://doi.org/10.1109/TPDS.2017.2768413
https://doi.org/10.1109/IPDPSW.2016.139
https://doi.org/10.1109/IPDPSW.2016.139
http://frostt.io/
https://doi.org/10.1109/IPDPS.2015.27
https://doi.org/10.1002/cpe.5901
https://doi.org/10.5281/zenodo.8272970
https://doi.org/10.5281/zenodo.8272970
https://doi.org/10.1109/SC.2002.10045
https://doi.org/10.1109/IPDPSW55747.2022.00092
https://doi.org/10.1007/978-3-642-03869-3_11

	Abstract
	1 Introduction
	2 Related work
	3 Enumeration Algorithm
	3.1 Mixed-radix Decomposition
	3.2 First Use Case: Rank Reordering in MPI
	3.3 Characterizing Orderings
	3.4 Second Use Case: Add More Distributions for Slurm

	4 Evaluation
	4.1 Micro-benchmarks
	4.2 A Real-world Application: Splatt
	4.3 Strong Scaling of Conjugate Gradient

	5 Conclusion
	Acknowledgments
	References

