
journal of the mechanical behavior of biomedical materials 139 (2023) 105664

A
1

Contents lists available at ScienceDirect

Journal of the Mechanical Behavior of Biomedical Materials

journal homepage: www.elsevier.com/locate/jmbbm

Research paper

The predictive ability of a QCT-FE model of the proximal femoral stiffness
under multiple load cases is strongly influenced by experimental
uncertainties
Morteza Amini a,∗, Andreas Reisinger b, Alexander Synek a, Lena Hirtler c, Dieter Pahr b,a

a Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
b Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
c Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090, Vienna, Austria

A R T I C L E I N F O

Keywords:
Biomechanics
Femur
Finite element modeling
Parametric study
Experimental uncertainties

A B S T R A C T

Despite significant improvements in terms of the predictive ability of Quantitative Computed Tomography
based Finite Element (QCT-FE) models in estimating femoral strength (fracture load and stiffness), no
substantial clinical adoption of this method has taken place to date. Narrowing the wide variability of FE results
by standardizing the methodology and validation protocols, as well as reducing the uncertainties in the FEA
process have been proposed as routes towards improved reliability. The aim of this study was to: First, validate
a QCT-FE model of proximal femoral stiffness in multiple stance load cases, and second, using a parametric
approach, determine the influence of select experimental and modeling parameters on the predictive ability
of our model. Ten fresh frozen human femoral samples were tested in neutral stance, 15◦ adducted and 15◦

abducted load cases. Voxel-based linear-elastic QCT-FE models of the samples were generated to predict the
models’ stiffness values in all load cases. The base FE models were validated against the experimental results
using linear regression. Thirty six deviated models were created using the minimum and maximum values of
experiment-based ‘‘plausible range’’ for 18 parameters in 4 categories of embedding, loading, material, and
segmentation. The predictive ability of the models were compared in terms of the coefficient of determination
(𝑅2) of the linear regression between the measured and predicted stiffness values in all load cases. Our
model was capable of capturing 90% of the variation in the experimental stiffness of the samples in neutral
stance position (𝑅2 = 0.9, concordance correlation coefficient (CCC) = 0.93, percent root mean squared error
(RMSE%) = 8.4%, slope and intercept not significantly different from unity and zero, respectively). Embedding
and loading categories strongly affected the predictive ability of the models with an average percent difference
in 𝑅2 of 4.36% ± 2.77 and 2.96% ± 1.69 for the stance-neutral load case, respectively. The performance of
the models were significantly different in adducted and abducted load cases with their 𝑅2 dropping to 71%
and 70%, respectively. Similarly, off-axes load cases were affected by the parameters differently compared to
the neutral load case, with the loading parameter category imposing more than 10% difference on their 𝑅2,
larger than all other categories. We also showed that automatically selecting the best performing plausible
value for each parameter and each sample would result in a perfectly linear correlation (𝑅2 > 0.99) between
the ‘‘tuned’’ model’s predicted stiffness and experimental results. Based on our results, high sensitivity of
the model performance to experimental parameters requires extra diligence in modeling the embedding
geometry and the loading angles since these sources of uncertainty could dwarf the effects of material
modeling and image processing parameters. The results of this study could help in improving the robustness
of the QCT-FE models of proximal femur by limiting the uncertainties in the experimental and modeling
steps.
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1. Introduction

Hip fracture is one of the most consequential musculoskeletal events
with 50% of the patients unable to walk after the fracture and 30%
morbidity rate after one year (Brauer et al., 2009). Added to the
high prevalence of osteoporosis (1 in 3 women and 1 in 5 men)
and the aging demography of the developed countries, it has been a
main target for biomechanical studies to improve the clinical fracture
risk assessment criteria using novel methods in the past couple of
decades (Lee et al., 2019; Bouxsein et al., 2020; Falcinelli and Whyne,
2020). In the absence of any direct in situ bone strength assessment
techniques, surrogate metrics are employed to formulate fracture risk
predictions (Bouxsein and Delmas, 2008). The current clinical stan-
dard is based on DXA-BMD measurements. It has been shown that
image-based finite element models can outperform this metric signif-
icantly (Falcinelli and Whyne, 2020; Viceconti et al., 2018). However,
there are still no clinically approved FE models being used in daily
practice.

FE-assisted prediction of hip fracture risk in comparison with meth-
ods based on purely morphological parameters requires substantially
more endeavor, and consequently, is exposed to more sources of uncer-
tainty and error. Several imaging modalities including micro computed
tomography (𝜇CT), high resolution peripheral quantitative CT (HR-
pQCT), QCT, dual-energy X-ray absorptiometry (DXA), and magnetic
resonance imaging (MRI) have been used for FE modeling of bone (Fal-
cinelli and Whyne, 2020; Rajapakse et al., 2020). High resolution
variants (𝜇CT and HR-pQCT) are not clinically available and have very
restricted in vivo use cases (Panyasantisuk et al., 2018). DXA images,
due to their 2-D nature, are limited in terms of the amount of data
they can provide for 3D FE models (Dall’Ara et al., 2016). Despite
its non-radiating nature, and conceptually proven ability to provide
adequate resolution and accuracy in measuring bone mineral density
and structural properties, substantially high costs and very limited
clinical availability of MRI machines have prevented them to play a
significant role in bone biomechanics studies (Zhang et al., 2021; Haque
et al., 2018; Chou and LeBoff, 2017). With wide clinical accessibility
and adequate in vivo image quality, QCT scans have been the main
basis for image-based FE modeling of bone (Sas et al., 2020). Since the
initial pioneering works in this field a few decades ago, the accuracy
and precision of FE models in mimicking the physiological behavior
of bone has been significantly improved. In particular, recent works
have reported high predictive ability values for fracture load (𝑅2 =
0.64–0.96) and overall stiffness (𝑅2 = 0.55–0.82) of femur (Sas et al.,
2022; Rossman et al., 2016; Miura et al., 2017; Helgason et al., 2016).
Despite these advances, there are almost no clinical applications of FE
models to date. The failure to transition from lab to the bed side has
been attributed to lack of standards and substantial complexity in every
aspect of the FE modeling process and hence the wide variability in
results (Bouxsein et al., 2020; Falcinelli and Whyne, 2020).

For an FE model to be deemed valid, the gold standard is to assess
its results against in vitro mechanical experiments. A general work flow
for FE model development and validation is depicted in Fig. 1. In the
experimental phase, fresh-frozen samples go through preparation and
imaging steps with probable storage intervals in between. Specimens
are then embedded and fitted in accordance to the data collection
methods (applying strain gauges, painted with speckles, fitted with
markers, etc.). Specific test setups are utilized to achieve the target
loading configuration. For the FE modeling phase, the model geometry,
mesh, and material properties are generated and assigned based on
the sample-specific QCT image data. The boundary conditions and
loading are prescribed according to the experimental protocol. Models
are validated by comparing their predicted outcomes to the experimen-
tally measured values. Every step of the way, choices are to be made
from a multitude of available options with some level of flexibility
and uncertainties are introduced into the final results. Since the FE
2

models are developed in accordance with the experimental process, the
extent to which their predictions can be generalized is limited. A study
targeting the predictive ability of established FE models across multiple
laboratories for surface strain measurements of a specific unseen femur
revealed that although each model might have achieved a high score
in their respective validation study, a significantly large range of errors
were present in their predictions of the unseen strains (Kluess et al.,
2019).

Several studies have investigated the sensitivity of femur’s strength
measures (fracture load (𝐹u) and stiffness (𝐾)) to different parameters.

ge and sex was shown to have significant effect on the 𝐹u and
𝐾 (Patton et al., 2019; Miura et al., 2017). It was shown that CT scan-
ning parameters and conditions such as calibration methods, scanner
settings, scanner filters, and sample environment could alter accuracy
of bone FE models, specifically FE predictions of femoral strength and
stiffness (Benca et al., 2020; Dragomir-Daescu et al., 2015). Different
loading directions and configurations (i.e. stance and fall) have resulted
in different strength predictions of femur (Bessho et al., 2009; Wakao
et al., 2009). Loading rate has also been shown to be a predictive
factor for femoral strength (Askarinejad et al., 2019). In both stance and
fall configurations, definitions of the boundary conditions have been
shown to significantly affect the outcomes of the FE models of femoral
strength (Altai et al., 2019; Rossman et al., 2016). When it comes
to simulating the material behavior of the models, different material
mapping techniques and density-modulus relationships have led to
different predictions of the femoral strength (Helgason et al., 2016;
Wille et al., 2016). Other parameters such as mesh type and size, partial
volume effect, pathological conditions, etc. have also been investigated
in different studies (Falcinelli and Whyne, 2020; Bouxsein et al., 2020;
Lee et al., 2019; Mishra et al., 2022). The dominant approach of these
studies has been to report the predictive ability of their model and move
on to measure the resulted change in the predicted strength metric
due to the altered parameter choice. There are only a few examples in
which the predictive ability of the model was selected as the outcome
variable (Patton et al., 2019; Panyasantisuk et al., 2018; Alomari et al.,
2018).

In our previous study, we tried to provide a comparison for effect of
experimental parameters on the measured stiffness of proximal femoral
sample (Amini et al., 2021). As the next step, we wanted to develop and
validate a QCT-FE model based on the same samples and experimental
data. However, there was a lack of studies systematically addressing
the discrepancies between the superb level of performance of such FE
models during their validation phase and their subpar outcomes when
applied to unseen samples. Such information is necessary for making
progress in terms of defining standards in this field and increasing the
possibility of clinical use cases of these models. This study aimed to
validate a voxel-based QCT-FE model of the proximal femur for three
stance load cases and examine the influence of various sources of un-
certainty on its predictive ability of the overall sample stiffness through
parametric analysis. The selected parameters fall within four categories
of embedding, loading, material properties, and segmentation.

2. Methods & material

2.1. Experiments

An extensive description of the experimental procedure and setup
used in this study has been previously reported elsewhere (Amini et al.,
2021). Briefly:

Samples. Ten paired fresh frozen human femora were obtained and
stored at −23◦ in accordance with relevant guidelines (Center for
Anatomy and Cell Biology, Medical University of Vienna). The spec-
imens originated from voluntary body donations for scientific and
teaching purposes to the Center and were screened for lack of any
pathological disease (According to protocol approved by the ethics

committee of Karl Landsteiner University of Health Sciences) (Table 1).
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Fig. 1. (1) Fresh frozen samples are acquired from donor banks, (2) QCT images are taken from the samples in physiologically relevant conditions, (3E) Samples are prepared
by cleaning, alignment, and cutting, (4E) Samples are embedded to provide support sections and help with controlled BC and loading definition, (5E) Required means of data
collection are applied (SG, Speckles, Markers, etc.), (6E) Samples are fixed into the defined positions and configurations, (7E) Mechanical testing is performed, (3F) The model
geometry is extracted from the image data through various image processing steps, (4F) Generated volume is meshed, (5F) Material properties are mapped from the images to the
elements using certain material mapping algorithms and selected density-modulus relationships, (6F) Boundary conditions corresponding to the experimental setup or physiological
phenomenon are defined, (7F) Analysis is done according to defined material behavior, (8) Experimental (measured) and FE (predicted) results are compared to assess the validity
of the model.
Table 1
Information on donors of the samples. Both femora from each donor were tested (10
samples). Only samples with no pathological conditions were included in the study.

Donor ID Gender Age Height (m) Weight (kg)

#1 F 63 1.53 65.4
#2 F 69 1.67 49.3
#3 F 70 1.67 48.1
#4 M 78 1.71 72.0
#5 M 78 1.77 66.8

Prior to the experiments, samples were defrosted in room temperature
0.9% PBS (Phosphate-buffered saline) bath, removed of the soft tissue
and periosteum in the proximal region, aligned in the neutral stance
position using a custom-made rig, and cut to get a 15-cm sample length.
Finally, they were embedded in Polyurethane (PU) resin at the head,
trochanter, and shaft locations using potting setup (Fig. 2).

Imaging. QCT images of the samples were taken before the mechan-
ical tests (Toshiba Aquilion Prime, Toshiba Medical Systems Corp.,
Tokyo, Japan). Custom-made scan chambers capable of maintaining the
alignment of the samples and keeping them in paired position while
submerged in PBS solution were used (Fig. 3. Submerged samples were
placed in a vacuum chamber for 30 min to remove the air bubbles
(Trivac D8B; OC Oerlikon Management AG, Pfäffikon, Switzerland).
Scans were taken with 0.625 mm in-plane resolution and 0.25 mm slice
thickness (voltage: 120 kV, current: 150 mA). A three-rod hydroxya-
patite (HA) phantom (HA0, HA100, HA200) (QRM GmbH, Germany)
was placed underneath the chamber for calibration purposes . After
each sample was tested, 𝜇CT scans of it were taken using another
custom scan chamber which kept the sample in vertical alignment
while maintaining the sample hydration throughout the scanning span
(Skyscan 1173, Bruker, Belgium) (field of view: 120 × 150 mm, resolu-
tion: 30 μm, voltage: 130 kV, current: 60 mA, exposure: 580 ms, filter:
Al 1.0 mm) (Fig. 3).

Mechanical testing. The samples were fixed at the shaft region on a
5 degrees of freedom (DOF) (X, Y, Rx, Ry, Rz) tilting table keeping
3

Fig. 2. To achieve a neutral stance alignment, (a) the shaft axis was brought into
horizontal position by rotating the intact specimen around its shaft axis, (b) the femoral
head center was elevated until leveled with the distal mid-condylar line, and (c)
the mechanical axis was adducted 3◦ beyond the reference line. (d) A custom-made
alignment setup with two cross lasers were used. (e) The alignment was fixed on the
proximal portion by fixing a ring a 100 mm below the superior surface of the femur
and cut 50 mm below the ring. (f) PU resin was used to embed the samples at the
shaft, head, and trochanter regions.

them in the desired stance alignment. The table was fixed on a 30
kN electro-mechanical axial testing machine (Z030, ZwickRoell Ulm,
Germany). The loading plate was free to move in horizontal directions
against a flat ball-bearing support. A non-destructive loading regime
with 0.75 of the donor’s body weight at a 5 mm/sec rate, with no
pre-loading, was applied to the samples (Fig. 4). Each sample was
tested in neutral-stance, 15◦-abducted and 15◦-adducted orientations,
in a random order, to avoid systematic errors (Further details and
justifications for the experimental protocol could be found in a previous
publication (Amini et al., 2021))
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Fig. 3. (a) QCT: Samples were clamped in an aligned and paired configuration while
submerged in saline solution. (b) A sample slice of the QCT scan. (c) 𝜇CT: Each sample
was clamped in upright position in a custom chamber keeping it hydrated. (d) A sample
𝜇CT scan projection.

Fig. 4. Different parts of the mechanical testing setup. This setup was capable of testing
the samples in stance and fall configurations and with various alignments.

Data. The load–displacement data was captured directly from the test-
ing machine and the 6-axis load cell (Hottinger Baldwin Messtechnik
(HBM) GmbH, Germany). The transverse load data was used to monitor
4

Fig. 5. (a) CT images of the paired samples submerged in physiological solution,
(b) Each sample was cropped, scaled to 1 mm voxel size, calibrated using the
phantom linear equation, and segmented from the surrounding fluid and soft tissue,
(c) Embedding volumes were added using a combination of geometrical steps based on
the experimental protocol, (d) 𝜇CT images of the embedded samples were registered
with the CT-based volumes to fine-tune the embedding locations.

the integrity of the boundary conditions at the load introduction point.
No substantial peak shear forces (< 2 N) were recorded across all tests.

2.2. QCT-FE modeling

Image processing. The Hounsfield unit (HU) scale was converted to
equivalent bone mineral density (BMD) scale using the linear cali-
bration equation from the phantom. The most dense cortical bone
was assumed to have a 1200 mgHA/cc density (Chiang et al., 2018).
Samples were isolated from the paired scans. Using an automated
segmentation algorithm based on global threshold, image enhancement
and a morphological closing operations (Pahr and Zysset, 2009), sam-
ples were segmented from the surrounding fluid and chamber (Medtool
4.2, Dr. Pahr Ingenieurs e.U., Austria) (Fig. 5). Images were re-scaled
to acquire a 1 mm voxel size. Since the submerged embedding material
was invisible in our CT images, embedding volumes were added to
the segmented bones using geometrical transformations based on the
experimental protocol using medtool. The location and geometry of
the embedding volumes were cross-checked with down-scaled 𝜇CT
images of each embedded sample using 3D volume registration, and
any location/dimension inaccuracies were corrected accordingly (3D
slicer, slicer.org) (Fedorov et al., 2012) (Fig. 5).

Model generation. Images were converted to 8-bit gray-level format
with values between 0 and 250, keeping the remaining 251–255 gray
values for the embedding material. The Image voxels were directly
converted into linear hexahedron elements. The Young’s modulus (E
(MPa)) of the elements was directly mapped from the gray value
(GV) of the corresponding voxels using the power-law density-elasticity
relationship below, where 𝐸0 is assigned to the voxels with 100% bone
density (Daszkiewicz et al., 2016; Synek et al., 2015; Gross et al., 2012).
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Fig. 6. (a) A meshed volume with 1-mm linear brick elements. (b) Material was mapped directly from each voxel to the corresponding element using Eq. (1). (c) Boundary
conditions were defined according to the testing setup. Load was applied through a reference node coupled with contact nodes on the femoral head embedding sphere.
The Poisson’s ratio was set to 0.3 for all elements (Fig. 6):

𝐸 = 𝐸0 × 𝜌𝛼 = 10000 × ( GV
250.0

)1.63 (1)

Boundary conditions. The surface nodes of the shaft embedding cylin-
der, except for the top surface, were fixed in all translational and
rotational degrees of freedom. To apply the load, a contact area on the
femoral head embedding segment was defined. Preliminary contact FE
analyses of composite hemispheres (representing the embedded femoral
head) with 50 to 60 mm diameter and a steel plate resulted in a
contact radius of 1.6 to 1.8 mm. Given the 1-mm voxel size of the
model, a radius of 2 mm was chosen. To apply the load, a reference
node was defined at the center of the contact area. The contact nodes
were selected by positioning the contact area according to the sample
orientation and selecting the enclosed surface nodes of the femoral
head embedding sphere. The load was applied to the reference node
perpendicular to the contact area and equal to 0.75 of the donor’s body
weight. A kinematic coupling was defined between the reference and
contact nodes. The 15◦ adducted and abducted (tilted) load cases were
created by rotating the contact surface around the femoral head center
(Fig. 6).

Analysis. Input files were automatically generated using python scripts
in Medtool. Linear FE analyses were done in Abaqus (Simulia, Dassault
Systèmes, France) using 8 cores on an Linux server. Each job took
approximately 5 min.

Model validation. The measured and predicted values for the overall
proximal femoral stiffness of the 10 samples were compared to each
other in order to test the validity of the FE models. The experimental
stiffness was defined as the slope of the linear section of the load–
displacement curve recorded by the mechanical testing machine. Based
on preliminary experiments, the linear section was defined between
200 N and 400 N. Since the FE analyses were done using a linear elas-
tic material model, the numerical stiffness was predicted by dividing
applied load by the vertical displacement of the reference node:

𝐾FE = 𝐹
𝛥𝑍

(2)

where 𝐾FE stand for the numerical stiffness, 𝐹 is the applied load to
the reference node equal to 75% of each donor’s body weight, and 𝛥𝑍
represents the vertical displacement of the reference node.
5

2.3. Parametric structure

Outcome variable. The outcome variable of the study was the predictive
ability of the models. Predictive ability was defined as the coefficient
of determination (𝑅2) of the FE predicted vs experimentally measured
overall proximal femoral sample stiffness regression analysis.

Parameters. The parameters for which the sensitivity of the 𝑅2 was
tested are (Table 2):

• Embedding Location: Spatial positioning of the embedding spheres
and cylinder with respect to the sample’s coordinate system.

• Embedding Thickness: Thickness of embedding material along the
loading direction between bone and surface of the embedding
segment.

• Embedding Dimension: Radius of the embedding spheres and radius
and height of the shaft cylinder.

• Embedding Elastic Modulus: Young’s modulus of the embedding
material.

• Loading Angle: Angle of the applied load with respect to the
vertical axis in the stance neutral position.

• Contact Area: Radius of the contact area at the load introduction
site.

• Reference Node Location: Spatial positioning of the reference node
with respect to the sample’s coordinate system.

• 𝐸0: Bone tissue elastic modulus according to density-elasticity
relationship in Eq. (1).

• 𝛼: Calibration constant according to density-elasticity relationship
in Eq. (1).

• Calibration threshold: The density value assumed for the most
dense cortical bone in the calibration step.

• Segmentation threshold: The bone gray value threshold in the
segmentation step within the 0–250 range.

Parameters were grouped under categories and subcategories based on
relevance. For each parameter, a plausible deviation range was defined
based on the experience gained during the experimental process. In
each iteration, only one parameter was deviated from its baseline and
the subsequent FE models for all samples were solved. Hence, for each
parameter, in addition to the baseline model, two predicted stiffness
values for positive deviation and negative deviation were generated per
sample per load case. This resulted in 37 models per sample per load
case with a total of 1110 FE analyses. The 𝑅2 for predicted-measured
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Table 2
Parameter descriptions.

Category Parameter Deviation Notes

Embedding Embedding location ±2 mm X,Y,Z directions
Embedding Thickness ±2 mm Z direction
Embedding Dimensions ±2 mm Diameter
Embedding Elastic Modulus ±10% MPa

Loading Loading Angle ±2 degrees Abduction, Adduction
Contact Area ±2 mm Superior surface
Reference Node Location ±2 mm X,Y,Z directions

Material 𝐸0
a ±10% MPa

𝛼a ±10% –
Calibration thresholdb ±10% –

Segmentation Segmentation threshold ±2 (≃ ± 12𝐻𝑈) Within the re-sampled
gray value range of
0–250.

a𝐸0 and 𝛼 based on Eq. (1).
bThe density value assumed for the most dense cortical bone in the calibration step.

stiffness regression line of the deviated model was calculated for each
load case and for the pooled data of all three load cases.

Tuning effect. To investigate the effect of tuning the model on its
performance, we formed a 37 (models per sample) by 30 (10 samples
in 3 load cases) table of absolute differences between the measured and
predicted values of overall stiffness. For each sample and load case, we
selected the deviated model corresponding to the smallest value in the
table to create a ‘‘tuned’’ model. This allowed us to evaluate the extent
to which our model’s performance could be manipulated by our set of
parameters, while staying within their plausible range of values with
respect to the experimental results.

2.4. Statistical analysis

Linear regression was used to compare the predicted and measured
overall sample stiffness values. The slope, intercept, coefficient of de-
termination (𝑅2), root mean squared error (RMSE) of the prediction
, and RMSE normalized by the mean predicted stiffness (RMSE%) are
reported. A general linear hypothesis was used to test if the slope is
different from unity and intercept is different from zero, with p-values
< 0.05 (using regression analysis tool and Student t-test function in
Excel, Microsoft Inc., USA). Adjusted 𝑅2 was reported to account for the
difference in sample size between the pooled and isolated load cases.
To provide a more comprehensive evaluation of the agreement between
the model and experiment outcomes in the validation phase, Bland–
Altman plots and concordance correlation coefficient (CCC) were re-
ported as well. Bland–Altman plots allow visualization of the agreement
and identification of any trends or biases in the data, while the CCC
provides a summary statistic that can be easily compared across studies.
The effect of parameters was reported as the average percentage of
absolute difference between 𝑅2 of the two deviated models and the
baseline. Results are reported for each of the three load cases as well
as the pooled data.

3. Results

Validation. Example experimental load–displacement plots are shown
in Fig. 7. Linear regression analysis for the measured and predicted
values of the overall proximal femoral stiffness of the 10 samples using
the base model showed strong correlation for all load cases as well as
the pooled data. The strongest correlation was achieved in the neutral
stance load case where the model was able to account for 90% of the
variation in measured stiffness of the samples (𝑅2: 0.90, RMSE%: 8%,
slope and intercept of the regression line not significantly different from
one and zero, respectively.) (Table 3). The tilted load cases showed
6

Fig. 7. (a) Load–displacement plots for a sample in all three load cases based on
experimental results. (b) Overall stiffness of the samples were calculated based on the
linear section of the plots.

almost similar predictive ability with 𝑅2 = 0.71 & 0.70 for the adducted
and abducted cases, respectively. Pooling the data points for all three
load cases resulted in a high 𝑅2 of 0.87, and a regression line with slope
and intercepts significantly different from one and zero, respectively.
Fig. 8 shows the linear regression and Bland–Altman plots for all
cases. The concordance correlation analysis showed high accuracy and
precision for the stance neutral and pooled data, with moderate results
for the adducted and abducted load cases (CCC: 0.59–0.93) (Table 3).

Parametric analysis. Table 4 shows the effect of each parameter on
the overall stiffness of the samples in terms of the average absolute
percentage difference of the 𝑅2 between the base model and the
deviated models. In the neutral stance case, the embedding dimension
imposed the largest effect on the predicted stiffness values with 7.2%
difference between the 𝑅2 of deviated and baseline models. Loading
angle and contact area were the most influential parameters in case of
the adducted and abducted load cases, with 12.71% & 24.87% average
absolute percentage difference of the 𝑅2s, respectively. Averaging the
results for all three load cases per parameter resulted in the embedding
dimension having the largest effect on the 𝑅2 of the models equal to
13.22%. An alternative representation of these outcomes based on the
absolute difference in 𝑅2 between the base model and the deviated
models is available in the Appendix A.
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Table 3
Results of linear regression and concordance correlation analyses for the experimentally measured and FE
predicted overall sample stiffness for the 10 samples in three different stance load cases. The 𝑝 values are
reported in parentheses, with 0.05 as the significance threshold.

Neutral 15◦ adducted 15◦ abducted Pooled

𝑅2 0.90 (𝑝 < 0.01) 0.71 (𝑝 < 0.01) 0.70 (𝑝 < 0.01) 0.87 (𝑝 < 0.01)
Adjusted 𝑅2 0.89 0.67 0.66 0.87
Slope 0.86 (𝑝 = 0.19) 0.65 (𝑝 = 0.0501) 1.04 (𝑝 = 0.87) 0.81 (𝑝 = 0.01)
Intercept (N/mm) 354.63 (𝑝 = 0.11) 821.83 (𝑝 = 0.03) 203.86 (𝑝 = 0.48) 471.23 (𝑝 = 0.002)
CCC 0.93 0.79 0.59 0.89
RMSE (N/mm) 161.49 280.76 306.56 257.48
RMSE% 8.41 13.74 27.53 15.22
Table 4
Sensitivity of the FE model’s predictive ability to select parameters. The values are the average of absolute percentage difference
for all deviations under each parameter subcategory.

Category Parameter Loading direction

Neutral 15◦ adducted 15◦ abducted Pooled

Embedding

Embedding location 2.91% ± 5.74 7.94% ± 13.11 9.33% ± 14.29 4.74% ± 9.97
Embedding Thickness 6.1% ± 7.1 7.41% ± 8.1 8.61% ± 7.5 1.44% ± 2.18
Embedding Dimensions 7.2% ± 8.37 6% ± 7.68 17.57% ± 20.5 13.22% ± 15.72
Embedding Elastic Modulus 1.23% ± 0.17 3.4% ± 1.18 0.21% ± 0.3 1.15% ± 0

Loading
Loading Angle 1.11% ± 1.57 12.71% ± 7.63 1.43% ± 1.42 4.02% ± 4.06
Contact Area 3.33% ± 3.84 12.24% ± 8.97 24.87% ± 34.44 11.49% ± 13.94
Reference Node Location 4.43% ± 3.26 6.71% ± 6.14 6.1% ± 5.78 5.17% ± 3.45

Material
𝐸0

a 0% ± 0 1.41% ± 2 0.72% ± 1.01 0.57% ± 0.81
𝛼a 1.11% ± 0 0.71% ± 1 0.72% ± 1.01 0.57% ± 0.81
Calibration thresholdb 5.54% ± 0 2.82% ± 0 10.04% ± 0 4.6% ± 0

Segmentation Segmentation threshold 3.33% ± 4.7 0.71% ± 1 2.87% ± 2.03 0.57% ± 0.81

a𝐸0 and 𝛼 based on Eq. (1).
bThe density value assumed for the most dense cortical bone in the calibration step.
Table 5
The average effect of parameter categories on the model’s predictive ability.

Category Loading Direction

Neutral 15◦ adducted 15◦ abducted Pooled

Embedding 4.36% ± 2.77 6.19% ± 2.03 8.93% ± 7.09 5.14% ± 5.63
Loading 2.96% ± 1.69 10.55% ± 3.34 10.8% ± 12.4 6.9% ± 4.02
Material 2.22% ± 2.93 1.65% ± 1.08 3.83% ± 5.38 1.92% ± 2.32
Segmentation 3.33% ± 4.7 0.71% ± 1 2.87% ± 2.03 0.57% ± 0.81

Table 5 lists the parameter categories and their effects on the 𝑅2.
The embedding category presented the highest effect compared to the
rest of the parameter categories with an average of 4.36% difference
incurred in the 𝑅2 of the predicted and measured stiffness of the
10 samples in neutral case. The embedding dimension followed by
the thickness sub categories contributed the most. Between the head
and shaft locations, the head embedding was more influential across
all parameters. In tilted load cases however, the loading category of
parameters dominated the rest of the parameters with the loading angle
having the largest effect in both cases. The pooled data showed the
highest sensitivity to the loading category followed by the embedding.
In all four groups, the material and segmentation parameter categories
fell far behind the other two in terms of influencing the outcome results
(Table 5).

The predictive ability of the FE model was different based on the
loading direction (Fig. 8). Similarly, the parameter categories affect
the 𝑅2 of predicted vs measured stiffness differently based on the
loading direction (Fig. 9). There was an increase in the average percent
difference of 𝑅2 from the stance neutral alignment to stance-adducted
and stance-abducted alignments.

The 𝑅2 for the tuned model was 0.99 for all load cases with the slope
and intercept not significantly different from 1 and 0, respectively (𝑝 <
0.01) (Fig. 10). The same as for the parametric results, embedding and
loading categories were the determinant choices for the tuned model
with the most accurate stiffness predictions for each sample coming
from the deviated models in the loading and embedding categories.
7

4. Discussion

In this study, a QCT-based FE model of proximal femoral stiff-
ness was validated in three different stance loading direction. Using
a parametric approach, four categories of uncertainty sources were
investigated in terms of their effects on the predictive ability of the
model. The model’s performance and sensitivity to the parameters
was dependent on the loading direction, with the neutral stance case
showing the most robust results.

Based on the presented results, our voxel-based linear-elastic FE
model was able to capture 90% of the variation in the measured
proximal femoral samples’ stiffness in neutral stance loading direction.
The results of the linear regression analysis, Bland–Altman plots, and
concordance correlation analysis all pointed at strong accuracy and
precision of the model for this load case. The predictive ability of our
model is in the higher range of the stiffness prediction results in the
literature (Patton et al., 2019; Askarinejad et al., 2019; Panyasantisuk
et al., 2018; Miura et al., 2017; Rossman et al., 2016; Helgason et al.,
2016; Enns-Bray et al., 2016; Dragomir-Daescu et al., 2015; Dall’Ara
et al., 2013).

The parameters under the Embedding group induced the highest
average difference of 4.36% in the predictive ability of the neutral
model. Our results indicate that the QCT-FE models of proximal femoral
samples are most sensitive to the relative location of the embed-
ding volumes (specially the head semi-sphere), the thickness of the
embeddings along the loading axis, and the dimensions of the em-
bedding. Understanding the uncertainties in geometrical modeling of
the embedding volumes is particularly important when the embed-
ding is numerically added to the image-based FE model (Sas et al.,
2020; Patton et al., 2019; Miura et al., 2017; Rossman et al., 2016;
Dall’Ara et al., 2013). Since the typical embedding materials are much
softer than the cortical bone (PU resin: 1.36 GPa, PMMA: 3 GPa),
these sections highly influence the overall sample stiffness. Inaccurate
modeling of the embeddings could ultimately result in discarding the
stiffness measurements all together due to poor correlation with the
experiments (Haider et al., 2018). The option to omit the embedding
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Fig. 8. Linear regression and Bland–Altman plots for the measured and predicted
overall sample stiffness of the 10 samples in three stance load cases and pooled.

Fig. 9. Loading direction influences the sensitivity of the model to different parameter
categories.
8

Fig. 10. Automatically picking the plausible option for the parameter which resulted
in the best stiffness prediction for each sample generated a model with almost perfect
predictive ability. The same results were observed in all load cases. Here, the neutral
stance plot is shown as an example.

sections and focus on modeling only the bone portions, despite presence
of embedding segments on the samples during experimental measure-
ments, has shown to have significant effects on the model predictions
as well (Kluess et al., 2019).

The second most influential category was loading, with reference
load location and contact area having the largest effect on the models’
predictive ability (Table 5). In our model, the size of the loading area
was assigned based on preliminary simplified FE contact models using a
two-material hemisphere representing the femoral head and embedding
layer on a flat steel disk. Given the range of applied loads, head em-
bedding diameter and the composite structure of the sphere in contact
with the loading plate, a contact area diameter range between 3.2 and
3.6 mm was achieved. A 2 mm radius was assigned for all models
considering the 1 mm voxel size. The high sensitivity of the models’
predictive ability to loading area is in line with the previous studies on
effect of boundary conditions on femoral strength predictions (Rossman
et al., 2016). Yet plenty of ambiguity in loading area definition and
reference node location assignment is present in different modeling
examples (Hennicke et al., 2022; Altai et al., 2019; Haider et al., 2018).

According to our results, the predictive ability and sensitivity of the
FE models were affected by the loading direction. Linear regression
analysis and concordance correlation results were inferior for both
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adducted and abducted load cases almost to the same extent but only
slightly lower for the pooled data (𝑅2 ≃ 0.71 and 0.87, respectively). In
he same fashion, the tilted load cases suffered from higher sensitivity
n almost all parameter categories. Although a 𝑅2 of 0.7 is still within
he range of reported models in the literature (References mentioned
bove), the drop from the 0.9 value for neutral stance load case is of
ignificance. One major contributing factor was the voxel-based surface
f the model. As described, the tilted load cases were a product of
otating the contact area around the femoral head’s embedding sphere.
s a result, in the tilted load cases, contact circle is moved from the
uperior flat surface of the model to the jagged areas on the edges of the
exahedral elements. This was confirmed upon inspection of the models
nd the location of the contact area in all three load cases and in the
eviated models for the loading angle parameter which is the driver of
he increased sensitivity of the tilted models to the loading category
ather than the embedding parameters. A more coherent predictive
bility among all three load cases and less sensitivity to the loading
ngle uncertainty might be achieved in the smooth-mesh models.

Our results show that by systematically selecting the most accurate
odel for each sample and load case through a process of sample-based

uning, it is possible to achieve almost perfect model performance with
n 𝑅2 of 0.99 (Fig. 10). This highlights the importance of examining the
odel generation protocols and carefully considering the experimental
arameters that have the greatest impact on performance of the model.
n our study, these parameters were found to be primarily in the
mbedding and loading categories. However, it is important to note
hat the ‘‘tuning’’ process used in this study involved selecting the
ost accurate model from a set of models that were generated using
lausible values for the experimental parameters. This demonstrates the
mportance of carefully reporting and considering these parameters in
inite element studies to avoid unrealistic outcomes.

There are limitations in this work that are worth discussing: First, in
his study, the baseline value and range of variation for each parameter
ere mainly according to our experience during the experimental
hase. However, a different set of starting points or ranges could
ffectively alter the outcomes in terms of their relevant importance. For
fundamentally different experimental study, testing a more relevant

et of parameters and variation characteristics is be recommended.
econd, the presented results are based on the overall stiffness of the
hole samples rather than the more frequently used metric of failure

oad. Using the same samples in our previous study (Amini et al., 2021),
e were also able to show that the overall sample stiffness was highly

orrelated with the bone stiffness measured via marker tracking. Third,
tiffness values are affected by the embedding compartments as well
s the testing setup. Isolating the stiffness of the bone from that of
he embedding and machine has been done in studies using optical
easurement techniques such as landmark/marker tracking (Dall’Ara

t al., 2013) or DIC (Katz and Yosibash, 2020). However, in the same
tudies, it has been shown that strains/stiffness measurements at the
emoral neck region still suffers from much larger errors compared to
he shaft. We were also able to decompose different terms of the mea-
ured overall stiffness in a sub group of our experiments and showed
hat the machine stiffness was on average 10 times that of the sample
tiffness and that the inter-specimen bone stiffness variation was four
imes higher than those of the sample or machine stiffness (Amini et al.,
021). In terms of the relevance of this metric, using sample stiffness
alues (including the embedding sections) in experimental validation
tudies of QCT-FE holds an ongoing presence in the literature (Patton
t al., 2019; Panyasantisuk et al., 2018; Miura et al., 2017; Rossman
t al., 2016; Dall’Ara et al., 2013). Finally, the amount of variation
er parameter is not normalized. The geometrical parameters could
nly take discrete values with 1 mm intervals (due to the voxel size),
nd to keep the number of model variations in a reasonable range,
nly the minimum and maximum of the defined plausible ranges were
onsidered for modeling. The deviation range for each parameter was
9

ased on preliminary experiments and experience. As an example, the
verage adjustment in the 3D-registration of the 𝜇CT and CT-based
olumes was in the range of ±2 mm.

In conclusion, a voxel-based linear-elastic QCT-FE model of prox-
mal femoral sample stiffness was developed and validated using 10
amples in three stance load cases. It was shown that embedding pa-
ameters affect the predictive ability of the neutral model more than the
oading, material, or segmentation parameters. The predictive ability
nd sensitivity of the model was dependent on the load case. We also
howed that using a process to select the best-fit plausible values for
he parameters resulted in an almost perfect linear correlation between
he measured and predicted values with predictive ability of 0.99. The
esults of this study could help improve the robustness of QCT-FE
odels of femoral stiffness.
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