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Abstract—Hardware security verification is a critical task in evaluating
algorithms and tools for effectiveness and efficiency, both from an
organizational and a technical view. In the past decade, the TrustHUB
benchmark suite evolved as the de-facto standard benchmark suite
in order to perform experiments that allow quantitative analysis of
countermeasures, but also to provide statistical data on effectiveness, and
performance indicators to assess practical applicability. In this work, we
study the effectiveness of the TrustHUB benchmark suite, and its ability
to provide meaningful and reasonable experimental data on algorithms
that target security properties of digital designs. We systematically elab-
orate fundamental properties of effective hardware Trojan benchmarks:
Correctness, Maliciousness, Stealthiness, and Persistence. We utilize these
properties to classify a reasonable subset of the TrustHUB benchmark
suite by means of effectiveness. The results of our study are fairly
surprising: Only three out of 83 studied benchmark designs can be
considered actual hardware Trojans, all others entail undocumented
limitations that may impact the results of experiments that evaluate
countermeasures. We introduce a comprehensive, yet simple yes/no
effectiveness classification framework, with which we identify potential
peculiarities that may render most of these benchmarks ineffective. We
identify spots of improvement, and provide recommendations for effective
benchmark design.

I. INTRODUCTION

A. Motivation

Hardware Trojan research is a delicate field of cyber security
research, because it mainly depends on assumptions. While, e.g.,
for network-based attacks real data is available in order to reason
about currently existing threats, this is not the case for hardware
Trojan attacks. Because no real incidents have been reported so far,
everything is based on assumptions in hardware Trojan research. This
entails two major problems: (1) First, by assuming how potential
hardware Trojan attacks may be carried out, we as a research
community become part of the problem, because by publishing
potential attacks, we show others (i.e., potential attackers) how to
do it. (2) Second, and more severe, when relying on assumptions
only, it is important that these assumptions are verifiable to hold
in realistic settings. If this can not be assured, the effectiveness of
countermeasures is questionable that have been developed against
these assumptions.

The past decade has shown that software supply chain attacks
became reality, and numerous hardware security vulnerabilities and
attacks have been published [1, 14, 16, 5]. It is therefore more
important than ever to establish reliable methods for hardware
security verification. The effectiveness of such methods is usually
tested against benchmark designs; In the field of hardware Trojans,
the TrustHUB benchmark suite serves as the de-facto standard for
evaluating the effectiveness of hardware Trojan detection methods.
In the following, we identify several limitations of the TrustHUB
benchmarks that may appear counter-intuitive to a hardware security
researcher. These limitations potentially limit the expressiveness
of evaluation results, which may result in misleading conclusions.
The TrustHUB hardware Trojan benchmark suite has been existing
for over a decade, is widely used, and is the only collection of
systematically organized benchmarks which covers a wide range of

designs and attacks. Because these benchmarks are so important
to the hardware security community, our intention is to provide a
basis for making informed decisions when selecting benchmarks for
experimental evaluation. Also, we would like to stress the importance
of the TrustHUB benchmark suite as a unique educational resource
for hardware Trojan design and implementation. We therefore would
like to contribute to this valuable resource by providing pointers
to build upon these benchmarks in order to extend their scope to
experiments that may rely on different assumptions and test methods
than intended by the original benchmark designers.

B. Problem statement

While performing experiments, we noticed irregularities and un-
expected behavior for some of the TrustHUB benchmarks. After
analyzing the benchmarks in more detail, we reason that it may not
be appropriate to use the TrustHUB benchmarks without carefully
examining their suitability for a specific experiment. A majority of
the TrustHUB benchmarks relies on assumptions that we consider
unlikely to hold in realistic settings, and which may appear counter-
intuitive to potential benchmark users. For instance, many malicious
parts are not synthesizable, which – strictly speaking – means,
that these benchmarks are no hardware Trojans by definition. The
TrustHUB benchmarks have been used for over a decade now, and
yet their limitations have not been publicly documented.

C. Contributions

This work studies the effectiveness of a reasonable subset of
the TrustHUB benchmarks, and their ability to evaluate hardware
Trojan detection methods. We introduce a comprehensive, yet sim-
ple yes/no effectiveness classification framework, with which we
expose limitations that potentially render most of the studied
benchmarks ineffective. Also, we highlight assumptions made by
benchmark designers that we consider very unlikely to hold in a real
hardware Trojan attack. We analyze security implications of such
discrepancies, and provide recommendations for effective hardware
Trojan benchmark design. This is a fully reproducible paper. We
fully disclose our methods, and provide command lines to generate
results; all benchmarks are freely available from the original resources
(references are provided).

D. Hardware Trojans

A Trojan system is a system that serves a shadow purpose (i.e.,
malicious functionality) besides its intended (i.e., benign) func-
tionality. Trojan systems can be implemented on many abstraction
levels, both in hardware and in software. If malicious functionality
is implemented in hardware, the system’s hardware is called a
hardware Trojan. Due to resource limitations, we consider a com-
bined software/hardware attack more reasonable than a Trojan attack
purely implemented in hardware. For instance, a compromised mi-
croprocessor may implement hidden, malicious instructions. Because
these instructions are not publicly documented, (benign) software
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executed by the microprocessor will call these hidden instructions
very unlikely. Therefore, also some piece of compromised software
may be needed to utilize malicious hardware.

The attacker’s ultimate goal is to hide malicious payload during
design time, to become effective during runtime (post-deployment).
Therefore, some kind of trigger mechanism is used to avoid detection
during functional verification and testing throughout the design and
verification flow. To avoid accidental activation, triggers are activated
on conditions which are very unlikely to occur during normal
operation. Trigger conditions are usually based on rare values or rare
sequences that are under the control of the attacker, or reliably and
predictably occur at pre-defined "points" in the system’s lifetime (e.g.,
a time bomb [14], or activating malicious inclusions with malicious
design tools [8], or leveraging simulation/synthesis mismatch [9]).

Hardware Trojans can either be functional, which means they
include specific (malicious) functionality (e.g., escalating privileges,
or leaking data), or parametric, where physical parameters (e.g.,
timing, power) are modified in order to inject faults, or to perform
denial of service (DoS) attacks by reducing the physical health of
infested chips.

Depending on the point of inserting malicious functionality in
the design and fabrication flow, we distinguish between design-
level (or, pre-silicon) hardware Trojans, and physical-level (or, post-
silicon) hardware Trojans. For design-level hardware Trojans, the
design files are compromised. For physical-level hardware Trojans,
the physical hardware, or the process to fabricate physical hardware,
is compromised.

E. TrustHUB benchmarks

We already discussed that no real hardware Trojan attack has been
reported so far, so as a consequence, no real data is available for
experiments to evaluate the quality and performance of hardware
Trojan detection methods. This is why the TrustHUB benchmarks [12,
13] have been introduced, which is a remarkable set of hardware
Trojan implementations that give valuable insight into potential
trigger and payload mechanisms. The TrustHUB benchmarks fea-
ture 17 design classes of variable complexity, including crypto-
graphic accelerators (Advanced Encryption Standard (AES), Rivest-
Shamir-Adleman (RSA)), micro-controllers (MC8051, PIC16F84),
memory controllers (memctrl) communication controllers (Ether-
netMAC10GE, RS232), bus interconnects (wb_conmax), graphics
controllers (vga_lcd), benchmarks of other benchmark suites like
ITC99 (b15, b19), and ISCAS89 (s15850, s35932, s38417, s38584),
and cores with undocumented functionality (MultPyramid), and au-
tomatically generated benchmarks (TRIT), totalling 106 benchmarks.

Table I provides an overview over the TrustHUB benchmark
suite. Each design class provides variants of the original, unmodified
(benign) design, with malicious functionality injected. Each design
class hosts sets of trigger and payload mechanisms. Combinations
of trigger and payload set elements build distinct hardware Trojan
attacks, following different threat and attack models. The TrustHUB
benchmarks are implemented at various abstraction levels (including
Verilog or VHSIC hardware description language (VHDL) designs at
register transfer level (RTL), gate-level netlists, technology-mapped
netlists (TNL), and layout-level designs (which implement parametric
Trojans only). Table I also includes popular examples of selected
work utilizing the TrustHUB benchmarks over the past decade,
including the static detection method FANCI [15], the dynamic
detection method VeriTrust [18], the formal detection framework
HaTCh [4], and the machine-learning-based detection approach
VIPR [3] .

TABLE I
AN OVERVIEW OVER THE TRUSTHUB BENCHMARK SUITE

Design class # Language Level [15] [18] [4] [3]

AES 27 Verilog RTL ◦ ◦ ◦ ◦
AES 1 Verilog TNL ◦ ◦ ◦ ◦
BasicRSA 4 VHDL RTL ◦ ◦ • ◦
b15 4 Verilog TNL ◦ ◦ • ◦
b19 5 Verilog TNL ◦ ◦ ◦ ◦
EthernetMAC10GE 6 DEF Layout ◦ ◦ ◦ ◦
EthernetMAC10GE 4 Verilog TNL ◦ ◦ ◦ ◦
MC8051 7 VHDL RTL ◦ • ◦ ◦
memctrl 1 Verilog RTL ◦ ◦ ◦ ◦
MultPyramid 2 DEF Layout ◦ ◦ ◦ ◦
PIC16F84 4 Verilog RTL ◦ • ◦ ◦
RS232 14 Verilog RTL ◦ • • ◦
RS232 11 Verilog TNL • ◦ • •
s15850 1 Verilog TNL • • • ◦
s35932 3 Verilog TNL • • • ◦
s38417 3 Verilog TNL • • • •
s38584 3 Verilog TNL ◦ • • ◦
TRIT 2 Verilog TNL ◦ ◦ ◦ ◦
vga 1 Verilog TNL ◦ ◦ • ◦
wb_conmax 2 Verilog RTL ◦ ◦ • ◦
wb_conmax 1 Verilog TNL ◦ ◦ • ◦

TOTAL 106 (83 relevant)

F. Limitations of this study

This study only considers functional Trojan benchmarks, and
does not consider parametric Trojan benchmarks. Parametric Trojan
benchmarks are provided without Trojan-free versions to validate
any detection efforts. Also, we are not aware of any work that
actually uses these benchmarks,1 which is why we consider them less
relevant than the functional Trojan benchmarks. Of the remaining 98
designs, we study a reasonable subset of 83 designs, skipping the
b15, b19, EthernetMAC10GE, and s15850 benchmarks (provided as
technology-mapped netlists), because similar malicious functionality
is covered by other tech-mapped designs which are included in
this study. Also, we do not consider TRIT benchmarks, as they
are designs whose functionality is not documented, with randomly
injected triggers. Their payloads alter random signals. Therefore, our
methodology is not applicable, because our threat model assumes a
(semi-)human attacker whose intention is to compromise the design’s
security (i.e., confidentiality, integrity, availability).

II. METHODOLOGY

We first define the threat model we assume for hardware Trojan
benchmarks. Also, we define a standard use-case scenario for users
of hardware Trojan benchmarks. Based on both the threat model and
the use-case scenario, and by taking into account the definition of
hardware Trojans, we identify fundamental properties for hardware
Trojan benchmarks, which help to model realistic attack scenarios.
We use these fundamental Trojan properties to model a (Boolean)
Effectiveness property, which provides a simple yes/no answer to the
question whether a hardware Trojan benchmarkis effective by design.

1We performed an advanced search in the IEEE Xplore® Digital Library
with the search term: “Full Text & Metadata”:MultPyramid for the years
between 1884 and 2024. The search yielded three results, while none of them
were reporting about experiments with said benchmarks. (We assume that if a
paper would report about experiments using MultPyramid parametric bench-
marks, that these experiments would also include the Ethernet parametric
benchmarks, as they are the only two parametric Trojan benchmark classes
in the TrustHUB benchmark suite.)
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A. Threat model

A hardware Trojan benchmark represents a (potentially) compro-
mised intellectual property (IP) core, intended for integration into
system-on-chip (SoC) designs. The compromised IP core is designed
such that it is a drop-in replacement for a benign version of the IP
core, and that no additional manual intervention is needed to integrate
the malicious core instead of the original core (e.g., by modifying a
top module, or by connecting extra inputs/outputs). The compromised
IP core conforms to the specification of the original design (except
for malicious inclusions), because a potential user integrates the IP
core based on vendor-provided documentation like data sheets and
application notes. If the compromised IP core would not conform to
the original specification, an IP integrator may immediately detect
the attack (which is what the attacker rigorously aims to avoid).

The attacker can be a malicious third-party IP vendor, a mali-
cious insider in a design house, or an outsider who successfully
compromises the development life cycle to inject hidden malicious
functionality into original design files (thereby designing hardware
Trojans). Besides malicious injections, such attacks would take into
account revision control systems, automated continuous integration
systems and manual code reviews. The attacker is a highly-skilled
integrated-circuit design and/or verification engineer with profound
knowledge in the cyber-security domain. The attacker designs con-
trollable hardware Trojans, and is able to deterministically activate
an attack.

B. Use-case scenario

Hardware Trojan benchmarks are used by hardware security re-
searchers to evaluate the effectiveness and performance of hardware
Trojan detection methods they may develop. Besides being used by
security researchers, benchmarks are used by (hardware security)
verification engineers to characterize detection methods, with the
intention to identify those methods which best fit their environment
(i.e., threat model, designs, and existing verification flows).

Hardware Trojan benchmark users assume that benchmarks are
subject to the threat model defined above (Section II-A), and learn
from the benchmark results about the effectiveness and performance
of their evaluated Trojan detection tools.

C. Fundamental Trojan properties

We define the following four fundamental Trojan properties, based
on the definition of hardware Trojans given in Section I-D, the threat
model defined in Section II-A, and the use-case scenario defined
in Section II-B. It is imperative that hardware Trojan benchmarks
for scientific research satisfy all of these properties. If only one
property is violated, the benchmark cannot be used for yielding
expressive experimental results when evaluating hardware Trojan
detection methods. Please note that these properties are mostly
applicable to design-level hardware Trojans.

1) Correctness: A hardware Trojan correctly implements its spec-
ification. It is well-tested, and obeys good design practice in order to
avoid warnings and/or error messages from design and verification
tools (e.g., latch inference). The Trojan behaves as specified; There
is a specification for the original design, and also one for the
compromised design. In a real setting, the compromised design
specification is only known by the attacker, and is not publicly
available.

2) Maliciousness: A hardware Trojan acts maliciously, which
means that it is specified to compromise the confidentiality, integrity,
and/or availability of its host system, and/or of the data processed
by the host system. It is technically feasible to deliberately activate

malicious functionality in hardware as specified (e.g., trigger signals
must be accessible by the attacker to trigger the payload).

3) Stealthiness: Malicious functionality stays hidden during the
design and verification flow, and the attacker minimizes any chance
of potential suspicion. This includes mimicking the coding style of the
original design, taking care of appropriate indentation (tab vs. space)
and also to apply the naming scheme that is used in the original
design. The attacker uses the minimum amount of code needed to
implement malicious functionality. Hardware Trojans comply with
the specification of the original design (except, of course, for the
malicious part – which is extremely unlikely to manifest during
functional verification). Malicious functionality does not introduce
resources that impact design structure which is exposed to user
interfaces (e.g., additional modules, additional files or directories,
additional primary input/output ports, additional top modules, etc.).
At runtime, it is very unlikely that malicious payload is accidentally
activated. Stealthiness is an inherent property of hardware Trojans, as
highlighted by the authors of the TrustHUB benchmarks [13, p. 95].

4) Persistence: A hardware Trojan implements malicious func-
tionality in hardware, so it must use synthesizable code, and, equally
important, survive synthesis and routine circuit optimization passes.

D. Classification framework

We introduce a theoretically motivated practical classification
framework to classify the effectiveness of potentially malicious
circuits. We identifiy four fundamental properties of hardware Trojan
benchmarks: Correctness C, Maliciousness M , Stealthiness S, and
Persistence P . The fundamental Trojan properties are modeled as
Boolean variables, either taking value True or False. If all funda-
mental Trojan properties are satisfied (i.e., they all evaluate to True),
the Trojan is considered effective by design, and as a consequence, its
Effectiveness property E evaluates to True. If at least one of the fun-
damental Trojan properties evaluate to False, as a consequence, the
Effectiveness property also evaluates to False. The relation between
the Effectiveness property and the fundamental Trojan properties can
be modeled by a simple Boolean expression, as given in Equation (1).

E = C ∧M ∧ S ∧ P (1)

Using this framework, we perform an in-depth study on the
effectiveness of a considerable subset of the TrustHUB benchmark
suite. We review each Trojan benchmark in detail following a pre-
defined process, and assign True or False values to Trojan properties
according to the results of this process. This way, we transparently
and reproducibly identify hardware Trojans being either effective or
ineffective by design.

E. Review process

In the following, we briefly outline the process for reviewing each
benchmark for this study. A detailed example applies this process in
Section III. We basically perform the following steps, while targeting
violations of fundamental properties within each step:

1) Review original/compromised specifications
2) Check file structure vs. original specification
3) Check top-level design hierarchy vs. original specification
4) Verify functional behavior:

a) Compromised design vs. original specification
b) Compromised design vs. compromised specification

5) Review source code and check for anomalies
6) Summarize results, assign Effectiveness property
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Fig. 1. A top-level block diagram of the compromised design, generated by the Yosys script on the left

Fig. 2. A top-level block diagram of the original design

III. DEMONSTRATIVE EXAMPLE

In this section, we provide a representative analysis of the AES-
T800 benchmark2, and demonstrate how we derive values for the
fundamental Trojan properties. In the analysis, we use Yosys [17] for
synthesis, Icarus Verilog [6] for simulation, and NLTrace [11] for
waveform generation and trace analysis.

A. Specification

1) Original design: The functionality of the original design is
specified such that the plaintext provided at the primary input state
is encrypted using a synchronous hardware implementation of the
AES encryption algorithm (controlled by the clk signal). Encrypted
ciphertext is provided at the out primary output. Figure 2 shows a
top-level block diagram of the original design.

2) Compromised design: The compromised design extends the
specification of the original design as follows: “Once a predefined
sequence of input plaintext is observed, the Trojan leaks the secret
key from a cryptographic chip running the AES algorithm through a
covert channel” (taken from the AES-T800 Readme.txt). Leaking data
compromises data confidentiality, which satisfies the benchmark’s
fundamental Maliciousness property.

B. Design file structure

We start the analysis by accessing the AES-T800 benchmark’s root
directory, which holds the source files for the Trojan benchmark.
As for nearly all benchmarks, the root directory contains a PDF
file that documents the benchmark specification (AES-T800.pdf ), a
text version of the specification in a Readme.txt, and a src directory,
that holds the source code for the original design (TjFree), and the
compromised design (TjIn). By comparing the two versions of the
design, we notice that the two sets of files are not identical. There
are five additional files in the compromised design: lfsr.v, tbTOP.v,
top.v, Trojan_Trigger.v, TSC v. One file is missing: simulation.do. The
inconsistencies between the original and the compromised design files
violate the benchmark’s fundamental Stealthiness property, because
an IP integrator may immediately notice them.

C. Top-level design structure

We process the compromised design with the synthesis tool and ex-
ecute the commands given in the left part of Figure 1, which generates
the top-level block diagram given in the right part of Figure 1. When
we compare the block diagram of the compromised design with the

2https://trust-hub.org/downloads/resource/benchmarks/AES/AES-T800.zip

1 $ tree TjFree
2 TjFree
3 aes_128.v
4 Read_Me.txt
5 round.v
6 simulation.do
7 table.v
8 test_aes_128.v
9

10 0 directories, 6 files

1 $ tree TjIn
2 TjIn
3 aes_128.v
4 lfsr.v
5 Read_Me.txt
6 round.v
7 table.v
8 tbTOP.v
9 test_aes_128.v

10 top.v
11 Trojan_Trigger.v
12 TSC.v
13
14 0 directories, 10 files

Fig. 3. Files of the original (TjFree) and compromised (TjIn) versions of the
AES-T800 benchmark

original design, we notice that the original top module is replaced
by a new top module (implemented in top.v). This top module
instantiates the original design, as well as two additional modules
Trigger and Trojan. Further, the benchmark introduces one additional
primary input rst, and one additional primary output Capacitance.
We infer that to actually mount the attack, the attacker expects the
IP integrator to instantiate the malicious top module, instead of the
aes_128 module as specified by the vendor of the original design, and
to connect additional primary input/output ports. The IP integrator
may immediately notice this deviation from the vendor specification,
which would violate the benchmark’s Stealthiness property.

D. Functional behavior

We investigate the benchmark’s functional behavior by simulating
the compromised design with the provided testbench, implemented
in the file tbTop.v. We do not modify the testbench, except to specify
a filename for dumping simulation results, and a directive to instruct
the simulator to actually dump the results for the instantiated unit
under test. We add the following two lines to the beginning of the
initial block immediately after the instantiation of uut.

1 $dumpfile(‘VCDFILE);
2 $dumpvars(0,uut);

The testbench applies the trigger sequence to activate malicious
payload (which is information leakage over a covert channel). As
we learn from the testbench, the trigger sequence consists of four
128-bit words, applied to the top-level module’s primary state input
(which is the plaintext input of the AES cryptographic core), in the
following order:

1) 128’h3243f6a8_885a308d_313198a2_e0370734,
2) 128’h00112233_44556677_8899aabb_ccddeeff,
3) 128’h0,
4) 128’h1
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Fig. 4. Pre-synthesis simulation script and results

Fig. 5. Post-synthesis simulation script and results

Fig. 6. Pre-synthesis (left) and post-synthesis (right) traces for the output of the payload’s side-channel, provided by NLTrace

1) Pre-synthesis simulation: We simulate the HDL model of the
compromised design using the shell script given on the left side in
Figure 4. The waveform diagrams of the simulation results are given
on the right side in Figure 4. There are two waveform diagrams: The
upper one shows the trigger sequence for the entire simulated time,
the lower one shows a magnified time frame to make the values of
the state signal more readable. All value changes of state are within
this time frame. We notice that the Tj_Trig trigger signal (see also
Figure 1) goes from 0 to 1 after the trigger sequence is provided on
the state input. We conclude that the RTL model seems to behave as
specified.

2) Post-synthesis simulation: Now, let us synthesize the bench-
mark; it is supposed to be a hardware Trojan, so we may be
well-advised to synthesize and again verify it. We synthesize the
benchmark with the Yosys commands given in Figure 1, and write
the synthesized benchmark into a Verilog file aes-t800_synth.v with
the following Yosys command:

1 write_verilog aes-t800_synth.v

The synthesis tool generates log output for the trigger circuit as
shown in Listing 1. We use the shell script given on the left side in
Figure 5 to simulate the synthesized RTL model of the compromised
design. The waveform diagram of the simulation results is given on
the right side in Figure 5. What we notice is very interesting: The
trigger signal still goes high, but it seems that it is not triggered
by the rare input sequence as in Figure 4. Instead, Tj_Trig goes

high immediately after rst goes low. It seems that the trigger circuit
is not effective, because it seems to be always high. If so, any
payload controlled by the trigger signal would be always active,
thus being susceptible to detection during functional verification.
This would violate the benchmark’s Stealthiness property, because
malicious payload is now observable without providing the trigger
sequence. Because the trigger violates its specification, it violates the
benchmark’s Correctness property. It seems that synthesis removed
the trigger behavior that was still present just now. If so, the
benchmark’s Persistence property may be violated as well.

The impact of unspecified trigger behavior is visible in the payload
as well, which is implemented in two modules lfsr_counter and TSC.
The lfsr_counter module implements a linear-feedback shift register
(LFSR), used as a pseudo-random number generator (PRNG) to
create a code-division multiple access (CDMA) code sequence [10] in
the TSC module. Figure 7 shows the LFSR’s output trace dumped by
NLTrace, on the left side for the pre-synthesis simulation, right side
for the post-synthesis simulation. Apart from the time shift caused
by the different trigger behavior, the traces are identical and seem
correct. A similar trace is given for the Trojan’s (extra) load output
which shows this shift as well. To validate the effectiveness of the
data leakage circuit, an experimental setup to measure the leaked
data and to demodulate the leaked key bits would be needed. We
did not perform this kind of experiment, because it seems that the
attack depends on the IP integrator to connect the Capacitance output,
which may happen very unlikely. If left unconnected, not only the

5



Fig. 7. Pre-synthesis (left) and post-synthesis (right) traces for the output of
the payload’s LFSR, provided by NLTrace

Listing 1. Synthesis log output for the trigger
1 yosys> read_verilog Trojan_Trigger.v
2 1. Executing Verilog-2005 frontend: Trojan_Trigger.v
3 Parsing Verilog input from ‘Trojan_Trigger.v’ to AST representation.
4 Generating RTLIL representation for module ‘\Trojan_Trigger’.
5 Note: Assuming pure combinatorial block at Trojan_Trigger.v:30.2-46.5 in
6 compliance with IEC 62142(E):2005 / IEEE Std. 1364.1(E):2002. Recommending
7 use of @* instead of @(...) for better match of synthesis and simulation.
8 Note: Assuming pure combinatorial block at Trojan_Trigger.v:48.2-51.5 in
9 compliance with IEC 62142(E):2005 / IEEE Std. 1364.1(E):2002. Recommending

10 use of @* instead of @(...) for better match of synthesis and simulation.
11 Successfully finished Verilog frontend
12
13 yosys> proc
14
15 2. Executing PROC pass (convert processes to netlists).
16 [...]
17 2.7. Executing PROC_DLATCH pass (convert process syncs to latches).
18 No latch inferred for signal ‘\Trojan_Trigger.\Tj_Trig’ from process ‘\

Trojan_Trigger.$proc$Trojan_Trigger.v:50$13’.
19 Latch inferred for signal ‘\Trojan_Trigger.\State0’ from process ‘\

Trojan_Trigger.$proc$Trojan_Trigger.v:30$1’: $auto$proc_dlatch.cc:427:
proc_dlatch$119

20 Latch inferred for signal ‘\Trojan_Trigger.\State1’ from process ‘\
Trojan_Trigger.$proc$Trojan_Trigger.v:30$1’: $auto$proc_dlatch.cc:427:
proc_dlatch$146

21 Latch inferred for signal ‘\Trojan_Trigger.\State2’ from process ‘\
Trojan_Trigger.$proc$Trojan_Trigger.v:30$1’: $auto$proc_dlatch.cc:427:
proc_dlatch$201

22 Latch inferred for signal ‘\Trojan_Trigger.\State3’ from process ‘\
Trojan_Trigger.$proc$Trojan_Trigger.v:30$1’: $auto$proc_dlatch.cc:427:
proc_dlatch$288

Trojan payload would be optimized away, but the entire malicious
circuit (see the block diagram in Figure 1), which may violate the
benchmark’s Persistence property.

E. Code review

1) Trigger: Listing 2 shows the Verilog RTL implementation
of the trigger circuit; There are two combinational always blocks
(the first one starting at Line 30, the second one starting at Line
48). The first block is supposed to monitor the state input for
the trigger sequence. The second block is supposed to activate the
trigger signal Tj_Trig once the trigger sequence fully appeared on
the state input. Let us remember the log output generated by the
synthesis tool (Listing 1), and the unexpected post-synthesis trigger
behavior; We conclude that this implementation of trigger behavior
may not synthesize to a sequential circuit utilizing (edge-sensitive)
flip-flops, but to a sequential circuit utilizing (level-sensitive) latches.
A pre-/post-synthesis simulation mismatch seems to occur with the
trigger’s current implementation; it works in simulation, but not
after synthesis. Analyzing the resources used by the trigger circuit
seems to confirm that four latches are inferred instead of flip-flops
(execute immediately after Line 1 of Listing 1: proc; clean; opt

-full; stat). This is not specific to Yosys; The Verilog® register
transfer level synthesis standard defines for any synthesis tool to
infer a latch for a combinational block to hold the value of an
output if it is not defined for all combinations of all input values [7,
p. 17]. Latches (i.e., level-sensitive sequential models) “are generally
less predictable than edge-sensitive models due to the asynchronous
nature of the signal interactions” [7, p. 13]. The use of latches in

Listing 2. The trigger implemented in file Trojan_Trigger.v
21 module Trojan_Trigger(
22 input rst,
23 input [127:0] state,
24 output Tj_Trig
25 );
26
27 reg Tj_Trig;
28 reg State0, State1, State2, State3;
29
30 always @(rst, state)
31 begin
32 if (rst == 1) begin
33 State0 <= 0;
34 State1 <= 0;
35 State2 <= 0;
36 State3 <= 0;
37 end else if (state == 128’h3243f6a8_885a308d_313198a2_e0370734) begin
38 State0 <= 1;
39 end else if ((state == 128’h00112233_44556677_8899aabb_ccddeeff) && (

State0 == 1)) begin
40 State1 <= 1;
41 end else if ((state == 128’h0) && (State1 == 1)) begin
42 State2 <= 1;
43 end else if ((state == 128’h1) && (State2 == 1)) begin
44 State3 <= 1;
45 end
46 end
47
48 always @(State0, State1, State2, State3)
49 begin
50 Tj_Trig <= State0 & State1 & State2 & State3;
51 end
52
53 endmodule

Listing 3. The payload implemented in file TSC.v
21 module TSC(
22 input rst,
23 input clk,
24 input Tj_Trig,
25 input [127:0] key,
26 output [63:0] load
27 );
28
29 reg [63:0] load;
30 wire [19: 0] counter;
31
32 lfsr_counter lfsr (rst, clk, Tj_Trig, counter);
33 always @ (posedge clk)
34 begin
35 if (rst == 1) begin
36 load <= 0;
37 end else begin
38 load[0] <= key[0] ^ counter[0];
39 load[1] <= key[0] ^ counter[0];
40 load[2] <= key[0] ^ counter[0];
41 [...]

synchronous digital designs is therefore discouraged. In many cases,
latch inference results from buggy RTL code. Inferred latches make
the trigger circuit susceptible to detection, because latches are actively
searched for in routine verification tasks (due to above reasons).
This may violate the benchmark’s Stealthiness property (along with
mixed tab/space indentation and DOS/Unix line endings), all the more
because the infested design itself is a synchronous design, sensitive
to the positive edge of the clk signal. It seems that we just confirmed
the assumptions we made in Section III-D2: Because the trigger
implementation may not meet its specification due to unpredictable
behavior introduced by inferred latches, the benchmark’s Correctness
property is violated. Because trigger functionality disappears, the
Persistence property is violated.

2) Payload: Malicious payload leaks the least significant byte
of the secret key over a side-channel, and is implemented in two
modules as shown in Listing 3 and Listing 4. The lfsr_counter module
implements an LFSR, used as a PRNG to create a CDMA code
sequence in the TSC module as proposed by Lin et al. [10]. We
notice that the code for implementing the side channel appears fairly
bloated (112 lines of code that come with mixed indentation and line
endings), which may be implemented more efficiently. The amount
of payload code may violate the benchmark’s Stealthiness property.
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Listing 4. The payload implemented in file lfsr.v
1
2 // It implements X^20 + X^13 + X^9 + X^5 + 1
3 module lfsr_counter (
4 input rst, clk, Tj_Trig,
5 output [19:0] lfsr
6 );
7
8 reg [19:0] lfsr_stream;
9 wire d0;

10
11
12 assign lfsr = lfsr_stream;
13 assign d0 = lfsr_stream[15] ^ lfsr_stream[11] ^ lfsr_stream[7] ^

lfsr_stream[0];
14
15 always @(posedge clk)
16 if (rst == 1) begin
17 lfsr_stream <= "10011001100110011001";
18 end else begin
19 if (Tj_Trig == 1) begin
20 lfsr_stream <= {d0,lfsr_stream[19:1]};
21 end
22 end
23
24 endmodule

F. Summary

We provide an in-depth analysis of the TrusHUB AES-T800
benchmark. We analyze the design’s file structure, and learn that
the sets of files are not equal for the original and the compromised
designs. When analyzing the top-level design hierarchy, we notice
that extra modules, primary inputs and outputs are added. When per-
forming pre-synthesis simulation, the benchmark works as expected;
but once RTL synthesis is performed, the post-synthesis simulation
yields unexpected results, rendering the trigger ineffective. When
reviewing the benchmark’s source code, we find out that the trigger
implementation inferres latches instead of flip-flops, rendering the
trigger circuit ineffective. The attack model requires the IP integrator
to connect an extra payload output, which is very unlikely to happen,
and leaves malicious circuitry unconnected. As a result, the entire
malicious circuit may be optimized away.

All of the above may violate the benchmark’s Correctness, Stealth-
iness, and Persistence properties. As a consequence, the bench-
mark’s Effectiveness property may not be satisfied; Although the
benchmark’s Maliciousness property holds, the benchmark may be
considered ineffective, because specified malicious behavior is not
correctly implemented, it may become visible at various levels, and
it may disappear on one or the other occasion.

IV. RESULTS

A. Experimental setup

1) Verilog: We synthesize Verilog designs with Yosys (version
0.22+4), and simulate them with Icarus Verilog (version 11.0), pre-
and post-synthesis. In order to avoid biased results due to a limited
set of tools, we use Xilinx Vivado (version 2022.2) to synthesize the
PIC16F84 benchmarks, and Xilinx xsim (version 2022.2) to simulate
the designs, with stimuli provided by a testbench written in VHDL.

2) VHDL: We synthesize VHDL designs with the commercial
version of Yosys included in the YosysHQ Tabby CAD Suite (version
20221011) by using the Verific frontend. We simulate VHDL designs
with GHDL (version 1.0.0), pre-synthesis. Synthesized VHDL de-
signs are written to a Verilog netlist.

3) Technology netlists: Benchmarks that are provided as
technology-mapped Verilog netlists are mapped to the Synopsys
SAED 90nm digital standard cell library. In order to make these
benchmarks accessible to Yosys, we implemented a cell library that
maps SAED standard cell types to RTL models as specified in the
Digital Standard Cell Library Databook [2]. When synthesized with
Yosys, the standard cells are mapped to Yosys internal cell types.

4) A note on persistence: We do not map the benchmarks to a
specific target technology in order to determine their Persistence
property. Once a benchmark survives RTL synthesis, we consider its
Persistence property satisfied (in this study). However, this does not
necessarily imply that malicious functionality is present in hardware,
but must be specifically evaluated for any potential target technology.

B. Experimental results

Table II summarizes the findings of our study. We learn that there
are three benchmark designs that model effective hardware Trojans:
BasicRSA-T100, memctrl-T100, and wb_connmax-T300. These Tro-
jans effectively hide their injected functionality, and model malicious
behavior that can be exploited by the attacker. These benchmarks
can serve as role models for effective benchmark design, particularly
memctrl-T100, which implements a combined hardware/software
attack. However, Table II also shows that the TrustHUB benchmarks
entail considerable (undocumented) limitations. Only three out of
83 studied designs are usable as is (i.e., 3.6%). The majority of
benchmark designs may require debugging to become effective as
defined in Section II-D. In the following, we summarize the most
important results, and identify some pointers for debugging the
benchmarks:

1) Pre-/Post-synthesis simulation mismatch: Many benchmarks
are applicable to a limited extent, because malicious functionality
only exists in (pre-synthesis) RTL simulation. Once the design
is synthesized, malicious functionality disappears due to pre-/post-
synthesis simulation mismatch. For instance, this is the case for many
of the AES benchmarks; and also for all of the PIC16F84 designs,
which use a counter as a trigger that is implemented using level-
sensitive sequential logic (instead of edge-sensitive sequential logic),
yielding unexpected behavior after synthesis.

2) Unsatisfiable trigger conditions: Most of the benchmarks pro-
vided as technology netlists, such as s15850, s35932, s38417, s38584,
b15, b19, vga_lcd, and wb_connmax, employ triggers which were
automatically inserted by design vulnerabilty analysis into ultra-
low activity regions of the circuits, connecting the trigger inputs
to untestable redundant nets. “Untestable redundant nets are not
testable because they are masked by a redundant logic, and they
are not observable through primary output or scan cells.” [12]
While this may sound beneficial in the first moment, this approach
makes it hard for the attacker to actually control the Trojan, and
no guarantee is made that the trigger condition is satisfiable at all.
These “Trojans” are therefore not testable, not usable, and may be
considered ineffective. Likewise, we were not able to verify correct
functional behavior of benchmarks RS232 T1000-T2000. A testbench
that exhibits malicious behavior would greatly improve a benchmark’s
verifiability. We tried with a SAT solver to find valuations of the
trigger inputs such that the trigger output evaluates to True, but we
were unsuccessful in almost all cases – the triggers simply were not
triggerable. For instance, it was not possible to activate the trigger
signal for the wb_conmax-T100 Trojan.3 Documentation on how to
trigger malicious functionality under a given threat model would help
a lot to understand these kinds of Trojans.

3) Unconnected output ports: Malicious functionality is optimized
away for some benchmarks during routine optimization passes, e.g.,
due to disconnected signals, or additional primary output ports,
which would not be connected in a real setting. Many of the AES
benchmarks are rendered ineffective because of this.

3https://trust-hub.org/downloads/resource/benchmarks/WB_CONMAX/
wb_conmax-T100.rar
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4) Additional resources: All of the AES benchmarks introduce
additional files, modules, and/or extra primary input/output ports,
which may be easily detectable in a real attack involving such a
Trojan.

5) Incorrect original design: For all of the RS232 RTL bench-
marks (T100–T901, T2100–T2400), the original design does not
correctly implement its specification, such that it is impossible to
send data over the UART; note that benchmarks T100–T901 cor-
rectly implement malicious functionality, which remains stealthy and
persistent. For the MC8051 benchmarks, a synthesizable read-only
memory (ROM) is not available; note that most of these benchmarks
survive RTL synthesis, although latches are inferred.

6) Unspecified malicious behavior: Benchmarks RS232 T2100–
T2400 violate the compromised design’s specification because they
implement malicious behavior which is not specified: In addition to
setting signal rec_readyH to 0 upon activation (which is specified),
also rec_dataH is set to 8’d0 (which is unspecified).

7) Non-malicious behavior: For benchmarks AES-T2300–T2800,
we do not observe malicious behavior. While injected functionality
violates the original specification by XORing the least-significant bit
(LSB) of ciphertext, we cannot determine the potential attacker’s
intention to carry out such attacks.

8) Ineffective triggers: Most of the AES-T2300–T2800 bench-
marks employ triggers which monitor rare internal signals, which
however toggle multiple times even for a small number of test cases.
Likewise, there are triggers implemented as 4-bit counters, which
may not able to successfully hide injected functionality during func-
tional verification. Benchmarks AES-T2500 to AES-T2800 implement
sequential trigger circuits that are controlled by asynchronous reset
functionality that is level-sensitive to an external signal and therefore
represents the real “trigger” in these benchmarks.

9) Buggy wiring: Many of the benchmarks provided as technology
netlists connect the two inputs of one of the trigger circuit’s AND
gates to the same input signal, while leaving the output signal
Tj_OUT2 disconnected.

V. CONCLUSIONS

The most-important conclusion of this study is the discovery of
considerable undocumented limitations of the TrustHUB hardware
Trojan benchmark suite, which render most of its benchmarks inef-
fective when attempting to use them in hardware. In order to satisfy
intuitive expectations on hardware Trojan benchmarks to be effective
in hardware, the TrustHUB benchmarks may require re-design which
considers the fundamental Trojan properties proposed in Section II-C.
Potentially ineffective benchmarks pose a severe problem to the
trustworthiness of integrated circuits, because experiments performed
on such benchmarks may potentially lead to wrong conclusions. All
of the above suggests that the TrustHUB benchmarks may require
either thorough review, or transparent documentation4 of all limi-
tations and assumptions made for each specific benchmark design.
It may be necessary that some of the works using the TrustHUB
benchmarks must revise their experiments, and repeat them with
improved versions of the benchmarks.

We generalize from the findings of our study to the following
guidelines for effective benchmark design: (1) Obey the threat
model, (2) Avoid exposure to user interfaces (e.g., by introducing
additional files, modules, primary inputs and outputs, etc.), (3) Obey
good design practice, (4) Keep malicious code short and simple,

4Detailed reports including scripts will be released as a series of blog posts
after the conference at https://chipsecs.com/r/rotth

TABLE II
THE RESULTS OF OUR STUDY ON FUNDAMENTAL TROJAN PROPERTIES OF

THE TRUSTHUB BENCHMARK SUITE (C: CORRECTNESS, M:
MALICIOUSNESS, S: STEALTHINESS, P: PERSISTENCE, E:

EFFECTIVENESS). • MEANS True, ◦ MEANS False

C M S P E

AES

T100 ◦ • ◦ ◦ ◦
T200 ◦ • ◦ ◦ ◦
T300 ◦ • ◦ ◦ ◦
T400 ◦ • ◦ ◦ ◦
T500 ◦ • ◦ ◦ ◦
T600 ◦ • ◦ ◦ ◦
T700 ◦ • ◦ ◦ ◦
T800 ◦ • ◦ ◦ ◦
T900 ◦ • ◦ ◦ ◦
T1000 ◦ • ◦ ◦ ◦
T1100 ◦ • ◦ ◦ ◦
T1200 ◦ • ◦ ◦ ◦
T1300 ◦ • ◦ ◦ ◦
T1400 ◦ • ◦ ◦ ◦
T1500 ◦ • ◦ ◦ ◦
T1600 ◦ • ◦ ◦ ◦
T1700 ◦ • ◦ ◦ ◦
T1800 ◦ • ◦ ◦ ◦
T1900 ◦ • ◦ ◦ ◦
T2000 ◦ • ◦ ◦ ◦
T2100 ◦ • ◦ ◦ ◦
T2200 • • ◦ ◦ ◦
T2300 • ◦ ◦ • ◦
T2400 • ◦ ◦ • ◦
T2500 ◦ ◦ ◦ • ◦
T2600 ◦ ◦ ◦ • ◦
T2700 ◦ ◦ ◦ • ◦
T2800 ◦ ◦ ◦ • ◦

wb_conmax

T100 ◦ • • • ◦
T200 ◦ • ◦ ◦ ◦
T300 • • • • •

s35932

T100 ◦ • • • ◦
T200 ◦ • • • ◦
T300 ◦ • ◦ • ◦

s38417

T100 ◦ • • • ◦
T200 ◦ • • • ◦
T300 ◦ • ◦ • ◦

s38584

T100 ◦ • • • ◦
T200 ◦ • • • ◦
T300 ◦ • • • ◦

vga_lcd

T100 ◦ • • • ◦

C M S P E

RS232

T100 ◦ • • • ◦
T200 ◦ ◦ • • ◦
T300 ◦ • • • ◦
T400 ◦ • • • ◦
T500 ◦ • • • ◦
T600 ◦ • • • ◦
T700 ◦ • • • ◦
T800 ◦ • • • ◦
T900 ◦ • • • ◦
T901 ◦ • • • ◦
T1000 ◦ • • • ◦
T1100 ◦ • • • ◦
T1200 ◦ • • • ◦
T1300 ◦ • • • ◦
T1400 ◦ • • • ◦
T1500 ◦ • • • ◦
T1600 ◦ • • • ◦
T1700 ◦ • • • ◦
T1800 ◦ • • • ◦
T1900 ◦ • • • ◦
T2000 ◦ • • • ◦
T2100 ◦ • ◦ ◦ ◦
T2200 ◦ • ◦ ◦ ◦
T2300 ◦ • ◦ ◦ ◦
T2400 ◦ • ◦ ◦ ◦

MC8051

T200 ◦ • ◦ ◦ ◦
T300 ◦ • ◦ ◦ ◦
T400 ◦ • ◦ ◦ ◦
T500 ◦ • ◦ ◦ ◦
T600 ◦ • • • ◦
T700 ◦ • ◦ • ◦
T800 ◦ • ◦ • ◦

PIC16F84

T100 ◦ • ◦ ◦ ◦
T200 ◦ • ◦ ◦ ◦
T300 ◦ • ◦ ◦ ◦
T400 ◦ • ◦ ◦ ◦

BasicRSA

T100 • • • • •
T200 ◦ • ◦ ◦ ◦
T300 • • ◦ • ◦
T400 • • ◦ • ◦

memctrl

T100 • • • • •

(5) Make sure nothing essential is optimized away, (6) Avoid pre-
/post-synthesis simulation mismatch to make sure the benchmark
works in hardware, (7) Provide testbenches to ensure the benchmark’s
verifiability, (8) (Some) black-box benchmarks may increase expres-
siveness of tests.
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