
Monatshefte für Mathematik (2023) 200:627–645
https://doi.org/10.1007/s00605-022-01817-8

A converse to the neo-classical inequality with an
application to the Mittag-Leffler function

Stefan Gerhold1 · Thomas Simon2

Received: 26 November 2021 / Accepted: 13 December 2022 / Published online: 14 January 2023
© The Author(s) 2023

Abstract
We prove two inequalities for the Mittag-Leffler function, namely that the function
log Eα(xα) is sub-additive for 0 < α < 1, and super-additive for α > 1. These
assertions follow from two new binomial inequalities, one of which is a converse to
the neo-classical inequality. The proofs use a generalization of the binomial theorem
due to Hara and Hino (Bull London Math Soc 2010). For 0 < α < 2, we also show
that Eα(xα) is log-concave resp. log-convex, using analytic as well as probabilistic
arguments.

Keywords Mittag-Leffler function · Binomial coefficent · Inequality ·
Log-convexity · Stable subordinator
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1 Introduction andmain results

The Mittag-Leffler function

Eα(x) :=
∞∑

k=0

xk

�(αk + 1)
, α > 0,
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is a well-known special function with a large number of applications in pure and
applied mathematics; see [9, 13] for surveys. Clearly, we have E1(x) = ex . Somewhat
surprisingly, the “identity”

Eα((x + y)α)
?= Eα(xα)Eα(yα) (1.1)

has been used in a few papers. As discussed in [6, 21], it is not correct for α �= 1.
In [21], a correct identity involving integrals of Eα(xα) is proven, which reduces to
ex+y = exey as α → 1. Besides this, it seems natural to ask whether the left and right
hand sides of (1.1) are comparable. This is indeed the case:

Theorem 1.1 For 0 < α < 1, we have

Eα((x + y)α) ≤ Eα(xα)Eα(yα), x, y ≥ 0, (1.2)

and for α > 1

Eα((x + y)α) ≥ Eα(xα)Eα(yα), x, y ≥ 0. (1.3)

These inequalities are strict for x, y > 0.

The strictness assertion strengthens the observationmade at the beginning of Section 2
of [6], where it is argued that the validity of (1.1) for all x, y ≥ 0 implies α = 1.
According to Theorem1.1, this equality never holds, except in the obvious cases
(α = 1, or xy = 0). We note that (1.2) has been used in [25, Proposition 4] to show a
convolution inequality for a fractional version of the moment generating function of
a random variable. Although apparently not made explicit in the literature, the lower
estimate

Eα((x + y)α) ≥ αEα(xα)Eα(yα), x, y ≥ 0, 0 < α < 1,

complementing (1.2), follows from the calculation

Eα((x + y)α) =
∞∑

k=0

(x + y)αk

�(αk + 1)

≥
∞∑

k=0

α

�(αk + 1)

k∑

j=0

(
αk

α j

)
xα j yα(k− j)

= α

∞∑

k=0

k∑

j=0

xα j yα(k− j)

�(α j + 1)�(α(k − j) + 1)
= αEα(xα)Eα(yα).

(1.4)

In the second line, we have used the following result.
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A converse to the neo-classical inequality with an application... 629

Theorem 1.2 (Neo-classical inequality; Theorem 1.2 in [12]) For k ∈ N and 0 < α <

1, we have

α

k∑

j=0

(
αk

α j

)
xα j yα(k− j) ≤ (x + y)αk, x, y ≥ 0. (1.5)

With a slightly weaker factor of α2 instead of α, this result was proven by Lyons
in 1998, who also coined the term neo-classical inequality, in a pioneering paper on
rough path theory [18]. Later, it has been applied by several other authors, see e.g. [2,
5, 8, 15]. Analogously to (1.4), it is clear that Theorem1.1 follows from the following
new binomial inequalities.

Theorem 1.3 For k ∈ Nand0 < α < 1,wehave the converse neo-classical inequality

k∑

j=0

(
αk

α j

)
xα j yα(k− j) ≥ (x + y)αk, x, y ≥ 0, (1.6)

and for α > 1 we have

k∑

j=0

(
αk

α j

)
xα j yα(k− j) ≤ (x + y)αk, x, y ≥ 0. (1.7)

These inequalities are strict for x, y > 0.

The inequalities (1.5)–(1.7) look deceptively simple. For instance, it is not obvious
that the proof of (1.7)—at least with the approach used here—ismuch harder when the
integer �α	 is even than when it is odd. Lyons’s proof of (the weaker version of) (1.5)
applies the maximum principle for sub-parabolic functions in a non-trivial way. Hara
and Hino [12] use fractional calculus to derive an extension of the binomial theorem
(see Theorem3.1 below), which immediately implies Theorem1.2. This extended
binomal theorem will be our starting point when proving Theorem1.3. We also note
that in a preliminary version of [7] (available at arXiv:1104.0577v2[math.PR]), it was
shown that a multinomial extension can be derived from (1.5), by induction over the
number of variables.Abinomial inequality that is somewhat similar to the neo-classical
inequality is proven in [17].

Our first theorem, Theorem1.1, says that the function log Eα(xα) is sub- resp.
super-additive on R

+ = (0,∞). In Sect. 2, we will show stronger statements for
0 < α < 2: The function Eα(xα) is log-concave for 0 < α < 1, and log-convex
for 1 < α < 2. Sections3–6 are devoted to proving Theorem1.3. Some preliminaries
and the plan of the proof are given in Sect. 3. In that section we also state a conjecture
concerning a converse inequality to (1.7).
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2 Proof of Theorem1.1 for 0 < ˛ < 2 and related statements

For brevity, we do not discuss strictness in this section. This would be straightforward,
and the strictness assertion in Theorem1.1will follow anyways fromTheorem1.3. The
following easy fact is well-known; see, e.g., [3].

Lemma 2.1 Let f : [0,∞) → R be convex with f (0) = 0. Then f is superadditive,
i.e.,

f (x + y) ≥ f (x) + f (y), x, y ≥ 0.

Thus, the following theorem implies (1.2), and (1.3) for 1 < α < 2.

Theorem 2.2 For 0 < α < 1, the function x 
→ Eα(xα) is log-concave on R
+. For

1 < α < 2, it is log-convex.

For α > 2, it seems that Eα(xα) is not log-convex. For instance, E4(x4) = 1
2 (cos x +

cosh x), and

(
log E4(x

4)
)′′ = 2 sin x sinh x

(cos x + cosh x)2

changes sign. To prove (1.3) for α > 2, we thus rely on the binomial inequality (1.7),
which is proven later.

Proof of Theorem 2.2 We start from the representation, given in (3.4) of [24],

Eα(xα) = ex

α
− ϕα(x), x > 0, 0 < α < 1,

where

ϕα(x) := sin απ

π

∫ ∞

0

tα−1e−xt

t2α − 2 cos(απ)tα + 1
dt

is a completely monotone function. (Recall that a smooth function f on R
+ is

completely monotone if

(−1)n f (n)(x) ≥ 0, n ≥ 0, x > 0.)

By well-known closure properties of completely monotone functions (see e.g.
Corollaries 1.6 and 1.7 in [23]),

1

Eα(xα)
= αe−x

∞∑

n=0

(
αe−xϕα(x)

)n

is completely monotone as well and hence log-convex. Thus, Eα(xα) is log-concave.
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Now suppose that 1 < α < 2. Setting β = α/2 ∈ (1/2, 1), we have

Eα(xα) = Eβ(xβ) + Eβ(−xβ)

2
= ex

α
+ Eβ(−xβ) − ϕβ(x)

2
·

Inserting the well-known representation

Eβ(−xβ) = sin βπ

π

∫ ∞

0

tβ−1e−xt

t2β + 2 cos(βπ)tβ + 1
dt,

which is e.g. a consequence of the Perron-Stieltjes inversion formula applied to (3.7.7)
in [9], and making some trigonometric simplifications, we get the representation

Eα(xα) = ex

α
− sin απ

π

∫ ∞

0

tα−1e−xt

t2α − 2 cos(απ)tα + 1
dt,

which is also given in (3.6) of [24]. This implies

log(Eα(xα)) = x − logα + log(ψα(x))

with

ψα(x) := 1 − α sin απ

π

∫ ∞

0

tα−1e−x(1+t)

t2α − 2 cos(απ)tα + 1
dt

a completely monotone function. Thus, Eα(xα) is log-convex.

Observe that Theorem2.2 extends to the boundary case α = 2, where

E2(x
2) = cosh x

is clearly log-convex.Let us alsomention an alternative probabilistic argument for (1.2)

based on the α-stable subordinator {Z (α)
t , t ≥ 0} with normalization E

[
e−λZ (α)

t
] =

e−tλα
. It is indeed well-known—see e.g. Exercise 50.7 in [22]—that

Eα(xα) = E[eR(α)
x ],

where R(α)
x := inf{t > 0 : Z (α)

t > x}. Now if R̃(α)
y is an independent copy of R(α)

y ,

the Markov property implies

R(α)
x + R̃(α)

y
d= inf

{
t > R(α)

x : Z (α)
t > Z (α)

R(α)
x

+ y
}

≥ inf
{
t > R(α)

x : Z (α)
t > x + y

}

= inf
{
t > 0 : Z (α)

t > x + y
} d= R(α)

x+y,
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632 S. Gerhold, T. Simon

where the inequality follows from the obvious fact that Z (α)

R(α)
x

≥ x . This shows the

desired inequality
Eα(xα)Eα(xα) ≥ Eα((x + y)α).

To conclude this section, we give some related results for the function Eα(x).

Proposition 2.3 For 0 < α < 1, the function x 
→ Eα(x) is log-convex on R. For
α > 1, it is log-concave on R+.

Proof The logarithmic derivative of Eα(x) is the ratio of series

E ′
α(x)

Eα(x)
=

∑

n≥0

xn

�(α + αn)

∑

n≥0

α xn

�(1 + αn)

,

and it is clear by log-convexity of the gamma function that the sequence

n 
→ �(1 + αn)

�(α + αn)

is increasing for α < 1 and decreasing for α > 1. By Biernacki and Krzyż’s lemma
(see [1]), this shows that

x 
→ E ′
α(x)

Eα(x)

is non-decreasing onR+ forα < 1 and non-increasing onR+ forα > 1.Sincemoment
generating functions of random variables are log-convex (see Theorem 2.3 in [16]),
the log-convexity of Eα(x) on the whole real line for 0 < α < 1 is a consequence of
the classic m.g.f. representation

Eα(x) = E[ex R(α)
1 ],

where we have used the above notation and the easily established self-similar identity

R(α)
x

d= xαR(α)
1 . Note that R(α)

1 is known as Mittag-Leffler random variable of type 2,
with moments �(1 + n)/�(1 + αn); see [14] and the references therein.

For α ≥ 2, there is actually a stronger result. It has been shown by Wiman [26]
that the zeros of the Mittag-Leffler function are real and negative for α ≥ 2. As this
function is of order 1/α < 1, the Hadamard factorization theorem (Theorem XI.3.4
in [4]) implies that

1

Eα(x)
=

∞∏

n=1

(
1 + x

xn,α

)−1
,
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where

0 < x1,α ≤ x2,α ≤ · · ·

are the absolute values of the zeros of Eα(x).We conclude that 1/Eα(x) is completely
monotone, and thus log-convex, on R

+. An interesting open question is whether
1/Eα(x) remains completely monotone on R

+ for 1 < α < 2. Unfortunately, the
above argument fails because the large zeroes of Eα(x) have non-trivial imaginary
part (see Proposition 3.13 in [9]).

Recall that for α ∈ (0, 1), the function 1/Eα(xα) is completely monotone on R
+,

as seen in the proof of Theorem2.2, and that the function 1/Eα(x) is log-concave by
Proposition2.3 and hence not completely monotone on R

+. One can also show that
1/Eα(x) is decreasing and convex on R

+ for all α > 0.

3 Proof of Theorem1.3: preliminaries

By symmetry and scaling, it is clearly sufficient to prove

k∑

j=0

(
αk

α j

)
λα j > (1 + λ)αk, α ∈ (0, 1), λ ∈ (0, 1], k ∈ N, (3.1)

and

k∑

j=0

(
αk

α j

)
λα j < (1 + λ)αk, α > 1, λ ∈ (0, 1], k ∈ N. (3.2)

As a sanity check, we verify these statements for λ > 0 sufficiently small:

1 +
(

αk

α

)
λα + O(λ2α) > 1 + αkλ + O(λ2), α ∈ (0, 1), k ∈ N,

and

1 + O(λα) < 1 + αkλ + O(λ2), α > 1, k ∈ N.

These inequalities are obviously correct for small λ > 0, the first one by
(
αk
α

)
> 0.

We now recall a remarkable generalization of the binomial theorem, due to Hara and
Hino [12] . Their proof, using fractional Taylor series, builds on earlier work by Osler
[20]. Following [12], for α > 0 define

Kα := {ω ∈ C : ωα = 1}
= {eiθ : −π < θ ≤ π, eiθα = 1}
=

{
exp

(2kπ i
α

)
: k ∈ Z, −α

2
< k ≤ α

2

}
. (3.3)
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For t, λ ∈ (0, 1] and k ∈ N, define

F(t, λ, k) := tα−1(1 − t)αk
(

1

|tα − λαe−iαπ |2 + λαk

|e−iαπ − (λt)α|2
)

. (3.4)

Theorem 3.1 (Theorem 3.2 in [12]) Let α > 0, λ ∈ (0, 1] and k ∈ N0. Then we have

α

k∑

j=0

(
αk

α j

)
λα j =

∑

ω∈Kα

(1 + λω)αk − αλα sin απ

π

∫ 1

0
F(t, λ, k)dt . (3.5)

In [12], the theorem was stated for k ∈ N, but it is not hard to see that the proof
also works for k = 0. Clearly, the classical binomial theorem is recovered from (3.5)
by putting α = 1. As noted in [12], for α ∈ (0, 1) we have Kα = {1}, and thus
Theorem1.2 is an immediate consequence ofTheorem3.1.Hara andHino alsomention
that Theorem3.1 implies

α

k∑

j=0

(
αk

α j

)
xα j yα(k− j) ≥ (x + y)αk, x, y ≥ 0, α ∈ (1, 2],

a partial converse to (1.7). It seems that this inequality does not hold for α > 2. We
leave it to future research to find an appropriate inequality comparing the binomial
sum with (x + y)αk for α > 2. Different methods than in the subsequent sections
will be required, as a lower estimate for

∑
ω∈Kα

(1+ λω)αk is needed. The following
statement might be true:

Conjecture 3.2 For k ∈ N and α > 2, we have

2α−1
k∑

j=0

(
αk

α j

)
xα j yα(k− j) ≥ (x + y)αk, x, y ≥ 0.

The factor 2α−1 = sup0<λ≤1(1 + λ)α/(1 + λα) would be sharp for k = 1, x = λ ∈
(0, 1], y = 1. In the following sections, we will use arguments based on Theorem3.1
to prove (3.1) and (3.2), which imply Theorem1.3, from which Theorem1.1 follows.
The proof of (3.1) is presented in Sect. 4. It profits from the fact that

∑

ω∈Kα

(1 + λω)αk = (1 + λ)αk, α ∈ (0, 1),

and requires only obvious properties of the function F defined in (3.4).At the beginning
of Sect. 5, we show that, for 2 ≤ α ∈ N, the inequality (3.2) immediately follows from
the classical binomial theorem. We then continue with the case where α > 1 is not an
integer, and �α	 is odd. Then, the set Kα has �α	 elements, and the crude estimate

∑

ω∈Kα

(1 + λω)αk ≤ �α	(1 + λ)αk
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suffices to show (3.2), again using only simple properties of F . The case where �α	
is even is more involved, and is handled in Sect. 6. In this case, |Kα| = �α, and the
obvious estimate

∑

ω∈Kα

(1 + λω)αk ≤ �α(1 + λ)αk (3.6)

is too weak to lead anywhere. We first show (Lemma6.1) that, for λ ∈ [ 12 , 1], the right
hand side of (3.6) can be strengthened to α(1 + λ)αk, and that (3.2) easily follows
from this for these values of λ. For smaller λ > 0, more precise estimates for the sum∑

ω∈Kα
(1 + λω)αk and the integral in (3.5) are needed, which are developed in the

remainder of Sect. 6.

4 Proof of Theorem1.3 for 0 < ˛ < 1

As mentioned above, it suffices to prove (3.1). For α ∈ (0, 1), we have Kα = {1}.
Since sin απ > 0, we see from (3.5) that the desired inequality (3.1) is equivalent to

∫ 1

0
F(t, λ, k)dt < G(λ, k), λ ∈ (0, 1], k ∈ N, (4.1)

where

G(λ, k) := π(1 − α)

αλα sin απ
(1 + λ)αk .

Define

δ̃ := inf
k∈N

(
(1 + λ)αk − 1)

) 1
αk = (1 + λ) inf

k∈N

(
1 − (1 + λ)−αk

) 1
αk

> 0.

This number is positive, as it is defined by the infimum of a sequence of positive
numbers converging to a positive limit. Moreover, we define

δ := 1
2 min{1, δ̃} > 0.

By definition, F(t, λ, k) decreases w.r.t. k, and so

F(t, λ, k) ≤ F(t, λ, 0), t, λ ∈ (0, 1], k ∈ N.

Applying Theorem3.1 with k = 0 yields

∫ 1

0
F(t, λ, 0)dt = G(λ, 0), λ ∈ (0, 1].
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By these two observations,

∫ 1−δ

0
F(t, λ, k)dt ≤

∫ 1−δ

0
F(t, λ, 0)dt ≤ G(λ, 0). (4.2)

Since λαk ≤ 1, and (1− t)αk decreases w.r.t. t , it is clear from the definition of F that

∫ 1

1−δ

F(t, λ, k)dt ≤ δαk
∫ 1

0
F(t, λ, 0)dt = δαkG(λ, 0). (4.3)

By definition of δ, we have

1 + δαk < (1 + λ)αk, λ ∈ (0, 1], k ∈ N. (4.4)

Now note that

∫ 1

0
F(t, λ, k)dt ≤ (1 + δαk)G(λ, 0) < G(λ, k), (4.5)

where the first estimate follows from (4.2) to (4.3), and the second one from (4.4).
Thus, (4.1) is established.

5 Proof of Theorem1.3 for˛ ∈ N or �˛� odd
If 2 ≤ α ∈ N is an integer, then the proof of (3.2) is very easy, as we are dealing with
a classical binomial sum with some summands removed:

k∑

j=0

(
αk

α j

)
λα j <

αk∑

j=0

(
αk

j

)
λ j = (1 + λ)αk .

In the remainder of this section, we prove (3.2) for 1 < α /∈ N with �α	 odd. Our
approach is similar to the preceding section. First, observe that

|Kα| =
⌊α

2

⌋
−

⌊
−α

2

⌋
= �α	,

and that

α(1 + λ)αk −
∑

ω∈Kα

(1 + λω)αk

≥ α(1 + λ)αk − �α	(1 + λ)αk > α − �α	.
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Therefore, the sequence

Ak :=
(

α(1 + λ)αk − ∑
ω∈Kα

(1 + λω)αk

α − �α	 − 1

) 1
αk

, k ∈ N,

is well-defined and positive, and

lim
k→∞ Ak = (1 + λ) lim

k→∞(α − 1)
1
αk

×
(1 − ∑

ω∈Kα\{1}
(1+λω)αk

(α−1)(1+λ)αk

α − �α	 − 1

(α − 1)(1 + λ)αk

) 1
αk

= 1 + λ > 0.

We can thus define the positive number

δ̂ := 1

2
min

{
1, inf

k∈N Ak

}
> 0.

Since odd �α	 implies sin απ < 0 for α /∈ N, it is clear from (3.5) that (3.2) is
equivalent to

∫ 1

0
F(t, λ, k)dt < Ĝ(λ, k), λ ∈ (0, 1], k ∈ N, (5.1)

where

Ĝ(λ, k) := − π

αλα sin απ

⎛

⎝α(1 + λ)αk −
∑

ω∈Kα

(1 + λω)αk

⎞

⎠ .

By the same argument that gave us the first inequality in (4.5), we find

∫ 1

0
F(t, λ, k)dt ≤ (1 + δ̂αk)Ĝ(λ, 0), λ ∈ (0, 1], k ∈ N.

Note that

Ĝ(λ, 0) = − π

αλα sin απ
(α − �α	).

The proof of (3.2) with �α	 odd will thus be finished if we can show that

(1 + δ̂αk)Ĝ(λ, 0) < Ĝ(λ, k), λ ∈ (0, 1], k ∈ N.
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But this is equivalent to

(1 + δ̂αk)(α − �α	) < α(1 + λ)αk −
∑

ω∈Kα

(1 + λω)αk,

which follows from the definition of δ̂.

6 Proof of Theorem1.3 for �˛� even
We now prove (3.2) in the case that

2 < α /∈ N, �α	 = 2m, m ∈ N. (6.1)

As sin απ > 0, it follows from (3.5) to (3.2) is equivalent to

∫ 1

0
F(t, λ, k)dt >

π

αλα sin απ

⎛

⎝
∑

ω∈Kα

(1 + λω)αk − α(1 + λ)αk

⎞

⎠ ,

λ ∈ (0, 1], k ∈ N. (6.2)

Since F(·, λ, k) is positive on (0, 1), the following lemma establishes this for λ ∈
[ 12 , 1].
Lemma 6.1 Let α > 2 be as in (6.1). Then we have

∑

ω∈Kα

(1 + λω)αk ≤ α(1 + λ)αk, λ ∈ [ 12 , 1], k ∈ N.

Proof By (3.3), we have

∑

ω∈Kα

(1 + λω)αk ≤
∑

ω∈Kα

|1 + λω|αk

=
m∑

j=−m

(
1 + 2λ cos

2 jπ

α
+ λ2

)αk/2
, λ ∈ (0, 1], k ∈ N. (6.3)

We will show that

m∑

j=−m

(
1 + 2λ cos

2 jπ

α
+ λ2

)
≤ α(1 + λ)2, λ ∈ [ 12 , 1]. (6.4)

Then, (6.3) and (6.4) imply

m∑

j=−m

(
1+2λ cos

2 jπ

α
+ λ2

)αk/2 = (1 + λ)αk
m∑

j=−m

(
1 + 2λ cos 2 jπ

α
+ λ2

(1 + λ)2

)αk/2

123



A converse to the neo-classical inequality with an application... 639

≤ (1 + λ)αk
m∑

j=−m

1 + 2λ cos 2 jπ
α

+ λ2

(1 + λ)2
≤ α(1 + λ)αk,

which proves the lemma. To prove (6.4), observe that (6.1) implies

|Kα| =
⌊α

2

⌋
−

⌊
−α

2

⌋
= m − (−m − 1) = 2m + 1 = �α.

Using the geometric series to evaluate the cosine sum (see, e.g., p. 102 in [19]), we
obtain

m∑

j=−m

(
1 + 2λ cos

2 jπ

α
+ λ2

)
= �α(1 + λ2)

+2λ

(
1 + 2

cos
(
(m + 1)π/α

)
sin(mπ/α)

sin(π/α)

)
. (6.5)

Here, cos
(
(m + 1)π/α

)
< 0, and the sines are both positive. By (6.5) and the

elementary inequalities

cos x ≤ −1 + 1
2 (x − π)2, x ∈ R,

sin x ≤ x, x ≥ 0,

sin x ≥ x − 1
6 x

3, x ≥ 0,

the following statement is sufficient for the validity of (6.4):

(A + 1)(1 + λ2) + 2λ

(
1 + 2

(−1 + 1
2

(
(M+1)π

A − π
)2)Mπ

A
π
A − 1

6 (
π
A )3

)
≤ A(1 + λ)2,

A > 2, M > 0, 2M < A < 2M + 1, 1
2 ≤ λ ≤ 1. (6.6)

This is a polynomial inequality in real variables with polynomial constraints, which
can be verified by cylindrical algebraic decomposition, using a computer algebra
system. For instance, using Mathematica’s Reduce command on (6.6), with the first
≤ replaced by >, yields False. This shows that (6.6) is correct, which finishes the
proof.

The following two lemmas will be required for some estimates of the func-
tion F(t, λ, k) for small λ.

Lemma 6.2 For α as in (6.1), we have

∫ ∞

0

sα

s2α − 2sα cosαπ + 1
ds = π sin

( �α	+1
α

π
)

α sin(απ) sin
(

α+1
α

π
) (6.7)
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and

∫ ∞

0

sα−1

s2α − 2sα cosαπ + 1
ds = π(�α − α)

α sin απ
. (6.8)

Proof By substituting sα = w,

∫ ∞

0

sα

s2α − 2sα cosαπ + 1
ds = 1

α

∫ ∞

0

w1/α

w2 − 2w cosαπ + 1
dw

= 1

α

∫ ∞

0

w1/α

w2 + 2w cos(π(α − �α	 − 1)) + 1
dw,

where we have used that �α	 is even. The first formula now follows from 3.242 on
p. 322 of [10], with m = 1/(2α), n = 1

2 and t = π(α − �α	 − 1). As for (6.8),

∫ ∞

0

sα−1

s2α − 2sα cosαπ + 1
ds = 1

α

∫ ∞

0

1

w2 − 2w cosαπ + 1
dw

= 1

α

∫ ∞

0

1

w2 + 2w cos(π(α − �α	 − 1)) + 1
dw.

The identity (6.8) then follows from 11a) on p. 14 of [11], with

λ = π(α − �α	 − 1) = π(α − �α).
��

Lemma 6.3 Again, suppose that α satisfies (6.1). For k ∈ N, we have

∫ 1/λ

0

sα−1(1 − λs)αk

s2α − 2sα cosαπ + 1
ds =

∫ ∞

0

sα−1

s2α − 2sα cosαπ + 1
ds

−αkλ
∫ ∞

0

sα

s2α − 2sα cosαπ + 1
ds + o(λ), λ ↓ 0.

Proof Fix some β ∈ ( 1
α
, 1
2 ). We have

∫ ∞

λ−β

sα−1

s2α − 2sα cosαπ + 1
ds = O(λαβ) = o(λ), λ ↓ 0, (6.9)

and
∫ ∞

λ−β

sα

s2α − 2sα cosαπ + 1
ds = O(λβ(α−1)) = o(1), λ ↓ 0. (6.10)

These assertions easily follow from the fact that the integrand is of order O(s−α−1)

resp. O(s−α) at infinity. Moreover, we have the uniform expansion

(1 − λs)αk = 1 − αkλs + O(λ2−2β)
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= 1 − αkλs + o(λ), 0 ≤ s ≤ λ−β, λ ↓ 0. (6.11)

Since 0 ≤ (1 − λs)αk ≤ 1, (6.9) implies

∫ 1/λ

0

sα−1(1 − λs)αk

s2α − 2sα cosαπ + 1
ds =

∫ λ−β

0

sα−1(1 − λs)αk

s2α − 2sα cosαπ + 1
ds + o(λ).

The statement now follows from (6.11), (6.10) and (6.9).

We now continue the proof of (6.2). From the definition of F , it is clear that

∫ 1

0
F(t, λ, k)dt ≥

∫ 1

0

tα−1(1 − t)αk

|tα − λαe−iαπ |2 dt

= λ−α

∫ 1/λ

0

sα−1(1 − λs)αk

s2α − 2sα cosαπ + 1
ds. (6.12)

As noted above, from (3.3), we have

∑

ω∈Kα

(1 + λω)αk ≤
∑

ω∈Kα

|1 + λω|αk

= 1 + 2
m∑

j=1

(
1 + 2λ cos

2 jπ

α
+ λ2

)αk/2
, λ ∈ (0, 1], k ∈ N.

(6.13)

Since Lemma6.1 settles the case λ ∈ [ 12 , 1], we may assume λ ∈ (0, 1
2 ) in what

follows. Using (6.12) and (6.13) in (6.2), we see that it is sufficient to show

2
m∑

j=1

(
1 + 2λ cos

2 jπ

α
+ λ2

)αk/2 + (1 − α)(1 + λ)αk

−α sin απ

π

∫ 1/λ

0

sα−1(1 − λs)αk

s2α − 2sα cosαπ + 1
ds < 0, λ ∈ (0, 1

2 ), k ∈ N. (6.14)

This will be proven in the following two lemmas.

Lemma 6.4 For λ ∈ (0, 1
2 ), the left hand side of (6.14) decreases w.r.t. λ.

Proof The derivative of this expression is

2αk
m∑

j=1

(
cos

2 jπ

α
+ λ

)(
1 + 2λ cos

2 jπ

α
+ λ2

)αk/2−1 + αk(1 − α)(1 + λ)αk−1

+ α sin απ

π

∫ 1/λ

0

sα(1 − λs)αk−1

s2α − 2sα cosαπ + 1
ds
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≤ 2αk
∑

1≤ j≤α/3

(
cos

2 jπ

α
+ λ

)(
1 + 2λ cos

2 jπ

α
+ λ2

)αk/2−1

+ αk(1 − α)(1 + λ)αk−1 + α sin απ

π

∫ ∞

0

sα

s2α − 2sα cosαπ + 1
ds.

(6.15)

Note that it is easy to show that cos(2 jπ/α) + λ < 0 for j > α/3, which is where
we use our assumption that λ < 1

2 . Thus, we are discarding only negative terms when
passing from

∑m
j=1 to

∑
1≤ j≤α/3 in (6.15). By Lemma6.2, the last term in (6.15)

satisfies

α sin απ

π

∫ ∞

0

sα

s2α − 2sα cosαπ + 1
ds = sin

( �α	+1
α

π
)

sin
(

α+1
α

π
) < 1, (6.16)

where the inequality follows from

1 <
�α	 + 1

α
<

α + 1

α
<

3

2
. (6.17)

We can thus estimate (6.15) further by

2αk
∑

1≤ j≤α/3

(1 + λ)
(
(1 + λ)2

)αk/2−1 + αk(1 − α)(1 + λ)αk−1 + 1

= 2αk
⌊α

3

⌋
(1 + λ)αk−1 + αk(1 − α)(1 + λ)αk−1 + 1

≤ αk(1 + λ)αk−1
(
2
⌊α

3

⌋
+ 2 − α

)
≤ 0.

Indeed, it is easy to see that 2�α/3	 + 2 − α ≤ 0 for α as in (6.1).

Presumably, the preceding lemma can be extended to λ ∈ (0, 1], but this would require
a much better estimate for

∑
ω∈Kα

(1 + λω)αk than the one we have used. The proof
of (3.2) could then possibly be streamlined, because Lemma6.1 would no longer be
required.

Lemma 6.5 Let α be as in (6.1), and k ∈ N. Then (6.14) holds for λ > 0 sufficiently
small.

Proof Since m = (�α − 1)/2, expanding the first terms of (6.14) gives

�α − α + αk

⎛

⎝2
m∑

j=1

cos
2 jπ

α
+ 1 − α

⎞

⎠ λ + O(λ2)

−α sin απ

π

∫ 1/λ

0

sα−1(1 − λs)αk

s2α − 2sα cosαπ + 1
ds.
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By Lemmas6.2 and6.3, this further equals

�α − α + αk

(
2

m∑

j=1

cos
2 jπ

α
+ 1 − α

)
λ

+ α − �α + αkλ
sin

( �α	+1
α

π
)

sin
(

α+1
α

π
) + o(λ)

= αk

⎛

⎝2
m∑

j=1

cos
2 jπ

α
+ 1 − α + sin

( �α	+1
α

π
)

sin
(

α+1
α

π
)

⎞

⎠ λ + o(λ), (6.18)

and we see that (6.14) becomes sharp as λ ↓ 0, as its left hand side is O(λ). This is
no surprise, since the inequality (3.2) we are proving is obviously sharp for λ ↓ 0. It
remains to show that the coefficient of λ in (6.18) is negative. Similarly to (6.15), we
have the bound

2
m∑

j=1

cos
2 jπ

α
≤ 2

∑

1≤ j≤α/3

cos
2 jπ

α
≤ 2

⌊α

3

⌋
.

Thus, we wish to show that

2
⌊α

3

⌋
+ 1 − α + sin

( �α	+1
α

π
)

sin
(

α+1
α

π
) < 0. (6.19)

As the sine quotient is < 1, by (6.16), this is clearly true for α > 6. Now consider
α ∈ (4, 5). It is easy to verify that

sin
(4 + 1

α
π

)
< − 1√

2
+ 6π(α − 4)

16
√
2

, 4 < α < 5,

and that

sin
(α + 1

α
π

)
> − 1√

2
+ π(α − 4)

20
√
2

, 4 < α < 5.

Using these estimates in (6.19) leads to a quadratic inequality, which is straightforward
to check. The proof of (6.19) for α ∈ (2, 3) is similar.

Clearly, Lemmas6.4 and6.5 establish (6.14). As argued above (6.14), we have thus
proven (6.2), hence (3.2), and the proof of Theorem1.3 is complete.
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