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Abstract

High-dimensional compositional data are commonplace in the modern omics

sciences, among others. Analysis of compositional data requires the proper

choice of a log-ratio coordinate representation, since their relative nature is not

compatible with the direct use of standard statistical methods. Principal bal-

ances, a particular class of orthonormal log-ratio coordinates, are well suited to

this context as they are constructed so that the first few coordinates capture

most of the compositional variability of data set. Focusing on regression and

classification problems in high dimensions, we propose a novel partial least

squares (PLS) procedure to construct principal balances that maximize the

explained variability of the response variable and notably ease interpretability

when compared to the ordinary PLS formulation. The proposed PLS principal

balance approach can be understood as a generalized version of common log-

contrast models since, instead of just one, multiple orthonormal log-contrasts

are estimated simultaneously. We demonstrate the performance of the pro-

posed method using both simulated and empirical data sets.
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1 | INTRODUCTION

Compositional data (CoDa) occur in plenty of research fields, such as geochemistry,1 metabolomics,2 microbiome data,3

time use data,4 or ecology.5 Let us consider a regression (or classification) task where y¼ðy1,…,ynÞ > is a vector of n
observations of a continuous (or binary) response variable and X¼ðxijÞ1≤ i≤n,1≤ j≤D is an associated matrix of a D-part
compositional predictor. Analyzing CoDa requires careful consideration since such data do not carry relevant informa-
tion in their absolute values, but rather in the ratios between the parts that constitute the composition. Accordingly,
CoDa are scale invariant, which means that the multiplication of a compositional vector by any positive constant keeps
the ratios unaltered. Moreover, in this work, we address the case of high-dimensional compositions consisting of a large
number D of parts.

In the growing literature regarding omics sciences, most data are actually of relative (hence compositional) nature,6

and the development of methods for high-dimensional compositions is of increasing interest. The challenge concerns
not only compositions consisting of many parts but also the fact that the number of samples n is usually substantially
smaller than the number D of parts due to the nature of the technology and omics sciences in general (as, for example,
hundreds of proteins or metabolites are examined). Such settings with more variables than observations hamper the
use of the most popular regression and classification methods, including least squares (LS) regression and linear or qua-
dratic discriminant analysis (LDA/QDA) models, where some pre-selection or dimension reduction of variables needs
to be performed in advance.

For regression analysis with high-dimensional compositions, log-contrast models7 have gained increasing popular-
ity; see, for instance, Bates and Tibshirani,8 Susin et al,9 and Gordon-Rodriguez.10 Log-contrasts are a building block in
CoDa analysis through the log-ratio methodology.11 Given a D-part composition, a log-contrast is a loglinear
combination

XD
j¼1

aj ln xj, with
XD
j¼1

aj ¼ 0, aj �ℝ:

Any log-ratio coordinate representation of CoDa consists of D�1 log-contrasts, with such number corresponding to the
actual dimensionality of compositions. A typical feature of log-contrast models in Aitchison and Bacon-Shone7 or
Rivera-Pinto et al12 is that only one of the possible D�1 log-contrasts corresponding to the dimensionality of D-part
composition is estimated as predictor variable. Note that it is crucial to have compositional predictors expressed in the
form of log-contrasts, because only then scale invariance is fulfilled. Representing the compositional predictors by just
one log-contrast is in principle appealing, particularly when aiming to assess their relevance in explaining the response
variable (with the possible caveat that the zero-sum constraint of regression coefficients must be met being considered).
However, using only one log-contrast might be unnecessarily restrictive as other log-contrasts can be of interest as pre-
dictor variables, and this is something we investigate here. Moreover, if (and only if) such log-contrasts are orthogonal,
then the usual interpretation of regression coefficients (in terms of assessing their association with the response vari-
able) applies.13

However, estimating the set of all possible D�1 predictor log-contrasts could be computationally exhaustive or even
unfeasible with high-dimensional compositions, definitely so when using existing log-contrast models. But, in fact, this
would not be needed. Just having a few log-contrasts capturing most of the information contained in the original
explanatory composition, while they appropriately relate to the response variable, would be necessary. We here intro-
duce a model that sufficiently explains a response variable y using the matrix X of compositional predictors while per-
forming dimension reduction through partial least squares (PLS) regression/classification.14 Prior to PLS modeling, it is
necessary to express CoDa in a proper log-ratio coordinate system. For example, a common choice is to use clr coeffi-
cients15 and subsequently perform PLS analysis on them, although alternative coordinate representations can be con-
sidered.2,16 Note that clr coefficients have a direct link to log-contrasts.17

Even though PLS is a convenient method to model relationships between response and explanatory variables, when
dealing with compositions, the interpretation of log-contrasts might become challenging in high dimensions, and thus,
simplification would be welcome. To this end, we propose to use a special class of log-ratio coordinates, so-called
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balance coordinates,18 which are interpretable in terms of contrasts between subgroups of compositional parts summa-
rized by their geometric means. Note also that balances aggregate all pairwise log-ratios between parts with positive
and negative sign in the respective log-contrast.19 Furthermore, in order to achieve orthonormality between balance
coordinates, we tailor the original principal balances (PB) approach of Pawlowsky-Glahn et al20 and Martín-Fern�andez
et al.17 The original PB method was developed to enhance interpretability in dimension reduction of CoDa in the style
of principal component analysis (we will denote this PCA-PB). We adapt it here to involve a response variable within a
regression or classification problem by replacing PCA by PLS. Accordingly, up to D�1 PBs with decreasing explanatory
power are obtained that can be either directly interpreted or used for further statistical analysis. In the following, we
will refer to this new proposal as PLS-PB.

This manuscript is structured as follows. In Section 2, the basics of CoDa are presented together with the description
of the proposed PLS-PB procedure. In Section 3, a simulation study is conducted to investigate the ability of PLS-PB to
reflect and simplify the structure of PLS loadings as well as its prediction performance. The proposed method is then
applied to two empirical data sets in Section 4. Section 5 concludes with some final remarks and future outlook.

2 | COMPOSITIONAL DATA AND PLS PRINCIPAL BALANCES

When analyzing CoDa, their relative nature needs to be appropriately accounted for. The sample space of CoDa is
formed by equivalence classes of proportional vectors.21 In practice, CoDa are typically (equivalently) represented in
the form of percentages, proportions, or parts per million (ppm), that is, as data with a constant sum constraint and liv-
ing on a simplex. Given the scale invariance property of compositions11 and the geometric structure of their sample
space (the so-called Aitchison geometry), a well-principled way to conduct analysis of CoDa is to express them in the
form of log-ratios of parts, or more generically as their log-contrasts, and then proceed to further statistical processing
on these.22,23

Log-contrast models have been recently used for regression or classification analysis with high-dimensional compo-
sitional covariates.3,8,10 The general form of these models is given by

y¼ lnðXÞ �βþ ε, ð1Þ

where y¼ðy1,…,ynÞ > is a univariate response variable, X¼ðxijÞ1≤ i≤ n,1≤ j≤D is the matrix of observed compositional
predictors (with lnðXÞ denoting the elementwise logarithm of X), β represents the regression coefficients withPD

j¼1βj ¼ 0, and ε stands for the ordinary random error term. It is common practice to interpret the regression coeffi-
cients directly in terms of the original parts like in a standard multiple regression model. Nevertheless, from a composi-
tional perspective, just one log-contrast is estimated and the common interpretation of regression coefficients can only
be used with due caution. For this reason, considering more orthogonal (or orthonormal) log-contrasts is advantageous
in our view.

The model in Equation (1) can, however, be immediately generalized to a setting where more orthonormal log-
contrasts are estimated simultaneously. In order to reduce the dimension, it would be interesting to rank them
according to decreasing relevance to explain or predict the response variable. Moreover, simplifying the interpretation
of these log-contrasts would be beneficial. This is achieved by the novel PLS-PB method introduced in this work as
showed in the following.

2.1 | Log-ratio representations of compositional data

As said, CoDa are commonly expressed in the form of log-ratios of parts (log-contrasts) for statistical analysis. Thus, clr
coefficients11 are often used. For a D-part composition x¼ðx1,…,xDÞ > , its representation in the clr coefficients is
defined as

clrðxÞ¼ ðclr1ðxÞ,clr2ðxÞ,…,clrDðxÞÞ¼ ln
x1
gðxÞ , ln

x2
gðxÞ ,…, ln

xD
gðxÞ

� �
, ð2Þ
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where gðxÞ denotes the geometric mean of the parts of the composition x. Clr coefficients and log-contrasts are closely
linked together as it holds that17

clrjðxÞ¼ ln
xj

gðxÞ¼
XD
k¼1

ak ln xk,
XD
k¼1

ak ¼ 0, for j¼ 1,…,D, ð3Þ

where ak ¼� 1
D for k≠ j and aj ¼ 1� 1

D. The clr coefficients impose a zero-sum constraint
PD

k¼1clrkðxÞ¼ 0 and thus lead
to a singular covariance matrix, which is undesirable for some statistical methods including LS regression or
LDA/QDA. However, their construction and interpretation are convenient in other cases, including PLS regression.
Note that, by taking Equation (3) into account, the regression model in Equation (1) could have been developed directly
in clr coefficients (this will be done separately later). The reason is methodological: while in Equation (1) the zero-sum
constraint must be imposed,3 by using clr coefficients in the first instance, it is automatically incorporated before pro-
ceeding with standard estimation. In fact, clr coefficients always add up to zero by definition, given the geometric mean
placed in the denominator, and any LS-based estimator of a linear model (including PLS regression) preserves this con-
straint. This relates to the possibility of expressing the explanatory part of a linear regression model as the inner product
of the vector of coefficients and the vector of predictor variables (we refer the interested reader to van den Boogaart
et al24 for further details). However, care must be taken when interpreting results in terms of this log-ratio coordinate
representation as the clr coefficients should not be simply identified with the original compositional parts, because
instead they aggregate all pairwise logratios with specific parts.23

An alternative way to map CoDa from their original sample space into the real space is through orthonormal log-
ratio (olr) coordinates, also known as isometric log-ratio (ilr) coordinates, which are derived from the Euclidean vector
space structure of the Aitchison geometry and overcome the singularity issue, hence being more generally applicable in
statistical analysis.23,25,26

Note that balances are one concrete instance of olr coordinates that are constructed by means of a sequential binary
partition (SBP) of the parts of a composition.18 This procedure sequentially splits parts into two non-overlapping
groups. Thus, at the kth partition, k¼ 1,…,D�1, the balance bk between two subgroups is given by

bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rksk

rkþ sk

r
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixn1 �… �xnrkrk
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixd1 �… �xdsksk
p ,

where rk denotes the number of parts in the first group (numerator of the log-ratio) and sk denotes the number of parts
in the second group (in the denominator of the log-ratio), with n1,…,nrk and d1,…,dsk being the indices of the parts of
the first and second group, respectively. From a D-part composition, the number of balances derived in the SBP is
D�1, which corresponds to the actual dimensionality of the composition. The interpretation of balances is straightfor-
ward: they represent the relative dominance of the average of one group of parts with respect to the average of the other
group. They are orthonormal log-contrasts by construction, which means that the respective vectors of log-contrast
coefficients are re-scaled to have unit norm and are mutually orthogonal:

bk ¼
XD
j¼1

akj ln xj, with akj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sj

ðrjþ sjÞrj
r

if j� fn1,…,nrkg

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rj
ðrjþ sjÞsj

r
if j� fd1,…,dskg

0 otherwise:

8>>>>><>>>>>:
Recently, the use of balances has been questioned by some.1,27,28 Nonetheless, their ability to represent the original
information in terms of contrasts or comparisons between two groups of parts remains appealing when compared to
using general log-contrasts, particularly so in high-dimensional settings.
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However, as the number D of parts of a composition increases, it becomes more challenging to build a SBP and
obtain a collection of balances that are interpretable. It is then desirable to construct just a few balances which capture
the majority of the information. In an unsupervised learning settings, principal balances have been proposed for this
aim.20 In Martín-Fern�andez et al.,17 PBs are formally defined as follows.

Definition 2.1. Given a composition x¼ðx1,x2,…,xDÞ > , principal balances are log-contrasts
PD

j¼1akj � lnxj,
k¼ 1,…,D�1, such that ak ¼ðak1,…,akDÞ > are constant vectors which maximize the variances
var

PD
j¼1akj � lnxj

h i
and:

• for k¼ 1,…,D�1 the coefficients akj take one of the three values ð�c1,0,c2Þ, c1 and c2 being some strictly
positive numbers,
• for k¼ 1,…,D�1, it holds that

PD
j¼1akj ¼ 0 and

PD
j¼1a

2
kj ¼ 1,

• for k¼ 2,3,…,D�1, ak is orthogonal to the previous ak�1,ak�2,…,a1, that isPD
j¼1akj �aðk�lÞj ¼ 0, l¼ 1,2,…,k�1.

PBs facilitate dimension reduction using PCA in the clr space, but the interpretation of the resulting principal com-
ponents is simplified through their expression in terms of balances. Accordingly, the first PB maximizes the sample var-
iance, and each subsequent balance then maximizes the remaining variance in the data, while satisfying the
orthonormality constraint. Up to D�1 PBs can be derived, although in practice much fewer are typically needed to cap-
ture the main modes of variability. In the following subsection, we embed such dimension reduction by PB coordinates
into a regression setting using a PLS formulation.

2.2 | PLS regression and classification

PLS is a multivariate method that is used to model a linear relationship between a response variable and a set of (not
necessarily compositional) explanatory variables. The linear relationship is however not modeled directly, but via the
construction of latent variables (PLS components). Values of new latent variables are called scores, and coefficients that
determine the influence of each variable on the score are called loadings.29

More precisely, PLS regression aims to estimate the regression coefficient vector b¼ðb1,…,bDÞ in the linear regres-
sion model

y¼Xbþe, ð4Þ

where e stands for a random error term. Both the response variable and covariates are centered prior to the analysis, so
no intercept is included in Equation (4). As we deal with CoDa, the matrix X in Equation (4) is expressed in the form of
clr coefficients, and this clr matrix is denoted clrðXÞ in the following, such that the model in Equation (4) can be written
as

y¼ clrðXÞbþe, ð5Þ

While the estimation of b in terms of the original variables (here clr coefficients as used for compositional PCA) is the
final goal, the regression fit itself and prediction are performed on the PLS components, which are linear combinations
of clr variables in the n�D matrix clrðXÞ. Because of Equation (3), these latent PLS components are just the log-
contrasts we are searching for.

Namely, the matrix clrðXÞ is decomposed as

clrðXÞ¼TP > þEX ,

NESRSTOVÁ ET AL. 5 of 22

 1099128x, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.3518 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [06/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



where T is a score matrix, P is a loading matrix, and EX is an error matrix.29 Both matrices T,P have k columns,
k≤ minðD,nÞ, indicating the number of PLS components. The goal of PLS is then to maximize the covariance between
the scores (coordinates corresponding to the latent variables) and y, under the constraint of uncorrelated scores (the
most usual case) or orthogonal loading vectors (representing weights given to the original variables in the construction
of the PLS components). Let p denote a (column) loading vector of matrix P. Then it holds for a score vector t that
t¼ clrðXÞp, and the maximization problem can then be written as

max
p

covðclrðXÞp,yÞ, subject to kclrðXÞpk¼ 1, ð6Þ

where p is considered to be a weighting vector. The constraint of unit length ensures that the maximization problem is
unique.29 Such maximization problem results in the first score vector t. The subsequent score vectors are obtained in
the same way, with the condition that they must be orthogonal to the previous ones. The score vector t¼ clrðXÞp con-
tains n observations of a log-contrast because the sum of elements of each loading vector p equals to zero in the clr coef-
ficient representation of the composition acting as covariate. The resulting log-contrasts can then be used in the
regression model

y¼ TP >� �
bþeT ¼TvþeT , ð7Þ

with v¼P > b, for prediction purposes as well as to determine the number of log-contrasts that are sufficient for a good
prediction of y. There exist several algorithms to find a solution to this optimization problem. We resort to the well-
known SIMPLS algorithm.

Similarly, PLS can be used for classification purposes. This method is then commonly called PLS discriminant anal-
ysis (PLS-DA). Here, we will focus on binary response variables, typically using codes 0 for observations that do not
belong to a certain group and 1 for those that do belong.

Beyond representing a generalization of log-contrast models, a step further with the proposed formulation is to sim-
plify it in the form of balances and then rely on PBs instead of PLS loadings. Thus, we can investigate which groups of
parts contribute in positive or negative sense to their values based on the position of parts either in the numerator (posi-
tive) or denominator (negative) of the coordinate and their corresponding log-contrast coefficients. In doing so, a small
price is paid in terms of prediction ability of the resulting regression model, but a benefit in interpretability of log-
contrasts as latent variables is generally obtained, as will be further discussed in Section 3.

2.3 | Algorithmic implementation of PLS principal balances

PLS-PB can be straightforwardly constructed by adapting the PCA-PB approach from.17 Specifically, we take the con-
strained PCs algorithm introduced in that work as reference. This algorithm builds PBs based on loadings obtained
from PCA. Our proposal is to do it based on the loadings from PLS. Calculations were conducted on the R system for
statistical computing,30 using the package pls31 for PLS estimation and the package compositions32 for CoDa oper-
ations and manipulations.

The core of the modification is as follows: Instead of maximizing explained variance in accordance with PCA, we
maximize the covariance between the response variable and the new established balance (through the respective bal-
ance coefficients) while keeping orthonormality of the new coordinate system. Thus, balances and balance coefficients
play the role of score vectors and loadings, respectively. In the relationship t¼ clrðXÞp, balance coefficients are in the
place of vector p. Accordingly, the first PLS loading vector is used to derive the first PB, and the other balances are then
obtained by maximizing the absolute value of the covariance of subsequently derived balances with the response vari-
able. Algorithm 1 summarizes this procedure for obtaining the PLS-PB.
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The codes with functions together with simulations are available in GitHub (https://github.com/NesrstovaV/PLS-
PBs.git). Empirical data sets cannot be publicly available due to ownership rights, but are available upon reasonable
request.
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3 | NUMERICAL ASSESSMENT

In this section, we first introduce three illustrative examples to visually demonstrate that PLS-PBs help to arrive at a
simplified structure of PLS loadings (Section 3.1). In line with an application to metabolomics in Section 4, here we
refer to (bio)markers (explanatory variables), that is, biological measurements or signals most associated to some health
or biological outcome/status of interest (response variable).2 We therefore focus on the identification of meaningful bio-
markers as the main purpose of the data analysis. Subsequently, using the same data generating processes as in
Section 3.1, we set up a more thorough simulation study to formally compare the predictive performance of the pro-
posed PLS-PB with the original PCA-PB in Martín-Fern�andez et al.17 (Section 3.2).

3.1 | Artificial settings for comparison: PLS-PB against PLS loadings

To assess the behavior of PLS-PB across various settings, we consider three artificial cases inspired by the study in
Štefelov�a et al.2 The first case contains just one block of markers among a given collection of signals defining the
explanatory composition. In the other two examples, we extend such setting to include several groups of markers. In all
cases, we consider n¼ 250 samples and D¼ 100 signals in the composition. The number of PLS-PB is then 99 (D�1).
Following on Štefelov�a et al,2 compositions were simulated using so-called pivot coordinates, an instance of olr coordi-
nates33 (see Appendix A for more details). The resulting covariance matrices are visualized in Figure 1.

The three cases aim to reflect realistic metabolomic scenarios. Metabolomic data in general, by its very nature, con-
tain a number of correlations, primarily because of the very close first-order relationship through the metabolic
pathways,34–36 where individual metabolites are converted. In some selected cases, correlations can be very strong
(>0.75, e.g., for fatty acids37). This phenomenon is particularly applicable in a younger branch of metabolomics, called
lipidomics, where individual lipids within their lipid classes show systematic correlations and we can get into a situa-
tion where even most lipids in the data matrix can be correlated.38,39 This all is reflected in the regression and correla-
tion structure provided in the simulation study, which aims to provide a reasonable theoretical model covering
scenarios, which are general enough. Specifically, we consider (i) a first case where all markers are in one block with
groups of markers that line up sequentially, with the covariances within each group being generated so that more dis-
tant markers are less correlated, and (ii) cases 2 and 3, where multiple (four) blocks of correlated markers are allowed.

Figure 1A displays the covariance matrix in the first case. The generated compositions then contain one block of
20 markers, and the remaining 80 signals are regarded irrelevant (i.e., as the covariance matrix is ðD�1Þ�ðD�1Þ, the
remaining 79 rows/columns correspond to irrelevant signals). Within the block of markers, there are four groups con-
sisting respectively of 7, 3, 5, and 5 markers. The markers line up sequentially, and they are, in turn, positively or nega-
tively associated within each group. All these 20 markers relate with the response; that is, the corresponding model
coefficients are not zero, and its sign is determined by the covariance matrix (the remaining 79 coefficients are set to
zero).

Figure 1B displays the covariance matrix for the case including four blocks of markers (each block consisting of
20 markers). There are thus in total 80 markers and 20 irrelevant signals (i.e., the last 19 rows/columns in Figure 1B),
which can be considered as noise. The elements in each marker block are generated following a decreasing sequence
such that the elements further away from the diagonal have smaller values. This approach ensures that the scattering
of pivot coordinates in each block differs. The effect of the first block of pivot coordinates is the strongest, and the sec-
ond block should produce the “weakest” markers (in the sense of pivot coordinates; covariances between variables in
the second block are the smallest). Because of the way pivot coordinates are constructed, it can be said that the rele-
vance of markers (in terms of the original parts) decreases in each subsequent block. Finally, all markers in blocks 1–3
are related to the response variable, but those in the fourth block are not and, hence, should not be considered as genu-
ine markers (along with the irrelevant signals).

Finally, in the third case, four blocks of markers are again considered, but here they have different sizes as shown
in Figure 1C. The first and third blocks consist of 30 markers, while the second and fourth consist of 10 markers each.
As the blocks differ in size, the structure of larger blocks consists of respectively 7, 5, 5, 3, 5, and 5 groups of markers,
with the sign of the covariances alternating across groups. The entries in the covariance matrix are in the same range in
each block, with the diagonal elements being identical. Similarly to the second case, the last 19 rows/columns
in Figure 1C correspond to irrelevant signals, and the fourth block is not related to the response variable.
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We are now ready to compare PLS-PB to PLS loadings. For this, it is important to note that the structure of PLS-PB
must not necessarily reflect the structure of the corresponding PLS loadings. This is due to the fact that orthonormality
is required when constructing PLS-PB, while this is not the case for PLS loadings. These examples provide a first insight
into the performance of PLS-PB to correctly identify markers in a collection of signals.

Figure 2 displays the comparison of PLS loadings and PLS-PB for the first case with one marker block. As we are
typically interested in the first few PBs most strongly related to the response, we focus our discussion on the first five
PLS loadings and PLS-PBs. These are displayed in the Figure 2A,B, respectively. Both PLS-PB and PLS loadings succeed
in separating out the relevant markers (i.e., first columns in Figure 2) from signals corresponding to just random noise.
However, the structure of PLS-PBs is more parsimonious, in the sense that it leads to a sparser solution including more
zeros. The first PB (i.e., column 1 in Figure 2B) captures precisely the information contained in the first loading vector,
highlighting all the markers (i.e., first 20 colored rows in Figure 2B). The third and fifth balances then capture several
differences between markers in the block. As to the other balances, note that the PLS-PB solution does return false posi-
tives (e.g., second and fourth balances where noise signals are included).

Figure 3 displays the resulting PLS loadings and PLS-PB for case 2 with same-sized blocks of markers. The PLS-PBs
in Figure 3B display a fairly neat structure. The first PB reproduces the information in the first loading vector as it iden-
tifies markers in the first block (those having the highest covariances). The second and third balances represent the
third marker block (signals from V41 to V60) and distinguish groups of markers with either positive (balance 3) or

FIGURE 1 Visual representation of covariance matrices used in the examples. Colors represent the covariance between pairs of pivot

coordinates. (A) shows a single block of 20 meaningful markers, (B) four same-sized blocks of 20 markers each, and (C) four blocks of

markers containing either 30 or 10 markers. Marker blocks are highlighted by a black frame.
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negative (balance 2) covariances. A similar pattern is observed for the second block (signals from V21 to V40) in the
fourth and fifth balances. Note that all PBs correctly exclude the signals corresponding to random noise (i.e., the last
20); PLS loadings also give (close to) zero weight to these irrelevant signals. In contrast, the fourth block of predictors
(not related to the response variable) is correctly flagged as irrelevant by PLS-PB (i.e., white cells in all balances)
whereas PLS loadings still highlight them, particularly in the fourth column of Figure 3A.

Finally, Figure 4 displays the results for the case of varying block sizes (case 3). The largest blocks (i.e., the first and
the third ones; signals V1-V30 and V41-V70) are correctly highlighted by the first PB. Moreover, the second PB iden-
tifies almost all markers from these blocks with negative covariances (only V69 and V70 are not included). The third
PB captures markers in the second block (positive covariance; signals V31-V37). Similarly to the second PB, the fourth
PB highlights the majority of markers from the largest blocks that have a positive covariance and, thus, the
corresponding relationship with the response variable. As in case 2, PBs correctly excluded noise signals (the last 20), as
well as the fourth block of predictors, which were all unrelated to the response variable.

In summary, these examples illustrate the potential of PB as a convenient counterpart to PLS loadings, as they
deliver a simplified structure and the orthonormality constraint enables to, for example, perform interpretable regres-
sion analysis.1

3.2 | Simulation-based assessment

We investigate the predictive ability of PLS-PB in comparison to PLS loadings, although it is important to note that this
is not the main focus of the method proposed in this work. Moreover, a natural alternative to PLS-PB in a regression

FIGURE 2 Comparison of the first five PLS loadings (left) and PLS-PB (right) for the first example with one block of markers (case 1).

Signal variables generated are arranged by rows. Colors represent values of loading vectors (left) and coefficients of PLS-PB (right). Signals in

a numerator of a balance get a positive value, in a denominator a negative value. Signals not included in a balance get 0. Block of markers

(first 20 signals) is highlighted into a black frame.
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setting are PCA-based PBs as mentioned before. While PLS-PB correspond to PLS regression with a simplified loading
structure, PCA-PB should follow the behavior of the well-known principal component regression (PCR29), where the
number of explanatory variables in a regression model is reduced using PCA. Both PLS and PCA regression are popular
tools, for example, in chemometrics and molecular biology applications to cope with high-dimensionality and/or
multicollinearity issues. We therefore devise a simulation study to compare the prediction performance of PLS PB, PCA
PB, and PLS loadings. It is known that PLS regression generally leads to better prediction performance than PCR when
just a few latent components are involved.

We consider three scenarios for the simulation study based on the three cases introduced in the previous section,
that is: only one block of markers, several blocks of markers of the same size, and several blocks of markers of different
sizes. The computed PBs (either PLS or PCA) are used to fit linear regression models like Equation (7), including only
one PB up to all possible PBs, that is, 99. The root mean squared error of prediction,

RMSEP¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðyi� byiÞ2
s

,

is used as prediction performance measure, where yi are the actual values and ŷi the corresponding predicted values.
This was estimated by five-fold cross-validation (CV) to provide a more realistic assessment, and it was evaluated over
100 simulation runs in each case.

FIGURE 3 Comparison of the first five PLS loadings (left) and PLS-PB (right) for the same-size blocks of markers setting (case 2). Signal

variables generated are arranged by rows. Colors represent values of loading vectors (left) and coefficients of PLS-PB (right). Signals in the

numerator of a balance have a positive value (negative value if in the denominator). Signals not included in a balance are given value

0. Blocks of markers (signals V1–V80) are highlighted into a black frame. The last block of predictors (i.e., signals V61–V80) is not related to

the response variable.
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Figure 5 shows the results for all three simulation scenarios, comparing cross-validated RMSEP of PLS-PB against
PCA-PB and PLS loadings. The number of PBs used (PLS loadings in case of standard PLS), ranging from 1 to
99 (D�1) on the horizontal axis, can be understood as an index of model complexity. Each point represents the average
value of the RMSEP over the 100 simulation runs.

First, we focus on the performance of PLS-PB against PCA-PB. When considering just a few PBs in the model, both
perform similarly in the one-block setting, with their RMSEP being around 1.388 for both PLS-PB and PCA-PB for one
balance (Figure 5A). In contrast, PLS-PB outperforms PCA-PB in the multiple marker settings (Figure 5B,C), with
improvements of 14.7% and 68.3% in RMSEP for the first balance in cases 2 and 3, respectively. This is particularly rele-
vant since, in practice, having just a few balances is preferred to facilitate interpretation of the results. Note that the
value of the RMSEP coincides for both PLS and PCA-PB when the maximum number of PBs is used because both sys-
tems of PBs are orthogonal rotations of each other, as it is the case with any other olr coordinate representation.

Looking now at differences between PLS-PB and standard PLS, it is not surprising that the latter performs best for
the lowest numbers of latent components. Our aim is to construct interpretable PBs that explain most of the variation
in the response and, in doing so, remain competitive in terms of predictive performance in relation to ordinary PLS.
Hence, although the PB-based approach shows a weaker prediction performance than standard PLS, it compensates
this in terms of interpretability by providing a sparser solution (as demonstrated in Section 3.1). Moreover, note that for
models with numerous latent components, the performance of standard PLS worsens dramatically, as reflected by the

FIGURE 4 Comparison of the first five PLS loadings (left) and PLS-PB (right) for the different-size blocks of markers setting (case 3).

Signal variables generated are arranged by rows. Colors represent values of loading vectors (left) and coefficients of PLS-PB (right). Signals in

the numerator of a balance have a positive value (negative value if in the denominator). Signals not included in a balance are given value

0. Blocks of markers (signals V1–V80) are highlighted into a black frame. The last block of predictors (i.e., signals V71–V80) is not related to

the response variable.
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large values of the RMSEP. This might be caused by numerical instability resulting from applying the SIMPLS algo-
rithm as it provides non-orthogonal components causing degeneration when increasing the number of components.

Lastly, we compare the proposed PLS-PB approach to the selbal algorithm introduced in Rivera-Pinto et al12 to iden-
tify an optimal balance between parts in high-dimensional compositions for regression and classification problems in a
microbiome analysis context. The RMSEP of the latter is depicted in Figure 5 as a single green point, given that the
selbal algorithm only selects a single balance. We can thus compare its performance to PLS-PB based on the first
PB. Together with the depicted RMSEP value in Figure 5, the resulting mean values of the RMSEP for the three simula-
tion scenarios is shown in Table 1. While selbal exhibits better performance in terms of prediction (cases 2 and 3), its
ability to reflect the actual structure of markers in the data is notably poorer as discussed in the following.

FIGURE 5 Cross-validated root mean squared error of prediction using PB, PLS-PB (blue), PCA-PB (black), and ordinary PLS loadings

(red) for each simulation scenario according to number of latent components used (either PB or ordinary loadings)

TABLE 1 Comparison of mean RMSEP of the first PCA-PB and PLS-PB with mean RMSEP of selbal balance.

Example PCA-PB PLS-PB selbal

1. One-block structure 1.388 1.388 1.413

2. Four same-sized blocks structure 21.89 18.663 8.307

3. Four different-sized blocks structure 44.486 14.109 10.605
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For each balance-based algorithm (PCA-PB, PLS-PB, and selbal), we evaluate its ability to correctly identify the bio-
markers. For each simulation run, the algorithms are applied to determine the first PB (PCA-PB and PLS-PB) and the
optimal single balance (selbal). Then, for each signal, we record whether it is included in such balances or not. The
heatmaps in Figure 6 show the number of times a signal appears in the selected balance for each method, across the
simulation runs. The selbal algorithm is unable to correctly distinguish marker from noise signals, especially in cases
2 and 3 (see respectively Figure 6B,C). In contrast, PLS-PB and PLS-PCA perform rather similarly across all cases, cor-
rectly identifying markers more often than selbal. They highlight most of the markers in cases 2 and 3, and they
correctly classify noisy signals as irrelevant in more instances. In cases 2 and 3, both PLS-PB and PCA-PB struggle to
identify important markers in the weakest/smallest marker block. The most noticeable difference between PLS-PB and
PCA-PB is observed for the third marker block in case 2 (Figure 6B) and the two largest marker blocks in case
3 (Figure 6C), where PLS-PB more often captures the correct markers.

4 | APPLICATIONS

We here demonstrate the application of the PLS-PB approach on two empirical data sets. First, we consider a regression
problem and then a classification task by simply accommodating the binary response into the PLS model.

4.1 | NMR data set

We use the data set from Štefelov�a et al2 consisting of high-throughput spectral profiles obtained by nuclear magnetic
resonance (NMR). The data set involves a 127-part compositional predictor (metabolite signals, also called integrals)
measured in n¼ 211 rumen fluid samples from cattle. This was collected along with individual measurements of animal
methane yield (CH4 in grams per kilogram of dry matter intake), which plays the role of a continuous response variable
that we aim to model in terms of the metabolite composition.

We apply the proposed PLS-PB method and analyze its ability to predict the response. Considering a varying num-
ber of PBs, we aim to detect an optimum that combines sensible prediction accuracy with preferably a small number of
PB. Moreover, we investigate whether the PBs reflect the structure of PLS loadings while simplifying the interpretation.

FIGURE 6 Simulation: ability of the first balance to capture the data structure in the three simulation scenarios using the PCA-PB, PLS-

PB, and selbal algorithm.
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4.1.1 | Optimal number of principal balances

Similar to the simulation study (Section 3.2), we compute PLS and PCA-PBs as well as standard PLS and compare pre-
diction performance for models including several PBs (ranging from the first PB or PLS loading up to all D�1 = 126 of
them). Again, RMSEP is the measure used for comparison, and its values are estimates based on five-fold CV and aver-
aged over 100 runs.

For each number of latent components (either PB or ordinary loadings), the mean and standard deviation of the
RMSEP values were computed across the 100 runs. Then, given the lowest mean RMSEP, the model using the fewest
number of balances within one standard error from such a minimum is chosen (one standard error rule; see Friedman
et al.40). Accordingly, the most parsimonious model among those of best prediction performance is selected.

The results based on PLS-PB (blue) and PCA-PB (black), together with the results of standard PLS (red) and the
selbal algorithm (green), are shown in Figure 7A. We can observe that PLS-PB outperforms PCA-PB for most part of
the range of PBs. Unlike in the previous simulation study, the effect of a possible overfitting issue can be observed here
as the RMSEP increases with the number of PBs. Also, as expected, the RMSEP values coincide (disregarding the mini-
mal numerical difference) again for both approaches at the maximum number of PBs. Similarly to the simulation study
in Section 3.2, standard PLS outperforms PLS-PB for the lowest numbers of latent components. However, weaker pre-
diction performance of PLS-PB is compensated by the interpretability, which can be later seen in Figure 8. Moreover, it
can be clearly seen in Figure 7A that standard PLS performs worse with increasing the number of loadings considered.

It can be observed in Figure 7A that the RMSEP for all three methods decreases rapidly at the beginning of the
range as PBs (or ordinary loadings) are aggregated. Figure 7B zooms in on the results for the range of the first 10 latent
components. While the smallest RMSEP for PLS-PB occurs for a model consisting of 11 PBs, a more parsimonious
model using just six PBs provides comparable performance according to the one standard error rule (marked by a blue
vertical dashed line in Figure 7B). For PCA-PB, the minimum occurs for a model containing the first 17 PBs, while the
model with eight PBs lies within a one standard error of this minimum (marked by a black vertical dashed line in
Figure 7B). For standard PLS, the minimum was reached for three loadings, and the optimal model determined by one
standard error is the one with two loadings (red vertical dashed line in Figure 7B). The prediction performance was also
assessed using the selbal algorithm. In this case, the resulting RMSEP is 3.227, much lower than for the other three
methods. However, it was shown in Section 3.2 that selbal has a rather poorer ability to capture the structure of the data
compared to PLS-PB, which can be seen in Figure 8C.

It is important to note that even if the PLS-PB approach does not outperform the PCA-PB approach, it is by con-
struction expected to provide a more interpretable structure of PB, as these are tailored to maximize association with
the response variable. The next section discusses the interpretative advantage of the PLS-PB approach.

FIGURE 7 Prediction performance of PLS-PB (blue), PCA-PB (black), and standard PLS (red) methods on NMR data set for different

choices of latent components used (either PB or ordinary loadings). Optimal number determined according to one standard error rule from

minimum CV RMSEP is indicated by vertical dashed lines for each method. Results for the selbal algorithm were represented by a single dot

(green)
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4.1.2 | Comparison of PLS-PB to PLS loadings

We compare the PLS-PBs to PLS loadings to examine whether the former suitably reflect the latter (in terms of signs of
coefficients) and, at the same time, facilitate interpretation.

In Figure 8, we display their values for the first six PBs, the optimal number determined in the previous section.
The first PLS-PB reproduces the structure of signs of the coefficient values observed in the first PLS loading vector well,
highlighting biologically meaningful markers identified in Štefelov�a et al,2 related to methane yield. For example, very
distinct groups of identified markers are the group from Integral32 to Integral37 and a group from Integral67 to

FIGURE 8 Comparison of the first six PLS loadings, sixPLS-PB, and a selbal balance from the NMR data set. Red and blue labels are

used to highlight markers identified in previous studies. Red (blue) colored text is used to highlight the names of markers having a positive

(negative) relationship with the response variable.
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Integral83 (with Integral68 being picked in the third balance). These markers are colored red and blue in Figure 8.
Markers colored in red are those having a positive relationship with the response variable, whereas blue-colored
markers are those that have a negative relationship with the response variable. The other PLS-PB, whose structure does
not necessarily coincide with the structure of the respective PLS loadings due to the orthogonality constraint, capture
some other patterns, related to both marker and non-marker variables. Moreover, PLS loadings also provide misleading
information, as in the third loading there is a group of signals (Integral49 to Integral57) which is highlighted, but it is
not biologically meaningful.2 On the contrary, PLS-PB provides a neater and more parsimonious view.

4.2 | Metabolomic data set

We now consider a metabolomic data set consisting of n¼ 46 observations and D¼ 209 metabolites, thus representing
the common high-dimensional setting with n<D. The response variable is in this case dichotomous and states cancer-
ous (yi ¼ 1) or healthy (yi ¼ 0) tissues, having 23 patients suffering from lung cancer and other 23 being healthy.41 The
aim is to enable classification of tissues and, in particular, to reveal pathobiochemical changes of the disease. The sam-
ples were analyzed by a targeted metabolomic method based on HILIC liquid chromatography coupled with triple
quadrupole mass spectrometry. This method allows to detect altogether 350 metabolites in different biofluids, tissues,
and cells and covers main metabolic pathways.

We applied the PLS-PB and PLS-PCA methods and assessed their relative performance by five-fold CV over the
range of possible numbers of PB as detailed previously. The RMSEP was replaced by the misclassification error,
defined as

ME¼ 1
n

Xn
i¼1

Iðŷi ≠ yiÞ, ð8Þ

where yi denotes the group number of the ith object, ŷi is the estimated group number, and the index function I gives
1 if the group numbers are not the same and 0 otherwise.

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10
Number of latent components

M
E

Method PCA PB PLS PB selbal standard PLS

FIGURE 9 Prediction performance of PLS-PB (blue), PCA-PB (black), and standard PLS (red) methods on metabolomic data set across

the first 10 latent components. Results for the selbal algorithm were represented by a single dot (green)
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FIGURE 10 Legend on next page.
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Figure 9 displays the results for the first 10 latent components. Similar to the NMR data study, PLS-PB generally
outperforms PCA-PB. Even though the numerical difference in ME is not dramatic, it can be seen that the ME of PLS-
PB drops, whereas the ME of PCA-PB rather levels off. On the other hand, the performance of standard PLS is consider-
ably worse than the other methods. Their performance was again compared to the result of selbal, for which the ME
was 0.343. Selbal thus shows worse performance than PLS-PB and PCA-PB. Moreover, this latter does not recover the
structure of markers very well.

Figure 10 displays PLS loadings and PLS-PB for the first five balances. Again, PLS-PBs appear to be less noisy than
the PLS loadings counterparts. The latter puts an unnecessarily large emphasis on absolute differences. PLS-PBs, in con-
trast, are easier to navigate in the outcome matrix and show more agreement with univariate statistical analysis.41 We
can see general trends in decreasing short chain and medium chain (Car.0–Car.12) compared to increased very long
chain (Car.20–Car.22) acyl carnitines, which are closely metabolically connected. Furthermore, selected groups of
metabolites such as glycine dipeptides (GLY.ALA–GLY.TYR) and pyrimidine nucleotides (UDP.glucuronate, UDP.
AcGlcNH2, and CDP.choline) show systematic trends. The PLS-PB approach in fact splits acylcarnitines into two sepa-
rate groups, which could be then subject of future research.

5 | CONCLUSIONS

This manuscript introduces a new procedure to construct PBs within a log-ratio analysis framework for high-
dimensional CoDa. We extend previous work in PBs by exploiting PLS as a dimension reduction tool that accounts for
the relationship between a response variable of interest and a high-dimensional composition playing the role of predic-
tor. The algorithm determines D�1 data-driven PLS-PBs that maximize their covariance with the response variable.

The proposal is applicable to both regression and classification problems and our numerical experiments firstly
demonstrate that the resulting PLS-PBs provide a simplified structure of PLS loadings and outperform the original
PCA-PB in terms of prediction performance. Secondly, when compared with the recently proposed selbal algorithm,
which targets the same goal as PLS-PB, it is shown that although the selbal method may perform better in terms of pre-
diction, it shows poorer ability to capture the data structure. Finally, PLS-PBs simplify the structure and enhance the
interpretation of the results when compared with standard PLS. The method is further demonstrated on two empirical
data sets regarding regression analysis with NMR spectral data and a classification task with metabolomic data. In both
cases, the usefulness of the PLS-PB approach for variable selection and biomarker discovery is illustrated.

Building on the PLS-PB framework presented here, possibilities for further developments include its robustification
to manage the potential influence of outlying samples in the results or the ability to deal with sparse data.
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FIGURE 10 Comparison of the first five PLS loadings and PLS-PB. Red colored text is used to highlight metabolites, which were

marked as significant using p-values after Bonferroni correction.
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APPENDIX A: ARTIFICIAL SETTINGS FOR COMPARISON: SIMULATION DESIGN

Compositions were simulated using so-called pivot coordinates, an instance of olr coordinates,33 and assuming multi-
variate normality. In general, pivot coordinates zðlÞ ¼ ilr xðlÞ

� �
are defined as

zðlÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� j

D� jþ1

s
ln

xðlÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQD
k¼jþ1x

ðlÞ
k

q
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD� jþ1ÞðD� jÞp ln

xðlÞj
xðlÞjþ1

þ…þ xðlÞj
xðlÞD

 !" #
, l¼ 1,…,D, j¼ 1,…,D�1,

where xðlÞ ¼ xðlÞ1 ,…,xðlÞD
� � >

is a rearranged composition x having the l-th part on the first position. It follows that via
pivot coordinates, the relative information about the l-th part is captured by the first coordinate, which is advanta-
geously used here for setting up our example. That is, it holds zðlÞ1 ¼

ffiffiffiffiffiffiffi
D

D�1

q
clrlðxÞ for l¼ 1,…,D.

The steps to generate data (proposed in Štefelov�a et al.2) can be summarized as follows:

• First, generate pivot coordinates zi ¼ zi,1,…,zi,D�1ð Þ > from a multivariate normal distribution ND�1ð0,ΣÞ, i¼ 1,…,n.
The elements (with i, j¼ 1,…,D�1) in the covariance matrix Σ are shown in Figure 1. In case 1, there is one marker
block consisting of 20 markers. The markers line up sequentially in groups of size 7, 3, 5, and 5, respectively. The
groups alternate in sign with markers in the first and third groups (resp., two and four) being positively (resp., nega-
tively) associated as indicated in red (resp. purple) color, see Figure 1A (all other covariances are equal to zero). Case
2 has four marker blocks consisting of 20 markers: All blocks have a structure similar to case 1, but they vary in the
strength of the signal, as reflected by the shading in Figure 1B. In case 3, there are four marker blocks that vary in
size: The first and third blocks consist of 30 markers while the second and fourth consist of only 10 markers. The
covariance structure within each marker block is similar to the previous cases.

• Second, to obtain matrix X, pivot coordinates need to be back-transformed:

xi ¼ ilr�1ðziÞ¼ ðxi,1,…,xi,DÞ > , i¼ 1,…,n:

• Finally, the response variable in our simulation design then results from
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yi ¼ β1zi,1þβ2zi,2þ…þβ2r�1zi,2r�1þβ2rzi,2rþ εi,

where εi �Nð0,1Þ, i¼ 1,…,n. In case 1, the coefficients corresponding to the first 2r pivot coordinates that act as
markers are βj �Uð0:1,1Þ, j¼ 1,…,2r, with their sign determined by the structure of the group within the marker
block (i.e., seven coefficients having positive signs, the following three negative, etc.) In cases 2 and 3, the coefficients
corresponding to markers in blocks 1–3 are obtained similarly to case 1. The coefficients corresponding to markers in
the fourth marker block, in contrast, are set to zero, thus reflecting the presence of a block of correlated markers that
does not relate to the response variable.
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