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Abstract
We develop a new approach to study the long time behaviour of solutions to nonlin-
ear stochastic differential equations in the sense of McKean, as well as propagation of
chaos for the corresponding mean-field particle system approximations. Our approach
is based on a sticky coupling between two solutions to the equation. We show that
the distance process between the two copies is dominated by a solution to a one-
dimensional nonlinear stochastic differential equation with a sticky boundary at zero.
This new class of equations is then analyzed carefully. In particular, we show that the
dominating equation has a phase transition. In the regime where the Dirac measure
at zero is the only invariant probability measure, we prove exponential convergence
to equilibrium both for the one-dimensional equation, and for the original nonlinear
SDE. Similarly, propagation of chaos is shown by a componentwise sticky coupling
and comparison with a system of one dimensional nonlinear SDEs with sticky bound-
aries at zero. The approach applies to equations without confinement potential and to
interaction terms that are not of gradient type.
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1 Introduction

The main objective of this paper is to study and quantify convergence to equilibrium
for McKean–Vlasov type nonlinear stochastic differential equations of the form

d X̄t =
[∫

Rd
b(X̄t − x)dμ̄t (x)

]
dt + dBt , μ̄t = Law(X̄t ) , (1)

where (Bt )t≥0 is a d-dimensional standard Brownian motion and b : Rd → R
d is a

Lipschitz continuous function. This nonlinear SDE is the probabilistic counterpart of
the Fokker–Planck equation

∂

∂t
ut = ∇ ·

[
(1/2)∇ut − (b ∗ ut )ut

]
, (2)

which describes the time evolution of the density ut of μ̄t with respect to the Lebesgue
measure onRd . Moreover, we also study uniform in time propagation of chaos for the
approximating mean-field interacting particle systems

dXi,N
t = 1

N

N∑
j=1

b
(

Xi,N
t − X j,N

t

)
dt + dBi

t , i ∈ {1, . . . , N } , (3)

with i.i.d. initial values X1,N
0 , . . . , X N ,N

0 , and driven by independent d-dimensional
Brownianmotions {(Bi

t )t≥0}N
i=1. Our results are based on a new probabilistic approach

relying on sticky couplings and comparison with solutions to a class of nonlinear
stochastic differential equations on the real interval [0,∞) with a sticky boundary at
0. The study of this type of equations carried out below might also be of independent
interest.

The Eqs. (1) and (2) have been studied in many works. Often a slightly different
setup is considered, where the interaction b is assumed to be of gradient type, i.e.,
b = −∇W for an interaction potential function W : R

d → R, and an additional
confinement potential function V : R

d → R satisfying lim|x |→∞ V (x) = ∞ is
included in the equations. The corresponding Fokker–Planck equation

∂

∂t
ut = ∇ ·

[
(1/2)∇ut + (∇V + ∇W ∗ ut )ut

]
, (4)

occurs for example in the modelling of granular media, see [3, 44] and the references
therein. Existence and uniqueness of solutions to (1), (2) and (4) have been studied
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intensively. Introductions to this topic can be found for example in [23, 35, 36, 43],
while recent results have been established in [26, 37]. Under appropriate conditions,
it can be shown that the solutions converge to a unique stationary distribution at some
given rate, see e.g.[7, 10, 11, 16, 17, 25]. In the case without confinement considered
here, convergence to equilibrium of (μ̄t )t≥0 defined by (1) can only be expected for
centered solutions, or after recentering around the center of mass of μ̄t . It has first been
analyzed in [10, 11] by an analytic approach and under the assumption that b = −∇W
for a convex function W . In particular, exponential convergence to equilibrium has
been established under the strong convexity assumption Hess(W ) ≥ ρ Id for some
ρ > 0, and polynomial convergence in the case where W is only degenerately strictly
convex. Similar results and some extensions have been derived in [12, 33] using a
probabilistic approach.

Our first contribution aims at complementing these results, and extending them to
non-convex interaction potentials and interaction functions that are not of gradient
type. More precisely, suppose that

b(x) = −Lx + γ (x) , x ∈ R
d , (5)

where L ∈ (0,∞) is a positive real constant, and γ : Rd → R
d is a bounded function.

Then we give conditions on γ ensuring exponential convergence of centered solutions
to (1) to a unique stationary distribution in the standard L1 Wasserstein metric. More
generally, we show in Theorem 1 that under these conditions there exist constants
M, c ∈ (0,∞) that depend only on L and γ such that if (μ̄t )t≥0 and (ν̄t )t≥0 are the
marginal distributions of two solutions of (1), then for all t ≥ 0,

W1(μ̄t , ν̄t ) ≤ Me−ctW1(μ̄0, ν̄0) .

Using a coupling approach, related results have been derived in the previous works
[16, 17] for the case where an additional confinement term is included in the equations.
However, the arguments in these works rely on treating the equation with confinement
and interaction termas a perturbation of the corresponding equationwithout interaction
term, which has good ergodic properties. In the unconfined case this approach does not
work, since the equation without interaction is transient and hence does not admit an
invariant probabilitymeasure.Moreover,we are not aware of results for this framework
with non-convex interaction potentials and non-gradient interaction functions that rely
on classical analytical methods. Therefore, we have to develop a new approach for
analyzing the equation without confinement.

Our approach is based on sticky couplings, an idea first developed in [18] to control
the total variation distance between the marginal distributions of two non degener-
ate diffusion processes with identical noise but different drift coefficients. Since two
solutions of (1) differ only in their drifts, we can indeed couple them using a sticky
coupling in the sense of [18]. It can then be shown that the coupling distance process
can be controlled by the solution (rt )t≥0 of a nonlinear SDE on [0,∞) with a sticky
boundary at 0 of the form

drt = [b̃(rt ) + aP(rt > 0)]dt + 21(0,∞)(rt )dWt , (6)

123



Stochastics and Partial Differential Equations: Analysis and Computations

Here b̃ is a real-valued function on [0,∞) satisfying b̃(0) = 0, a is a positive constant,
and (Wt )t≥0 is a one-dimensional standard Brownian motion. Solutions to SDEs with
diffusion coefficient r 	→ 1(0,∞)(r), as in (6), have a sticky boundary at 0, i.e., if
the drift at 0 is strictly positive, then the set of all time points t ∈ [0,∞) such that
rt = 0 is a fractal set with strictly positive Lebesgue measure that does not contain
any open interval. Sticky SDEs have attracted wide interest, starting from [21, 22] in
the one-dimensional case. Multivariate extensions have been considered in [27, 45,
46] building upon results obtained in [34, 40, 41], while corresponding martingale
problems have been investigated in [42]. Versions of sticky processes occur among
others in natural sciences [8, 24] and finance [29]. Note that in general no strong
solution for this class of SDEs exists as illustrated in [13]. We refer to [2, 20] and the
references therein for recent contributions on this topic. Note, however, that in contrast
to standard sticky SDEs, the equation (6) is nonlinear in the sense of McKean. We are
not aware of previous studies of such nonlinear sticky equations, which seems to be a
very interesting topic on its own.

Intuitively, one would hope that as time evolves, more mass gets stuck at 0, i.e.,
P(rt > 0) decreases. As a consequence, the drift at 0 in Eq. (6) decreases, which again
forces even more mass to get stuck at 0. Therefore, under appropriate conditions one
could hope that P(rt = 0) converges to 1 as t → ∞. On the other hand, if a is too large
then the drift at 0might be too strong so that not all of themass gets stuck at 0 eventually.
This indicates that there might be a phase transition for the nonlinear sticky SDE
depending on the size of the constant a compared to b̃. In Sect. 3, we prove rigorously
that this intuition is correct. Under appropriate conditions on b̃, we show at first that
existence and uniqueness in law holds for solutions of (6). Then we prove that for a
sufficiently small, the Dirac measure at 0 is the unique invariant probability measure,
and geometric ergodicity holds. As a consequence, under corresponding assumptions,
the sticky coupling approach yields exponential convergence to equilibrium for the
original nonlinear SDE (1). On the other hand, we prove the existence of multiple
invariant probability measures for (6) if the smallness condition on a is not satisfied.
In this case, we cannot make a statement on the behaviour of the distance function
corresponding to the sticky coupling approach since based on this approach we only
get upper bounds and the existence of multiple invariant measure for the dominating
sticky nonlinear SDE does not imply that the underlying distance function does not
converge. If the unconfined SDE (1) has multiple invariant measures and if the two
copies of the unconfined SDE in the sticky coupling start in two different equilibria,
then the law of the distance function does not converge to the Dirac measure at zero.
Our results for (1) can also be adapted to deal with nonlinear SDEs over the torus
T = R/(2πZ), as considered in [15]. As an example, we discuss the application to
the Kuramoto model for which a more explicit analysis is available [1, 4, 5, 9].

Finally, in addition to studying the long-time behaviour of the nonlinear SDE (1),
we are also interested in establishing propagation of chaos for the mean-field particle
system approximation (3). The propagation of chaos phenomenon first introduced by
Kac [30] describes the convergence of the empirical measure of themean-field particle
system (3) to the solution (1).More precisely, in [36, 43] it has been shown under weak
assumptions onW that for i.i.d. initial laws, the randomvariables Xi,N

t , i ∈ {1, . . . , N },
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become asymptotically independent as N → ∞, and the common law μN
t of each of

these random variables converges to μ̄t . However, the original results are only valid
uniformly over a finite time horizon. Quantifying the convergence uniformly for all
times t ∈ R+ is an important issue. The case with a confinement potential has been
studied for example in [16], see also the references therein. Again, the case when there
is only interaction is more difficult. Malrieu [33] seems the first to consider the case
without confinement. By applying a synchronous coupling, he proved uniform in time
propagation of chaos for strongly convex interaction potentials. Later on, assuming
that the interaction potential is loosing strict convexity only in a finite number of points
(e.g., W (x) = |x |3), Cattiaux, Guillin and Malrieu [12] have shown uniform in time
propagation of chaos with a rate getting worse with the degeneracy in convexity. In
a very recent work, Delarue and Tse [14] prove uniform in time weak propagation
of chaos (i.e., observable by observable) on the torus via Lions derivative methods.
Remarkably, their results are not limited to the unique invariant measure case.

Our contribution is in the same vein using probabilistic tools in place of analytic
ones. We endow the space RNd consisting of N particle configurations x = (xi )N

i=1
with the semi-metric l1 ◦ π , where

l1(x, y) = 1

N

∑N

i=1

∣∣∣xi − yi
∣∣∣ (7)

is a normalized l1-distance between configurations x, y ∈ R
Nd , and

π(x, y) =
((

xi − 1

N

∑N

j=1
x j

)N

i=1
,

(
yi − 1

N

∑N

j=1
y j

)N

i=1

)
, (8)

is a projection from R
Nd × R

Nd to the subspace HN × HN , where

HN = {x ∈ R
Nd :

∑N

i=1
xi = 0} . (9)

Let Wl1◦π denote the L1 Wasserstein semimetric on probability measures on R
Nd

corresponding to the cost function l1 ◦ π . Then under assumptions stated below, we
prove uniform in time propagation of chaos for the mean-field particle system in the
following sense: Suppose that (X1,N

t , . . . , X N ,N
t )t≥0 is a solution of (3) such that

X1,N
0 , . . . , X N ,N

0 are i.i.d. with distribution μ̄0 having finite second moment. Let νN
t

denote the joint law of the random variables Xi,N
t , i ∈ {1, . . . N }, and let μ̄t denote the

law of the solution of (1) with initial law μ̄0. Then there exists a constant C ∈ [0,∞)

such that for any N ∈ N,

sup
t≥0

Wl1◦π (μ̄⊗N
t , νN

t ) ≤ C N−1/2 . (10)

The proof is based on a componentwise sticky coupling, and a comparison of the
coupling difference process with a system of one-dimensional sticky nonlinear SDEs.
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The paper is organised as follows. In Sect. 2, we state our main results regarding
the long-time behaviour of (1). The main results on one-dimensional nonlinear SDEs
with a sticky boundary at zero are stated in Sect. 3. Sections4 and 5 contain the corre-
sponding results on uniform (in time) propagation of chaos and mean-field systems of
sticky SDEs. All the proofs are given in Sect. 6. In “Appendix A”, we carry the results
over to nonlinear sticky SDEs over T and consider the application to the Kuramoto
model.

Notation
The Euclidean norm onRd is denoted by | · |. For x ∈ R, we write x+ = max(0, x).

For some space X, which here is either Rd , RNd or R+, we denote its Borel σ -
algebra by B(X). The space of all probability measures on (X,B(X)) is denoted
by P(X). Let μ, ν ∈ P(X). A coupling ξ of μ and ν is a probability measure on
(X×X,B(X)⊗B(X))withmarginalsμ and ν.	(μ, ν) denotes the set of all couplings
ofμ and ν. TheL1Wasserstein distancewith respect to a distance functiond : X×X →
R+ is defined by

Wd(μ, ν) = inf
ξ∈	(μ,ν)

∫
X×X

d(x, y)ξ(dxdy) .

We write W1 if the underlying distance function is the Euclidean distance.
We denote by C(R+,X) the set of continuous functions from R+ to X, and by

C2(R+,X) the set of twice continuously differentiable functions.
Consider a probability space (
,A, P) and a measurable function r : 
 →

C(R+,X). Then P = P ◦ r−1 denotes the law on C(R+,X), and Pt = P ◦ rt
−1

the marginal law on X at time t .

2 Long-time behaviour of McKean–Vlasov diffusions

We establish our results regarding (1) and (3) under the following assumption on b.

B1 The function b : R
d → R

d is Lipschitz continuous and anti-symmetric, i.e.,
b(z) = −b(−z), and there exist L ∈ (0,∞), a function γ : Rd → R

d and a Lipschitz
continuous function κ : [0,∞) → R such that

b(z) = −Lz + γ (z) for all z ∈ R
d , (11)

and the following conditions are satisfied for all x, y ∈ R
d :

〈x − y, γ (x) − γ (y)〉 ≤ κ(|x − y|)|x − y|2 , (12)

and

lim sup
r→∞

(κ(r) − L) < 0 . (13)
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Let b̄(r) = (κ(r) − L)r . If (13) holds, then there exist R0, R1 ≥ 0 such that for

b̄(r) < 0 , for any r > R0 , (14)

b̄(r)/r ≤ −4/[R1(R1 − R0)] , for any r ≥ R1 . (15)

In addition, we assume

B2

‖γ ‖∞ ≤
(
4

∫ R1

0
exp

(1
2

∫ s

0
b̄(r)+dr

)
ds

)−1
.

Oftendrifts of gradient type are considered, i.e.,b ≡ ∇U for somepotentialU ∈ C2.
Then, B1 is satisfied for instance for L-strongly convex potentials and condition (12)
holds for κ ≡ 0. In this case, B2 reduces to ‖γ ‖∞ ≤ √

L/8. But, the assumptions
include also asymptotically L-strongly convex potentials as double-well potentials
and more general drifts provided the deviation represented by the function γ to the
linear term −Lz is sufficiently small in terms of the generalized one-sided Lipschitz
bound and the bound in the supremum norm. In particular, this can always be obtained
by considering a sufficiently small multiple of γ .

Additionally, we consider the following condition on the initial distribution.

B3 The initial distribution μ0 satisfies
∫
Rd ‖x‖4 μ0(dx) < +∞ and

∫
Rd x μ0(dx) =

0.

Note that under conditions B1 and B3, unique strong solutions (X̄t )t≥0 and
({Xi,N

t }N
i=1)t≥0 exist for (1) and (3), see e.g.[12, Theorem 2.6]. In addition, note that

since b is assumed to be anti-symmetric, by an easy localisation argument, we get that
dE[X̄t ]/dt = E[b ∗ μt (X̄t )] = 0 and dE[N−1 ∑N

i=1 Xi,N
t ]/dt = 0. Thus, if X̄0 and

{Xi,N
0 }N

i=1 have distribution μ0 and μ⊗N
0 , respectively, with μ0 satisfying B3, then it

holds E[X̄t ] = 0 and E[N−1 ∑N
i=1 Xi,N

t ] = 0 for all t ≥ 0.
Suppose f : R+ → R+ is an increasing, concave function vanishing at zero. Then

d(x, y) = f (|x − y|) defines a distance. The corresponding L1 Wasserstein distance
is denoted by W f . Note that in the case f (t) = t for any t ≥ 0, W f is simplyW1.

Theorem 1 (Contraction for nonlinear SDE) Assume B1 and B2. Let μ̄0, ν̄0 be prob-
ability measures on (Rd ,B(Rd)) satisfying B3. For any t ≥ 0, let μ̄t and ν̄t denote
the laws of X̄t and Ȳt where (X̄s)s≥0 and (Ȳs)s≥0 are solutions of (1) with initial
distribution μ̄0 and ν̄0, respectively. Then, for all t ≥ 0,

W f (μ̄t , ν̄t ) ≤ e−c̃tW f (μ̄0, ν̄0) and W1(μ̄t , ν̄t ) ≤ M1e
−c̃tW1(μ̄0, ν̄0) , (16)

where the function f is defined by (37) and the constants c̃ and M1 are given by

c̃−1 = 2
∫ R1

0

∫ s

0
exp

(1
2

∫ s

r
b̄(u)+ du

)
drds , (17)
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M1 = 2 exp
(1
2

∫ R0

0
b̄(s)+ds

)
. (18)

Proof The proof is postponed to Sect. 6.2.1. ��
The construction and definition of the underlying distance function f (|x − y|)

mentioned in Theorem 1 is based on the one introduced by [19].
To prove Theorem 1 we use a coupling (X̄t , Ȳt )t≥0 of two copies of solutions

to the nonlinear stochastic differential equation (1) with different initial conditions.
The coupling (X̄t , Ȳt )t≥0 will be defined as the weak limit of a family of couplings
(X̄ δ

t , Ȳ δ
t )t≥0, parametrized by δ > 0. Roughly, this family is mixture of synchronous

and reflection couplings and can be described as follows. For δ > 0, (X̄ δ
t , Ȳ δ

t )t≥0
behaves like a reflection coupling if |X̄ δ

t − Ȳ δ
t | ≥ δ, and like a synchronous coupling

if |X̄ δ
t − Ȳ δ

t | = 0. For |X̄ δ
t − Ȳ δ

t | ∈ (0, δ) we take an interpolation of synchronous and
reflection coupling. We argue that the family of couplings {(X̄ δ

t , Ȳ δ
t )t≥0 : δ > 0} is

tight and that a subsequence {(X̄ δn
t , Ȳ δn

t )t≥0 : n ∈ N} converges to a limit (X̄t , Ȳt )t≥0.
This limit is a coupling which we call the sticky coupling associated to (1).

To carry out the construction rigorously, we take twoLipschitz continuous functions
rcδ, scδ : R+ → [0, 1] for δ > 0 such that

rcδ(0) = 0 , rcδ(r) = 1 for r ≥ δ , rcδ(r) > 0 for r

> 0 and rcδ(r)2 + scδ(r)2 = 1 for r ≥ 0 . (19)

Further, we assume that there exists ε0 > 0 such that for any δ ≤ ε0, rcδ satisfies

rcδ(r) ≥ ‖γ ‖Lip
2‖γ ‖∞

r for any r ∈ (0, δ) , (20)

where ‖γ ‖Lip < ∞ denotes the Lipschitz norm of γ . This assumption is satisfied for
example if rcδ(r) = sin((π/2δ)r)1r<δ + 1r≥δ and scδ(r) = cos((π/2δ)r)1r<δ with
δ ≤ ε0 = 2‖γ ‖∞/‖γ ‖Lip.

Let (B1
t )t≥0 and (B2

t )t≥0 be two d-dimensional Brownian motions. We define the
coupling (X̄ δ

t , Ȳ δ
t )t≥0 as a process inR2d satisfying the following nonlinear stochastic

differential equation

d X̄ δ
t = b ∗ μ̄δ

t (X̄ δ
t )dt + rcδ(r̄ δ

t )dB1
t + scδ(r̄ δ

t )dB2
t , μ̄δ

t = Law(X̄ δ
t ) ,

dȲ δ
t = b ∗ ν̄δ

t (Ȳ δ
t )dt + rcδ(r̄ δ

t )(Id−2ēδ
t (ē

δ
t )

T )dB1
t

+ scδ(r̄ δ
t )dB2

t , ν̄δ
t = Law(Ȳ δ

t ) (21)

with initial condition (X̄ δ
0, Ȳ δ

0 ) = (x0, y0). Here we set Z̄ δ
t = X̄ δ

t − Ȳ δ
t , r̄ δ

t = |Z̄ δ
t |

and ēδ
t = Z̄ δ

t /r̄ δ
t if r̄ δ

t �= 0. For r̄ δ
t = 0, ēδ

t is some arbitrary unit vector, whose exact
choice is irrelevant since rcδ(0) = 0. We note that a refection coupling is obtained if
rcδ = 1, whereas a synchronous coupling is obtained if scδ = 0. This indicates the
name of the functions rc and sc, respectively.
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Theorem 2 Assume B1. Let μ̄0 and ν̄0 be probability measures on (Rd ,B(Rd)) sat-
isfying B3. Then, (X̄t , Ȳt )t≥0 is a subsequential limit in distribution as δ → 0 of
{(X̄ δ

t , Ȳ δ
t )t≥0 : δ > 0} where (X̄t )t≥0 and (Ȳt )t≥0 are solutions of (1) with initial

distribution μ̄0 and ν̄0. Further, there exists a process (rt )t≥0 defined on the same
probability space as (X̄t , Ȳt )t≥0 satisfying for any t ≥ 0, |X̄t − Ȳt | ≤ rt almost surely
and which is a weak solution of

drt = (b̄(rt ) + 2‖γ ‖∞P(rt > 0))dt + 21(0,∞)(rt )dW̃t , (22)

where (W̃t )t≥0 is a one-dimensional Brownian motion.

Proof The proof is postponed to Sect. 6.2.2. ��
Therefore, next we study sticky nonlinear SDEs given by (6).

3 Nonlinear SDEs with sticky boundaries

Consider nonlinear SDEs with a sticky boundary at 0 of the form

drt = (b̃(rt ) + Pt (g))dt + 21(0,∞)(rt )dWt , Pt = Law(rt ) , (23)

where b̃ : [0,∞) → R is some continuous function and Pt (g) = ∫
R+ g(r)Pt (dr) for

some measurable function g : [0,∞) → R.
In this section we establish existence, uniqueness in law and comparison results

for solutions of (6). Consider a filtered probability space (
,A, (Ft )t≥0, P) and a
probability measure μ on R+. We call an (Ft )t≥0 adapted process (rt , Wt )t≥0 a weak
solution of (23) with initial distribution μ if the following holds: μ = P ◦ r−1

0 , the
process (Wt )t≥0 is a one-dimensional (Ft )t≥0 Brownian motion w.r.t. P , the process
(rt )t≥0 is non-negative and continuous, and satisfies almost-surely

rt − r0 =
∫ t

0

(
b̃(rs) + Ps(g)

)
ds +

∫ t

0
2 · 1(0,∞)(rs)dWs , for t ∈ R+ .

Note that the sticky nonlinear SDE given in (6) is a special case of (23) with
g(r) = a1(0,∞)(r) since P(rt > 0) = ∫

R+ 1(0,∞)(y)Pt (dy) with Pt = P ◦ r−1
t .

3.1 Existence, uniqueness in law, and a comparison result

Let W = C(R+,R) be the space of continuous functions endowed with the topology
of uniform convergence on compact sets, and let B(W) be the corresponding Borel
σ -algebra. Suppose (rt , Wt )t≥0 is a solution of (23) on (
,A, P), then we denote
by P = P ◦ r−1 its law on (W,B(W)). We say that uniqueness in law holds for
(23) if for any two solutions (r1t )t≥0 and (r2t )t≥0 of (23) with the same initial law, the
distributions of (r1t )t≥0 and (r2t )t≥0 on (W,B(W)) are equal.

We impose the following assumptions on b̃, g and the initial condition μ:
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H1 b̃ is a Lipschitz continuous function with Lipschitz constant L̃ and b̃(0) = 0.

H2 g is a left-continuous, non-negative, non-decreasing and bounded function.

H3 There exists p > 2 such that the p-th order moment of the law μ is finite.

Note that for (6), the condition H2 is satisfied if a is a positive constant. It follows
fromH1 and H2 that there is a constant C < ∞ such that for all r ∈ R+, the following
linear growth condition holds,

b̃(r) + sup
p∈P(R+)

p(g) ≤ C(1 + |r |) . (24)

In order to get a solution to (23) on R+ we extend the function b̃ to R by setting
b̃(r) = 0 for r < 0. Note that any solution (rt )t≥0 with initial distribution supported
on R+ satisfies almost surely rt ≥ 0 for all t ≥ 0. This follows from the Itō–Tanaka
formula applied to F(r) = 1(−∞,0)(r)r , cf. [39, Chapter 6, Theorem 1.2 and Theorem
1.7]. Indeed

1(−∞,0)(rt )rt = 1(−∞,0)(r0)r0 +
∫ t

0
1(−∞,0)(rs)drs − 1

2
�0−t (r)

=
∫ t

0
1(−∞,0)(rs)(b̃(rs) + Ps(g))ds

+
∫ t

0
1(−∞,0)21(0,∞)(rs)dWs − 1

2
�0−t (r)

=
∫ t

0
1(−∞,0)(rs)Ps(g)ds ≥ 0 ,

where �0−t (r) is the left local time at 0, which is given by �0−t (r) =
limε↓0 ε−1

∫ t
0 1{−ε≤rs≤0}d[r ]s and which vanishes, since d[r ]s = 1(0,∞)(rs)ds.

Existence and uniqueness in law of (23) is a direct consequence of a stronger result
thatwenow introduce. To study existence anduniqueness and to compare two solutions
of (23) with different drifts, we establish existence of a synchronous coupling of two
copies of (23),

drt = (b̃(rt ) + Pt (g))dt + 21(0,∞)(rt )dWt ,

dst = (b̂(st ) + P̂t (h))dt + 21(0,∞)(st )dWt , Law(r0, s0) = η ,
(25)

where Pt = P ◦ r−1
t , P̂t = P ◦ s−1

t , (Wt )t≥0 is a Brownian motion and where
η ∈ 	(μ, ν) for μ, ν ∈ P(R+).

Theorem 3 Suppose that (b̃, g) and (b̂, h) satisfy H1 and H2. Let η ∈ 	(μ, ν) where
the probability measures μ and ν on R+ satisfy H3. Then there exists a weak solution
(rt , st )t≥0 of the sticky stochastic differential equation (25) with initial distribution η
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defined on a probability space (
,A, P) with values in (W×W,B(W) ⊗B(W)). If
additionally,

b̃(r) ≤ b̂(r) and g(r) ≤ h(r) for any r ∈ R+, and

P[r0 ≤ s0] = 1,

then P[rt ≤ st for all t ≥ 0] = 1.

Proof The proof is postponed to Sect. 6.3.1. ��
Remark 4 We note that by the comparison result we can deduce uniqueness in law for
the solution of (23).

3.2 Invariant measures and phase transition for (6)

Under the following conditions on the drift function b̃ we exhibit a phase transition
phenomenon for the model (6), where as compared to (23) we focus on the case
Pt (g) = aP[rt > 0].
Theorem 5 Suppose H1 holds and lim supr→∞(r−1b̃(r)) < 0. Then, the Dirac mea-
sure at 0, δ0, is an invariant probability measure for (6). If there exists p ∈ (0, 1)
solving

(2/a) = (1 − p)I (a, p) (26)

with

I (a, p) =
∫ ∞

0
exp

(1
2

apx + 1

2

∫ x

0
b̃(r)dr

)
dx , (27)

then the probability measure π on [0,∞) given by

π(dx) ∝
( 2

ap
δ0(dx) + exp

(1
2

apx + 1

2

∫ x

0
b̃(r)dr

)
λ(0,∞)(dx)

)
(28)

is another invariant probability measure for (6).

Proof The proof is postponed to Sect. 6.3.2. ��
In our next result we specify a necessary and sufficient condition for the existence

of a solution of (26).

Proposition 6 Suppose that b̃(r) in (6) is of the form b̃(r) = −L̃r with constant a

L̃ > 0. If a/
√

L̃ > 2/
√

π , then there exists a unique p̂ solving (27). In particular, the
Dirac measure δ0 and the measure π given in (28) with p̂ are invariant measures for

(6). On the other hand, if a/
√

L̃ ≤ 2/
√

π , then there exists no p̂ solving (27).

Proof The proof is postponed to Sect. 6.3.2. ��
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3.3 Convergence for sticky nonlinear SDEs of the form (6)

UnderH1and the following additional assumptionweestablish geometric convergence
in Wasserstein distance for the marginal law of the solution rt of (6) to the Dirac
measure at 0:

H4 It holds lim supr→∞(r−1b̃(r)) < 0 and a ≤ (2
∫ R̃1
0 exp

( 1
2

∫ s
0 b̃(u)+du

)
ds)−1

with R̃0, R̃1 defined by

R̃0 = inf{s ∈ R+ : b̃(r) ≤ 0 ∀r ≥ s} and (29)

R̃1 = inf{s ≥ R̃0 : − s

r
(s − R̃0)b̃(r) ≥ 4 ∀r ≥ s} . (30)

Theorem 7 Suppose H1 and H4 holds. Then, the Dirac measure at 0, δ0, is the unique
invariant probability measure of (6). Moreover if (rs)s≥0 is a solution of (6) with r0
distributed with respect to an arbitrary probability measure μ on (R+,B(R+)), it
holds for all t ≥ 0,

E[ f (rt )] ≤ e−ct
E[ f (r0)] , (31)

where f and c are given by (37) and (36) with a and b̃ given in (6) and R̃0 and R̃1
given in (29) and (30).

Proof The proof is postponed to Sect. 6.3.3. ��

4 Uniform in time propagation of chaos

To prove uniform in time propagation of chaos, we consider the L1 Wasserstein dis-
tance with respect to the cost function f̄N ◦ π : RNd × R

Nd → R+ with π given in
(8), and f̄N given by

f̄N ((xi,N )N
i=1, (yi,N )N

i=1) = 1

N

N∑
i=1

f
(∣∣∣xi − yi

∣∣∣) , (32)

with f : R+ → R+ defined in (37). This distance is denoted byW f ,N . Note that f̄N

is equivalent to l1 defined in (7).
We note that since π defines a projection from R

Nd to the hyperplane HN ⊂ R
Nd

given in (9), for μ̂ and ν̂ on HN ,W f ,N (μ̂, ν̂) coincides with the Wasserstein distance
given by

Ŵ f ,N (μ̂, ν̂) = inf
ξ∈	(μ̂,ν̂)

∫
HN ×HN

f̄N (x, y)ξ(dxdy) (33)

andWl1◦π (μ̂, ν̂) = Ŵl1(μ̂, ν̂), where f̄N and l1 are given in (32) and (7), respectively,
and where Ŵl1(μ̂, ν̂) is defined as in (33) with respect to the distance l1.
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Theorem 8 (Uniform in time propagation of chaos) Let N ∈ N and assume B1 and
B2. Let μ̄0 and ν0 be probability measures on (Rd ,B(Rd)) satisfying B3. For t ≥ 0,
denote by μ̄t and νN

t the law of X̄t and {Xi,N
t }N

i=1 where (X̄s)s≥0 and ({Xi,N
s }N

i=1)s≥0

are solutions of (1) and (3), respectively, with initial distributions μ̄0 and ν⊗N
0 . Then

for all t ≥ 0,

W f ,N (μ̄⊗N
t , νN

t ) ≤ e−c̃tW f ,N (μ̄⊗N
0 , ν⊗N

0 ) + C̃ c̃−1N−1/2 ,

Wl1◦π (μ̄⊗N
t , νN

t ) ≤ M1e
−c̃tWl1◦π (μ̄⊗N

0 , ν⊗N
0 ) + M1C̃ c̃−1N−1/2 ,

where f is defined by (37), M1 by (18), c̃ by (17) and C̃ is a finite constant depending
on ‖γ ‖∞, L and the second moment of μ̄0 and given in (77).

Proof The proof is postponed to Sect. 6.4. ��
Remark 9 Denote by μN

t and νN
t the distribution of {Xi,N

t }N
i=1 and {Y i,N

t }N
i=1 where

the two processes ({Xi,N
s }N

i=1)s≥0 and ({Y i,N
s }N

i=1)s≥0 are solutions of (3) with initial
probability distributions μN

0 , νN
0 ∈ P(RNd), respectively, with finite forth moment.

An easy inspection and adaptation of the proof of Theorem 8 show that if B1 holds,
then

W f ,N (μN
t , νN

t ) ≤ e−c̃tW f ,N (μ⊗N
0 , ν⊗N

0 ) ,

Wl1◦π (μN
t , νN

t ) ≤ 2M1e
−c̃tWl1◦π (μ⊗N

0 , ν⊗N
0 ) ,

where f , c̃ and M1 are defined as in Theorem 8.

5 System of N sticky SDEs

Consider a systerm of N one-dimensional SDEs with sticky boundaries at 0 given by

dr i
t =

(
b̃(r i

t ) + 1

N

N∑
j=1

g(r j
t )

)
dt + 21(0,∞)(r

i
t )dW i

t , i = 1, . . . , N . (34)

The results on existence, uniqueness and the comparison theorem for solutions of
sticky nonlinear SDEs mostly carry directly over to a solution of (34) and are applied
to prove propagation of chaos in Theorem 8.

Let μ be a probability distribution on R+. For N ∈ N, ({r i
t , W i

t }N
i=1)t≥0 is a weak

solution on the filtered probability space (
,A, (Ft )t≥0, P) of (34) with initial dis-
tribution μ⊗N if the following hold: μ⊗N = P ◦ ({r0}N

i=1)
−1, ({Wt }N

i=1)t≥0 is a
N -dimensional (Ft )t≥0 Brownianmotion w.r.t. P , the process (r i

t )t≥0 is non-negative,
continuous and satisfies almost surely for any i ∈ {1, . . . , N } and t ∈ R+,

r i
t − r i

0 =
∫ t

0

(
b̃(r i

s ) + 1

N

N∑
j=1

g(r j
s )

)
ds +

∫ t

0
21(0,∞)(r

i
s )dW i

s .
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To show existence and uniqueness in law of a weak solution ({r i
t , W i

t }N
i=1)t≥0, we

suppose H1 and H2 for b̃ and g.
It follows that there exists a constant C < ∞ such that for all {r i }N

i=1 ∈ R
N+ , it

holds
∑N

i=1 |b̃(r i )|+|g(r i )| ≤ C(1+∑N
i=1 |r i |), and a possible solution ({r i

t }N
i=1)t≥0

is non-explosive. If the initial distribution is supported on R
N+ , then in the same line

as for the nonlinear SDE in Sect. 3.1, the solution ({r i
t }N

i=1)t≥0 satisfies r i
t > 0 almost

surely for any i = 1, . . . , N and t ≥ 0 by H1 and H2.
Existence and uniqueness in law of (34) is a direct consequence of a stronger result

thatwenow introduce. To study existence anduniqueness and to compare two solutions
of (34) with different drifts, we establish existence of a synchronous coupling of two
copies of (34),

dr i
t =

(
b̃(r i

t ) + 1

N

N∑
j=1

g(r j
t )

)
dt + 21(0,∞)(r

i
t )dW i

t ,

dsi
t =

(
b̂(si

t ) + 1

N

N∑
j=1

h(s j
t )

)
dt + 21(0,∞)(s

i
t )dW i

t ,

Law(r i
0, si

0) = η , for i ∈ {1, . . . , N } (35)

where ({W i
t }N

i=1)t≥0 are N i.i.d.1-dimensional Brownian motions and where η ∈
	(μ, ν) for μ, ν ∈ P(R+).

Let WN = C(R+,RN ) be the space of continuous functions from R+ to R
N

endowed with the topology of uniform convergence on compact sets, and let B(WN )

denote its Borel σ -Algebra.

Theorem 10 Assume that (b̃, g) and (b̂, h) satisfy H1 and H2. Let η ∈ 	(μ, ν) where
μ and ν are the probability measure on R+ satisfying H3. Then there exists a weak
solution ({r i

t , si
t }N

i=1)t≥0 of the sticky stochastic differential equation (35) with initial
distribution η⊗N defined on a probability space (
,A, P) with values in W

N ×W
N .

If additionally,

b̃(r) ≤ b̂(r) and g(r) ≤ h(r) , for any r ∈ R+ ,

P[r i
0 ≤ si

0 for all i = 1, . . . , N ] = 1 ,

then P[r i
t ≤ si

t for all t ≥ 0 and i = 1, . . . , N ] = 1.

Proof The proof is postponed to Sect. 6.5. ��

Remark 11 We note that by the comparison result we can deduce uniqueness in law
for the solution of (34).
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6 Proofs

Before proving the statements of Sects. 2–5, let us give an overview of the proofs.
The first subsection gives the definition of the underlying distance function f used in
Theorems 1, 7 and 8. Sections6.2 and6.3 provide proofs for the convergence result
for the nonlinear SDE (Theorem 1) using the sticky coupling approach and the results
for the sticky nonlinear SDE (Theorem 7). Note that both Theorems 1 and 7 use
the auxiliary Lemmas 14–16, where a comparison result and an approximation in
two steps of the sticky nonlinear SDE are given. The existence of a solution to the
sticky nonlinear SDE and a comparison result are essential to show contraction in this
approach.

In Sects. 6.4 and6.5 the proofs for the propagation of chaos for the mean-field
particle system and for the system of sticky SDEs are given. Note that the techniques
to prove the result for the particle systems and the systemof N sticky SDEs are partially
similar to the nonlinear case. In particular, the proofs of Theorems 8 and 10 and its
auxiliary Lemmas 18, 20–23 have a similar structure as the ones of Theorems 2 and 3
and its auxiliary Lemmas 12–16, respectively.

6.1 Definition of themetrics

InTheorems1, 7 and8weconsiderWasserstein distances based on a carefully designed
concave function f : R+ → R+ that we now define. In addition we derive useful
properties of this function that will be used in our proofs of Theorems 1, 8 and 7. Let
a ∈ R+ and b̃ : R+ → R be such that H4 is satisfied with R̃0 and R̃1 defined in (29).
We define

ϕ(r) = exp

(
−

∫ r

0
{b̃(s)+/2}ds

)
, �(r) =

∫ r

0
ϕ(s)ds , and

g(r) = 1 − c

2

∫ r∧R̃1

0
{�(s)/ϕ(s)}ds − a

2

∫ r∧R̃1

0
{1/ϕ(s)}ds ,

where

c =
(
2

∫ R̃1

0
{�(s)/ϕ(s)}ds

)−1

, (36)

and R̃1 is given in (30). It holds ϕ(r) = ϕ(R̃0) for r ≥ R̃0 with R̃0 given in (29),
g(r) = g(R̃1) ∈ [1/2, 3/4] for r ≥ R̃1 and g(r) ∈ [1/2, 1] for all r ∈ R+ by (36)
and H4. We define the increasing function f : [0,∞) → [0,∞) by

f (t) =
∫ t

0
ϕ(r)g(r)dr . (37)

The construction is adapted from the function f given in [19]. Here, the function g
has an extra term. As we see later in the proof of Theorems 1 and 7, this term has the
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purpose to control the term aP[rt > 0]. We observe that f is concave, since ϕ and g
are decreasing. Since for all r ∈ R+

ϕ(R̃0)r/2 ≤ �(r)/2 ≤ f (r) ≤ �(r) ≤ r , (38)

(x, y) 	→ f (|x − y|) defines a distance on Rd equivalent to the Euclidean distance on
R

d .
Moreover, f satisfies

2 f ′′(0) = −b̃(0)+ − a = −a , (39)

and

2 f ′′(r) ≤ 2 f ′′(0) − f ′(r)b̃(r) − c f (r) , for allr ∈ R+\{R̃1} . (40)

Indeed by construction of f , f ′′(r) = −b̃(r)+ f ′(r)/2− c�(r)/2− a/2 for 0 ≤ r <

R̃1 and so (40) holds for 0 ≤ r < R̃1 by (38). To show (40) for r > R̃1 note that
f ′′(r) = 0 and f ′(r) ≥ ϕ(R̃0)/2 hold for r > R̃1. Hence, by the definition (30) of
R̃1, for r > R̃1,

f ′′(r) + f ′(r)b̃(r)/2 ≤ ϕ(R̃0)b̃(r)/4 ≤ −(R̃1(R̃1 − R̃0))
−1ϕ(R̃0)r . (41)

Since ϕ(r) = ϕ(R̃0) for r ≥ R̃0, it holds�(r) = �(R̃0)+ (r − R̃0)ϕ(R̃0) for r ≥ R̃0.
Further, it holds �(R0) ≥ R̃0ϕ(R̃0) since ϕ is decreasing for r ≤ R̃0. Hence,

r

R̃1
= (r − R̃1)(�(R̃0) + (R̃1 − R̃0)ϕ(R̃0))

R̃1�(R̃1)

+ 1 ≥ (r − R̃1)R̃1ϕ(R̃0)

R̃1�(R̃1)
+ 1 = �(r)

�(R̃1)
. (42)

Furthermore, we have

∫ R̃1

R̃0

{�(s)/ϕ(s)}ds =
∫ R̃1

R̃0

�(R̃0) + (s − R̃0)ϕ(R̃0)

ϕ(R̃0)
ds

= (R̃1 − R̃0)
�(R̃0)

ϕ(R̃0)
+ 1

2
(R̃1 − R̃0)

2 ≥ 1

2
(R̃1 − R̃0)

�(R̃1)

ϕ(R̃0)
.

(43)

We insert (42) and (43) in (41) and use (36) to obtain

f ′′(r) + f ′(r)b̃(r)/2 ≤ −�(r)�(R̃1)
−1(R̃1 − R̃0)

−1ϕ(R̃0) (44)

≤ − �(r)

2
∫ R̃1

R̃0
{�(s)/ϕ(s)}ds

≤ −c f (r)

2
− c�(r)

2
. (45)
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By H4 and (36), we get

−c�(r)

2
≤ − �(R̃1)

4
∫ R̃1
0 {�(s)/ϕ(s)}ds

≤ − 1

4
∫ R̃1
0 {1/ϕ(s)}ds

≤ −a

2
= f ′′(0) .

Combining this estimate with (44) gives (40) for r > R̃1. Hence, the choice of the
underlying function f for the Wasserstein distance ensures (39) and (40). These prop-
erties guarantee that the term aP[rt > 0] is controlled in (6) and contraction with rate
c is obtained in Theorems 1, 7 and 8.

6.2 Proof of Sect. 2

First, we prove Theorem 1 by using Theorem 2 and properties of the carefully con-
structed function f before we show Theorem 2. To prove that the dominating process
rt exists we make use of the result of the sticky nonlinear SDE which are proven in
Sect. 6.3.1.

6.2.1 Proof of Theorem 1

Proof of Theorem 1 We consider the process (X̄t , Ȳt , rt )t≥0 defined in Theorem 2 and
satisfying |X̄t − Ȳt | ≤ rt for any t ≥ 0, and (rt )t≥0 is a weak solution of (22). Set
a = 2‖γ ‖∞ and b̃(r) = b̄(r). With this notation, B1 and B2 imply H4 and R̃0 = R0
and R̃1 = R1 by (14), (15), (29) and (30). By Itō–Tanaka formula, cf. [39, Chapter 6,
Theorem 1.1], using that f ′ is absolutely continuous, we have,

d f (rt ) ≤ f ′(rt )(b̄(rt ) + 2‖γ ‖∞P(rt > 0))dt + 2 f ′′(rt )1(0,∞)(rt )dt

+ f ′(rt )21(0,∞)(rt )dWt .

Taking expectation we obtain by (39) and (40)

d

dt
E[ f (rt )] ≤ E[ f ′(rt )b̃(rt )+ + 2( f ′′(rt ) − f ′′(0))] + E[(a + 2 f ′′(0))1rt >0]
≤ −c̃E[ f (rt )] ,

where c̃ is given by (17). Therefore by Grönwall’s lemma,

E[ f (|X̄t − Ȳt |)] ≤ E[ f (rt )] ≤ e−c̃t
E[ f (r0)] = e−c̃t

E[ f (|X̄0 − Ȳ0|)] .

Hence, it holds

W f (μ̄t , ν̄t ) ≤ E[ f (|X̄t − Ȳt |)] ≤ e−c̃t
∫
Rd×Rd

f (|x − y|)ξ(dxdy)
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for an arbitrary coupling ξ ∈ 	(μ0, ν0). Taking the infimum over all couplings ξ ∈
	(μ0, ν0), we obtain the first inequality of (16). By (38), we get the second inequality
of (16). ��

6.2.2 Proof of Theorem 2

Note that the nonlinear SDE (21) has Lipschitz continuous coefficients. The existence
and the uniqueness of the coupling (X̄ δ

t , Ȳ δ
t )t≥0 follows from [36, Theorem 2.2]. By

Levy’s characterization, (X̄ δ
t , Ȳ δ

t )t≥0 is indeed a coupling of two copies of solutions
of (1). Further, we remark that W δ

t = ∫ t
0 (ēδ

s )
T dB1

s is a one-dimensional Brownian
motion. In the next step, we analyse |X̄ δ

t − Ȳ δ
t |.

Lemma 12 Suppose that the conditions B1 and B3 are satisfied. Then, it holds for any
ε < ε0, where ε0 is given by (20), setting r̄ δ

t = |X̄ δ
t − Ȳ δ

t |

dr̄ δ
t =

(
− Lr̄ δ

t +
〈
ēδ

t ,

∫
R

∫
Rd

γ (X̄ δ
t − x) − γ (Ȳ δ

t − y)μδ
t (dx)νδ

t (dy)
〉)
dt + 2rcδ(r̄ δ

t )dW δ
t

(46)

≤
(

b̄(r̄ δ
t ) + 2‖γ ‖∞

∫
Rd

∫
Rd

rcε(|x − y|)μ̄δ
t (dx)ν̄δ

t (dy)
)
dt + 2rcδ(r̄ δ

t )dW δ
t , (47)

almost surely for all t ≥ 0, where μ̄δ
t and ν̄δ

t are the laws of X̄ δ
t and Ȳ δ

t , respectively.

Proof Using (21), B1 and B3, the stochastic differential equation of the process
((r̄ δ

t )2)t≥0 is given by

d((r̄ δ
t )2) = 2

〈
Z δ

t ,−L Z δ
t +

∫
Rd

∫
Rd

γ (X̄ δ
t − x) − γ (Ȳ δ

t − y)μ̄δ
t (dx)ν̄δ

t (dy)
〉
dt

+ 4rcδ(r̄ δ
t )2dt + 4rcδ(r̄ δ

t )〈Z δ
t , eδ

t 〉dW δ
t .

For ε > 0 we define as in [18, Lemma 8] a C2 approximation of the square root by

Sε(r) =
{

(−1/8)ε−3/2r2 + (3/4)ε−1/2r + (3/8)ε1/2 for r < ε√
r otherwise .

Then, by Itō’s formula,

dSε((r̄
δ
t )2) = S′

ε((r̄
δ
t )2)d(r̄ δ

t )2 + 1

2
S′′
ε ((r̄ δ

t )2)d[(r̄ δ)2]t

= 2S′
ε((r̄

δ
t )2)

〈
Z δ

t ,−L Z δ
t +

∫
Rd

∫
Rd

γ (X̄ δ
t − x) − γ (Ȳ δ

t − y)μ̄δ
t (dx)ν̄δ

t (dy)
〉
dt

+ S′
ε((r̄

δ
t )2)4rcδ(r̄ δ

t )2dt + S′
ε((r̄

δ
t )2)4rcδ(r̄ δ

t )〈Z δ
t , eδ

t 〉dW δ
t + 8S′′

ε ((r̄ δ
t )2)(rcδ(r̄ δ

t ))2(r̄ δ
t )2dt .

We take the limit ε → 0. Then limε→0 S′
ε(r) = (1/2)r−1/2 and limε→0 S′′

ε (r) =
−(1/4)r−3/2 for r > 0. Since sup0≤r≤ε |S′

ε(r)| � ε−1/2, sup0≤r≤ε |S′′̄
ε (r)| � ε̄−3/2

and rcδ is Lipschitz continuous with rcδ(0) = 0, we apply Lebesgue’s dominated
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convergence theorem to show convergence for the integrals with respect to time t .
More precisely, we note that the integrand (4S′

ε((r̄
δ
t )2) + 8S′′

ε ((r̄ δ
t )2))rcδ(r̄ δ

t ))2(r̄ δ
t )2

is dominated by 3ε1/2‖rcδ‖Lip. For any ε < ε0 for fixed ε0 > 0, the integrand
2S′

ε((r̄
δ
t )2)〈Z δ

t ,−L Z δ
t +∫

Rd

∫
Rd (γ (X̄ δ

t −x)−γ (Ȳ δ
t −y))μ̄δ

t (dx)ν̄δ
t (dy)〉 is dominated

by (3/2)(L max(ε(1/2)
0 , r̄ δ

t ) + 2‖γ ‖∞).
For the stochastic integral it holds |S′

ε((r̄
δ
t )2)4rcδ(r̄ δ

t )r̄ δ
t | ≤ 3. Hence, the stochastic

integral converges along a subsequence almost surely, to
∫ t
0 2rc

δ(r̄ δ
s )dW δ

s , see [39,
Chapter 4, Theorem 2.12]. Hence, we obtain (46). Since (12) implies 〈x − y, γ (x −
x̃) − γ (y − x̃)〉 ≤ κ(|x − y|)|x − y|2 for all x, y, x̃ ∈ R

d , we obtain by B1 and (20)
for ε < ε0

〈
ēδ

t ,

∫
Rd

∫
Rd

(γ (X̄ δ
t − x) − γ (Ȳ δ

t − y))μδ
t (dx)νδ

t (dy)
〉

≤
〈
ēδ

t ,

∫
Rd

∫
Rd

(γ (X̄ δ
t − x) − γ (Ȳ δ

t − x) + γ (Ȳ δ
t − x) − γ (Ȳ δ

t − y))μδ
t (dx)νδ

t (dy)
〉

≤ κ(r̄ δ
t )r̄ δ

t +
∫
Rd

∫
Rd

2‖γ ‖∞rcε(|x − y|)μδ
t (dx)νδ

t (dy) ,

and hence (47) holds. ��
We define a one-dimensional process (r δ,ε

t )t≥0 by

dr δ,ε
t =

(
b̄(r δ,ε

t ) + 2‖γ ‖∞
∫
R+

rcε(u)Pδ,ε
t (du)

)
dt + 2rcδ(r δ,ε

t )dW δ
t (48)

with initial condition r δ,ε
0 = r̄ δ

0 , Pδ,ε
t = Law(r δ,ε

t ) and W δ
t = ∫ t

0 (ēδ
s )

T dB1
s . This

process will allow us to control the distance of X̄ δ
t and Ȳ δ

t .
By [36, Theorem2.2], under B1 andB3, (U δ,ε

t )t≥0 = (X̄ δ
t , Ȳ δ

t , r δ,ε
t )t≥0 exists and is

unique, where (X̄ δ
t , Ȳ δ

t )t≥0 solves uniquely (21), (r̄ δ
t )t≥0 and (r δ,ε

t )t≥0 solve uniquely
(46) and (48), respectively, with W δ

t = ∫ t
0 (ēδ

s )
T dB1

s .

Lemma 13 Assume B1 and B3. Then, |X̄ δ
t − Ȳ δ

t | = r̄ δ
t ≤ r δ,ε

t , almost surely for all t
and ε < ε0.

Proof Note that (r̄ δ
t )t≥0 and (r δ,ε

t )t≥0 have the same initial distribution and are driven
by the same noise. Since the drift of (r̄ δ

t )t≥0 is smaller than the drift of (r δ,ε
t )t≥0 for

ε < ε0, the result follows by Lemma 14.
��

Proof of Theorem 2 We consider the nonlinear process (U δ,ε
t )t≥0 = (X̄ δ

t , Ȳ δ
t , r δ,ε

t )t≥0
on R

2d+1 for each ε, δ > 0. We denote by P
δ,ε the law of U δ,ε on the space

C(R+,R2d+1). We define by X,Y : C(R+,R2d+1) → C(R+,Rd) and r :
C(R+,R2d+1) → C(R+,R) the canonical projections onto the first d components,
onto the second d components and onto the last component, respectively. By B1 and
B3 following the same line as the proof of Lemma 15, see (56), it holds for each T > 0

E[|U δ,ε
t2 − U δ,ε

t1 |4] ≤ C |t2 − t1|2 fort1, t2 ∈ [0, T ] , (49)
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for some constant C depending on T , L , ‖γ ‖Lip, ‖γ ‖∞ and on the fourth moment
of μ0 and ν0. As in Lemma 15 the law P

δ,ε
T of (U δ,ε

t )0≤t≤T on C([0, T ],R2d+1)

is tight for each T > 0 by [31, Corollary 14.9] and for each ε > 0 there exists a
subsequence δn → 0 such that (Pδn ,ε

T )n∈N on C([0, T ],R2d+1) converge to a measure
P

ε
T on C([0, T ],R2d+1). By a diagonalization argument and since {Pε

T : T ≥ 0} is
a consistent family, cf. [31, Theorem 5.16], there exists a probability measure Pε on
C(R+,R2d+1) such that for all ε there exists a subsequence δn such that (Pδn ,ε)n∈N
converges along this subsequence to P

ε . As in the proof of Lemma 16 we repeat
this argument for the family of measures (Pε)ε>0. Hence, there exists a subsequence
εm → 0 such that (Pεm )m∈N converges to a measure P. Let (X̄t , Ȳt , rt )t≥0 be some
process on R

2d+1 with distribution P on (
̄, F̄ , P̄).
Since (X̄ δ

t )t≥0 and (Ȳ δ
t )t≥0 are solutions of (1) which are unique in law, we have

that for any ε, δ > 0, Pδ,ε ◦ X−1 = P◦ X−1 and Pδ,ε ◦Y−1 = P◦Y−1. And therefore
(X̄t )t≥0 and (Ȳt )t≥0 are solutions of (1) as well with the same initial condition. Hence
P ◦ (X,Y)−1 is a coupling of two copies of (1).

Similarly to the proof of Lemmas 15 and 16 there exist an extended probability
space and a one-dimensional Brownian motion (Wt )t≥0 such that (rt , Wt )t≥0 is a
solution to

drt = (b̄(rt ) + 2‖γ ‖∞P(rt > 0))dt + 21(0,∞)(rt )dWt .

In addition, the statement of Lemma 13 carries over to the limiting process (rt )t≥0,
i.e., |X̄t − Ȳt | ≤ rt for all t ≥ 0, since by the weak convergence along the subse-
quences (δn)n∈N and (εm)m∈N and the Portmanteau theorem, P(|X̄t − Ȳt | ≤ rt ) ≥
lim supm→∞ lim supn→∞ P(|X̄ δn

t − Ȳ δn
t | ≤ r δn ,εm

t ) = 1.
��

6.3 Proof of Sect. 3

First, we introduce a family of nonlinear SDE whose drift and diffusion coefficient
are Lipschitz continuous approximations of the drift and diffusion coefficient of (25).
Theorem 3 is shown by proving a comparison result for nonlinear SDEs, taking in two
steps the limit of the approximations and identifying the limit with the solution of (25).
Then, Theorems 5 and 7 are shown where we make use of the careful construction of
the function f .

6.3.1 Proof of Theorem 3

We show Theorem 3 via a family of stochastic differential equations, indexed by
n, m ∈ N, with Lipschitz continuous coefficients,

drn,m
t = (b̃(rn,m

t ) + Pn,m
t (gm))dt + 2θn(rn,m

t )dWt

dsn,m
t = (b̂(sn,m

t ) + P̂t
n,m

(hm))dt + 2θn(sn,m
t )dWt , Law(rn,m

0 , sn,m
0 ) = ηn,m ,

(50)
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where Pn,m
t = Law(rn,m

t ), P̂n,m
t = Law(sn,m

t ), Pn,m
t (gm) = ∫

R+ gm(x)Pn,m
t (dx)

and P̂n,m
t (hm) = ∫

R+ hm(x)P̂n,m
t (dx) for some measurable functions (gm)m∈N and

(hm)m∈N, and where ηn,m ∈ 	(μn,m, νn,m) for μn,m, νn,m ∈ P(R+). We identify the
weak limit for n → ∞ as solution of a family of stochastic differential equations,
indexed by m ∈ N, given by

drm
t = (b̃(rm

t ) + Pm
t (gm))dt + 21(0,∞)(r

m
t )dWt

dsm
t = (b̂(sm

t ) + P̂t
m
(hm))dt + 21(0,∞)(s

m
t )dWt , Law(rm

0 , sm
0 ) = ηm . (51)

with Pm
t = Law(rm

t ) and P̂m
t = Law(sm

t ), and where ηm ∈ 	(μm, νm) for μm, νm ∈
P(R+). Taking the limit m → ∞, we show in the next step that the solution of (51)
converges to a solution of (25).

We assume for (gm)m∈N, (hm)m∈N, (θn)n∈N and the initial distributions:

H5 (gm)m∈N and (hm)m∈N are sequences of non-decreasing non-negative uniformly
bounded Lipschitz continuous functions such that for all r ≥ 0, gm(r) ≤ gm+1(r) and
hm(r) ≤ hm+1(r) and limm→+∞ gm(r) = g(r) and limm→+∞ hm(r) = h(r) where
g, h are left-continuous non-negative non-decreasing bounded functions. In addition,
there exists Km < ∞ for any m such that for all r , s ∈ R

|gm(r) − gm(s)| ≤ Km |r − s| and |hm(r) − hm(s)| ≤ Km |r − s| .

H6 (θn)n∈N is a sequence of Lipschitz continuous functions from R+ to [0, 1] with
θn(0) = 0, θn(r) = 1 for all r ≥ 1/n and θn(r) > 0 for all r > 0.

H7 (μn,m)m,n∈N, (νn,m)m,n∈N, (μm)m∈N, (νm)m∈N are families of probability dis-
tributions on R+ and (ηn,m)n,m∈N, (ηm)m∈N families of probability distributions on
R
2+ such that for any n, m ∈ N ηn,m ∈ 	(μn,m, νn,m) and ηm ∈ 	(μm, νm) and for

any m ∈ N, (ηn,m)n∈N converges weakly to ηm and (ηm)m∈N converges weakly to η.
Further, the p-th order moments of (μn,m)n,m∈N, (νn,m)n,m∈N, (μm)m∈N and (νm)m∈N
are uniformly bounded for p > 2 given in H3.

Note that by H5 for any non-decreasing sequence (um)m∈N, which converges to u ∈
R+, gm(um) and hm(um) converge to g(u) and h(u), respectively. More precisely, it
holds for for all m ∈ N, gm(um) − g(u) ≤ 0 and for m ≥ n, gm(um) ≥ gm(un) and
therefore, limm→∞ gm(un) − g(u) ≥ limn→∞ limm→∞ = limn→∞ g(un) − g(u) =
0 by left-continuity of g. Hence, limm→∞ gm(um) − g(u) = 0 and analogously
limm→∞ hm(um) − h(u) = 0. By H5, 	 = max(‖h‖∞, ‖g‖∞) is a uniform upper
bound of (gm)m∈N and (hm)m∈N.

Consider a probability space (
0,A0, Q) and a one-dimensional Brownian motion
(Wt )t≥0. Under H5, H6 and H7, for all m, n ∈ N, there exists random variables
rn,m, sn,m : 
0 → W for each n, m such that (rn,m

t , sn,m
t )t≥0 is a unique strong

solution to (50) associated to (Wt )t≥0 by [36, Theorem 2.2]. We denote by P
n,m =

Q ◦ (rn,m, sn,m)−1 the corresponding distribution on W × W.
Before studying the two limits n, m → ∞ and proving Theorem 3, we state a mod-

ification of the comparison theorem by Ikeda and Watanabe to compare two solutions
of (50), cf. [28, Section VI, Theorem 1.1].
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Lemma 14 Let (rn,m
t , sn,m

t )t≥0 be a solution of (50) for fixed n, m ∈ N. Assume H1,
H5 and H6. If Q[rn,m

0 ≤ sn,m
0 ] = 1, b̃(r) ≤ b̂(r) and gm(r) ≤ hm(r) for any r ∈ R+,

then

Q[rn,m
t ≤ sn,m

t for all t ≥ 0] = 1 . (52)

Proof For simplicity, we drop the dependence on n, m in (rn,m
t ) and (sn,m

t ). Denote
by ρ the Lipschitz constant of θn . Let (ak)k∈N be a decreasing sequence, 1 > a1 >

a2 > . . . > ak > . . . > 0, such that
∫ 1

a1
ρ−2x−1dx = 1,

∫ a1
a2

ρ−2x−1dx = 2,. . .,∫ ak−1
ak

ρ−2x−1dx = k. We choose a sequence �k(u), k = 1, 2, . . ., of continuous

functions such that its support is contained in (ak, ak−1),
∫ ak−1

ak
�k(u)du = 1 and

0 ≤ �k(u) ≤ 2/k · ρ−2u−2. Such a function exists. We set

ϕk(x) =
{∫ x

0 dy
∫ y
0 �k(u)du if x ≥ 0,

0 if x < 0 .

Note that for any k ∈ N, ϕk ∈ C2(R+), |ϕ′
k(x)| ≤ 1, ϕk(x) → x+ as k ↑ ∞ and

ϕ′
k(x) ↑ 1(0,∞)(x). Applying Itō’s formula to ϕk(rt − st ), we obtain

ϕk(rt − st ) = ϕk(r0 − s0) + I1(k) + I2(k) + I3(k) ,

where

I1(k) =
∫ t

0
ϕ′

k(ru − su)[θn(ru) − θn(su)]dBu ,

I2(k) =
∫ t

0
ϕ′

k(ru − su)[b̃(ru) − b̂(su) + Pu(gm) − P̂u(hm)]du ,

I3(k) = 1

2

∫ t

0
ϕ′′

k (ru − su)[θn(ru) − θn(su)]2du ,

with Pu = Q◦r−1
u and P̂u = Q◦s−1

u . It holds by boundedness andLipschitz continuity
of θn

E[I1(k)] = 0 , and E[I3(k)] ≤ 1

2
E

[ ∫ t

0
ϕ′′

k (ru − su)ρ2|ru − su |2du
]

≤ t

k
.

We note that by H5 E[(gm(ru) − hm(su))1ru−su<0] ≤ 0 and

E[(gm(ru) − hm(su))1ru−su≥0] ≤ E[(gm(ru) − gm(su)+gm(su) − hm(su))1ru−su≥0]
≤ E[(gm(ru) − gm(su))1ru−su≥0]
≤ KmE[|ru − su |1ru−su≥0] (53)

by Lipschitz continuity of gm , by gm(r) ≤ hm(r) and since gm and hm are non-
decreasing. Hence for I2, we obtain
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I2(k) =
∫ t

0
ϕ′

k(ru − su)[b̃(ru) − b̂(ru) + b̂(ru) − b̂(su)]du

+
∫ t

0
ϕ′

k(ru − su)
(
E[(gm(ru) − hm(su))1ru−su≥0] + E[(gm(ru) − hm(su))1ru−su<0]

)
du

≤
∫ t

0
ϕ′

k(ru − su)L̃|ru − su |du +
∫ t

0
ϕ′

k(ru − su)KmE[|ru − su |1ru−su≥0]du .

Taking the limit k → ∞ and using that E[r0 − s0] = 0, we obtain

E[(rt − st )+] ≤ L̃E
[ ∫ t

0
(ru − su)+du

]

+ KmE

[ ∫ t

0
1(0,∞)(ru − su)E[(ru − su)+]du

]
, (54)

by the monotone convergence theorem and since (ϕ′
k)k∈N is a monotone increasing

sequence which converges pointwise to 1(0,∞)(x). Assume there exists t∗ = inf{t ≥
0 : E[(rt − st )+] > 0} < ∞. Then,

∫ t∗
0 E[(ru − su)+]du > 0 or

∫ t∗
0 E[1(0,∞)(ru −

su)]E[(ru − su)+]du > 0. By definition of t∗, E[(ru − su)+] = 0 for all u < t∗
and hence both terms are zero. This contradicts the definition of t∗. Hence, (52)
holds. ��

Next, we show that the distribution of the solution of (50) converges as n → ∞.

Lemma 15 Assume that b̃, b̂, g and h satisfy H1 and H2. Let η ∈ 	(μ, ν) where the
probability measures μ and ν on R+ satisfy H3. Assume that (gm)m∈N, (hm)m∈N,
(θn)n∈N, (μn,m)m,n∈N, (νn,m)m,n∈N and (ηn,m)m,n∈N satisfy condition H5, H7 and
H6. Then for any m ∈ N, there exists a random variable (rm, sm) defined on some
probability space (
m,Am, Pm) with values in W × W, such that (rm

t , sm
t )t≥0 is

a weak solution of the stochastic differential equation (51). More precisely, for all
m ∈ N the sequence of laws Q ◦ (rn,m, sn,m)−1 converges weakly to the distribution
Pm ◦ (rm, sm)−1. If additionally,

b̃(r) ≤ b̂(r) and gm(r) ≤ hm(r) , for any r ∈ R+ and

Q[rn,m
0 ≤ sn,m

0 ] = 1 for any n, m ∈ N,

then Pm[rm
t ≤ sm

t for all t ≥ 0] = 1.

Proof Fix m ∈ N. The proof is divided in three parts. First we show tightness of
the sequences of probability measures. Then we identify the limit of the sequence of
stochastic processes. Finally, we compare the two limiting processes.

Tightness We show that the sequence of probability measures (Pn,m)n∈N on (W ×
W,B(W) ⊗ B(W)) is tight by applying Kolmogorov’s continuity theorem. Consider
p > 2 such that the p-th moment in H3 and H7 are uniformly bounded. Fix T > 0.
Then the p-th moment of rn,m

t for t < T can be bounded using Itō’s formula,

d|rn,m
t |p ≤ p|rn,m

t |p−2〈rn,m
t , (b̃(rn,m

t ) + Pn,m
t (gm))〉dt
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+ 2θn(rn,m
t )p|rn,m

t |p−2rn,m
t dWt

+ p(p − 1)|rn,m
t |p−22θn(rn

t )2dt

≤ p
(
|rn,m

t |p L̃ + 	|rn,m
t |p−1 + 2(p − 1)|rn,m

t |p−2
)
dt

+ 2θn(rn,m
t )p(rn,m

t )p−1dWt

≤ p
(

L̃ + 	 + 2(p − 1)
)
|rn,m

t |pdt + p(	 + 2(p − 1))dt

+ 2θn(rn,m
t )p(rn,m

t )p−1dWt ,

where 	 = max(‖g‖∞, ‖h‖∞). Taking expectation yields

d

dt
E[|rn,m

t |p] ≤ p
(

L̃ + 	 + 2(p − 1)
)
E|rn,m

t |p + p(	 + 2(p − 1)) .

Then by Gronwall’s lemma

sup
t∈[0,T ]

E[|rn,m
t |p] ≤ ep(L̃+	+2(p−1))T (E[|rn,m

0 |p] + T p(	 + 2(p − 1))) < C p < ∞ ,

(55)

where C p depends on T and the p-th moment of the initial distribution, which is finite
by H6. Similarly, it holds supt∈[0,T ] E[|sn,m

t |p] < C p for t ≤ T . Using this moment
bound, it holds for all t1, t2 ∈ [0, T ] by H1, H5 and H6,

E[|rn,m
t2 − rn,m

t1 |p] ≤ C1(p)
(
E[|

∫ t2

t1
b̃(rn,m

u ) + Pn,m
u (gm)du|p] + E[|

∫ t2

t1
2θn(rn,m

u )dWu |p]
)

≤ C2(p)
((

E

[ L̃ p

|t2 − t1|
∫ t2

t1
|rn,m

u |pdu
]

+ 	 p
)
|t2 − t1|p + E[|

∫ t2

t1
2θn(rn,m

u )du|p/2]
)

≤ C2(p)
(( L̃ p

|t2 − t1|
∫ t2

t1
E[|rn,m

u |p]du + 	 p
)
|t2 − t1|p + 2p/2|t2 − t1|p/2

)

≤ C3(p, T , L̃, 	, C p)|t2 − t1|p/2 ,

where Ci (·) are constants depending on the stated argument and which are inde-
pendent of n, m. Note that in the second step, we used Burkholder-Davis-Gundy
inequality, see [38, Chapter IV, Theorem 48]. It holds similarly, E[|sn,m

t2 − sn,m
t1 |p] ≤

C3(p, T , L̃, 	, C p)|t2 − t1|p/2. Hence,

E[|(rn,m
t2 , sn,m

t2 ) − (rn,m
t1 , sn,m

t1 )|p] ≤ C4(p, T , L̃, 	, C p)|t2 − t1|p/2 (56)

for all t1, t2 ∈ [0, T ]. Hence, by Kolmogorov’s continuity criterion, cf. [31, Corollary
14.9], there exists a constant C̃ depending on p and γ such that

E

[
[(rn,m, sn,m)]p

γ

]
≤ C̃ · C4(p, T , L̃, 	, C p) , (57)
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where [·]p
γ is given by [x]γ = supt1,t2∈[0,T ]

|x(t1)−x(t2)||t1−t2|γ and (rn,m
t ,

sn,m
t )n∈N,t≥0 is tight in C([0, T ],R2). Hence, for each T > 0 there exists a sub-
sequence nk → ∞ and a probability measure P

m
T on C([0, T ],R2). Since {Pm

T }T

is a consistent family, there exists by [31, Theorem 5.16] a probability measure P
m

on (W × W,B(W) ⊗ B(W)) such that there is a subsequence (nk)k∈N such that
P

nk ,m converges along this subsequence to P
m . Note that here we can take by a

diagonalization argument the same subsequence (nk)k∈N for all m.
Characterization of the limit measure In the following we drop for simplicity the

index k in the subsequence. Denote by (r t , st )(ω) = ω(t) the canonical process on
W × W. Since P

n,m ◦ (r0, s0)−1 = ηn,m converges weakly to ηm by H7, it holds
P

m ◦ (r0, s0)−1 = ηm . We define the maps Mn,m, N n,m : W × W → W by

Mn,m
t = r t − r0 −

∫ t

0
(b̃(ru) + Pn

u (gm))du and N n,m
t

= st − s0 −
∫ t

0
(b̂(su) + P̂n

u (hm))du ,

where Pn
u = P

n,m ◦ (ru)−1 and P̂n
u = P

n,m ◦ (su)−1. For each m, n ∈ N,
(Mn,m

t ,Ft ,P
n,m) and (N n,m

t ,Ft ,P
n,m) are martingales with respect to the canon-

ical filtration Ft = σ((ru, su)0≤u≤t ) by Itō’s formula and the moment estimate
(55). Further the family (Mn,m

t ,Pn,m)n∈N,t≥0 and (N n,m
t ,Pn,m)n∈N,t≥0 are uni-

formly integrable by Lipschitz continuity of b̃ and b̂ and by boundedness of gm

and hm . Further, the mappings Mn,m and N n,m are continuous in W. We show that
P

n,m ◦ (r, s, Mn,m, N n,m)−1 converges weakly to Pm ◦ (r, s, Mm, N m)−1 as n → ∞,
where

Mm
t = r t − r0 −

∫ t

0
(b̃(ru) + Pu(gm))du and N m

t

= st − s0 −
∫ t

0
(b̂(su) + P̂u(hm))du , (58)

with Pu = P
m ◦ r−1

u and P̂u = P
m ◦ s−1

u . To show weak convergence to P
m ◦

(r, s, Mm, N m)−1, we note that (Mm, N m) is continuous inW and we consider for a
Lipschitz continuous and bounded function G : W → R,

∣∣∣∣
∫
W

G(ω)dPn,m ◦ (Mn,m)−1(ω) −
∫
W

G(ω)dPm ◦ (Mm)−1(ω)

∣∣∣∣
≤

∣∣∣∣
∫
W

G(ω)dPn,m ◦ (Mn,m)−1(ω) −
∫
W

G(ω)dPn,m ◦ (Mm)−1(ω)

∣∣∣∣
+

∣∣∣∣
∫
W

G(ω)dPn,m ◦ (Mm)−1(ω) −
∫
W

G(ω)dPm ◦ (Mm)−1(ω)

∣∣∣∣ .
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The second term converges to 0 as n → ∞, since (Mm) is continuous. For the first
term it holds

∣∣∣∣
∫
W

G(ω)dPn,m ◦ (Mn,m)−1(ω) −
∫
W

G(ω)dPn,m ◦ (Mm)−1(ω)

∣∣∣∣
=

∣∣∣∣
∫
W

(G ◦ Mn,m)(ω)dPn,m(ω) −
∫
W

(G ◦ Mm)(ω)dPn,m(ω)

∣∣∣∣
≤ ‖G‖Lip sup

ω∈W
dW(Mn,m(ω), Mm(ω)) ,

where dW( f , g) = ∑∞
k=1 supt∈[0,k] 2−k | f (t) − g(t)|. This term converges to 0 for

n → ∞, since for all T > 0 and ω ∈ W, for n → ∞

sup
t∈[0,T ]

|Mn,m
t (ω) − Mm

t (ω)|

≤
∫ T

0

∣∣∣(Pn,m ◦ r−1
s )(gm) − (Pm ◦ r−1

s )(gm)

∣∣∣ ds → 0 ,

by Lebesgue dominated convergence theorem, since g is bounded. Hence,

∣∣∣∣
∫
W

G(ω)dPn,m ◦ (Mn,m)−1(ω) −
∫
W

G(ω)dPm ◦ (Mm)−1(ω)

∣∣∣∣
→ 0 for n → ∞,

and similarly for (N n,m), and therefore by the Portmanteau theorem [32, Theorem
13.16], weak convergence of Pn,m ◦ (r, s, Mn,m, N n,m)−1 to Pm ◦ (r, s, Mm, N m)−1

holds.
Let G : W → R+ be a Fs-measurable, bounded, non-negative function. By

uniformly integrability of (Mn,m
t ,Pn,m)n∈N,t≥0, for any s ≤ t ,

E
m[G(Mm

t − Mm
s )] = E

m[G(

∫ t

s
(b̃(ru) + Pu(gm))du)]

= lim
n→∞E

n,m[G(

∫ t

s
(b̃(ru) + Pn

u (gm))du)]
= lim

n→∞E
n,m[G(Mn,m

t − Mn,m
s )] = 0 , (59)

and analogously for (N n,m
t )t≥0 and hence, (Mm

t ,Ft ,P
m) and (N m

t ,Ft ,P
m) are con-

tinuous martingales. The quadratic variation ([(Mm, N m)]t ) exists Pm-almost surely.
To complete the identification of the limit, it suffices to note that the quadratic variation
is given by
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[Mm] = 4
∫ ·

0
1(0,∞)(ru)du P

m-almost surely,

[N m] = 4
∫ ·

0
1(0,∞)(su)du P

m-almost surely, and

[Mm, N m] = 4
∫ ·

0
1(0,∞)(ru)1(0,∞)(su)du P

m-almost surely, (60)

which holds following the computations in the proof of [18, Theorem 22]. We show
that ((Mm

t )2−4
∫ t
0 1(0,∞)rudu) is a sub- and a supermartingale and hence amartingale

using a monotone class argument by noting first that for any bounded continuous and
non-negative function G : W → R+,

E
m[G(Mm

t )2] = lim
n→∞E

n,m[G(Mn,m
t )2] (61)

holds using uniform integrability of ((Mn,m
t )2,Pn,m)n∈N,t≥0 which holds similarly as

above. Note that

E
m

[
G

∫ t

s
1(0,∞)(ru)du

]
≤ lim

ε↓0 lim inf
n→∞ E

n,m
[

G
∫ t

s
1(ε,∞)(ru)du

]
(62)

holds by lower semicontinuity ofω → ∫ ·
0 1(ε,∞)(ωs)ds for each ε > 0, Fatou’s lemma

and the Portmanteau theorem. For any fixed ε > 0,

lim inf
n→∞ E

n,m
[

G

(∫ t

s
θn(ru)2du −

∫ t

s
1(ε,∞)(ru)du

)]
. (63)

Then by (61), (62) and (63)

E
m

[
G

(
(Mm

t )2 − (Mm
s )2 − 4

∫ t

s
1(0,∞)(ru)du

)]

≥ lim
ε↓0 lim inf

n→∞ E
n,m

[
G

(
(Mn,m

t )2 − (Mn,m
s )2 − 4

∫ t

s
θn(ru)2du

)]
= 0

and by a monotone class argument, cf. [38, Chapter 1, Theorem 8], ((Mm
t )2 −

4
∫ t
0 1(0,∞)(ru)du,Pm) is a submartingale. To show that it is also a supermartingale

we note that ((Mm
t )2 − 4t,Pm) is a supermartingale by (61). By the uniqueness of

the Doob–Meyer decomposition, cf. [38, Chapter 3, Theorem 8], t → [Mm]t − 4t
is Pm-almost surely decreasing. Note further, that (r t ,Ft ,P

m) is a continuous semi-
martingalewith [r] = [Mm]. Then by Itō–Tanaka formula, cf. [39,Chapter 6, Theorem
1.1],

∫ t

0
1{0}(ru)d[Mm]u =

∫ t

0
1{0}(ru)d[r]u =

∫ t

0
1{0}(y)�

y
t (r)dy = 0 ,
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where �
y
t (r) is the local time of r in y. Therefore, for any 0 ≤ s < t ,

[Mm]t − [Mm]s =
∫ t

0
1(0,∞)(ru)d[Mm]u ≤ 4

∫ t

0
1(0,∞)(ru)du

and hence, for any Fs-measurable, bounded, non-negative function G : W → R+,

E
m

[
G((Mm

t )2 − (Mm
s )2 − 4

∫ t

s
1(0,∞)(ru)du)

]
≤ 0 .

As before, by a monotone class argument, ((Mm
t )2 − 4

∫ t
0 1(0,∞)(ru)du,Pm) is a

supermartingale, and hence a martingale.
Hence, we obtain the quadratic variation [Mm]t given in (60). The other character-

izations in (60) follow by analogous arguments. Then by a martingale representation
theorem, see [28, Chapter II, Theorem 7.1], we conclude, that there are a probabil-
ity space (
m,Am, Pm) and a Brownian motion motion W and random variables
(rm, sm) on this space such that Pm ◦ (rm, sm)−1 = P

m ◦ (rm, sm)−1 and such that
(rm, sm, W ) is a weak solution of (51). Finally, note that we have weak convergence
of Q ◦ (rn,m, sn,m)−1 to Pm ◦ (rm, sm)−1 not only along a subsequence since the
characterization of the limit holds for any subsequence (nk)k∈N.

Comparison of two solutions To show Pm[rm
t ≤ sm

t for all t ≥ 0] = 1 we note that
by Lemma 14, Q[rn

t ≤ sn
t for all t ≥ 0] = 1. The monotonicity carries over to the

limit by the Portmanteau theorem for closed sets, since we have weak convergence of
P

n,m ◦ (r, s)−1 to Pm ◦ (r, s)−1. ��
We show in the next step that the distribution of the solution of (51) converges

as m → ∞. For each m ∈ N let (
m,Am, Pm) be a probability space and random
variables rm, sm : 
m → W such that (rm

t , sm
t )t≥0 is a solution of (51). Let Pm =

Pm ◦ (rm, sm)−1 denote the law onW × W.

Lemma 16 Assume that (b̃, g) and (b̂, h) satisfy H1 and H2. Let η ∈ 	(μ, ν) where
the probability measures μ and ν on R+ satisfy H3. Assume that (gm)m∈N, (hm)m∈N,
(μm)m∈N, (νm)m∈N and (ηm)m∈N satisfy conditions H5 and H7. Then there exists a
random variable (r , s) defined on some probability space (
,A, P) with values in
W × W, such that (rt , st )t≥0 is a weak solution of the sticky stochastic differential
equation (25). Furthermore, the sequence of laws Pm ◦ (rm, sm)−1 converges weakly
to the law P ◦ (r , s)−1. If additionally,

b̃(r) ≤ b̂(r) , g(r) ≤ h(r) and gm(r) ≤ hm(r) for any r ∈ R+, and

Pm[rm
0 ≤ sm

0 ] = 1 for any m ∈ N

then P[rt ≤ st for all t ≥ 0] = 1.

Proof The proof is structured as the proof of Lemma 15. First analogously to the proof
of (55) we show under H1, H5 and H7,

sup
t∈[0,T ]

E[|rm
t |p] < ∞ . (64)
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Tightness of the sequence of probability measures (Pm)m∈N on (W × W,B(W) ⊗
B(W)) holds adapting the steps of the proof of Lemma 15 to (51). Note that (55) and
(56) hold analogously for (rm

t , sm
t )m∈N by H1, H5 and H7. Hence by Kolmogorov’s

continuity criterion, cf. [31, Corollary 14.9], we can deduce that there exists a proba-
bilitymeasureP on (W×W,B(W)⊗B(W)) such that there is a subsequence (mk)k∈N
along which P

mk converge towards P. To characterize the limit, we first note that by
Skorokhod representation theorem, cf. [6, Chapter 1, Theorem 6.7], without loss of
generality we can assume that (rm, sm) are defined on a common probability space
(
,A, P) with expectation E and converge almost surely to (r , s) with distribution
P. By H5, Pm

t (gm) = E[gm(rm
t )] and the monotone convergence theorem, Pm

t (gm)

converges to Pt (g) for any t ≥ 0. Then, by Lebesgue convergence theorem it holds
almost surely for all t ≥ 0

lim
m→∞

∫ t

0

(
b̃(rm

t ) + Pm
u (gm)

)
du =

∫ t

0

(
b̃(rt ) + Pu(g)

)
du , (65)

where Pm
u = P ◦ (rm

u )−1 and Pu = P ◦ (ru)−1. A similar statement holds for (st )t≥0.
Consider themappings Mm, N m : W×W → W given by (58). Then for allm ∈ N,

(Mm
t ,Ft ,P

m) and (N m
t ,Ft ,P

m) aremartingaleswith respect to the canonical filtration
Ft = σ((ru, su)0≤u≤t ). Further the family (Mm

t ,Pm)m∈N,t≥0 and (N m
t ,Pm)m∈N,t≥0

are uniformly integrable by (64). In the same line as in the proof of Lemma 15 and by
(65), Pm ◦ (r, s, Mm, N m) converges weakly to P ◦ (r, s, M, N ) where

Mt = r t − r0 −
∫ t

0
(b̃(ru) + Pu(g))du and

Nt = st − s0 −
∫ t

0
(b̂(su) + P̂u(h))du .

Let G : W → R+ be a Fs-measurable bounded, non-negative function. By uniform
integrability, for any s ≤ t ,

E[G(Mt − Ms)] = E[G(

∫ t

s
(b̃(ru) + Pu(g))du)]

= lim
m→∞E

m[G(

∫ t

s
(b̃(ru) + Pu(gm))du)]

= lim
m→∞E

m[G(Mm
t − Mm

s )] = 0 ,

and analogously for (Nt )t≥0. Hence, (Mt ,Ft ,P) and (Nt ,Ft ,P) are martingales.
Further, the quadratic variation ([(M, N )]t ) exists P-almost surely and is given by
(60) P-almost surely, which holds following the computations in the proof of Lemma
15. As in Lemma 15, we conclude by a martingale representation theorem that there
are a probability space (
,A, P) and a Brownian motion W and random variables
(r , s) on this space such that P ◦ (r , s)−1 = P ◦ (r, s)−1 and such that (r , s, W ) is
a weak solution of (25). Note that the limit identification holds for all subsequences
(mk)k∈N and hence Pm ◦(rm, sm)−1 convergesweakly to P◦(r , s)−1 form → ∞. The
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monotonicity Pm[rm
t ≤ sm

t for all t ≥ 0] = 1 carries over to the limit by Portmanteau
theorem, since Pm ◦ (r, s)−1 converges weakly to P ◦ (r, s)−1. ��
Proof of Theorem 3 The proof is a direct consequence of Lemmas 15 and 16. ��

6.3.2 Proof of Theorem 5

Proof of Theorem 5 Note that the Dirac at 0, δ0, is by definition an invariant measure
of (rt )t≥0 solving (6). Assume that the process starts from an invariant probability
measure π , hence P(rt > 0) = p = π((0,∞)) for any t ≥ 0. Note that for p = 0 the
drift vanishes. If the initial measure is the Dirac measure in 0, δ0, then the diffusion
coefficient disappears. Hence, Law(rt ) = δ0 for any t ≥ 0. It remains to investigate
the case p �= 0. Here, we are in the regime of [18, Lemma 24] where an invariant
measure is of the form (28). Since p = P(rt > 0), the invariant measure π satisfies
additionally the necessary condition

p = π((0,∞)) = I (a, p)

2/(ap) + I (a, p)
(66)

with I (a, p) given in (27). For p �= 0, this expression is equivalent to (26). ��
Proof of Theorem 6 By Theorem 5, it suffices to study the solutions of (26). By (27)
and since b̃(r) = −L̃r , it holds for Î (a, p) = (1 − p)I (a, p),

Î (a, p) =
(√

π

2
+

∫ ap√
2L̃

0
exp(−x2/2)dx

)√
2

L̃
exp

(a2 p2

4L̃

)
(1 − p) . (67)

In the case a/
√

L̃ ≤ 2/
√

π , Î (a, 0) =
√

π/L̃ by (67). Further, by 1 + x ≤ ex and

a/
√

L̃ ≤ 2/
√

π ,

(√
π

2
+

∫ ap√
2L̃

0
e− x2

2 dx
)
(1 − p)e

a2 p2

4L̃

≤
√

π

2

(
1 +

√
2

π

∫ ap√
2L

0
e− x2

2 dx
)
e−pe

p2

π

≤
√

π

2

(
1 + 2p

π

)
e−pe

p2

π ≤
√

π

2
ep( 3

π
−1) <

√
π

2

for p ∈ (0, 1]. Hence, Î (a, p) < Î (a, 0) by (67). Therefore, Î (a, p) < Î (a, 0) ≤ 2
a

for all p ∈ (0, 1] and so δ0 is the unique invariant probability measure for a/
√

L̃ ≤
2/

√
π .

To show that for a/
√

L̃ > 2/
√

π , there exists a unique p solving (26), we note
that Î (a, p) is continuous with Î (a, 0) > 2/a and Î (a, 1) = 0. By the mean value
theorem, there exists at least one p ∈ (0, 1) satisfying (26). In the following we drop
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the dependence on a in I (a, p) and Î (a, p). We show uniqueness of the solution p
by contradiction. Assume that p1 < p2 are the two smallest solutions of (26). Hence,
it holds either Î ′(p1) < 0 or Î ′(p) = 0 for p1. Note that the derivative is given by

Î ′(pi ) = −I (pi ) + (1 − pi )I ′(pi ) = −I (pi ) + (1 − pi )
(

pi
a2

2L̃
I (pi ) + a

L̃

)

= − 2

a(1 − pi )
+ (1 − pi )

a

L̃

( pi

1 − pi
+ 1

)
= − 2

a(1 − pi )
+ a

L̃
. (68)

Then, for p2 > p1, it holds

Î ′(p2) = − 2

a(1 − p2)
+ a

L̃
< − 2

a(1 − p1)
+ a

L̃
= Î ′(p1) ≤ 0 .

If Î ′(p1) < 0, it holds Î ′(p2) < 0which contradicts that p1 and p2 are the two smallest
solutions. In the second case, when Î ′(p1) = 0, we note that the second derivative of
Î (p) at p1 is given by

Î ′′(p1) = −2I ′(p1) + (1 − p1)I ′′(p1)

=
(

− 2 + (1 − p1)
a2 p1

2L̃

)(
I (p1)

a2 p1

2L̃
+ a

L̃

)
+ (1 − p1)I (p1)

a2

2L̃

=
(

− 2 + (1 − p1)
a2 p1

2L̃

) a

L̃(1 − p1)
+ a

L̃
= − a

L̃(1 − p1)
< 0 .

Hence, in this case there is a maximum at p1, which contradicts that p1 is the smallest

solution. Thus, there exists a unique solution p1 of (26) for a/
√

L̃ > 2/
√

π .
��

6.3.3 Proof of Theorem 7

Proof of Theorem 7 To show (31) we extend the function f to a concave function on
R by setting f (x) = x for x < 0. Note that f is continuously differentiable and f ′
is absolutely continuous and bounded. Using Itō–Tanaka formula, c.f. [39, Chapter 6,
Theorem 1.1] we obtain

d f (rt ) = f ′(rt )(b̃(rt ) + aP(rt > 0))dt + 2 f ′′(rt )1(0,∞)(rt )dt + dMt ,

where Mt = 2
∫ t
0 f ′(rs)1(0,∞)(rs)dBs is a martingale. Taking expectation, we get

d

dt
E[ f (rt )] = E[ f ′(rt )(b̃(rt ) + aP(rt > 0))] + 2E[ f ′′(rt )1(0,∞)(rt )]

= E[ f ′(rt )b̃(rt ) + 2( f ′′(rt ) − f ′′(0))] + E[a f ′(rt ) + 2 f ′′(0)]P(rt > 0)

≤ −cE[ f (rt )] ,
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where the last step holds by (39) and (40). By applying Gronwall’s lemma, we obtain
(31).

��

6.4 Proof of Sect. 4

The proof of Theorem 8 works in the same line as the proof of Theorems 1 and 2.
Additionally, the difference between the nonlinear SDE and the mean-field system is
bounded in Lemma 19 for which a uniform in time bound for the second moment of
the process (X̄t )t≥0 solving (1) is needed and which is given first.

Lemma 17 Let (X̄t )t≥0 be a solution of (1) with E[|X̄0|2] < ∞. Assume B1. Then
there exists C ∈ (0,∞) depending on d, W and the second moment of X̄0 such that

C = sup
t≥0

E[|X̄t |2] < ∞ . (69)

The proof relies on standard techniques (see e.g., [16, Lemma 8]) and is added for
completeness.

Proof of Lemma 17 By Itō’s formula, it holds

1

2
d|X̄t |2 = 〈X̄t , b ∗ μ̄t (X̄t )〉dt + X̄ T

t dBt + 1

2
d dt .

Taking expectation and using symmetry, we get

d

dt
E[|X̄t |2] = E[〈X̄t − X̃t , b(X̄t − X̃t 〉] + d

= −E[〈X̄t − X̃t , L(X̄t − X̃t ) − γ (X̄t − X̃t )〉1|X̄t −X̃t |>R0
]

− E[〈X̄t − X̃t , L(X̄t − X̃t ) − γ (X̄t − X̃t )〉1|X̄t −X̃t |≤R0
] + d

≤ E[|X̄t |2(−2L + κ(|X̄t − X̃t |)1|X̄t −X̃t |>R0
)] + ‖γ ‖∞ R0 + d .

Hence by definition (14) of R0 and by Gronwall’s lemma we obtain the result (69). ��
Let N ∈ N. We construct a sticky coupling of N i.i.d. realizations of solutions

({X̄ i
t }N

i=1)t≥0 to (1) and of the solution ({Y i
t }N

i=1)t≥0 to the mean field particle system
(3). Then, we consider a weak limit for δ → 0 of Markovian couplings which are
constructed similar as in Sect. 2. Let rcδ , scδ satisfy (19) and (20). The coupling
({X̄ i,δ

t , Y i,δ}N
i=1)t≥0 is defined as process in R

2Nd satisfying a system of SDEs given
by

d X̄ i,δ
t = b ∗ μ̄δ

t (X̄ i,δ
t )dt + rcδ(r̃ i,δ

t )dBi,1
t + scδ(r̃ i,δ

t )dBi,2
t

dY i,δ
t = 1

N

N∑
j=1

b(Y i,δ
t − Y j,δ

t )dt

+ rcδ(r̃ i,δ
t )(Id−2ẽi,δ

t (ẽi,δ
t )T )dBi,1

t + scδ(r̃ i,δ
t )dBi,2

t , (70)
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where Law({X̄ i,δ
0 , Y i,0

0 }N
i=1) = μ̄⊗N

0 ⊗ν⊗N
0 , andwhere ({Bi,1

t }N
i=1)t≥0, ({Bi,2

t }N
i=1)t≥0

are i.i.d. d-dimensional standard Brownian motions. We set X̃ i,δ
t = X̄ i,δ

t −
1
N

∑N
j=1 X̄ j,δ

t , Ỹ i,δ
t = Y i,δ

t − 1
N

∑N
j=1 Y j,δ

t , Z̃ i,δ
t = X̃ i,δ

t − Ỹ i,δ
t , r̃ i,δ

t = |Z̃ i,δ
t | and

ẽi,δ
t = Z̃ i,δ

t /r̃ i,δ
t for r̃ i,δ

t �= 0. The value ẽi,δ
t for r̃ i,δ

t = 0 is irrelevant as rci,δ(0) = 0.
By Levy’s characterization ({X̄ i,δ

t , Y i,δ
t }N

i=1)t≥0 is indeed a coupling of (1) and (3).
Existence and uniqueness of the coupling given in (70) hold by [36, Theorem 2.2]. In
the next step we analyse r̃ i,δ

t .

Lemma 18 Assume B1 holds. Then, for ε < ε0, where ε0 is given in (20), and for any
i ∈ {1, . . . , N }, it holds almost surely,

dr̃ i,δ
t = −Lr̃ i,δ

t dt + 〈ẽi,δ
t ,

1

N

N∑
j=1

γ (X̃ i,δ
t − X̃ j,δ

t ) − γ (Ỹ i,δ
t − Ỹ j,δ

t )〉dt

+ 2

√
1 + 1

N
rcδ(r̃ i,δ

t )dW i,δ
t +

〈
ẽi,δ

t ,�
i,δ
t + 1

N

N∑
k=1

�
k,δ
t

〉
dt

≤
(

b̄(r̃ i,δ
t ) + 2‖γ ‖∞

1

N

N∑
j=1

rcε(r̃ j,δ
t )

)
dt + 2

√
1 + 1

N
rcδ(r̃ i,δ

t )dW i,δ
t

+
(

Ai,δ
t + 1

N

N∑
k=1

Ak,δ
t

)
dt . (71)

with �
i,δ
t = b ∗ μ̄δ

t (X̄ i,δ
t ) − 1

N

∑N
j=1 b(X̄ i,δ

t − X̄ j,δ
t ) and

Ai,δ
t =

∣∣∣�i,δ
t

∣∣∣ =
∣∣∣b ∗ μ̄δ

t (X̄ i,δ
t ) − 1

N

N∑
j=1

b(X̄ i,δ
t − X̄ j,δ

t )

∣∣∣ (72)

and where ({W i,δ
t }N

i=1)t≥0 are N one-dimensional Brownian motions given by

W i,δ
t =

√
N

N + 1

⎛
⎝∫ t

0
(ẽi,δ

s )T dBi,1
s + 1

N

N∑
j=1

∫ t

0
(ẽ j,δ

s )T dB j,1
s

⎞
⎠ , i = 1, . . . , N .

(73)

Proof By (70) and since γ is anti-symmetric, it holds by Itō’s formula for any i ∈
{1, . . . , N },

d(r̃ i,δ
t )2 = −2L(r̃ i,δ

t )2dt + 2〈Z̃ i,δ
t ,

1

N

N∑
j=1

γ (X̃ i,δ
t − X̃ j,δ

t ) − γ (Ỹ i,δ
t − Ỹ j,δ

t )〉dt

+ 4
(
1 + 1

N

)
rcδ(r̃ i,δ

t )2dt + 4

√
1 + 1

N
rcδ(r̃ i,δ

t )〈Z̃ i,δ
t , ẽi,δ

t 〉dW i,δ
t
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+ 2〈Z̃ i,δ
t , b ∗ μ̄δ

t (X̄ i,δ
t ) − 1

N

N∑
j=1

b(X̄ i,δ
t − X̄ j,δ

t )〉dt

+ 2〈Z̃ i,δ
t ,− 1

N

N∑
k=1

(
b ∗ μ̄δ

t (X̄ k,δ
t ) − 1

N

N∑
j=1

b(X̄ k,δ
t − X̄ j,δ

t )
)
〉dt .

where ({W i
t }N

i=1)t≥0 are N i.i.d.one-dimensional Brownian motions given by (73).
Note that the prefactor (N/(N + 1))1/2 ensures that the quadratic variation satisfies
[W i ]t = t for t ≥ 0, and hence ({W i

t }N
i=1)t≥0 are Brownian motions. This definition

of ({W i
t }N

i=1)t≥0 leads to (1+ 1/N )1/2 in the diffusion term of the SDE. Applying the
C2 approximation of the square root used in the proof of Lemma 12 and taking ε → 0
in the approximation yields the stochastic differential equations of ({r̃ i,δ

t }N
i=1)t≥0. We

obtain its upper bound for ε < ε0 by B1 and (20) similarly to the proof of Lemma 12.
��

Next, we state a bound for (72). The result and the proof are adapted from [16,
Theorem 2].

Lemma 19 Under the same assumption as in Lemma 20, it holds for any i = 1, . . . , N

E
[
|Ai,δ

t |2
]

≤ C1N−1 and E
[

Ai,δ
t

]
≤ C2N−1/2 ,

where Ai,δ
t is given in (72) and C1 and C2 are constants depending on ‖γ ‖∞, L and

C given in Lemma 17.

Proof By B3, it holds E(|X̄ i,δ
0 |2) < ∞ for i = 1, . . . , N . Note that given X̄ i,δ

t , X̄ j,δ
t

are i.i.d.with law μ̄δ
t for all j �= i . Hence,

E[b(X̄ i,δ
t − X̄ j,δ

t )|X̄ i,δ
t ] = b ∗ μ̄δ

t (X̄ i,δ
t ) .

Since γ is anti-symmetric, b(0) = 0, and we have

E

[
|b ∗ μ̄δ

t (X̄ i,δ
t ) − 1

N − 1

N∑
j=1

b(X̄ i,δ
t − X̄ j,δ

t )|2
∣∣∣X̄ i,δ

t

]

= E

[
| 1

N − 1

N∑
j=1

E[b(X̄ i,δ
t − X̄ j,δ

t )|X̄ i,δ
t ] − 1

N − 1

N∑
j=1

b(X̄ i,δ
t − X̄ j,δ

t )|2
∣∣∣X̄ i,δ

t

]

= 1

N − 1
Varμ̄δ

t
(b(X̄ i,δ

t − ·)) .

By (11), B1, B3 and Lemma 17, we obtain

Varμ̄δ
t
(b(X̄ i,δ

t − ·)) =
∫
Rd

∣∣∣( − L(X̄ i,δ
t − x) +

∫
Rd

L(X̄ i,δ
t − x̃)μ̄δ

t (dx̃)
)
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+
(
γ (X̄ i,δ

t − x) −
∫
Rd

γ (X̃ i,δ
t − x̃)μ̄δ

t (dx̃)
)∣∣∣2μ̄δ

t (dx)

=
∫
Rd

∣∣∣Lx +
(
γ (X̄ i,δ

t − x) −
∫
Rd

γ (X̃ i,δ
t − x̃)μ̄δ

t (dx̃)
)∣∣∣2μ̄δ

t (dx)

≤ 2L2
∫
Rd

|x |2μ̄δ
t (dx) + 8‖γ ‖2∞ ≤ 2L2C2 + 8‖γ ‖2∞ .

By the Cauchy-Schwarz inequality, we have

E[(Ai,δ
t )2] ≤ 2E

[
|b ∗ μ̄t (X̄ i,δ

t ) − 1

N − 1

N∑
j=1

b(X̄ i,δ
t − X̄ j,δ

t )|2
]

+ 2
( 1

N − 1
− 1

N

)2
E

[
|

N∑
j=1

b(X̄ i,δ
t − X̄ j,δ

t )|2
]

≤ 2
1

N − 1
E[Varμ̄δ

t
(b(X̄ i,δ

t − ·))] + 1

N 2(N − 1)
E

[ N∑
j=1

|b(Xi,δ
t − X j,δ

t )|2
]

≤ 4L2

N − 1
C + 16‖γ ‖2∞

N − 1
+ 1

N 2

(
8C L2 + 4‖γ ‖2∞

)

≤ N−1C1 < ∞ ,

where C1 depends on ‖γ ‖∞, L and the second moment bound C . Similarly, it holds

E[Ai,δ
t ] ≤ E

[
|b ∗ μ̄δ

t (X̄ i,δ
t ) − 1

N − 1

N∑
j=1

b(X̄ i,δ
t − X̄ j,δ

t )|
]

+
( 1

N − 1
− 1

N

) N∑
j=1

E

[
|b(X̄ i,δ

t − X̄ j,δ
t )|

]

≤
√
2L√

N − 1
C1/2 +

√
8‖γ ‖∞√
N − 1

+ 1

N

(√
2C1/2L + ‖γ ‖∞

)

≤ N−1/2C2 < ∞ ,

where C2 = 2LC1/2 + 4‖γ ‖∞ + (
√
2C1/2 + ‖γ ‖∞). ��

To control ({r̃ i,δ
t }N

i=1)t≥0, we consider ({r i,δ,ε
t }N

i=1)t≥0 given as solution of

dr i,δ,ε
t = b̄(r i,δ,ε

t )dt + 1

N

N∑
j=1

2‖γ ‖∞rcε(r j,δ,ε
t )dt +

(
Ai,δ

t + 1

N

N∑
k=1

Ak,δ
t

)
dt

+ 2

√
1 + 1

N
rcδ(r i,δ,ε

t )dW i,δ
t (74)
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with initial condition r i,δ,ε
0 = r̃ i,δ

0 for all i = 1, . . . , N , Ai,δ
t given in (72) and W i,δ

t
given in (73).

By [36, Theorem 2.2], under B1 and B3, ({Ui,δ,ε
t }N

i=1)t≥0 = ({X̄ i,δ
t , Y i,δ

t ,

r i,δ,ε
t }N

i=1)t≥0 exists and is unique, where ({X̄ i,δ
t , Ȳ i,δ

t }N
i=1)t≥0 solves uniquely (70),

({r̄ iδ
t }N

i=1)t≥0 and ({r i,δ,ε
t }i=1N )t≥0 solve uniquely (71) and (74), respectively, with

({W i,δ
t }N

i=1)t≥0 given by (73).

Lemma 20 Assume B1 and B3. Then for any i = 1, . . . , N, |X̄ i,δ
t − Y i,δ

t −
1
N

∑
j (X̄ j,δ

t − Y j,δ
t )| = r̃ i,δ

t ≤ r i,δ,ε
t , almost surely for all t ≥ 0 and ε < ε0.

Proof Note, that both processes ({r̃ i,δ
t }N

i=1)t≥0 and ({r i,δ,ε
t }N

i=1)t≥0 have the same initial

condition and are driven by the same noise. Since the drift for ({r i,δ,ε
t }N

i=1)t≥0 is larger

than the drift for ({r̃ i,δ
t }N

i=1)t≥0 for ε < ε0 by (20), we can conclude r̃ i,δ
t ≤ r i,δ,ε

t
almost surely for all t ≥ 0, ε < ε0 and i = 1, . . . N by Lemma 21. ��
Proof of Theorem 8 Consider the process ({Ui,δ,ε

t }N
i=1)t≥0 = ({X̄ i,δ

t , Y i,δ
t , r i,δ,ε

t }N
i=1)t≥0

on R
N (2d+1) for each ε, δ > 0. We denote by P

δ,ε the law of {U δ,ε}N
i=1 on

C(R+,RN (2d+1)). We define the canonical projections X,Y , r onto the first Nd,
second Nd and last N components.

By B1 and B3 it holds in the same line as in the proof of Lemma 22 for each T > 0

E[|{Ui,δ,ε
t2 − Ui,δ,ε

t1 }N
i=1|4] ≤ C |t2 − t1|2 fort1, t2 ∈ [0, T ], (75)

for some constant C depending on T , L , ‖γ ‖Lip, ‖γ ‖∞, N and on the fourth moment

ofμ0 and ν0. Note that we used here that the additional drift terms (Ai,δ
t )t≥0 occurring

in the SDE of ({r i,δ,ε
t }N

i=1)t≥0 are Lipschitz continuous in ({X̄ i,δ
t }N

i=1)t≥0. Then as in
the proofs of Lemma 22 and Lemma 23, Pδ,ε is tight and converges weakly along a
subsequence to a measure P by Kolmogorov’s continuity criterion, cf. [31, Corollary
14.9].

As in Lemma 22 the law P
δ,ε
T of ({Ui,δ,ε

t }N
i=1)0≤t≤T on C([0, T ],RN (2d+1)) is tight

for each T > 0 by [31, Corollary 14.9] and for each ε > 0 there exists a subsequence
δn → 0 such that (P

δn ,ε
T )n∈N on C([0, T ],RN (2d+1)) converge to a measure P

ε
T on

C([0, T ],RN (2d+1)). By a diagonalization argument and since {Pε
T : T ≥ 0} is a

consistent family, cf. [31, Theorem 5.16], there exists a probability measure P
ε on

C(R+,RN (2d+1)) such that for all ε there exists a subsequence δn such that (Pδn ,ε)n∈N
converges along this subsequence to P

ε . As in the proof of Lemma 23 we repeat
this argument for the family of measures (Pε)ε>0. Hence, there exists a subsequence
εm → 0 such that (Pεm )m∈N converges to a measure P. Let ({X̄ i

t , Y i
t , r i

t }N
i=1)t≥0 be

some process on R
N (2d+1) with distribution P on (
̄, F̄ , P̄).

Since ({X̄ i,δ
t }N

i=1)t≥0 and ({Y i,δ
t }N

i=1)t≥0 are solutions that are unique in law, we
have that for any δ, ε > 0, Pδ,ε ◦ X−1 = P ◦ X−1 and Pδ,ε ◦ Y−1 = P ◦ Y−1. Hence,
P ◦ (X,Y)−1 is a coupling of (1) and (3).

Similarly to the proof of Lemmas 22 and 23 there exist an extended underlying
probability space and N i.i.d.one-dimensional Brownian motion ({W i

t }N
i=1)t≥0 such
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that ({r i
t , W i

t }N
i=1)t≥0 is a solution of

dr i
t = b̄(r i

t )dt + 1

N

N∑
j=1

2‖γ ‖∞1(0,∞)(r
j

t )dt +
(

Ai
t + 1

N

N∑
k=1

Ak
t

)
dt

+ 2

√
1 + 1

N
1(0,∞)(r

i
t )dW i

t ,

where Ai
t = |b ∗ μ̄t (X̄ i

t ) − 1
N

∑N
j=1 b(X̄ i

t − X̄ j
t )|.

In addition, the statement of Lemma 20 carries over to the limiting process
({r i

t }N
i=1)t≥0, since by the weak convergence along the subsequences (δn)n∈N and

(εm)m∈N and the Portmanteau theorem, P(|X̃ i
t − Ỹ i

t | ≤ r i
t for i = 1, . . . , N ) ≥

lim supm→∞ lim supn→∞ P(|X̃ i,δn
t − Ỹ i,δn

t | ≤ r i,δn ,εm
t for i = 1, . . . , N ) = 1, where

X̃ i
t = X̄ i

t − (1/N )
∑N

j=1 X̄ j
t and Ỹ i

t = X̄ i
t − (1/N )

∑N
j=1 Ȳ j

t for all t ≥ 0 and
i = 1, . . . , N .

Using Itō—Tanaka formula, c.f. [39, Chapter 6, Theorem 1.1], and f ′ is absolutely
continuous, we obtain for f defined in (37) with b̃(r) = (κ(r)− L)r and a = 2‖γ ‖∞,

d
( 1

N

N∑
i=1

f (r i
t )

)
= 1

N

N∑
i=1

(
b̄(r i

t ) f ′(r i
t ) + f ′′(r i

t )2
N + 1

N
1(0,∞)(r

i
t )

)
dt

+ 1

N 2

N∑
i=1

N∑
j=1

2 f ′(r i
t )‖γ ‖∞1(0,∞)(r

j
t )dt

+ 1

N

N∑
i=1

f ′(r i
t )2

√
1 + 1

N
1(0,∞)(r

i
t )dW i

t

+ 1

N

N∑
i=1

f ′(r i
t )

(
Ai

t + 1

N

N∑
k=1

Ak
t

)
dt .

Taking expectation, we get using f ′(r) ≤ 1 for all r ≥ 0,

d

dt
E

[ 1

N

N∑
i=1

f (r i
t )

]
≤ 1

N

N∑
i=1

{
E

[
b̄(r i

t ) f ′(r i
t ) + 2

N + 1

N
( f ′′(r i

t ) − f ′′(0))
]

+ E

[
2
(
‖γ ‖∞ + N + 1

N
f ′′(0)

)
1(0,∞)(r

i
t )

]
+ E

[
2Ai

t

]}
.

(76)

By (39) and (40), the first two terms are bounded by −c̃ 1
N

∑
i f (r i

t ) with c̃ given in
(17).

By Lemma 19 the last term in (76) is bounded by

2E[Ai
t ] ≤ C̃ N−1/2 ,
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where

C̃ = 2C2 = 4LC1/2 + 8‖γ ‖∞ + 2(
√
2C1/2L + ‖γ ‖∞) . (77)

Hence, we obtain

d

dt
E

[ 1

N

∑
i

f (r i
t )

]
≤ −c̃

1

N

∑
i

E[ f (r i
t )] + C̃ N−1/2

for t ≥ 0 which leads by Grönwall’s lemma to

E

[ 1

N

∑
i

f (r i
t )

]
≤ e−c̃t

E

[ 1

N

∑
i

f (r i
0)

]
+ 1

c̃
C̃ N−1/2 .

For an arbitrary coupling ξ ∈ 	(μ̄⊗N
0 , ν⊗N

0 ), we have

W f ,N ((μ̄t )
⊗N , νN

t )

≤ e−c̃t
∫
R2Nd

1

N

N∑
i=1

f

⎛
⎝

∣∣∣∣∣∣x
i − yi − 1

N

N∑
j=1

(x j − y j )

∣∣∣∣∣∣
⎞
⎠ ξ(dxdy) + C̃

c̃N 1/2 ,

as E[ f (r i
0)] ≤ ∫

R2Nd
1
N

∑N
i=1 f (|xi − yi − 1

N

∑N
j=1(x j − y j )|)ξ(dxdy). Taking the

infimum over all couplings ξ ∈ 	(μ̄⊗N
0 , ν⊗

0 ) gives the first bound. By (38), the second
bound follows. ��

6.5 Proof of Sect. 5

Analogously to the proof of Theorem 3, we introduce approximations for the system
of sticky SDEs and prove Theorem 10 using a comparison result given in Lemma 21
and via taking the limit of the approximation of the system of sticky SDEs in two steps
and identifying the limit with the solution of (35).

As for the nonlinear casewe showTheorem 10 via a family of stochastic differential
equations, with Lipschitz continuous coefficients,

dr i,n,m
t =

(
b̃(r i,n,m

t ) + 1

N

N∑
j=1

gm(r j,n,m
t )

)
dt + 2θn(r i,n,m

t )dW i
t

dsi,n,m
t =

(
b̂(si,n,m

t ) + 1

N

N∑
j=1

hm(s j,n,m
t )

)
dt + 2θn(si,n,m

t )dW i
t

Law(r i,n,m
0 , si,n,m

0 ) = ηn,m , i ∈ {1, . . . , N } ,

(78)

where ηn,m ∈ 	(μn,m, νn,m). UnderH1,H2,H5,H6 andH7we identify theweak limit
of ({r i,n,m

t , si,n,m
t }N

i=1,n,m∈N)t≥0 solving (78) for n → ∞ by ({r i,m
t , si,m

t }N
i=1,m∈N)t≥0
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solving the family of SDEs given by

dr i,m
t =

(
b̃(r i,m

t ) + 1

N

N∑
j=1

gm(r j,m
t )

)
dt + 21(0,∞)(r

i,m
t )dW i

t ,

dsi,m
t =

(
b̂(si,m

t ) + 1

N

N∑
j=1

hm(s j,m
t )

)
dt + 21(0,∞)(s

i,m
t )dW i

t ,

Law(r i,m
0 , si,m

0 ) = ηm , i ∈ {1, . . . , N } ,

(79)

where ηm ∈ 	(μm, νm).
Taking the limit m → ∞, we obtain (35) as the weak limit of (79). In the case

g(r) = 1(0,∞)(r), we can choose gm = θm .
Consider a probability space (
0,A0, Q) and N i.i.d.1-dimensional Brown-

ian motions ({W i
t }N

i=1)t≥0. Note that under H1–H7, there are random variables
{r i,n,m}N

i=1, {si,n,m}N
i=1 : 
0 → W

N for each n, m such that ({r i,n,m, si,n,m}N
i=1)

is a unique solution to (78) by [36, Theorem 2.2]. We denote by P
n,m = Q ◦

({r i,n,m, si,n,m}N
i=1)

−1 the law on W
N × W

N .
Before taking the two limits and proving Theorem 10, we introduce a modification

of Ikeda and Watanabe’s comparison theorem, to compare two solutions of (78), cf.
[28, Section VI, Theorem 1.1].

Lemma 21 Suppose a solution ({r i,n,m
t , si,n,m

t }N
i=1)t≥0 of (78) is given for fixed n, m ∈

N. AssumeH5 for gm and hm,H1 for b̃ and b̂,H6 for θn. If Q[r i,n,m
0 ≤ si,n,m

0 for all i =
1, . . . , N ] = 1, b̃(r) ≤ b̂(r) and gm(r) ≤ hm(r) for any r ∈ R+, then

Q[r i,n,m
t ≤ si,n,m

t for all t ≥ 0 and i = 1, . . . , N ] = 1

Proof The proof is similar for each component i = 1, . . . , N to the proof of Lemma
14. It holds for the interaction part similarly to (53) using the properties of gm and hm ,

1

N

N∑
j=1

(gm(r j,n,m
t ) − hm(s j,n,m

t ))

≤ Km
1

N

N∑
j=1

|r j,n,m
t − s j,n,m

t |1(0,∞)(r
j,n,m

t − s j,n,m
t ) .

Hence, we obtain analogously to (54),

E[(r i,n,m
t − si,n,m

t )+] ≤ L̃E
[ ∫ t

0
(r i,n,m

u − si,n,m
u )+du

]

+ KmE

[ ∫ t

0

1

N

N∑
j=1

(r j,n,m
u − s j,n,m

u )+du
]
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for all i = 1, . . . , N . Assume t∗ = inf{t ≥ 0 : E[(r i,n,m
t − si,n,m

t )+] >

0 for some i} < ∞. Then, there exists i ∈ {1, . . . , N } such that
∫ t∗
0 E[(r i,n,m

u −
si,n,m

u )+]du > 0. But, by definition of t∗, for all i , u < t∗, E[(r i,n,m
u − si,n,m

u )+] = 0.
This contradicts the definition of t∗. Hence, Q[r i,n,m

t ≤ si,n,m
t for all i, t ≥ 0] = 1.

��
In the next step, we prove that the distribution of the solution of (78) converges as

n → ∞.

Lemma 22 Assume that H1 and H2 is satisfied for (b̃, g) and (b̂, h). Further, let
(θn)n∈N, (gm)m∈N, (hm)m∈N, (μn,m)n,m∈N, (νn,m)n,m∈N and (ηn,m)n,m∈N be such
that H5, H6 and H7 hold. Let m ∈ N. Then there exists a random variable
({r i,m, si,m}N

i=1) defined on some probability space (
m,Am, Pm) with values in

W
N × W

N such that ({r i,m
t , si,m

t }N
i=1)t≥0 is a weak solution of (79). Moreover, the

laws Q ◦ ({r i,n,m, si,n,m}N
i=1)

−1 converge weakly to Pm ◦ ({r i,m, si,m}N
i=1)

−1. If in
addition,

b̃(r) ≤ b̂(r) and gm(r) ≤ hm(r) for any r ∈ R+,

Q[r i,n,m
0 ≤ si,n,m

0 ] = 1 for any n ∈ N, i = 1, . . . , N ,

then Pm[r i,m
t ≤ si,m

t for all t ≥ 0 and i ∈ {1, . . . , N }] = 1.

Proof Fix m ∈ N. The proof is divided in three parts and is similar to the proof of
Lemma 15. First we show tightness of the sequences of probability measures. Then
we identify the limit of the sequence of stochastic processes. Finally, we compare the
two limiting processes.

Tightness We show analogously as in the proof of Lemma 15 that the sequence
of probability measures (Pn,m)n∈N on (WN × W

N ,B(WN ) ⊗ B(WN )) is tight by
applying Kolmogorov’s continuity theorem. We consider p > 2 such that the p-th
moment in H7 are uniformly bounded. Fix T > 0. Then the p-th moment of r i,n,m

t

and si,n,m
t for t < T is bounded using Itō’s formula,

d|r i,n,m
t |p ≤ p|r i,n,m

t |p−2〈r i,n,m
t , (b̃(r i,n,m

t ) + 1

N

N∑
j=1

gm(r j,n,m
t ))〉dt

+ 2θn(r i,n,m
t )p|rn,m

t |p−2r i,n,m
t dW i

t + p(p − 1)|r i,n,m
t |p−22θn(r i,n,m

t )2dt

≤ p
(
|r i,n,m

t |p L̃ + 	|r i,n,m
t |p−1 + 2(p − 1)|r i,n,m

t |p−2
)
dt + 2θn(r i,n,m

t )p(r i,n,m
t )p−1dW i

t

≤ p
(

L̃ + 	 + 2(p − 1)
)
|r i,n,m

t |pdt + p(	 + 2(p − 1))dt + 2θn(r i,n,m
t )p(rn,m

t )p−1dW i
t .

Taking expectation yields

d

dt
E[|r i,n,m

t |p] ≤ p
(

L + 	 + 2(p − 1)
)
E|r i,n,m

t |p + p(	 + 2(p − 1)) .

Then by Gronwall’s lemma
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sup
t∈[0,T ]

E[|r i,n,m
t |p] ≤ ep(L+	+2(p−1))T (E[|r i,n,m

0 |p] + T p(	 + 2(p − 1))) < C p < ∞ ,

(80)

where C p depends on T and the p-th moment of the initial distribution, which is by
assumption finite. Similarly, it holds supt∈[0,T ] E[|si,n,m

t |p] < C p for t ≤ T . Using
these moment bounds, it holds for all t1, t2 ∈ [0, T ] by H1, H5 and H6,

E[|r i,n,m
t2 − r i,n,m

t1 |p]

≤ C1(p)
(
E[|

∫ t2

t1
b̃(r i,n,m

u ) + 1

N

N∑
j=1

gm(r j,n,m
t )du|p] + E[|

∫ t2

t1
2θn(r i,n,m

u )dW i
u |p]

)

≤ C2(p)
((

E

[ L̃ p

|t2 − t1|
∫ t2

t1
|r i,n,m

u |pdu
]

+ 	 p
)
|t2 − t1|p + E[|

∫ t2

t1
2θn(r i,n,m

u )du|p/2]
)

≤ C2(p)
(( L̃ p

|t2 − t1|
∫ t2

t1
E[|r i,n,m

u |p]du + 	 p
)
|t2 − t1|p + 2p/2|t2 − t1|p/2

)

≤ C3(p, T , L̃, 	, C p)|t2 − t1|p/2 ,

where Ck(·) are constants depending on the stated arguments, but independent
of n, m. Note that in the second step, we use Burkholder-Davis-Gundy inequal-
ity, see [38, Chapter IV, Theorem 48]. It holds similarly, E[|si,n,m

t2 − si,n,m
t1 |p] ≤

C3(p, T , L̃, 	, C p)|t2 − t1|p/2. Hence,

E[|({r i,n,m
t2 , si,n,m

t2 }N
i=1) − ({r i,n,m

t1 , si,n,m
t1 }N

i=1)|p]

≤ C4(p, N )(

N∑
i=1

(E[|r i,n,m
t2 − r i,n,m

t1 |p] + E[|si,n,m
t2 − si,n,m

t1 |p]))

≤ C5(p, N , T , L̃, 	, C p)|t2 − t1|p/2

for all t1, t2 ∈ [0, T ]. Hence, by Kolmogorov’s continuity criterion, cf. [31, Corollary
14.9], there exists a constant C̃ depending on p and γ such that

E

[
[({r i,n,m, si,n,m}N

i=1)]p
γ

]
≤ C̃ · C5(p, N , T , L̃, 	, C p) . (81)

where [·]p
γ is defined by [x]γ = supt1,t2∈[0,T ]

|x(t1)−x(t2)||t1−t2|γ and ({r i,n,m
t ,

si,n,m
t }N

i=1)n∈N,t≥0 is tight in C([0, T ],R2N ). Hence, for each T > 0 there exists a
subsequence nk → ∞ and a probability measure PT on C([0, T ],R2N ). Since {Pm

T }T

is a consistent family, there exists by [31, Theorem 5.16] a probability measure P
m

on (WN × W
N ,B(WN ) ⊗ B(WN )) such that Pnk ,m converges weakly to P

m . Note
that we can take here the same subsequence (nk) for all m using a diagonalization
argument.

Characterization of the limit measure Denote by ({r i
t , s

i
t }N

i=1) = ω(t) the canon-
ical process on W

N × W
N . To characterize the measure P

m we first note that
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P
m ◦ (r i

0, s
i
0)

−1 = ηm for all i ∈ {1, . . . , N }, since P
n,m(r i

0, s
i
0)

−1 = ηn,m con-
verges weakly to ηm by assumption. We define maps Mi,m, N i,m : WN ×W

N → W

by

Mi,m
t = r i

t − r i
0 −

∫ t

0

(
b̃(r i

u) + 1

N

N∑
j=1

gm(r j
u)

)
du , and

N i,m
t = si

t − si
0 −

∫ t

0

(
b̂(si

u) + 1

N

N∑
j=1

hm(s j
u)

)
du . (82)

For each n, m ∈ N and i = 1, . . . , N , (Mi,m
t ,Ft ,P

n,m) is a martingale with
respect to the filtration Ft = σ((r j

u, s j
u) : j = 1, . . . , N , 0 ≤ u ≤ t). Note that

the families ({Mi,m
t }N

i=1,P
n,m)n∈N,t≥0 and ({N i,m

t }N
i=1,P

n,m)n∈N,t≥0 are uniformly
integrable. Since the mappings Mi,m and N i,m are continuous in W, P

n,m ◦
({r i , si , Mi,m, N i,m}N

i=1)
−1 converges weakly to P

m ◦ ({r i , si , Mi,m, N i,m}N
i=1)

−1

by the continuous mapping theorem. Then applying the same argument as in (59),
(Mm,i

t ,Ft ,P
m) and (N m,i

t ,Ft ,P
m) are continuous martingales for all i = 1, . . . , N

and the quadratic variation ([{Mi,m, N i,m}N
i=1]t )t≥0 exists Pm-almost surely. To com-

plete the identification of the limit, it suffices to identify the quadratic variation. Similar
to the computations in the proof of Lemma 15, it holds

[Mi,m] = 4
∫ ·

0
1(0,∞)(r i

u)du P
m-almost surely,

[N i,m] = 4
∫ ·

0
1(0,∞)(si

u)du P
m-almost surely, and

[Mi,m, N i,m] = 4
∫ ·

0
1(0,∞)(r i

u)1(0,∞)(si
u)du P

m-almost surely, (83)

Further, [Mi,m, M j,m]t = [N i,m, N j,m]t = [Mi,m, N j,m]t = 0 P
n,m-almost surely

for i �= j and (Mi,m
t M j,m

t ,Pn,m), (N i,m
t N j,m

t ,Pn,m) and (Mi,m
t N j,m

t ,Pn,m) are
martingales. For any bounded, continuous non-negative function G : W → R, it
holds

E
m[G(Mi,m

t M j,m
t − Mi,m

s M j,m
s )] = lim

n→∞E
n,m[G(Mi,m

t M j,m
t − Mi,m

s M j,m
s )] = 0 ,

respectively, E
m[G(N i,m

t N j,m
t − N i,m

s N j,m
s )] = 0 and E

m[G(Mi,m
t N j,m

t −
Mi,m

s N j,m
s )] = 0. Then

[Mi,m, M j,m] = [N i,m, N j,m] = [Mi,m, N j,m] = 0 P
m-almost surely,

for all i �= j . (84)

Then by a martingale representation theorem, cf. [28, Chapter II, Theorem 7.1], there
is a probability space (
m,Am, Pm) and a Brownian motion {W i }N

i=1 and random
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variables ({r i,m, si,m}N
i=1) on this space, such that it holds Pm ◦ ({r i,m, si,m}N

i=1)
−1 =

P
m ◦ ({r i , si }N

i=1)
−1 and such that ({r i,m, si,m, W i }N

i=1) is a weak solution of (79).

Comparison of two solutions To show Pm[r i,m
t ≤ si,m

t for all t ≥ 0 and i =
1, . . . , N ] = 1 it suffices to note that Pn,m[r i,n,m

t ≤ si,n,m
t for all t ≥ 0 and i =

1, . . . , N ] = 1, which holds by Lemma 21, carries over to the limit by the Port-
manteau theorem, since we have weak convergence of P

n,m ◦ ({r i , si }N
i=1)

−1 to
P

m ◦ ({r i , si }N
i=1)

−1. ��
In the next step we show that the distribution of the solution of (79) converges as

m → ∞. Consider a probability space (
m,Am, Pm) for each m ∈ N and random
variables {r i,m}N

i=1, {si,m}N
i=1 : 
m → W

N such that ({r i,m
t , si,m

t }N
i=1)t≥0 is a solution

to (79). Denote by P
m = Pm ◦ ({r i,m, si,m}N

i=1)
−1 the law on W

N × W
N .

Lemma 23 Assume that H1 and H2 is satisfied for (b̃, g) and (b̂, h). Let η ∈ 	(μ, ν)

where the probability measures μ and ν on R+ satisfy H3. Further, let (gm)m∈N,
(hm)m∈N, (μm)m∈N, (νm)m∈N and (ηm)m∈N be such that H5 and H7 hold. Then there
exists a random variable ({r i , si }N

i=1) defined on some probability space (
,A, P)

with values in W
N ×W

N such that ({r i
t , si

t }N
i=1) is a weak solution of (35). Moreover,

the laws Pm ◦({r i,m, si,m}N
i=1)

−1 converge weakly to P◦({r i , si }N
i=1)

−1. If in addition,

b̃(r) ≤ b̂(r), g(r) ≤ h(r), and gm(r) ≤ hm(r) for any r ∈ R+, and

Pm[r i,m
0 ≤ si,m

0 for all t ≥ 0 and i ∈ {1, . . . , N }] = 1 for any m ∈ N,

then P[r i
t ≤ si

t for all t ≥ 0 and i ∈ {1, . . . , N }] = 1.

Proof The proof is structured as the proof of Lemma 22. Tightness of the sequence
of probability measures (Pm)m∈N on (WN ×W

N ,B(WN )⊗B(WN )) holds adapting
the steps of the proof of Lemma 22 to (79). Note that (80) and (81) hold analogously
for ({r i,m

t , si,m
t }N

i=1) by H1, H5 and H7. Hence by Kolmogorov’s continuity criterion,
cf. [31, Corollary 14.9], we can deduce that there exists a probability measure P on
(WN ×W

N ,B(WN )⊗B(WN )) such that there is a subsequence (mk)k∈N alongwhich
P

mk converge towards P.
To characterize the limit, we first note that by Skorokhod representation theo-

rem, cf. [6, Chapter 1, Theorem 6.7], without loss of generality we can assume that
({r i,m, si,m}N

i=1) are defined on a common probability space (
,A, P) with expec-
tation E and converge almost surely to ({r i , si }N

i=1) with distribution P. Then, by H5
and Lebesgue convergence theorem it holds almost surely for all t ≥ 0,

lim
m→∞

∫ t

0
b̃(r i,m

t ) + 1

N

N∑
j=1

gm(r j,m
u )du =

∫ t

0
b̃(r i

t ) + 1

N

N∑
j=1

gm(r j
u )du . (85)

Consider the mappings Mi,m, N i,m : WN × W
N × P(WN × W

N ) → W defined
by (82) Then for all m ∈ N and i = 1, . . . , N , (Mi,m

t ,Ft ,P
m) and (N i,m

t ,Ft ,P
m)

are martingales with respect to the canonical filtration Ft = σ(({r i
u, si

u}N
i=1)0≤u≤t ).
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Further the family ({Mi,m
t }N

i=1,P
m)m∈N,t≥0 and ({N i,m

t }N
i=1,P

m)m∈N,t≥0 are uni-
formly integrable. In the same line as weak convergence is shown in the proof
of Lemma 15 and by (85), Pm ◦ ({r i , si , Mi,m, N i,m}N

i=1)
−1 converges weakly to

P ◦ ({r i , si , Mi , N i }N
i=1)

−1 where

Mi
t = r i

t − r i
0 −

∫ t

0

(
b̃(r i

u) + 1

N

N∑
j=1

g(r j
u)

)
du , and

N i
t = si

t − si
0 −

∫ t

0

(
b̂(si

u) + 1

N

N∑
j=1

h(s j
u)

)
du .

Then ({Mi
t }N

i=1,Ft ,P) and ({N i
t }N

i=1,Ft ,P) are continuousmartingales using the same
argument as in (59). Further, the quadratic variation ([{Mi

t , N i
t }N

i=1]t )t≥0 exists P-
almost surely and is given by (83) and (84) P-almost surely, which holds following the
computations in the proof of Lemma 15 and Lemma 22. As in Lemma 22, we conclude
by a martingale representation theorem that there are a probability space (
,A, P)

and a Brownian motion {W i }N
i=1 and random variables ({r i }N

i=1, {si }N
i=1) on this space

such that P ◦ ({r i , si }N
i=1)

−1 = P ◦ ({r i , si }N
i=1)

−1 and such that ({r i , si , W i }N
i=1) is

a weak solution of (25).
By the Portmanteau theorem the monotonicity carries over to the limit, since Pm ◦

({r i , si }N
i=1)

−1 converges weakly to P ◦ ({r i , si }N
i=1)

−1. ��

Proof of Theorem 10 The proof is a direct consequence of Lemmas 22 and
23. ��
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A Appendix

A.1 Kuramotomodel

Lower bounds on the contraction rate can also be shown for nonlinear SDEs on the
one-dimensional torus using the same approach. Here, we consider the Kuramoto
model given by

dXt = −k

[∫
T

sin(Xt − x)dμt (x)

]
dt + dBt (86)

on the torus T = R/(2πZ).

Theorem 24 Let μt and νt be laws of Xt and Yt where (Xs)s≥0 and (Ys)s≥0 are two
solutions of (86) with initial distributions μ0 and ν0 on (T,B(T)), respectively. If

4k
∫ π

0
exp(2k − 2k cos(r/2))dr ≤ 1 (87)

holds, then for all t ≥ 0,

W f̃ (μt , νt ) ≤ e−cTtW f̃ (μ0, ν0) and W1(μt , νt ) ≤ 2 exp(2k)e−cTtW1(μ0, ν0) ,

where

cT = 1/

(
2

∫ π

0

∫ r

0
exp[2k(cos(r/2) − cos(s/2))]dsdr

)
(88)

and f̃ is a concave, increasing function given in (92).

In [15, Appendix A], a contraction result is stated for a general drift using a similar
approach.

We prove Theorem 24 via a sticky coupling approach. In the same line as in
Sect. 2 the coupling (Xt , Yt )t≥0 is defined as the weak limit of Markovian couplings
{(X δ

t , Y δ
t )t≥0 : δ > 0} on T × T = R/(2πZ) × R/(2πZ) given by

dX δ
t = −k

[∫
T

sin(X δ
t − x)dμδ

t (x)

]
dt + rcδ(r̄ δ

t )dB1
t + scδ(r̄ δ

t )dB2
t

dY δ
t = −k

[∫
T

sin(Y δ
t − x)dνδ

t (x)

]
dt − rcδ(r̄ δ

t )dB1
t + scδ(r̄ δ

t )dB2
t ,

(89)

where r̄ δ
t = dT(X δ

t , Y δ
t ) with dT(·, ·) defined by

dT(x, y) =
{

(|x − y| mod 2π) if (|x − y| mod 2π) ≤ π ,

(2π − |x − y| mod 2π) otherwise .
(90)
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The functions rcδ, scδ are given by (19) and satisfy that there exists ε0 > 0 such that
rcδ(r) ≥ r/2 for any 0 ≤ r ≤ δ ≤ ε0.

Theorem 25 Assume (87). Let μ0 and ν0 be probability measures on (T,B(T)) having
finite forth moment. Then, (Xt , Yt )t≥0 is a subsequential limit in distribution as δ → 0
of {(X δ

t , Y δ
t )t≥0 : δ > 0}, where (Xt )t≥0 and (Yt )t≥0 are solutions of (86) with initial

distributions μ0 and ν0, respectively. Further, there exists a process (rt )t≥0 satisfying
for any t ≥ 0, dT(Xt , Yt ) ≤ rt almost surely, and which is a weak solution of

drt = (2k sin(rt/2) + 2kP(rt ))dt + 21(0,π ](rt )dWt − 2d�π
t , (91)

where (Wt )t≥0 is a one-dimensional Brownian motion on T and �π is the local time
at π .

Proof The proof works analogously to the proof of Theorem 2 stated in Sect. 6.2.1. It
holds similarly to Lemma 12 byMeyer–Tanaka’s formula, cf. [39, Chapter 6, Theorem
1.1], and using (90),

r̄ δ
t − r̄ δ

0 =
∫ t

0
sgn(X δ

t − Y δ
t )(−k)et[∫

T

sin(X δ
t − x)dμt (x) −

∫
T

sin(Y δ
t − x)dνt (x)

]
dt

+
∫ t

0
sgn(X δ

t − Y δ
t )2rcδ(r̄ δ

t )etdB1
t +

∫
R

2rcδ(r̄ δ
t )2�a

t (δ0 − δπ )(da) ,

where sgn(x) = 1(0,π ](x) − 1(π,2π ](x), (�a
t )t≥0 is the local time at a associated with

(X δ
t − Y δ

t )t≥0 and et = (X δ
t − Y δ

t )/dT(X δ
t , Y δ

t ) for r̄ δ
t �= 0. For r̄ δ

t = 0, et is some
arbitrary unit vector. For any a the support of �a

t as a function of t is a subset of
the set of t such that rt = a [31, Theorem 19.1], hence 1(0,π ](rt )�

0
t = 0 almost

surely and so the term involving the local time reduces to −2�π
t . Further, we note that

Wt = ∫ t
0 sgn(X δ

t − Y δ
t )etdB1

t is a Brownian motion. As in Lemma 12, it holds for the
process (r̄ δ

t )t≥0 for ε < ε0 with ε0 given by (20),

dr̄ δ
t ≤ (2k sin(r̄ δ

t /2) + 2kEx∼μδ
t ,y∼νδ

t
(rcε(dT(x, y))))dt + 2rcδ(r̄ δ

t )dWt − 2d�π
t ,

where we used the properties of rcδ and

(x − y) · (sin(x − x̃) − sin(y − x̃)) ≤ 2 sin(|x − y|/2)|x − y|

for any x, y, x̃ ∈ T. Consider (r δ,ε
t )t≥0 given by

dr δ,ε
t = (2k sin(r δ,ε

t /2) + 2k
∫ π

0
rcε(u)dPδ,ε

t (u))dt + 2rcδ(r δ,ε
t )dWt − 2d�π

t ,
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where Pδ,ε
t is the law of r δ,ε

t . Then as in Lemma 13, for the processes (r̄ δ
t )t≥0 and

(r δ,ε
t )t≥0 with the same initial condition and driven by the same noise it holds r̄ δ

t ≤ r δ,ε
t

almost surely for every t and ε < ε0.
Consider the process (U δ,ε

t )t≥0 = (X δ
t , Y δ

t , r δ,ε
t )t≥0 on T2 ×[0, π ] for each ε, δ >

0.Wedefineby X,Y : C(R+,T2×[0, π ]) → C(R+,T) and r : C(R+,T2×[0, π ]) →
C(R+, [0, π ]) the canonical projections onto the first component, onto the second
component and onto the last component, respectively. Analogously to the proof of
Theorem 2, the law P

δ,ε of the process (U δ,ε
t )t≥0 converges along a subsequence

(δk, εk)k∈N to a probability measure P. Let (Xt , Yt , rt )t≥0 be some process on T
2 ×

[0, π ] with distribution P on (
̄, F̄ , P̄). Since (X δ
t )t≥0 and (Y δ

t )t≥0 are solutions of
(86) which are unique in law, we have that for any ε, δ > 0, Pδ,ε ◦ X−1 = P ◦ X−1

and Pδ,ε ◦Y−1 = P ◦Y−1. And therefore (Xt )t≥0 and (Yt )t≥0 are solutions of (86) as
well with the same initial condition. Hence P ◦ (X,Y)−1 is a coupling of two copies
of (86).

Further, the monotonicity r̄ δ
t ≤ r δ,ε

t carries over to the limit by the Portman-
teau theorem. Finally, similarly to the proof of Lemmas 15 and 16 there exist an
extended probability space and a one-dimensional Brownian motion (Wt )t≥0 such
that (rt , Wt )t≥0 is a solution to (97).

��

Proof of Theorem 24 Similarly to (37) we consider a function f̃ on [0, π ] defined by

f̃ (t) =
∫ t

0
ϕ̃(r)g̃(r)dr , (92)

where

ϕ̃(r) = exp{2k(cos(r/2) − 1)} , �̃(r) =
∫ r

0
ϕ̃(s)ds ,

g̃(r) = 1 − cT
2

∫ r

0
{�̃(s)/ϕ̃(s)}ds − k

∫ r

0
{1/ϕ̃(s)}ds ,

cT =
(
2

∫ π

0
{�̃(s)/ϕ̃(s)}ds

)−1

.

Then for k satisfying (87), g̃(r) ∈ [1/2, 1] and f̃ is a concave function satisfying
similarly to (38)

exp(−2k)/2r ≤ f̃ ≤ �̃(r) ≤ r (93)

and

f̃ ′′(0) = −k

2( f̃ ′′(r) − f̃ ′′(0)) ≤ −2k sin(r/2) f̃ ′(r) − cT f̃ (r) for all r ∈ [0, π ] .
(94)
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By Itō’s formula it holds

d f̃ (rt ) = f̃ ′(rt )(2k sin(r/2) + 2kP(rt > 0))dt + 2 f̃ ′(rt )1(0,π ](rt )dWt − 2 f̃ ′(rt )d�
π
t

+ 2 f̃ ′′(rt )1(0,π ](rt )dt .

Taking expectation and using that the term involving the local time is negative, we
obtain

d

dt
E[ f̃ (rt )] ≤ E[2( f̃ ′′(rt ) − f ′′(0)) + f̃ ′(rt )2k sin(rt/2)] + (2 f̃ ′′(0) + 2k)P(rt > 0)

≤ −cTE[ f̃ (rt )] ,

where the last step holds by (94). Then

E[ f̃ (dT(X̄t , Ȳt ))] ≤ E[ f̃ (rt )] ≤ e−cTt
E[ f̃ (r0)] = e−cTt

E[ f̃ (dT(X̄0, Ȳ0))] , (95)

provided (87) holds. Thus

W f̃ (μt , νt ) ≤ e−cTtW f̃ (μ0, ν0) ,

and by (93)

W1(μt , νt ) ≤ 2 exp(2k)e−cTtW1(μ0, ν0) .

��

Remark 26 Let us finally remark that we can relax the condition (87) andwe can obtain
contraction with a modified contraction rate cT for all k < k0, where k0 is given by

k0

∫ π

0
exp(2k0 − 2k0 cos(r/2))dr = 1 . (96)

More precisely, set ζ = 1 − k
∫ π

0 exp(2k − 2k cos(r/2))dr and cT =
ζ

(∫ π

0 {�̃(s)/ϕ̃(s)}ds
)−1

. Then, g̃(r) ∈ [ζ/2, 1] and ζ exp(−2k)/2r ≤ f̃ (r) ≤ r .

Following the previous computations, we obtain

W1(μt , νt ) ≤ 2 exp(2k)/ζe−cTtW1(μ0, ν0) ,

where for k close to k0, the contraction rate becomes small and the prefactor
2 exp(2k)/ζ explodes.

123



Stochastics and Partial Differential Equations: Analysis and Computations

A.2 Sticky nonlinear SDEs on bounded state space

In the same line as in Theorem 3, existence, uniqueness in law and comparison results
hold for solutions to the sticky SDE on [0, π ] given by

drt = (b̃(rt ) + 2kP(rt > 0))dt + 21(0,π)(rt )dWt − 2d�π
t , (97)

where k ∈ R+ and �π is the local time at π .
The analysis of invariant measures and phase transitions can be easily adapted to

the case of the sticky SDE on [0, π ] given by (97).

Theorem 27 Let (rt )t≥0 be a solution of (97) with drift b̃ satisfying H1. Then, the
Dirac measure at zero, δ0, is an invariant probability measure on [0, π ] for (97). If
there exists p ∈ (0, 1) solving (1/k) = (1 − p)I (k, p) where

I (k, p) =
∫ π

0
exp

(
kpx + 1

2

∫ x

0
b̃(r)dr

)
dx ,

then the probability measure π on [0, π ] given by

π(dx) ∝ 1

kp
δ0(dx) + exp

(
kpx + 1

2

∫ x

0
b̃(r)dr

)
λ(0,π)(dx) (98)

is another invariant probability measure for (97).

Proof of Theorem 27 The proof works analogously to the proof of Theorem 5 for sticky
SDEs on R+. Note that here the condition (66) transforms for p ∈ (0, 1] to

p = π((0, π)) = I (k, p)

1/(kp) + I (k, p)
⇔ (1 − p)I (k, p) = 1/k .

��
Example 28 Consider a solution (rt )t≥0 of (97)with drift b̃(r) = 2k sin(r/2). Consider
a solution p ∈ (0, 1] solving 1/k = (1 − p)I (k, p) with

I (k, p) =
∫ π

0
exp

(
kpx +

∫ x

0
k sin(r/2)dr

)
dx

=
∫ π

0
exp

(
kpx + 2k − 2k cos(x/2)

)
dx .

Then by Theorem 27, the Dirac measure at zero, δ0 and the probability measure

π(dx) ∝ 1

kp
δ0(dx) + exp(kpx + 2k − 2k cos(x/2))λ(0,π)(dx) (99)

are invariant probability measures for (97). We specify a necessary and sufficient con-
dition for the existence of a solution p satisfying 1/k = (1 − p)I (k, p). We define
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Î (k, p) = (1 − p)I (k, p). We first consider the case 1/k < Î (k, 0) = ∫ π

0 exp(2k −
2k cos(x/2))dx . Then since 1/k > Î (k, 1) = 0 and by the mean value theorem there
exists a p solving 1/k = Î (k, p) and therefore there exist multiple invariant distribu-
tions for (99). On the other hand, if 1/k > Î (k, 0) = ∫ π

0 exp(2k − 2k cos(x/2))dx ,
since π ≤ ∫ π

0 exp(2k − 2k cos(x/2))dx and for k < 1/π , it holds

d

dp
Î (k, p) = −I (k, p) + (1 − p)

∫ π

0
kx exp(kpx + 2k − 2k cos(x/2))dx

=
∫ π

0
((1 − p)kx − 1) exp(kpx + 2k − 2k cos(x/2))dx ≤ 0 ,

there is no p satisfying (99).

Remark 29 The contraction result given in Theorem 7 carries over to the sticky dif-
fusion (rt ) given by (97) on [0, π ] with b̃(r) = 2k sin(r/2). If (87) holds, then for
t ≥ 0, (31) holds with f̃ defined in (92) and cT defined in (88) using (95). Moreover
by Remark 26, we can deduce that if (96) holds, the Dirac measure at zero, δ0, is the
unique invariant measure and contraction towards δ0 holds.

References

1. Acebron, J., Bonilla, L., Pérez-Vicente, C., Farran, F., Spigler, R.: The Kuramoto model: a simple
paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 04 (2005). https://doi.org/10.1103/
RevModPhys.77.137

2. Bass, R.F.: A stochastic differential equation with a sticky point. Electron. J. Probab. 19(32), 22 (2014).
https://doi.org/10.1214/EJP.v19-2350

3. Benedetto, D., Caglioti, E., Carrillo, J.A., Pulvirenti, M.: A non-Maxwellian steady distribution for
one-dimensional granular media. J. Stat. Phys. 91(5–6), 979–990 (1998)

4. Bertini, L., Giacomin, G., Pakdaman, K.: Dynamical aspects of mean field plane rotators and the
Kuramoto model. J. Stat. Phys. 138(1–3), 270–290 (2010). https://doi.org/10.1007/s10955-009-9908-
9

5. Bertini, L., Giacomin, G., Poquet, C.: Synchronization and random long time dynamics for mean-
field plane rotators. Probab. Theory Relat. Fields 160(3–4), 593–653 (2014). https://doi.org/10.1007/
s00440-013-0536-6

6. Billingsley, P.: Convergence of probability measures. In: Wiley Series in Probability and Statistics:
Probability and Statistics, 2nd edn. AWiley-Interscience Publication.Wiley, NewYork (1999). https://
doi.org/10.1002/9780470316962

7. Bolley, F., Gentil, I., Guillin, A.: Uniform convergence to equilibrium for granular media. Arch. Ration.
Mech. Anal. 208(2), 429–445 (2013). https://doi.org/10.1007/s00205-012-0599-z

8. Calsina,Àngel., Farkas, József. Z.: Steady states in a structured epidemicmodelwithWentzell boundary
condition. J. Evol. Equ. 12(3), 495–512 (2012). https://doi.org/10.1007/s00028-012-0142-6

9. Carrillo, J.A.,Gvalani, R.S., Pavliotis,G.A., Schlichting,A.: Long-timebehaviour andphase transitions
for the Mckean–Vlasov equation on the torus. Arch. Ration. Mech. Anal. 235(1), 635–690 (2020).
https://doi.org/10.1007/s00205-019-01430-4

10. Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related
equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19(3),
971–1018 (2003). https://doi.org/10.4171/RMI/376

11. Carrillo, J.A., McCann, R.J., Villani, C.: Contractions in the 2-Wasserstein length space and thermal-
ization of granular media. Arch. Ration. Mech. Anal. 179(2), 217–263 (2006). https://doi.org/10.1007/
s00205-005-0386-1

123

https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1214/EJP.v19-2350
https://doi.org/10.1007/s10955-009-9908-9
https://doi.org/10.1007/s10955-009-9908-9
https://doi.org/10.1007/s00440-013-0536-6
https://doi.org/10.1007/s00440-013-0536-6
https://doi.org/10.1002/9780470316962
https://doi.org/10.1002/9780470316962
https://doi.org/10.1007/s00205-012-0599-z
https://doi.org/10.1007/s00028-012-0142-6
https://doi.org/10.1007/s00205-019-01430-4
https://doi.org/10.4171/RMI/376
https://doi.org/10.1007/s00205-005-0386-1
https://doi.org/10.1007/s00205-005-0386-1


Stochastics and Partial Differential Equations: Analysis and Computations

12. Cattiaux, P., Guillin, A., Malrieu, F.: Probabilistic approach for granular media equations in the non-
uniformly convex case. Probab. Theory Relat. Fields 140(1–2), 19–40 (2008). https://doi.org/10.1007/
s00440-007-0056-3

13. Chitashvili, R.: On the nonexistence of a strong solution in the boundary problem for a sticky Brownian
motion. Proc. A. Razmadze Math. Inst. 115, 17–31 (1997)

14. Delarue, F., Tse, A.: Uniform in time weak propagation of chaos on the torus. arXiv preprint
arXiv:2104.14973 (2021)

15. Delgadino,MatiasG., Gvalani, Rishabh S., Pavliotis, GrigoriosA.: On the diffusive-mean field limit for
weakly interacting diffusions exhibiting phase transitions. Arch. Ration. Mech. Anal. 241(1), 91–148
(2021). https://doi.org/10.1007/s00205-021-01648-1

16. Durmus, A., Eberle, A., Guillin, A., Zimmer, R.: An elementary approach to uniform in time prop-
agation of chaos. Proc. Am. Math. Soc. 148(12), 5387–5398 (2020). https://doi.org/10.1090/proc/
14612

17. Eberle, A., Guillin, A., Zimmer, R.: Quantitative Harris-type theorems for diffusions and McKean–
Vlasov processes. Trans. Am. Math. Soc. 371(10), 7135–7173 (2019). https://doi.org/10.1090/tran/
7576

18. Eberle, A., Zimmer, R.: Sticky couplings of multidimensional diffusions with different drifts. Ann.
Inst. Henri Poincaré Probab. Stat. 55(4), 2370–2394 (2019). https://doi.org/10.1214/18-AIHP951

19. Eberle, Andreas: Reflection couplings and contraction rates for diffusions. Probab. TheoryRelat. Fields
166(3–4), 851–886 (2016). https://doi.org/10.1007/s00440-015-0673-1

20. Engelbert, H.-J., Peskir, G.: Stochastic differential equations for sticky Brownian motion. Stochastics
86(6), 993–1021 (2014). https://doi.org/10.1080/17442508.2014.899600

21. Feller, W.: Diffusion processes in one dimension. Trans. Am. Math. Soc. 77, 1–31 (1954). https://doi.
org/10.2307/1990677

22. Feller, W.: The general diffusion operator and positivity preserving semi-groups in one dimension.
Ann. of Math. 2(60), 417–436 (1954). https://doi.org/10.2307/1969842

23. Funaki, T.: A certain class of diffusion processes associated with nonlinear parabolic equations. Z.
Wahrsch. Verw. Gebiete 67(3), 331–348 (1984). https://doi.org/10.1007/BF00535008

24. Gandolfi, Alberto, Gerardi, Anna, Marchetti, Federico: Association rates of diffusion-controlled
reactions in two dimensions. Acta Appl. Math. 4(2–3), 139–155 (1985). https://doi.org/10.1007/
BF00052459

25. Guillin, Arnaud, Liu, Wei, Liming, Wu., Zhang, Chaoen: Uniform Poincaré and logarithmic Sobolev
inequalities for mean field particle systems. Ann. Appl. Probab. 32(3), 1590–1614 (2022). https://doi.
org/10.1214/21-aap1707

26. Hammersley, W.R.P., Šiška, D., Szpruch, Ł: McKean–Vlasov SDEs under measure dependent Lya-
punov conditions. Ann. Inst. Henri Poincaré Probab. Stat. 57(2), 1032–1057 (2021). https://doi.org/
10.1214/20-aihp1106

27. Ikeda, N.: On the construction of two-dimensional diffusion processes satisfying Wentzell’s boundary
conditions and its application to boundary value problems. Mem. Coll. Sci. Univ. Kyoto Ser. A. Math.
33, 367–427 (1960/61). https://doi.org/10.1215/kjm/1250711995

28. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. In: North-Holland
Mathematical Library, 2nd edn, vol. 24. North-Holland Publishing Co., Amsterdam, Kodansha, Ltd.,
Tokyo (1989)

29. Kabanov, Yuri, Kijima, Masaaki, Rinaz, Sofiane: A positive interest rate model with sticky barrier.
Quant. Finance 7(3), 269–284 (2007). https://doi.org/10.1080/14697680600999351

30. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Math-
ematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press,
Berkeley and Los Angeles (1956)

31. Kallenberg, O.: Foundations of modern probability. In: Probability and Its Applications (New York),
2nd edn. Springer-Verlag, New York (2002). https://doi.org/10.1007/978-1-4757-4015-8

32. Klenke, A.: Probability theory: a comprehensive course. Universitext, 2nd edn. Springer, London
(2014). https://doi.org/10.1007/978-1-4471-5361-0

33. Malrieu, F.: Convergence to equilibrium for granular media equations and their Euler schemes. Ann.
Appl. Probab. 13(2), 540–560 (2003). https://doi.org/10.1214/aoap/1050689593

34. McKean, H.P., Jr.: A. Skorohod’s stochastic integral equation for a reflecting barrier diffusion. J. Math.
Kyoto Univ. 3, 85–88 (1963). https://doi.org/10.1215/kjm/1250524858

123

https://doi.org/10.1007/s00440-007-0056-3
https://doi.org/10.1007/s00440-007-0056-3
http://arxiv.org/abs/2104.14973
https://doi.org/10.1007/s00205-021-01648-1
https://doi.org/10.1090/proc/14612
https://doi.org/10.1090/proc/14612
https://doi.org/10.1090/tran/7576
https://doi.org/10.1090/tran/7576
https://doi.org/10.1214/18-AIHP951
https://doi.org/10.1007/s00440-015-0673-1
https://doi.org/10.1080/17442508.2014.899600
https://doi.org/10.2307/1990677
https://doi.org/10.2307/1990677
https://doi.org/10.2307/1969842
https://doi.org/10.1007/BF00535008
https://doi.org/10.1007/BF00052459
https://doi.org/10.1007/BF00052459
https://doi.org/10.1214/21-aap1707
https://doi.org/10.1214/21-aap1707
https://doi.org/10.1214/20-aihp1106
https://doi.org/10.1214/20-aihp1106
https://doi.org/10.1215/kjm/1250711995
https://doi.org/10.1080/14697680600999351
https://doi.org/10.1007/978-1-4757-4015-8
https://doi.org/10.1007/978-1-4471-5361-0
https://doi.org/10.1214/aoap/1050689593
https://doi.org/10.1215/kjm/1250524858


Stochastics and Partial Differential Equations: Analysis and Computations

35. McKean, H.P., Jr.: A class of Markov processes associated with nonlinear parabolic equations. Proc.
Nat. Acad. Sci. U. S. A. 56, 1907–1911 (1966). https://doi.org/10.1073/pnas.56.6.1907

36. Méléard, S.: Asymptotic behaviour of some interacting particle systems; McKean–Vlasov and Boltz-
mann models. In: Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini
Terme, 1995), Lecture Notes in Mathematics, vol. 1627, pp. 42–95. Springer, Berlin (1996). https://
doi.org/10.1007/BFb0093177

37. Mishura, Yuliya, Veretennikov, Alexander: Existence and uniqueness theorems for solutions of
McKean–Vlasov stochastic equations. Theory Probab. Math. Stat. 103, 59–101 (2020). https://doi.
org/10.1090/tpms/1135

38. Protter, P.E.: Stochastic integration and differential equations. In: Applications of Mathematics (New
York). Stochastic Modelling and Applied Probability, 2nd edn, vol. 21. Springer, Berlin (2004)

39. Revuz, D., Yor, M.: Continuous martingales and Brownian motion. In: Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edn, vol. 293. Springer,
Berlin (1999). https://doi.org/10.1007/978-3-662-06400-9

40. Skorokhod, A.V.: Stochastic equations for diffusion processes in a bounded region. Theory Probab.
Appl. 6(3), 264–274 (1961)

41. Skorokhod, A.V.: Stochastic equations for diffusion processes in a bounded region. II. Theory Probab.
Appl. 7(1), 3–23 (1962)

42. Stroock, D.W., Varadhan, S.R.S.: Diffusion processes with boundary conditions. Commun. Pure Appl.
Math. 24, 147–225 (1971). https://doi.org/10.1002/cpa.3160240206

43. Sznitman, A.-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX—
1989, Lecture Notes in Mathematics, vol. 1464, pp. 165–251. Springer, Berlin (1991). https://doi.org/
10.1007/BFb0085169

44. Villani, C.: Topics in optimal transportation. In: Graduate Studies in Mathematics, vol. 58. American
Mathematical Society, Providence (2003). https://doi.org/10.1090/gsm/058

45. Watanabe, S.: On stochastic differential equations for multi-dimensional diffusion processes with
boundary conditions. J. Math. Kyoto Univ. 11, 169–180 (1971). https://doi.org/10.1215/kjm/
1250523692

46. Watanabe, S.: On stochastic differential equations for multi-dimensional diffusion processes with
boundary conditions. II. J. Math. Kyoto Univ. 11, 545–551 (1971). https://doi.org/10.1215/kjm/
1250523619

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1073/pnas.56.6.1907
https://doi.org/10.1007/BFb0093177
https://doi.org/10.1007/BFb0093177
https://doi.org/10.1090/tpms/1135
https://doi.org/10.1090/tpms/1135
https://doi.org/10.1007/978-3-662-06400-9
https://doi.org/10.1002/cpa.3160240206
https://doi.org/10.1007/BFb0085169
https://doi.org/10.1007/BFb0085169
https://doi.org/10.1090/gsm/058
https://doi.org/10.1215/kjm/1250523692
https://doi.org/10.1215/kjm/1250523692
https://doi.org/10.1215/kjm/1250523619
https://doi.org/10.1215/kjm/1250523619

	Sticky nonlinear SDEs and convergence of McKean–Vlasov equations without confinement
	Abstract
	1 Introduction
	2 Long-time behaviour of McKean–Vlasov diffusions
	3 Nonlinear SDEs with sticky boundaries
	3.1 Existence, uniqueness in law, and a comparison result
	3.2 Invariant measures and phase transition for 
	3.3 Convergence for sticky nonlinear SDEs of the form 


	4 Uniform in time propagation of chaos
	5 System of N sticky SDEs
	6 Proofs
	6.1 Definition of the metrics
	6.2 Proof of 
	6.2.1 Proof of 
	6.2.2 Proof of 

	6.3 Proof of 
	6.3.1 Proof of 
	6.3.2 Proof of 
	6.3.3 Proof of 

	6.4 Proof of 
	6.5 Proof of 

	A Appendix
	A.1 Kuramoto model
	A.2 Sticky nonlinear SDEs on bounded state space

	References


