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Abstract
We introduce a unified framework based on bi-level optimization schemes to deal
with parameter learning in the context of image processing. The goal is to identify the
optimal regularizer within a family depending on a parameter in a general topological
space. Our focus lies on the situation with non-compact parameter domains, which is,
for example, relevant when the commonly used box constraints are disposed of. To
overcome this lack of compactness, we propose a natural extension of the upper-level
functional to the closure of the parameter domain via Gamma-convergence, which
captures possible structural changes in the reconstruction model at the edge of the
domain. Under twomain assumptions, namely,Mosco-convergence of the regularizers
and uniqueness of minimizers of the lower-level problem, we prove that the extension
coincides with the relaxation, thus admitting minimizers that relate to the parame-
ter optimization problem of interest. We apply our abstract framework to investigate
a quartet of practically relevant models in image denoising, all featuring nonlocality.
The associated families of regularizers exhibit qualitatively different parameter depen-
dence, describing a weight factor, an amount of nonlocality, an integrability exponent,
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and a fractional order, respectively. After the asymptotic analysis that determines the
relaxation in each of the four settings, we finally establish theoretical conditions on
the data that guarantee structural stability of the models and give examples of when
stability is lost.

Keywords Bi-level learning scheme · Parameter optimization · �-convergence ·
Nonlocal regularizers · Image denoising models

Mathematics Subject Classification 49J21 · 49J45

1 Introduction

One of the most widely used methods to solve image restoration problems is the
variational regularization approach. This variational approach consists of minimiz-
ing a reconstruction functional that decomposes into a fidelity and a regularization
term, which give rise to competing effects. While the fidelity term ensures that the
reconstructed image is close to the (noisy) data, the regularization term is designed to
remove the noise by incorporating prior information on the clean image. In the case
of a simple L2-fidelity term, the reconstruction functional is given by

J (u) = ‖u − uη‖2L2(�)
+ R(u), for u ∈ L2(�),

where � ⊂ R
n is the image domain, uη ∈ L2(�) the noisy image, andR : L2(�) →

[0,∞] the regularizer.
A common choice for R is the total variation (T V ) regularization proposed by

Rudin, Osher, & Fatemi [52], which penalizes sharp oscillations, but does not exclude
edge discontinuities, as they appear in most images. Since its introduction, the T V -
model has inspired a variety of more advanced regularization terms, like the infimal-
convolution total variation (ICT V ) [19], the total generalized variation (TGV ) [14],
and many more, cf. [10] and the references therein. Due to the versatility of the
variational formulation, regularizers of a completely different type can be used as
well. Recently, a lot of attention has been directed towards regularizers incorporating
nonlocal effects, such as those induced by difference quotients [5, 11, 15, 38] and
fractional operators [1, 3, 4]. Nonlocal regularizers have the advantage of not requiring
the existence of (full) derivatives, allowing to work with functions that are less regular
than those in the local counterpart.

With an abundance of available choices, finding a suitable regularization term for a
specific application is paramount for obtaining accurate reconstructions. This is often
done by fixing a parameter-dependent family of regularizers and tuning the parameter
in accordance with the noise and data. Carrying out this process via trial and error can
be hard and inefficient, which led to the development of a more structured approach
in the form of bi-level optimization. We refer, e.g., to [30, 31] (see also [21, 22, 35,
53]) and to the references therein, as well as to [33] for a detailed overview. The
idea behind bi-level optimization is to employ a supervised learning scheme based
on a set of training data consisting of noisy images and their corresponding clean
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versions. To determine an optimal parameter, one minimizes a selected cost functional
which quantifies the error with respect to the training data. Overall, this results in a
nested variational problem with upper- and lower-level optimization steps related to
the cost and reconstruction functional, respectively. Key aspects of the mathematical
study of these bi-level learning schemes include establishing the existence of solutions
and deriving optimality conditions, which lay the foundation for devising reliable
numerical solution methods.

In recent years, there has been a rapid growth in the literature devoted to addressing
the above questions. To mention but a few examples, we first refer the paper [41]
dealing with learning real-valued weight parameters in front of the regularization
terms for a rather general class of inverse problems; in [2, 6], the authors optimize the
fractional parameter of a regularizer depending on the spectral fractional Laplacian;
spatially dependent weights are determined through training via other nonlocal bi-
level schemes (e.g., inside the Gagliardo semi-norm [40] or in a type of fractional
gradient [32]), and in classical T V -models [23, 39, 47]; as done in [29], one can also
learn the fidelity term instead of the regularizer.

A common denominator in the above references is the presence of certain a priori
compactness constraints on the set of admissible parameters, such as box constraints
like in [41], where the weights are assumed to lie in some compact interval away from
0 and infinity. These conditions make it possible to prove stability of the lower-level
problemandobtain existence of optimal parameterswithin a class of structurally equiv-
alent regularizers. However, imposing artificial restrictions to the parameter range like
these may lead to suboptimal results depending on the given training data.

It is then substantial to consider removing such constraints in order to work on
maximal domains naturally associated with the parameters, which is also our focus in
this paper. An inherent effect of this approach is that qualitative changes in the structure
of the regularizer may occur at the edges of the domain. If optimal parameters are
attained at the boundary, this indicates that the chosen class of regularization terms is
not well-suited to the training data. To exclude these degenerate cases, it is of interest
to provide analytic conditions to guarantee that the optimal parameters are attained
in the interior of the domain, thereby preserving the structure of the regularizer. The
first work to address the aforementioned tasks is [30] by De Los Reyes, Schönlieb, &
Valkonen, where optimization is carried out for weighted sums of local regularizers
of different type with each weight factor allowed to take any value in [0,∞]. As such,
their bi-level scheme is able to encompass multiple regularization structures at once,
like T V and T V 2 and their interpolation TGV . Similarly, the authors in [44] vary the
weight factor in the whole range [0,∞] as well as the underlying finite-dimensional
norm of the total variation regularizer. We also mention [28], where the order of a
newly introduced nonlocal counterpart of the TGV -regularizer is tuned, and [27],
which studies a bi-level scheme covering the cases of T V , TGV 2, and NsTGV 2 in
a comprehensive way.

In this paper, we introduce a unified framework to deal with parameter learning
beyond structural stability in the context of bi-level optimization schemes. In con-
trast to the above references, where the analysis is tailored to a specifically chosen
type of parameter dependence, our regularizers can exhibit a general dependence on
parameters in a topological space. Precisely, we consider a parametrized family of
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regularizers Rλ : L2(�) → [0,∞] with λ ranging over a subset � of a topological
space X , which is assumed to be first countable. If we focus for brevity on a single
data point (uc, uη) ∈ L2(�)× L2(�), with uc and uη the clean and noisy images (see
Sect. 2 for larger data sets), the bi-level optimization problem reads:

(Upper−level) Minimize I(λ) := inf
w∈Kλ

‖w − uc‖2L2(�)
over λ ∈ �,

(Lower−level) Kλ := argmin
u∈L2(�)

Jλ(u),

where Jλ(u) := ‖u − uη‖2
L2(�)

+ Rλ(u) is the reconstruction functional.
Our approach for studying this general bi-level learning scheme relies on asymptotic

tools from the calculus of variations. We define a suitable notion of stability for the
lower-level problems that requires the family of functionals {Jλ}λ∈� to be closed under
taking�-limits; see [13, 25] for a comprehensive introduction on�-convergence. Since
�-convergence ensures the convergence of sequences ofminimizers, one can conclude
that, in the presence of stability, the upper-level functional I admits a minimizer
(Theorem 2.3).

A different strategy is required to obtain the existence of solutions when stability
fails. Especially relevant here is the case of real-valued parameters when box con-
straints are disposed of and non-closed intervals � are considered; clearly, stability is
then lost for the simple fact that a sequence of parameters can converge to the boundary
of �. To overcome this issue, we propose a natural extension I : � → [0,∞] of I,
now defined on the closure of our parameter domain, and identified via�-convergence
of the lower-level functionals. Precisely,

(Upper−level) Minimize I(λ) := inf
w∈K λ

‖w − uc‖2L2(�)
over λ ∈ �,

(Lower−level) K λ := argmin
u∈L2(�)

J λ(u),

where the functionals J λ : L2(�) → [0,∞] are characterized as L2-weak �-limits
(if they exist) of functionals Jλ′ with λ′ → λ. To justify the choice of this particular
extension, we derive an intrinsic connection with relaxation theory in the calculus of
variations (for an introduction, see, e.g., [24, Chapter 9] and the references therein).
Explicitly, the relaxation of the upper-level functional I is given by its lower semi-
continuous envelope (after the trivial extension to � by ∞),

Irlx(λ) := inf
{
lim inf
k→∞ I(λk) : (λk)k ⊂ �,λk → λ in �

}
for λ ∈ �.

This relaxed version of I has the desirable property that it admits a minimizer (if �

is compact) and minimizing sequences of I have subsequences that converge to an
optimal parameter of Irlx. Our main theoretical result (Theorem 2.5) shows that the
extensionI coincideswith the relaxationIrlx under suitable assumptions and therefore
inherits the same properties (cf. Corollary 2.8).
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Besides the generic conditions that each Rλ is weakly lower semicontinuous and
has non-empty domain (see (H)), which ensure that Jλ possesses a minimizer, we
work under two main assumptions:

(i) The Mosco-convergence of the regularizers, i.e., �-convergence with respect to
the strong and weak L2-topology, and

(ii) the uniqueness of minimizers of J λ for λ ∈ �\�.

We demonstrate in Example 2.7 that these assumptions are in fact optimal. Due to (i),
the �-limits J λ preserve the additive decomposition into the L2-fidelity term and a
regularizer, and coincidewithJλ inside�.As a consequenceof the latter, it follows that
I = I in�, making I a true extension of I. For the parameter values at the boundary,
λ ∈ �\�, however, the regularizers present in J λ can have a completely different
structure from the family of regularizers {Rλ}λ∈� that we initially started with. When
the optimal parameter of the extended problem is attained inside �, one recovers
instead a solution to the original training scheme, yielding structure preservation. For
a discussion on related results in the context of optimal control problems [9, 16, 17],
we refer to the end of Sect. 2.

To demonstrate the applicability of our abstract framework, we investigate a quar-
tet of practically relevant scenarios with families of nonlocal regularizers that induce
qualitatively different structural changes; namely, learning the optimal weight, vary-
ing the amount of nonlocality, optimizing the integrability exponent, and tuning the
fractional parameter. More precisely, in all these four applications, our starting point
is a non-closed real interval � ⊂ [−∞,∞] and we seek to determine the extension
I on the closed interval �, which admits a minimizer by the theory outlined above.
The first step is to calculate the Mosco-limits of the regularizers, which reveals the
type of structural change occurring at the boundary points. Subsequently, we study
for which training sets of clean and noisy images the optimal parameters are attained
either inside � or at the edges. In two cases, we determine explicit analytic conditions
on the data that guarantee structure preservation for the optimization process.

The first setting involves a rather general nonlocal regularizerR : L2(�) → [0,∞]
multiplied by a weight parameter α in � = (0,∞). Inside the domain, we observe
structural stability asJ α = Jα for all α ∈ �; in contrast, the regularization disappears
when α = 0 and forces the solutions to be constant when α = ∞. Moreover, we derive
sufficient conditions in terms of the data that prevent the optimal parameter from being
attained at the boundary points; for a single data point (uc, uη), they specify to

R(uc) < R(uη) and ‖uη − uc‖2L2(�)
<

∥∥∥∥
 

�

uη dx − uc
∥∥∥∥
2

L2(�)

,

see Theorem 3.2. Notice that the first of these two conditions is comparable to the one
in [30, Eq. (10)] and shows positivity of optimal weights.

Inspired by the use of different L p-norms in image processing, such as in the form
of quadratic, T V , and Lipschitz regularization [50, Sect. 4], we focus our second
case on the integrability exponent of nonlocal regularizers of double-integral type;
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precisely, functionals of the form

Rp(u) =
(

1

|� × �|
ˆ

�

ˆ
�

f p(x, y, u(x), u(y)) dx dy

)1/p

for p ∈ � = [1,∞),

with a suitable f : � × � × R × R → [0,∞). Possible choices for the integrand f
include bounded functions or functions of difference-quotient type. We prove stability
of the lower-level problem in �, and determine the Mosco-limit for p → ∞ via L p-
approximation techniques as in [20, 42]. In particular, we show that it is given by a
double-supremal functional of the form

R∞(u) = ess sup(x,y)∈�×� f (x, y, u(x), u(y)).

In order to see how this structural change affects the image reconstruction,we highlight
examples of training data for which the supremal regularizer performs better or worse
than the integral counterparts.

As a third application, we consider two families of nonlocal regularizers {Rδ}δ∈�

with � = (0,∞), which were introduced by Aubert & Kornprobst [5] and Brezis
& Nguyen in [15], respectively, and are closely related to nonlocal filters frequently
used in image processing. The parameter δ reflects the amount of nonlocality in the
regularizer. It is known that the functionals Rδ tend, as δ → 0, to a multiple of
the total variation in the sense of �-convergence. Based on these results, we prove
in both cases that the reconstruction functional of our bi-level optimization scheme
turns into the classical T V -denoising model when δ = 0, whereas the regularization
vanishes at the other boundary value, δ = ∞. As such, the extended bi-level schemes
encode simultaneously nonlocal and total variation regularizations. We round off the
discussion by presenting some instances of training data where the optimal parameters
are attained either at the boundary or in the interior of �.

Our final bi-level optimization problem features a different type of nonlocality aris-
ing from fractional operators; to be precise, we consider, in the same spirit as in [1],
the L2-norm of the spectral fractional Laplacian as a regularizer. The parameter of
interest here is the order s/2 of the fractional Laplacian, which is taken in the fractional
range s ∈ � = (0, 1). At the values s = 0 and s = 1, we recover local models with
regularizers equal to the L2-norm of the function and its gradient, respectively. Thus,
one expects the fractional model to perform better than the two local extremes. We
quantify this presumption by deriving analytic conditions in terms of the eigenfunc-
tions and eigenvalues of the classical Laplacian on � ensuring the optimal parameters
to be attained in the truly fractional regime. These conditions on the training data are
established by proving and exploiting the differentiability of the extended upper-level
functional I.

For completeness, we mention that practically relevant scenarios when � is a
topological space include those in which the reconstruction parameters are space-
dependent, and thus described by functions. The analysis of this class of applications
is left open for future investigations.

The outline of the paper is as follows. In Sect. 2, we present the general abstract bi-
level framework, and prove the results regarding the existence of optimal parameters
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and the two types of extensions of bi-level optimization schemes. Sections3–6 then
deal with the four different, practically relevant applications mentioned in the previous
paragraph. As a note, we point out that they are each presented in a self-contained
way, allowing the readers to move directly to the sections that correspond best to their
interests.

2 Establishing the Unified Framework

Let � ⊂ R
n be an open bounded set, and let

N⋃
j=1

(ucj , u
η
j ) ⊂ L2(�) × L2(�), N ∈ N,

be a set of available square-integrable training data, where each ucj represents a clean

image and uη
j a distorted version thereof, which can be obtained, for instance, by

applying some noise to ucj . These data are collected in the vector-valued functions

uc := (uc1, . . . , u
c
N ) ∈ L2(�; R

N ) and uη := (uη
1, . . . , u

η
N ) ∈ L2(�; R

N ). As for

notation, ‖v‖2
L2(�;RN )

= ∑N
j=1 ‖v j‖2L2(�)

stands for the L2-norm of a function v ∈
L2(�; R

N ).
To reconstruct each damaged image, uη

j , we consider denoising models that consist
of a simple fidelity term and a (possibly nonlocal) regularizer; precisely, we minimize
functionals Jλ, j : L2(�) → [0,∞] of the form

Jλ, j (u) = ‖u − uη
j‖2L2(�)

+ Rλ(u), u ∈ L2(�), (2.1)

where the regularizer Rλ : L2(�) → [0,∞], with Dom Rλ = {v ∈ L2(�) :
Rλ(u) < ∞}, is a (possibly nonlocal) functional parametrized over λ ∈ � with � a
subset of a topological space X satisfying the first axiom of countability. Throughout
the paper, we always assume that for every λ ∈ �, we have

{
DomRλ is non-empty,

Rλ is weakly L2-lower semicontinuous.
(H)

Observe that the functionals Jλ, j then have a minimizer by the direct method in the
calculus of variations.

The result of the reconstruction process, meaning the quality of the reconstructed
image resulting as a minimizer of (2.1), is known to depend on the choice of the
regularizing term Rλ. Our goal is to set up a training scheme that is able to learn
how to select a “good” parameter λ within a corresponding given family {Rλ}λ∈� of
regularizers. Here, as briefly described in the Introduction for the single data point
case (N = 1), we follow the approach introduced in [30, 31] in the spirit of machine
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learning optimization schemes, where training the regularization term means to solve
the nested variational problem

(Upper−level) Minimize I(λ) := inf
w∈Kλ

‖w − uc‖2L2(�;RN )
over λ ∈ �,

(Lower−level) Kλ :=
{
w ∈ L2(�; R

N ) : w j ∈ argmin
u∈L2(�)

Jλ, j (u) for all j ∈ {1, . . . , N }
}
,

(T )

with Jλ, j as in (2.1). Notice that Kλ �= ∅ because for all j ∈ {1, . . . , N }, we have
Kλ, j := argminu∈L2(�)Jλ, j (u) �= ∅ (2.2)

by Assumption (H).
To study the training scheme (T ), we start by introducing a notion of weak L2-

stability for the family {Jλ}λ∈�, with

Jλ := (Jλ,1, . . . ,Jλ,N ) : L2(�) → [0,∞]N for λ ∈ �. (2.3)

This notion relies on the concept of �-convergence and is related to the notion of
(weak) stability as in [41, Definition 2.3], which is defined in terms of minimizers of
the lower-level problem.

Definition 2.1 (Weak L2-stability) The family in (2.3) is called weakly L2-stable if for
every sequence (λk)k ⊂ � such that (Jλk , j )k �-converges with respect to the weak
L2-topology for all j ∈ {1, . . . , N }, there exists λ ∈ � such that

�(w-L2)- lim
k→∞Jλk , j = Jλ, j

for all j ∈ {1, . . . , N }.
Before proceeding, we briefly recall the definition and some properties of �-

convergence in the setting relevant to us; for more on this topic, see [13, 25] for
instance.

Definition 2.2 (�- and Mosco-convergence) LetFk : L2(�) → [0,∞] for k ∈ N and
F : L2(�) → [0,∞] be functionals. The sequence (Fk)k (sequentially) �-converges
to F with respect to the weak L2-topology, written F = �(w-L2)- limk→∞ Fk , if:

• (Liminf inequality) For every sequence (uk)k ⊂ L2(�) and u ∈ L2(�) with
uk⇀u in L2(�), it holds that

F(u) ≤ lim inf
k→∞ Fk(uk).

• (Limsup inequality) For every u ∈ L2(�), there exists a sequence (uk)k ⊂ L2(�)

such that uk⇀u in L2(�) and

F(u) ≥ lim sup
k→∞

Fk(uk).
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The sequence (Fk)k converges in the sense of Mosco-convergence in L2(�) to F ,
written F = Mosc(L2)-limk→∞ Fk , if, in addition, the limsup inequality can be
realised by a sequence converging strongly in L2(�).

If the liminf inequality holds, then the sequence from the limsup inequality auto-
matically satisfies limk→∞ Fk(uk) = F(u), and is therefore often called a recovery
sequence.Wenote that the above sequential definitionof�-convergence coincideswith
the topological definition [25, Proposition 8.10] for equi-coercive sequences (Fk)k ,
i.e., Fk ≥ 
 for all k ∈ N and for some 
 : L2(�) → [0,∞] with 
(u) → ∞ as
‖u‖L2(�) → ∞. In particular, the theory implies that the �-limit F is (sequentially)
L2-weakly lower semicontinuous. The�-convergence has the key property of yielding
the convergence of solutions (if they exist) to those of the limit problem, which makes
it a suitable notion of variational convergence. Precisely, if uk is a minimizer of Fk

for all k ∈ N and u a cluster point of the sequence (uk)k , then u is a minimizer of F
and minL2(�) Fk = Fk(uk) → F(u) = minL2(�) F , see [25, Corollary 7.20]. Notice
that the existence of cluster points is implied by the assumption of equi-coercivity. In
the special case when (Fk)k is a constant sequence of functionals, say Fk = G for
all k ∈ N, the �-limit corresponds to the relaxation of G, i.e., its L2-weakly lower
semicontinuous envelope. Observe that replacing each Fk by its relaxation does not
affect the �-limit of (Fk)k , see [25, Proposition 6.11].

Aswe discuss next, weak L2-stability provides existence of solutions to the training
scheme (T ).We note that the family of functionals {Jλ}λ∈� as in (2.3) is equi-coercive
in a componentwise sense.

Theorem 2.3 Let Jλ : L2(�) → [0,∞]N be given by (2.3) for each λ ∈ �. If the
family {Jλ}λ∈� is weakly L2-stable, then I in (T ) has a minimizer.

Proof The statement follows directly from the direct method and the classical prop-
erties of �-convergence.

Let (λk)k ⊂ � be a minimizing sequence for I. Then, for each k ∈ N, there is
wk ∈ Kλk such that

lim
k→∞ ‖wk − uc‖2L2(�;RN )

= inf
λ∈�

I(λ). (2.4)

In particular, (wk)k is uniformly bounded in L2(�; R
N ); hence, extracting a sub-

sequence if necessary, one may assume that wk⇀w in L2(�; R
N ) as k → ∞ for

some w ∈ L2(�; R
N ). Using the equi-coercivity, we apply the compactness result

for �-limits [25, Corollary 8.12] to find a further subsequence of (λk)k (not relabeled)
such that (Jλk , j )k �(w-L2)-converges for all j ∈ {1, ..., N }. Consequently, by the
weak L2-stability assumption and the properties of �-convergence on minimizing
sequences, there exists λ̃ ∈ � such that w ∈ Kλ̃. Then, along with (2.4),

I(λ̃) ≤ ‖w − uc‖2L2(�;RN )
≤ lim inf

k→∞ ‖wk − uc‖2L2(�;RN )
= inf

λ∈�
I(λ) ≤ I(λ̃),

which finishes the proof. �
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Remark 2.4 We give a simple counterexample to illustrate that minimizers for I may
not exist in general. Take � = (0,∞) ⊂ R, a single data point (uc, uη) with uc =
uη �= 0, and Rλ(u) = λ‖u‖2

L2(�)
for λ ∈ �. Then, Jλ(u) = ‖u − uη‖2L2(�)

+
λ‖u‖2

L2(�)
for u ∈ L2(�) and Kλ = {uη/(1 + λ)} = {uc/(1 + λ)}, so that

I(λ) =
(

λ

1 + λ

)2

‖uc‖2L2(�)
,

which does not have a minimizer on� = (0,∞). By the previous theorem, the family
must fail to be weakly L2-stable. Indeed, �(w-L2)- limλ→0 Jλ coincides with the
pointwise limit and is equal to ‖ · −uη‖2L2(�)

, which is not an element of {Jλ}λ∈(0,∞).

Theorem 2.3 is useful in many situations, including the basic case when the param-
eter set � is a compact real interval. However, weak L2-stability is not always
guaranteed, as Remark 2.4 illustrates. If, for instance, we have a sequence (λk)k con-
verging to a point in X outside �, then there is no reason to expect that

�(w-L2)- lim
k→∞Jλk , j = Jλ, j

holds for some λ ∈ �.
To overcome this issue and provide a more general existence framework, we will

look at a suitable replacement of the bi-level scheme. In the following, we denote by
� the closure of � and suppose that for each j ∈ {1, . . . , N } and λ ∈ �, the �-limits

J λ, j := �(w-L2)- lim
λ′→λ

Jλ′, j (2.5)

exist, where λ′ takes values on an arbitrary sequence in �. We further set

J λ := (J λ,1, . . . ,J λ,N ) : � → [0,∞]N .

Based on these definitions, we introduce I : � → [0,∞] as the extension of the
upper level functional I given by

I(λ) := min
w∈K λ

‖w − uc‖2L2(�;RN )
, (2.6)

where K λ, j := argminu∈L2(�)J λ, j (u) and K λ := K λ,1 × K λ,2 × · · · × K λ,N for

λ ∈ �. Observe that K λ, j is L2-weakly closed because the functional J λ, j , as a
�(w-L2)-limit by (2.5), is L2-weakly lower semicontinuous. Hence, the minimum in
the definition of I is actually attained. Notice that taking constant sequences in the
parameter space in (2.5) and using the weak lower semicontinuity of the regularizers
Rλ in (H), we conclude that J λ coincides with Jλ whenever λ ∈ �. In that sense, we
can think of {J λ}λ∈� as the extension of the family {Jλ}λ∈� to the closure of �.
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All together, this leads to the extended bi-level problem

(Upper-level) Minimize I(λ) := min
w∈K λ

‖w − uc‖2L2(�;RN )
over λ ∈ �,

(Lower-level) K λ :=
{
w ∈ L2(�; R

N ) : w j ∈ argmin
u∈L2(�)

J λ, j (u) for all j ∈ {1, . . . , N }
}
.

(T )

The theorem below compares the extended upper level functional I with the relax-
ation of I (after trivial extension to � by ∞), that is, with its lower semicontinuous
envelope Irlx : � → [0,∞] given by

Irlx(λ) := inf
{
lim inf
k→∞ I(λk) : (λk)k ⊂ �,λk → λ in �

}
. (2.7)

As we will see, the key assumption to obtain the equality between I and Irlx is the
Mosco-convergence of the family of regularizers in (2.9), which is stronger than the
�-convergence of the reconstruction functionals in (2.5). It even implies the Mosco-
convergence

J λ, j = Mosc(L2)- lim
λ′→λ

Jλ′, j

and, in this case, the limit passage can be performed additively in the fidelity and
regularizing term; thus, for all j ∈ {1, . . . , N }, we have

J λ, j (u) = ‖u − uη
j‖L2(�) + Rλ(u) for u ∈ L2(�). (2.8)

Theorem 2.5 Consider the bi-level optimization problems (T ) and (T ), assume (2.5),
and recall the definitions in (2.6) and (2.7). Suppose in addition that

(i) the Mosco-limits

Rλ := Mosc(L2)- lim
λ′→λ

Rλ′ (2.9)

exist for each λ ∈ �, with λ′ taking values on sequences in �, and
(ii) K λ is a singleton for every λ ∈ � \ �.

Then, the extension I of I to the closure � coincides with the relaxation of I, i.e.,
I = Irlx on �.

Proof To show that I ≤ Irlx, we take λ ∈ � and let (λk)k ⊂ � with λk → λ in
� be an admissible sequence for Irlx(λ) in (2.7). We may even assume that ∞ >

lim infk→∞ I(λk) = limk→∞ I(λk). Then, recalling (2.2) and fixing δ > 0, we can
find wk ∈ Kλk such that

lim
k→∞ I(λk) ≥ lim inf

k→∞ ‖wk − uc‖2L2(�;RN )
− δ.
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In particular, (wk)k is uniformly bounded in L2(�; R
N ), which allows us to extract an

L2-weakly converging subsequence (not relabeled) with limit w̄ ∈ L2(�; R
N ). By the

properties of�-convergence on cluster points of minimizing sequences recalled above
(see also [25, Corollary 7.20]), we infer from (2.5) that w̄ j ∈ argminu∈L2(�)J λ, j (u)

for all j ∈ {1, . . . , N }; in other words, w̄ ∈ K λ. Thus,

lim
k→∞ I(λk) ≥ ‖w̄ − uc‖2L2(�;RN )

− δ ≥ I(λ) − δ.

By letting δ → 0 first, and then taking the infimum over all admissible sequences for
Irlx(λ) in (2.7), it follows that I(λ) ≤ Irlx(λ).

To prove the reverse inequality, we start by recalling that for λ ∈ �, Jλ is weakly
L2-lower semicontinuous by Assumption (H); thus, (2.5) yields J λ = Jλ for λ ∈ �.
Consequently, I(λ) = I(λ) ≥ Irlx(λ) for λ ∈ �. We are then left to consider
λ ∈ �\� and find a sequence (λk)k ⊂ � converging to λ in � and satisfying
lim infk→∞ I(λk) ≤ I(λ). To that end, take any (λk)k ⊂ � with λk → λ in �, and
let wk ∈ Kλk for k ∈ N. Recalling (ii), denote by wλ = (wλ,1, . . . , wλ,N ) the unique
element in K λ. Then, using (2.5) and the equi-coercivity of (Jλ)λ∈�, we obtain by
the theory of �-convergence (see [25, Corollary 7.24]) that (wk)k converges weakly
in L2(�; R

N ) to wλ; moreover, it holds for all j ∈ {1, . . . , N } that

Jλk , j (wk, j ) → J λ, j (wλ, j ) as k → ∞. (2.10)

The following shows that (wk)k converges even strongly in L2(�; R
N ). Indeed,

fixing j ∈ {1, . . . , N }, we infer from (2.10) along with the Mosco-convergence of the
regularizers in (i) and (2.8) that

‖wλ, j − uη
j‖2L2(�)

+ Rλ(wλ, j ) = J λ, j (wλ, j ) = lim
k→∞Jλk , j (wk, j )

= lim
k→∞

[
‖wk, j − uη

j‖2L2(�)
+ Rλk (wk, j )

]

≥ lim sup
k→∞

‖wk, j − uη
j‖2L2(�)

+ Rλ(wλ, j ).

Hence, ‖wλ, j − uη
j‖2L2(�)

≥ lim supk→∞ ‖wk, j − uη
j‖2L2(�)

, which together with the

weak lower semicontinuity of the L2-norm yields

lim
k→∞ ‖wk, j − uη

j‖2L2(�)
= ‖wλ, j − uη

j‖2L2(�)
;

thus, wk → wλ strongly in L2(�; R
N ) using the combination of weak convergence

and convergence of norms by theRadon–Riesz property.With this,wefinally conclude
that

lim inf
k→∞ I(λk) ≤ lim inf

k→∞ ‖wk − uc‖2L2(�;RN )
= ‖wλ − uc‖2L2(�;RN )

= min
w∈K λ

‖w − uc‖2L2(�;RN )
= I(λ),
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finishing the proof. �

Remark 2.6 By inspecting the proof, it becomes clear that the estimate I ≤ Irlx holds
without the additional assumptions (i) and (ii) from the previous theorem; in other
words, I always provides a lower bound for the relaxation of I.

The identity I = Irlx mail fail if either of the assumptions (i) or (ii) in Theorem 2.5
is dropped as the following example shows.

Example 2.7 a) To see why (i) is necessary, consider � = (0, 1], a single data point
(uc, uη) with uc = uη = 0, and

Rλ = 1

λ
‖ · −vλ‖2L2(�)

with vλ = v(·/λ) ∈ L2(�)

for a given v ∈ L∞(Rn) with the properties that v is (0, 1)n-periodic, v ∈ {−1, 1}
almost everywhere, and

´
(0,1)n v dx = 0. Under these specifications, the �-limits

J λ = �(w-L2)- limλ′→λ Jλ′ (cf. (2.5) and (2.1)) exist and are given by

J λ(u) =
{

‖u‖2
L2(�)

+ 1
λ
‖u − vλ‖2L2(�)

for λ ∈ (0, 1],
|�| + χ{0}(u) for λ = 0,

(2.11)

where χE denotes the indicator function of a set E ⊂ L2(�), i.e.,

χE (u) =
{
0 if u ∈ E,

∞ if u /∈ E,
for u ∈ L2(�).

The non-trivial case is when λ = 0. In this case, we observe that we can take (vλ′)λ′
as a recovery sequence for u = 0 because it converges weakly in L2(�) as λ′ → 0
to

´
(0,1)n v dx = 0 by the Riemann–Lebesgue lemma for periodically oscillating

sequences. For the liminf inequality, let uλ′⇀u as λ′ → 0 and suppose without loss
of generality that supλ′ Rλ′(uλ′) < ∞. Then, uλ′ = vλ′ + rλ′ with rλ′ → 0 in L2(�)

as λ′ → 0, which implies u = 0 and, recalling that v ∈ {−1, 1} almost everywhere,

lim inf
λ′→0

Jλ′(uλ′) ≥ lim
λ′→0

‖vλ′ + rλ′ ‖2L2(�)
= lim

λ′→0
‖vλ′ ‖2L2(�)

= |�| = J 0(0),

which completes the proof of (2.11) when λ = 0.
In view of (2.11), one can now read off that Kλ = K λ = {vλ/(1+λ)} for λ ∈ (0, 1]

and K 0 = {0}. In particular, condition (ii) on the uniqueness of minimizers of the
extended lower-level problem is fulfilled here. Hence,

I(λ) =
( 1

1 + λ

)2|�| (2.12)
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for λ ∈ (0, 1], and

I(λ) =
⎧⎨
⎩

( 1

1 + λ

)2|�| if λ ∈ (0, 1],
0 if λ = 0

for λ ∈ [0, 1]. It is immediate to see from (2.12) that

I(0) = 0 < |�| = Irlx(0).

Notice that this example hinges on the fact that theminimizers vλ/(1+λ)only converge
weakly as λ → 0, which, in view of the proof of Theorem 2.5, implies that the family
of regularizers {Rλ}λ∈� does not Mosco-converge in L2(�) in the sense of (2.9), thus
failing to satisfy (i).

b) For the necessity of (ii), consider � = (0, 1], a single data point (uc, uη) with
uc = 0 and ‖uη‖2

L2(�)
= 1, and

Rλ(u) =
{

λ if u = 0,

1 if u �= 0.

While it is straightforward to check that condition (i) in Theorem 2.5 regarding the
Mosco-limits of {Rλ}λ∈� is satisfied with

Rλ(u) =
{

λ if u = 0,

1 if u �= 0

for λ ∈ [0, 1], which clearly coincides withRλ for λ ∈ � = (0, 1], condition (ii) fails.
Indeed, it follows from (2.8) that J λ(uη) = Rλ(uη) = 1 and J λ(0) = ‖uη‖2

L2(�)
+

λ = 1 + λ for all λ ∈ [0, 1]. Consequently, for λ ∈ (0, 1], we have J λ = Jλ and
uη is its unique minimizer; in contrast, for λ = 0, J 0 has two minimizers, namely
K 0 = {uη, 0} = {uη, uc}. Finally, we observe that the conclusion of Theorem 2.5 fails
here because

I(0) = 0 and I(λ) = ‖uc − uη‖2L2(�)
= 1 for all λ ∈ (0, 1],

which yields I(0) = 0 < 1 = Irlx(0).

The following result is a direct consequence of Theorem 2.5 and standard properties
of relaxation.

Corollary 2.8 Under the assumptions of Theorem 2.5 and if � is compact, it holds
that:

(i) The extension I has at least one minimizer and

min
�

I = inf
�

I.
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(ii) Any minimizing sequence (λk)k ⊂ � of I converges up to subsequence to a
minimizer λ ∈ � of I.

(iii) If λ ∈ � minimizes I, then λ is also a minimizer of I.
We conclude this section on the theoretical framework with a brief comparison with

related works on optimal control problems. By setting K = {(w, λ) ∈ L2(�) × � :
w ∈ Kλ}, the bi-level optimization problem (T ) can be equivalently rephrased into
minimizing

Î(u, λ) = ‖u − uc‖2L2(�)
+ χK (u, λ), (u, λ) ∈ L2(�) × �,

as a functional of two variables; observe that

I(λ) = inf
w∈L2(�)

Î(w, λ).

Similar functionals and their relaxations have been studied in the literature, including
[9, 16, 17]. Especially the paper [9] by Belloni, Buttazzo, & Freddi, where the authors
propose to extend the control space to its closure and find a description of the relaxed
optimal control problem, shares many parallels with our results. Apart from some
differences in the assumptions and abstract set-up, themain reasonwhy their results are
not applicable here is the continuity condition of the cost functional with respect to the
state variable [9, Eq. (2.11)]. In our setting, this would translate into weak continuity
of the L2-norm, which is clearly false. The argument in the proof of Theorem 2.5
exploiting the Mosco-convergence of the regularizers (see (2.9)) is precisely what
circumvents this issue.

3 Learning the Optimal Weight of the Regularization Term

In this section, we study the optimization of a weight factor, often called tuning param-
eter, in front of a fixed regularization term. Such tuning parameters are typically
employed in practical implementations of variational denoising models to adjust the
best level of regularization. This setting constitutes a simple, yet non-trivial, applica-
tion of our general theory and therefore helps to exemplify the abstract results from
the previous section.

As above,� ⊂ R
n is a bounded open set and uc, uη ∈ L2(�; R

N ) are the given data
representing pairs of clean and noisy images.We take� = (0,∞) describing the range
of a weight factor and, to distinguish the various parameters throughout this paper,
denote by α an arbitrary point in � = [0,∞]. For a fixed map R : L2(�) → [0,∞]
with the properties that

(H1α) R is convex, vanishes exactly on constant functions, and DomR is dense in
L2(�),

(H2α) R is lower semicontinuous on L2(�),

we define the weighted regularizers

Rα = αR for α ∈ (0,∞). (2.1)
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Note that (H1α) and (H2α) imply that the family {Rα}α∈(0,∞) satisfies (H) because
convexity and lower semicontinuity yield weak lower semicontinuity, making this
setting match with the framework of Sect. 2.

Following the definition of the training scheme (T ), we introduce here for α ∈
(0,∞) and j ∈ {1, . . . , N } the reconstruction functionals

Jα, j (u) = ‖u − uη
j‖2L2(�)

+ Rα(u) for u ∈ L2(�),

cf. (2.1), and consider accordingly the upper level functional I : (0,∞) → [0,∞)

given by

I(α) = inf
w∈Kα

‖w − uc‖2L2(�;RN )
for α ∈ (0,∞), (2.2)

with Kα = Kα,1 × · · · × Kα,N and Kα, j = argmin
u∈L2(�)

Jα, j (u), cf. (2.2). Further, the

following set of hypotheses on the training data will play a crucial role for our main
result in this section (Theorem 3.2):

(H3α) It holds that

N∑
j=1

R(ucj ) <

N∑
j=1

R(uη
j );

(H4α) the data uη and uc satisfy

‖uη − uc‖2L2(�;RN )
<

∥∥∥
 

�

uη dx − uc
∥∥∥
2

L2(�;RN )
.

Remark 3.1 (Discussion of the hypotheses (H1α)–(H4α)) a) Note that (H1α) implies
that the set of minimizers for the reconstruction functionals, Kα , has cardinality one,
owing to the convexity of R and the strict convexity of the fidelity term, considering
also thatJα, j �≡ ∞. In the following,wewritew(α) = (w

(α)
1 , . . . , w

(α)
N ) ∈ L2(�; R

N )

for the single element of Kα , i.e., Kα = {w(α)}.
b) An example of a nonlocal regularizer satisfying (H1α) and (H2α) is

R(u) :=
ˆ

�

ˆ
�

a(x, y) g(u(x) − u(y)) dx dy for u ∈ L2(�),

where g : R → [0,∞) is a convex function such that g−1(0) = {0} and a : �×� →
[0,∞] is a suitable kernel ensuring that C∞

c (�) ⊂ DomR. As an explicit choice, one
can take g(t) = t p for t ∈ R and a(x, y) = |y − x |−n−sp for x, y ∈ � with some
s ∈ (0, 1) and p ≥ 1, which corresponds to a fractional Sobolev regularization.

c) Assumption (H3α) asserts that the regularizer penalizes the noisy images more
than the clean ones on average. This is a natural condition because any good regularizer
should reflect the prior knowledge on the training data, favoring the clean images.
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d) The second condition on the data, (H4α), means that the noisy image lies closer to
the clean image than its mean value, which can be considered a reasonable assumption
in the case of moderate noise and a non-trivial ground truth. Indeed, suppose the noise
is bounded by ‖uη

j − ucj‖L2(�) ≤ δ for all j ∈ {1, . . . , N } and some δ > 0; then,
(H4α) is satisfied if

∥∥∥
 

�

ucj dx − ucj

∥∥∥
L2(�)

> δ
(
1 + |�|− 1

2
)

for all j ∈ {1, ..., N }

because

∥∥∥
 

�

uη
j dx − ucj

∥∥∥
L2(�)

≥
∥∥∥
 

�

ucj dx − ucj

∥∥∥
L2(�)

−
∥∥∥
 

�

(uη
j − ucj ) dx

∥∥∥
L2(�)

> δ
(
1 + |�|− 1

2
) − |�|− 1

2 ‖uη
j − ucj‖L2(�)

≥ δ ≥ ‖uη
j − ucj‖L2(�),

where the second inequality is due to Jensen’s inequality.

Next, we prove that the assumptions (H1α)–(H4α) on the regularization term and on
the training set give rise to optimal weight parameters that stay away from the extremal
regimes, α = 0 and α = ∞. Thus, in this case, the bi-level parameter optimization
procedure preserves the structure of the original denoising model.

Theorem 3.2 (Structure preservation) Suppose that (H1α)–(H4α) hold. Then, the
learning scheme corresponding to the minimization of I in (2.2) admits a solution
ᾱ ∈ (0,∞).

A related statement in the same spirit can be found in [30, Theorem 1], although
some of the details of the proof were not entirely clear to us. Our proof of Theorem 3.2
is based on a different approach and hinges on the following two lemmas, the first
of which determines the Mosco-limits of the regularizers, and thereby provides an
explicit formula of the extension I of I as introduced in (2.6).

Proposition 3.3 (Mosco-convergence of the regularizer) Let R : L2(�) → [0,∞]
satisfy (H1α) and (H2α), and let {Rα}α∈(0,∞) be as in (2.1). Then,

Rα := Mosc(L2)- lim
α′→α

Rα′ =

⎧
⎪⎨
⎪⎩

Rα for α ∈ (0,∞),

0 for α = 0,

χC for α = ∞,

(2.3)

for α ∈ [0,∞], where χC is the indicator function of C := {u ∈ L2(�) :
u is constant}.
Proof Using standard arguments, we show that the Mosco-limit of (Rαk )k exists for
every sequence (αk)k of positive real numberswithαk → α ∈ [0,∞], and corresponds
to the right hand side of (2.3).
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Case 1: α ∈ (0,∞). Using (H2α) for the liminf inequality and a constant recovery
sequence for the upper bound, we conclude that the Mosco-limit of (Rαk )k coincides
withRα .

Case 2: α = 0. The liminf inequality is trivial. For the recovery sequence, take
u ∈ L2(�) and let (uk)k ⊂ DomR converge strongly to u in L2(�), which is
feasible due to (H1α). By possibly repeating certain entries of the sequence (uk)k
(not relabeled), one can slowdown the speed at whichR(uk) potentially blows up and
assume that αkR(uk) → 0 as k → ∞. Thus,

lim
k→∞Rαk (uk) = lim

k→∞ αkR(uk) = 0.

Case 3: α = ∞. The limsup inequality follows by choosing constant recov-
ery sequences. For the proof of the lower bound, consider uk⇀u in L2(�) with
r := supk∈N αkR(uk) = supk∈NRαk (uk) < ∞. Then, along with the weak lower
semicontinuity of R (see Remark 3.1a)),

R(u) ≤ lim inf
k→∞ R(uk) ≤ lim

k→∞
r

αk
= 0.

This shows that R(u) = 0, which implies by the assumption on the zero level set of
R in (H1α) that u is constant, i.e., u ∈ C . �

As a consequence of the previous proposition, we deduce that the extension I :
� → [0,∞] of I in the sense of (2.6) can be explicitly determined as

I(α) =

⎧⎪⎪⎨
⎪⎪⎩

I(α) for α ∈ (0,∞),

‖uη − uc‖2
L2(�;RN )

for α = 0,∥∥∥
 

�

uη dx − uc
∥∥∥
2

L2(�;RN )
for α = ∞.

(2.4)

Indeed, a straight-forward calculation of the unique componentwise minimizer of the
extended reconstruction functionals J α at the boundary points α = 0 and α = ∞
leads to

K 0 = {uη} and K∞ =
{ 

�

uη dx
}
.

Since the assumptions (i) and (ii) of Theorem 2.5 are satisfied, I coincides with the
relaxation Irlx. By Corollary 2.8 (i), I attains its minimum at some ᾱ ∈ [0,∞]. The
degenerate cases ᾱ ∈ {0,∞} cannot be excluded a priori, but the next lemma shows
that the minimum is attained in the interior (0,∞) under suitable assumptions on the
training data.

Lemma 3.4 Suppose that (H1α) and (H2α) hold, and let Kα = {w(α)} with w(α) =
(w

(α)
1 , . . . , wα

N ) ∈ L2(�; R
N ) for α ∈ (0,∞), cf. Remark 3.1a).
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(i) Under the additional assumption (H3α), there exists α ∈ (0,∞) such that

‖w(α) − uc‖2L2(�;RN )
< ‖uη − uc‖2L2(�;RN )

.

(ii) Under the additional assumption (H4α), there exists α0 ∈ (0,∞) such that, for
all α ∈ (0, α0),

‖w(α) − uc‖2L2(�;RN )
<

∥∥∥
 

�

uη dx − uc
∥∥∥
2

L2(�;RN )
. (2.5)

Proof We start by providing two useful auxiliary results about the asymptotic behavior
of the reconstruction vector w(α) as α tends to zero; precisely,

lim
α→0

‖w(α) − uη‖L2(�;RN ) = 0 and lim
α→0

R(w
(α)
j ) = R(uη

j ) for every j ∈ {1, . . . , N }. (2.6)

Fix j ∈ {1, . . . , N } and let (αk)k ⊂ (0,∞) be such that αk → 0 as k → ∞. Take
u ∈ DomR with ‖u − uη

j‖2L2(�)
≤ ε for some ε > 0, which is possible by (H1α).

Then, the minimality of w
(αk )
j for Jαk , j yields

‖w(αk )
j − uη

j‖2L2(�)
≤ Jαk , j (w

(αk )
j ) ≤ Jαk , j (u) = ‖u − uη

j‖2L2(�)
+ αkR(u) ≤ ε + αkR(u).

Since R(u) < ∞, we find

lim sup
k→∞

‖w(αk )
j − uη

j‖2L2(�)
≤ ε,

which proves the first part of (2.6) due to the arbitrariness of ε. Exploiting the mini-
mality of w

(α)
j for Jα, j again with α ∈ (0,∞) entails

αR(w
(α)
j ) = Rα(w

(α)
j ) ≤ Jα, j (w

(α)
j ) ≤ Jα, j (u

η
j ) = Rα(uη

j ) = αR(uη
j );

hence, R(w
(α)
j ) ≤ R(uη

j ) and, together with the first part of (2.6) and the lower
semicontinuity of R by (H2α), it follows then that

R(uη
j ) ≥ lim sup

k→∞
R(w

(αk )
j ) ≥ lim inf

k→∞ R(w
(αk )
j ) ≥ R(uη

j ).

Thus, limk→∞ R(w
(αk )
j ) = R(uη

j ), showing the second part of (2.6).

Regarding (i), we observe that the minimality of w
(α)
j for Jα, j for any α ∈ (0,∞)

and j ∈ {1, . . . , N } imposes the necessary condition 0 ∈ ∂Jα, j (w
(α)
j ) or, equivalently,

2(uη
j − w

(α)
j ) ∈ ∂Rα(w

(α)
j ) = α∂R(w

(α)
j ),
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where ∂C(u) ∈ L2(�)′ ∼= L2(�) is the subdifferential of a convex function C :
L2(�) → [0,∞] at u ∈ L2(�). Then,

‖uη
j − ucj‖2L2(�)

− ‖w(α)
j − ucj‖2L2(�)

= 2〈uη
j − w

(α)
j , w

(α)
j − ucj 〉L2(�) + ‖w(α)

j − uη
j‖2L2(�)

≥ Rα(w
(α)
j ) − Rα(ucj ) = α

(R(w
(α)
j ) − R(ucj )

)
,

where 〈·, ·〉L2(�) denotes the standard L2(�)-inner product. Summing both sides over
j ∈ {1, . . . , N } results in

‖uη − uc‖2L2(�;RN )
− ‖w(α) − uc‖2L2(�;RN )

≥ α

N∑
j=1

(
R(w

(α)
j ) − R(ucj )

)
.

By (H3α) in combination with the second part of (2.6), there exists α0 > 0 such that

∑N
j=1R(w

(α)
j ) >

∑N
j=1R(ucj )

for all α ∈ (0, α0), so that choosing ᾱ ∈ (0, α0) concludes the proof of (i).
To show (ii), we exploit the first limit in (2.6). Due to (H4α), it follows then for any

(αk)k of positive real numbers with αk → 0 as k → ∞ that

lim sup
k→∞

‖w(αk ) − uc‖L2(�;RN ) ≤ lim sup
k→∞

‖w(αk ) − uη‖L2(�;RN ) + ‖uη − uc‖L2(�;RN )

<

∥∥∥
 

�

uη dx − uc
∥∥∥
L2(�;RN )

,

which gives rise to (2.5) for all k sufficiently large. �
Proof of Theorem 3.2 Since I in (2.4) attains its infimum at a point ᾱ ∈ (0,∞) by
Lemma 3.4, we conclude from Corollary 2.8 (iii) that ᾱ is also a minimizer of I. �

Let us finally remark that the assumptions (H3α) and (H4α) on the training data are
necessary to obtain structure preservation in the sense of Theorem 3.2.

Remark 3.5 To see that (H3α) and (H4α) can generally not be dropped, consider, for
example, a regularizer R : L2(�) → [0,∞] that satisfies (H1α) and (H2α) and is
2-homogeneous, i.e.,R(μu) = μ2R(u) for all u ∈ L2(�) and μ ∈ R. With a single,
non-constant noisy image uη ∈ L2(�), so thatR(uη) �= 0, one has for any α ∈ (0,∞)

that the quadratic polynomial

μ �→ Jα(μuη) = (1 − μ)2‖uη‖2L2(�)
+ μ2αR(uη),

is not minimized at μ = 0 or μ = 1 because the derivative with respect to μ does not
vanish there. Hence,

Jα(w(α)) < Jα(0) and Jα(w(α)) < Jα(uη).
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As a result, it follows that

w(α) /∈ {0, uη}.
If we now take uc = 0 and suppose additionally that uη has zero mean value, then
I(α) > 0 for all α ∈ (0,∞), while clearly I(∞) = 0, that is, the minimum of I
is only attained at the boundary point α = ∞. Similarly, for uc = uη, the unique
minimizer of I is α = 0.

4 Optimal Integrability Exponents

Here, we study the optimization of an integrability parameter, p, for a fixed nonlocal
regularizer. Ourmotivation comes from the appearance of different L p-norms in image
processing, such as in quadratic, T V , and Lipschitz regularization [50, Sect. 4]. We
focus on the parameter range � = [1,∞) with closure � = [1,∞], paying particular
attention to the structural change occurring at p = ∞.

Let � ⊂ R
n be a bounded Lipschitz domain and consider a function f : � × � ×

R×R → [0,∞) that is Carathéodory, i.e., measurable in the first two and continuous
with respect to the last two variables, and that satisfies the following bounds and
convexity condition:

(H1p) There exist M, δ > 0 and β ∈ [0, 1] such that for all ξ, ζ ∈ R, we have

f (x, y, ξ, ζ ) ≤ M

( |ξ − ζ |
|x − y|β + |ξ | + |ζ | + 1

)
for a.e. x, y ∈ �,

and

M−1 |ξ − ζ |
|x − y|β − M ≤ f (x, y, ξ, ζ ) for a.e. x, y ∈ � with |x − y| < δ.

(H2p) f is separately convex in the second two variables, i.e., f (x, y, ·, ζ ) and
f (x, y, ξ, ·) are convex for a.e. x, y ∈ � and every ξ, ζ ∈ R

n .

In this setting, we take p ∈ [1,∞) and consider the regularization term Rp :
L2(�) → [0,∞] defined by

Rp(u) :=
(

1

|� × �|
ˆ

�

ˆ
�

f p(x, y, u(x), u(y)) dx dy

)1/p

. (2.1)

Remark 4.1 a) Since the regularizer Rp is invariant under symmetrization, one can
assume without loss of generality that f is symmetric in the sense that f (x, y, ξ, ζ ) =
f (y, x, ζ, ξ) for all x, y ∈ � and ξ, ζ ∈ R.
b) Let p, q ∈ [1,∞) with p > q. Hölder’s inequality then yields for every u ∈

DomRp = {u ∈ L2(�) : Rp(u) < ∞} that
(ˆ

�

ˆ
�

f p(x, y, u(x), u(y)) dx dy
)1/p ≥ |� × �| q−p

pq

(ˆ
�

ˆ
�

f q (x, y, u(x), u(y)) dx dy
)1/q

,
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which translates intoRp(u) ≥ Rq(u); in particular, DomRp ⊂ DomRq .

A basic example of a symmetric Carathéodory function f satisfying (H1p) with
β = 0 and (H2p) is

f (x, y, ξ, ζ ) = a(x − y)|ξ − ζ | for x, y ∈ � and ξ, ζ ∈ R,

where a ∈ L∞(Rn) is an even function such that ess infRn a > 0. Another example
of such a function f with β = 1 in (H1p) is

f (x, y, ξ, ζ ) = b
|ξ − ζ |
|x − y| for x, y ∈ � and ξ, ζ ∈ R,

with b > 0; note that for the p > n case, the corresponding regularizer Rp is, up
to a multiplicative constant, the Gagliardo semi-norm of the fractional Sobolev space

W 1− n
p ,p

(�).
Before showing how the framework of Sect. 2 can be applied here, let us first collect

and discuss a few properties of the regularizers Rp with p ∈ [1,∞). We introduce
the notation

[u]p,β :=
(ˆ

�

ˆ
�

|u(x) − u(y)|p
|x − y|β p

dx dy

)1/p

to indicate a suitable (p, β)-nonlocal seminorm.Our first lemma shows that the bound-
edness of the regularizer Rp is equivalent to the simultaneous boundedness of the
L p-norm and of the (p, β)-seminorm.

Lemma 4.2 There exists a constant C > 0, depending on n, p, �, M, δ, and β, such
that

‖u‖L p(�) ≤ C
(
Rp(u) + ‖u‖L2(�) + 1

)
, (2.2)

[u]p,β ≤ C
(
Rp(u) + ‖u‖L p(�) + 1

)
, (2.3)

and

Rp(u) ≤ C
([u]p,β + ‖u‖L p(�) + 1

)
(2.4)

for all u ∈ L2(�), and for all p ∈ [1,∞).

Proof Properties (2.2) and (2.3) are direct consequences of the coercivity bound on the
double-integrand f in (H1p). In fact, for (2.2), we use the nonlocal Poincaré inequality
in [7, Proposition 4.2], which also holds for u ∈ L2(�) via a truncation argument.
From the upper bound in (H1p), we infer (2.4). �
The next result provides a characterization of the domain of Rp.
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Lemma 4.3 For any p ∈ [1,∞) there holds

Dom Rp = {
u ∈ L p(�) ∩ L2(�) : [u]p,β < ∞}

. (2.5)

If, additionally, β p < n, then

DomRp = L p(�) ∩ L2(�).

If, instead, β p > n, then

Dom Rp = Wβ− n
p ,p

(�) ∩ L2(�). (2.6)

Proof By combining (2.2) and (2.3) with (2.4), we deduce (2.5). In the case β p < n,
a direct computation shows that [u]p,β < ∞ for all u ∈ L p(�), hence we infer the
statement. Property (2.6) follows by observing that for β p > n, the quantity [u]p,β
corresponds to the Gagliardo semi-norm of the fractional Sobolev space Wβ− n

p ,p
(�)

(cf. e.g. [34]). �
As a consequence of Lemma 4.3, we deduce, in particular, that C∞

c (Rn) ⊂ DomRp,
where the functions in C∞

c (Rn) are implicitly restricted to �.
The next lemma shows that any element of the domain ofRp can be extended to a

function having compact support and finite (p, β)-seminorm.

Lemma 4.4 Let p ∈ [1,∞). For any u ∈ DomRp, there is a ū ∈ L p(Rn) ∩ L2(Rn)

with compact support inside some bounded open set �′ with � ⊂ �′ ⊂ R
n satisfying

ū = u on � and

ˆ
�′

ˆ
�′

|ū(x) − ū(y)|p
|x − y|β p

dx dy < ∞. (2.7)

Proof If β > n
p , this follows directly from well-established extension results for frac-

tional Sobolev spaces on� to those onR
n (cf. [34, Theorem 5.4]), considering (2.6). If

1 ≤ β p ≤ n, themap x �→ |x−y|−β p is no longer integrable at infinity. Property (2.7)
follows by minor modifications to the arguments in [34, Sect. 5]. �
Elements of the domain of Rp can be approximated by sequences of smooth maps
with compact support.

Lemma 4.5 Let p ∈ [1,∞). For every u ∈ Dom Rp, there exists a sequence (ul)l ⊂
C∞
c (Rn) such that ul → u in L p(�) and liml→∞ Rp(ul) = Rp(u) as l → ∞.

Proof Let ū be an extension of u as in Lemma 4.3. We define ul = ϕ1/l ∗ ū ∈ C∞
c (Rn)

for l ∈ N with (ϕε)ε>0 a family of smooth standard mollifiers satisfying 0 ≤ ϕε ≤ 1
and

´
Rn ϕε dx = 1, and whose support lies in the ball centered at the origin and with

radius ε > 0, suppϕε ⊂ Bε(0) ⊂ R
n . Then, ul → u in L p(�) and ul → u pointwise

a.e. in � as l → ∞. To show that Lebesgue’s dominated convergence theorem can
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be applied, we use the upper bound in (H1p) to derive the following estimate for any
l ∈ N:

f p(x, y, ul(x), ul(y)) ≤ 4p−1Mp
( |ul(x) − ul(y)|p

|x − y|β p
+ |ul(x)|p + |ul(y)|p + 1

)

(2.8)

for a.e. (x, y) ∈ � × �. By Jensen’s inequality and Fubini’s theorem,

[ul ]pp,β ≤
ˆ
B1/l (0)

ϕ1/l(z)
ˆ

�

ˆ
�

|ū(x − z) − ū(y − z)|p
|x − y|β p

dx dy dz

≤
ˆ

�1/l

ˆ
�1/l

|ū(x) − ū(y)|p
|x − y|β p

dx dy < ∞,

with �1/l = {x ∈ R
n : d(x,�) < 1/l}; thus, lim supl→∞[ul ]pp,β ≤

[u]pp,β . Conversely, the a.e. pointwise convergence of the mollified sequence gives

lim inf l→∞[ul ]pp,β ≥ [u]pp,β by Fatou’s lemma. Along with the L p-convergence of

(ul)l , the upper bound in (2.8) is thus a converging sequence in L1(� × �). This
concludes the proof of the lemma. �
Finally, we characterize the weak lower-semicontinuity of the regularizers. We refer
to [8, 36, 48] for a discussion on sufficient (and necessary) conditions for the weak
lower semicontinuity of inhomogeneous double-integral functionals.

Lemma 4.6 For every p ∈ [1,∞), the regularizer Rp is L2-weak lower semicontin-
uous.

Proof The statement is an immediate consequence of the nonnegativity of f and (H2p),
see e.g. [49, Theorem 2.5] or [45]. �
Remark 4.7 Observe that Lemmas 4.3 and 4.6 imply in particular that the hypothesis
(H) from Sect. 2 is fulfilled.

Given a collection of noisy images uη ∈ L2(�; R
N ) and p ∈ [1,∞), we set, for

each j ∈ {1, . . . , N },

Jp, j (u) := ‖u − uη
j‖2L2(�)

+ Rp(u) for u ∈ L2(�),

with Kp, j := argminJp, j �= ∅ since (H) is satisfied. As in (T ), we define I :
[1,∞) → [0,∞) by

I(p) = inf
w∈Kp

‖w − uc‖2L2(�;RN )
for p ∈ [1,∞),

where Kp = Kp,1×Kp,2×· · ·×Kp,N . Next, we prove theMosco-convergence result
that will provide us with an extension of I to � = [1,∞]. It is an L p-approximation
statement in the present nonlocal setting, which can be obtained from a modification
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of the arguments by Champion, De Pascale, & Prinari [20] in the local case, and those
by Kreisbeck, Ritorto, & Zappale [42, Theorem 1.3], where the case of homogeneous
double-integrands is studied.

Proposition 4.8 (Mosco-convergence of the regularizers) Let � = [1,∞), Rp for
p ∈ [1,∞) as in (2.1), and suppose that (H1p) and (H2p) are satisfied. Then, for
p ∈ � = [1,∞],

Rp := Mosc(L2)- lim
p′→p

Rp′ =
{
Rp if p ∈ [1,∞),

R∞ if p = ∞,
(2.9)

withR∞ : L2(�) → [0,∞] given by

R∞(u) := ess sup(x,y)∈�×� f (x, y, u(x), u(y)).

Proof To show (2.9), it suffices to show that for every sequence (pk)k ⊂ [1,∞)

converging to p ∈ [1,∞], (2.9) holds with p′ replaced by pk . We divide the proof
into two cases.

Case 1: p ∈ [1,∞). For the recovery sequence, consider u ∈ DomRp and take
(ul)l ⊂ C∞

c (R) as in Lemma 4.5, satisfying ul → u in L p(�) andRp(ul) → Rp(u)

as l → ∞. In view of Lemma 4.3, we know that (ul)l is contained in DomRp and
DomRpk for all k ∈ N, and we conclude via Lebesgue’s dominated convergence
theorem that

lim
k→∞Rpk (ul) = Rp(ul)

for every l ∈ N. Hence,

lim
l→∞ lim

k→∞Rpk (ul) = lim
l→∞Rp(ul) = Rp(u),

so that one can find a recovery sequence by extracting an appropriate diagonal
sequence.

To prove the lower bound, let uk⇀u in L2(�) be such that limk→∞ Rpk (uk) =
lim infk→∞ Rpk (uk) < ∞, and fix s ∈ (1, p) (or s = 1 if p = 1). Observe that
pk ≥ s for all k sufficiently large because pk → p for k → ∞. Then, Remark 4.1b)
and the weak lower semicontinuity of Rs according to Lemma 4.6 imply that

lim
k→∞Rpk (uk) ≥ lim inf

k→∞ Rs(uk) ≥ Rs(u).

If s = p = 1 the argument is complete, whereas in the case p > 1, an additional
application of Fatou’s lemma shows lim infs↗p Rs(u) ≥ Rp(u), giving rise to the
desired liminf inequality.

Case 2: p = ∞. That constant sequences serve as recovery sequences results from
the observation that Rpk (u) → R∞(u) as k → ∞ for all u ∈ DomR∞. The latter
is an immediate consequence of classical L p-approximation, i.e., the well-known fact
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that lim p→∞ ‖v‖L p(V ) = ‖v‖L∞(V ) = ess supx∈V |v(x)| for all v ∈ L∞(V ) with
V ⊂ R

m open and bounded.
To prove the lower bound, we argue via Young measure theory (see, e.g., [37, 48]

for a general introduction). Let uk⇀u in L2(�), and denote by ν = {νx }x∈� the
Young measure generated by a (non-relabeled) subsequence of (uk)k . The barycenter
of [νx ] := ´

R
ξ dνx (ξ) then coincides with u(x) for a.e. x ∈ �. Without loss of

generality, one can suppose that ∞ > lim infk→∞ Rpk (uk) = limk→∞ Rpk (uk).
Recalling Remark 4.1b), we have that

lim
k→∞Rpk (uk) ≥ lim inf

q→∞ lim inf
k→∞ Rq(uk). (2.10)

On the other hand, with the nonlocal field vu associated with some u : � → R

defined by

vu(x, y) := (u(x), u(y)) for (x, y) ∈ � × �,

the statement of [48, Proposition 2.3] allows us to extract a subsequence (vuk )k that
generates the Young measure {νx ⊗ νy}(x,y)∈�×�. Hence, a standard result on Young
measure lower semicontinuity (see e.g. [37, Sect. 8.1]) yields

lim inf
k→∞ Rq(uk) ≥

( 1

|� × �|
ˆ

�

ˆ
�

ˆ
R

ˆ
R

f q(x, y, ξ, ζ ) dνx (ξ) dνy(ζ ) dx dy
)1/q

.

Letting q → ∞, we use classical L p-approximation results and the Jensen’s type
inequality for separately convex functions in [43, Lemma 3.5 (iv)] to conclude that

lim inf
q→∞ lim inf

k→∞ Rq(uk) ≥ ess sup(x,y)∈�×�

[
(νx ⊗ νy)- ess sup(ξ,ζ )∈R×R f (x, y, ξ, ζ )

]

≥ ess sup(x,y)∈�×� f (x, y, [νx ], [νy])
= ess sup(x,y)∈�×� f (x, y, u(x), u(y)) = R∞(u);

note that (νx ⊗ νy)-ess sup(ξ,ζ )∈R×R f (x, y, ξ, ζ ) = inf{c ∈ R : f (x, y, ·, ·) ≤
c (νx ⊗νy)-a.e. inR×R}. Finally, the lower bound follows from the previous estimate
and (2.10). �

The above result implies that the reconstruction functional for p = ∞ and j ∈
{1, . . . , N } is given by

J∞, j (u) := ‖u − uη
j‖2L2(�)

+ R∞(u) for u ∈ L2(�).

Under the additional convexity condition on the given function f : �×�×R
n×R

n →
R that

(H3p) f is (jointly) level convex in its last two variables,
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where level convexity means convexity of the sub-level sets of the function, the supre-
mal functionalR∞ also becomes level convex. In combinationwith the strict convexity
of the fidelity term, the reconstruction functional J∞, j then admits a unique mini-
mizer. Since level convexity is weaker than convexity, we do not necessarily have that
Jp, j for p ∈ [1,∞) is (level) convex, and it may have multiple minimizers.

If we suppose that f fulfills (H1p)–(H3p), then Theorem 2.5 and Proposition 4.8
imply that the extension I : [1,∞] → [0,∞] is given by

I(p) =
{
I(p) for p ∈ [1,∞),

‖w(∞) − uc‖2
L2(�;RN )

for p = ∞,

for p ∈ [1,∞], where w(∞) denotes the unique componentwise minimizer of J∞.
In particular, the hypothesis (ii) of Theorem 2.5 is satisfied, which shows that I is the
relaxation of I and, thus, admits a minimizer p̄ ∈ � = [1,∞].

We conclude this section with a discussion of examples when optimal values of the
integrability exponents are obtained in the interior of the original interval � or at its
boundary, respectively. In one case, the presence of noise causes R∞ to penalize uc

more than uη, while Rq for some q ∈ [1,∞) prefers the clean image. This entails
that the optimal parameter is attained in � = [1,∞). In the second case instead, the
reconstruction functional for p = ∞ gives back the exact clean image and outperforms
the reconstruction functionals for other parameter values.

Example 4.9 a) Let f = α f̂ : �×�×R
n ×R

n → R, for some α > 0 to be specified
later, be a double-integrand satisfying (H1p), (jointly) convex in the last two variables,
and vanishing exactly on {(x, y, ξ, ξ) : x, y ∈ �, ξ ∈ R}. Following (2.1), we set

Rp(u) = α

(
1

|� × �|
ˆ

�

ˆ
�

f̂ p(x, y, u(x), u(y)) dx dy

)1/p

=: αR̂p(u)

for u ∈ L2(�) and p ∈ [1,∞).
We further introduce the following two conditions on the given data uη, uc ∈

L2(�; R
N ):

(H4p)
∑N

j=1Rq(ucj ) <
∑N

j=1Rq(u
η
j ) for some q ∈ [1,∞);

(H5p)
∑N

j=1R∞(2uη
j − ucj ) <

∑N
j=1R∞(uη

j ).

By applying Lemma 3.4 (i) from the previous section with R = R̂q — the con-
ditions (H1α), (H2α), and (H3α) are immediate to verify in view of Lemma 4.3,
Lemma 4.6, and (H4p) — we can then deduce for small enough α that I(q) <

‖uη − uc‖2
L2(�;RN )

. On the other hand, due to (H5p), the same lemma can be applied

to R = R̂∞ with R̂∞(u) = ess sup(x,y)∈�×� f̂ (x, y, u(x), u(y)) for u ∈ L2(�) to
find

‖w(∞) − (2uη − uc)‖2L2(�;RN )
< ‖uη − uc‖2L2(�;RN )

, (2.11)
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provided α is sufficiently small. The reverse triangle inequality then yields

I(∞) ≥
(
‖w(∞) − (2uη − uc)‖2L2(�;RN )

− 2‖uη − uc‖2L2(�;RN )

)2

> ‖w(∞) − (2uη − uc)‖2L2(�;RN )
> ‖uη − uc‖2L2(�;RN )

> I(q),

where in the second and third inequality we have used (2.11). This proves that the
optimal parameter is attained inside [1,∞), and, therefore, is also a minimizer of I.

b) We illustrate a) with a specific example. Consider � = (0, 1) and let
f̂ (x, y, ξ, ζ ) = |ξ − ζ |/|x − y| for x , y ∈ � and ξ , ζ ∈ R

n . This leads then to
the difference quotient regularizers

Rp(u) = α

(ˆ 1

0

ˆ 1

0

|u(x) − u(y)|p
|x − y|p dx dy

)1/p

=: αR̂p(u) (2.12)

and

R∞(u) = α ess sup(x,y)∈(0,1)2
|u(x) − u(y)|

|x − y| = αLip(u), (2.13)

with Lip(u) denoting the Lipschitz constant of (a representative of) u, which could be
infinite.

With the sawtooth function v : [0, 1] → R defined by

v(x) =

⎧⎪⎨
⎪⎩

x for 0 ≤ x ≤ 1/4,

−x + 1/2 for 1/4 < x ≤ 3/4,

x − 1 for 3/4 < x ≤ 1,

we take a single clean and noisy image given by

uc(x) =

⎧⎪⎨
⎪⎩

0 for 0 < x ≤ 1/3,

10v(3x − 1) for 1/3 < x ≤ 2/3

0 for 2/3 < x < 1.

and uη(x) =

⎧⎪⎨
⎪⎩

v(3x) for 0 < x ≤ 1/3,

(10 − ε)v(3x − 1) for 1/3 < x ≤ 2/3,

v(3x − 2) for 2/3 < x < 1,

respectively, where ε > 0 is small; see Fig. 1.
We observe that uc is constant near the boundaries and only slightly steeper than

uη in the middle of the domain. Numerical calculations show that for small ε, such
as ε = 0.1, the estimate R2(uc) < R2(uη), and hence (H4p) with q = 2, holds;
moreover, (H5p) holds since the clean image has a higher Lipschitz constant than the
noisy image in the sense that

Lip(2uη − uc) = 30 − 6ε < 30 − 3ε = Lip(uη).
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Fig. 1 The graphs of the functions uc and uη from Example 4.9 a) with ε = 0.1

Therefore, we find that for α > 0 small enough, the optimal parameter lies inside
� = [1,∞).

c) If we work with the same regularizers as in b), there are reasonable images for
which the Lipschitz regularizer in (2.13) performs better than the other regularizers in
(2.12). Let us consider with α > 0 chosen as in b), the images

uc(x) = x − 1/2 and uη = (1 + 6α)uc.

Since uη is affine, we can show that the reconstruction with the Lipschitz regularizer
is also an affine function. Indeed, for every other function, one can find an affine
function with at most the same Lipschitz constant without increasing the distance to
uη anywhere. This, in combination with the fact that the images are odd functions with
respect to x = 1/2, shows thatw(∞) is of the formw(∞)(x) = γ (x−1/2) = γ uc with
γ ≥ 0. Due to the optimality of w(∞), the constant γ has to minimize the quantity

‖γ uc − uη‖2L2((0,1)) + αLip(γ uc) = 1

12
(γ − (1 + 6α))2 + αγ,

which yields γ = 1. Hence, w(∞) coincides with the clean image and therefore
I(∞) = 0, which implies that p = ∞ is the optimal parameter in this case.

5 Varying the Amount of Nonlocality

Next, we study two classes of nonlocal regularizers, Rδ with δ ∈ � := (0,∞),
considered by Brezis & Nguyen [15] and Aubert & Kornprobst [5], respectively, in
the context of image processing. In both cases, we aim at optimizing the parameter δ

that encodes the amount of nonlocality in the problem. We mention further that both
families of functionals recover the classical T V -reconstruction model in the limit
δ → 0, cf. [5, 15].
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To set the stage for our analysis, consider training data (uc, uη) ∈ L2(�; R
N ) ×

L2(�; R
N ) and the reconstruction functionals Jδ, j : L2(�) → [0,∞] with δ ∈ �

and j ∈ {1, 2, . . . , N } given by

Jδ, j (u) = ‖u − uη
j‖2L2(�)

+ Rδ(u).

After showing that the sets

Kδ, j = argmin
u∈L2(�)

Jδ, j (u). (2.1)

are non-empty for each of the two choices of the regularizers Rδ , the upper-level
functional from (T ) in Sect. 2 becomes

I : (0,∞) → [0,∞), I(δ) = inf
w∈Kδ

‖w − uc‖2L2(�;RN )
(2.2)

with Kδ = Kδ,1 × Kδ,2 × · · · × Kδ,N . In order to find its extension I defined on � =
[0,∞], we determine theMosco-limits of the regularizers (cf. (2.6) and Theorem 2.5).
This is the content of Propositions 5.3 and 5.5 below, which provide the main results
of this section.

5.1 Brezis & Nguyen Setting

For every δ ∈ (0,∞) and u ∈ L1(�), we consider the regularizers

Rδ(u) := δ

ˆ
�

ˆ
�

ϕ(|u(x) − u(y)|/δ)
|x − y|n+1 dx dy,

where, following [15], the function ϕ : [0,∞) → [0,∞) is assumed to satisfy the
following hypotheses:

(H1δ) ϕ is lower semicontinuous in [0,∞) and continuous in [0,∞) except at a finite
number of points, where it admits left- and right-side limits;

(H2δ) there exists a constant a > 0 such that ϕ(t) ≤ min{at2, a} for all t ∈ [0,∞);
(H3δ) ϕ is non-decreasing;

(H4δ) it holds that γn

ˆ ∞

0
ϕ(t)t−2 dt = 1 with γn :=

ˆ
Sn−1

|e · σ | dσ for any e ∈
S
n−1.

Note that the assumptions on ϕ imply that the functional Rδ is never convex.

Example 5.1 Examples of functionsϕwith the properties (H1δ)–(H4δ) include suitable
normalizations of

t �→
{
0 if t ≤ 1

1 if t > 1
, t �→

{
t2 if t ≤ 1

1 if t > 1
, t �→ 1 − e−t2

for t ≥ 0, cf. [15].

123



Applied Mathematics & Optimization (2023) 88 :9 Page 31 of 47 9

To guarantee that the functionals Rδ satisfy a suitable compactness property, see
Theorem 5.2b), we must additionally assume that

(H5δ) ϕ(t) > 0 for all t > 0.

Clearly, the last two functions from Example 5.1 satisfy the positivity condition,
while the first one does not. In identifying the Mosco-limits Rδ in each of the three
cases δ ∈ (0,∞), δ = 0, and δ = ∞, we make repeated use of [15, Theorems 1, 2
and 3], which we recall here for the reader’s convenience.

Theorem 5.2 (cf. [15, Theorems 1–3]) Let� ⊂ R
n be a bounded and smooth domain,

and let ϕ satisfy (H1δ)–(H4δ).
(a) If (δk)k ⊂ (0,∞) is such that δk → 0, then the following statements hold:

(i) There exists a constant K (ϕ) ∈ (0, 1], independent of �, such that (Rδk )k �-
converges as k → ∞, with respect to the L1(�)-topology, to R0 : L1(�) →
[0,∞] defined for u ∈ L1(�) by

R0(u) :=
{
K (ϕ)|Du|(�) if u ∈ BV (�),

∞ if u ∈ L1(�) \ BV (�).

(ii) If (uk)k is a bounded sequence in L1(�) with supk Rδk (uk) < ∞, then there exist
a subsequence (ukl )l of (uk)k and a function u ∈ L1(�) such that liml→∞ ‖ukl −
u‖L1(�) = 0.

(b) Suppose that (H5δ) holds in addition to the above conditions, and let (uk)k be a
bounded sequence in L1(�)with supk Rδ(uk) < ∞ for some δ > 0. Then, there exists
a subsequence (ukl )l of (uk)k and a function u ∈ L1(�) such that liml→∞ ‖ukl −
u‖L1(�) = 0.

We point out that if ϕ fulfills (H1δ)–(H5δ), then (H) in Sect. 2 holds and the sets
Kδ, j defined in (2.1) are non-empty (cf. [15, Corollary 7]). We are now in a position to
characterize the asymptotic behavior of the regularizersRδ′ as δ′ → δ ∈ � = [0,∞].
Proposition 5.3 (Mosco-convergence of regularizers) Let � = (0,∞) and � ⊂
R
n be a bounded and smooth domain. Under the assumptions (H1δ)–(H5δ) on ϕ :

[0,∞) → [0,∞), it holds that

Rδ := Mosc(L2)- lim
δ′→δ

Rδ′ =

⎧⎪⎨
⎪⎩

Rδ if δ ∈ (0,∞),

R0 if δ = 0,

0 if δ = ∞,

for δ ∈ � = [0,∞]. (2.3)

Proof Considering a sequence (δk)k ⊂ (0,∞) with limit δ ∈ [0,∞], one needs to
verify that the Mosco-limit of (Rδk )k exist and is given by the right-hand side of (2.3).
We split the proof into three cases.

Case 1: δ = 0. Let (uk)k ⊂ L2(�) and u ∈ L2(�) be such that uk⇀u in L2(�).
We aim to show that

R0(u) ≤ lim inf
k→∞ Rδk (u). (2.4)
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Onemay thus assumewithout loss of generality that the limit inferior on the right-hand
side of (2.4) is finite, and, after extracting a subsequence if necessary, also

sup
k

Rδk (uk) < ∞.

Hence, by Theorem 5.2a) (ii), it follows that uk → u in L1(�), which together with
Theorem 5.2a) (i) yields (2.4).

To complement this lower bound, we need to obtain for each u ∈ L2(�) ∩ BV (�)

a sequence (uk)k ⊂ L2(�) such that uk → u in L2(�) and

R0(u) ≥ lim sup
k→∞

Rδk (uk). (2.5)

The idea is to suitably truncate a recovery sequence of the�-limit�(L1)-limk→∞ Rδk

from Theorem 5.2 (i). For the details, fix l ∈ N and consider the truncation function,
T l : R → R,

T l(t) :=

⎧
⎪⎨
⎪⎩

l if t ≥ l,

t if − l ≤ t ≤ l,

−l if t ≤ −l.

ByTheorem 5.2 (i), there exists a sequence (vk)k ⊂ L1(�) such that vk → u in L1(�)

and

lim
k→∞Rδk (vk) = K (ϕ)|Du|(�) = R0(u). (2.6)

Choosing a sequence (lk)k ⊂ R such that lk → ∞ and lk‖vk − u‖L1(�) → 0 as
k → ∞, we define

uk := T lk ◦ vk ∈ L∞(�) for all k ∈ N.

Then, an application of Hölder’s inequality shows that

‖uk − u‖L2(�) ≤ ‖uk − T lk ◦ u‖L2(�) + ‖T lk ◦ u − u‖L2(�)

≤ (
2lk‖vk − u‖L1(�)

)1/2 + ‖T lk ◦ u − u‖L2(�) → 0,

as k → ∞. Therefore, uk → u in L2(�) and, in view of the monotonicity of ϕ in
(H3δ), we conclude that

lim sup
k→∞

Rδk (uk) = lim sup
k→∞

δk

ˆ
�

ˆ
�

ϕ(δ−1
k |T lk (vk(x)) − T lk (vk(y))|)

|x − y|n+1 dx dy

≤ lim
k→∞ δk

ˆ
�

ˆ
�

ϕ(δ−1
k |vk(x) − vk(y)|)

|x − y|n+1 dx dy = lim
k→∞Rδk (vk),
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which implies (2.5) by (2.6).
Case 2: δ ∈ (0,∞). Consider a sequence (uk)k ⊂ L2(�) and u ∈ L2(�) such that

uk⇀u in L2(�) and

sup
k

Rδk (uk) < ∞.

We start by observing that there exist δ̄ > 0 and K ∈ N such that for all k ≥ K ,
we have δ̄/2 ≤ δk ≤ δ̄. Hence, the previous estimate and (H3δ) yield

sup
k≥K

Rδ̄ (uk) = sup
k≥K

(
δ̄

ˆ
�

ˆ
�

ϕ(δ̄−1|uk(x) − uk(y)|)
|x − y|n+1 dx dy

)
≤ 2 sup

k
Rδk (uk) < ∞.

Consequently, in view of Theorem 5.2 b), we may further assume that

uk → u in L1(�) and uk(x) → u(x) for a.e. x ∈ �. (2.7)

Using Fatou’s lemma first, and then (2.7) together with the lower semicontinuity of ϕ

on [0,∞), we get

lim inf
k→∞ Rδk (uk) = lim inf

k→∞ δk

ˆ
�

ˆ
�

ϕ(δ−1
k |uk(x) − uk(y)|)

|x − y|n+1 dx dy

≥ δ

ˆ
�

ˆ
�

lim inf
k→∞

ϕ(δ−1
k |uk(x) − uk(y)|)

|x − y|n+1 dx dy

≥ δ

ˆ
�

ˆ
�

ϕ(δ−1|u(x) − u(y)|)
|x − y|n+1 dx dy = Rδ(u),

which proves the liminf inequality.
For the recovery sequence, fix u ∈ L2(�) and take uk = δk

δ
u for k ∈ N. Then,

uk → u in L2(�) as k → ∞ and

lim
k→∞Rδk (uk) = lim

k→∞
δk

δ
Rδ(u) = Rδ(u),

as desired.
Case 3: δ = ∞. The lower bound follows immediately by the non-negativity ofRδk

for k ∈ N. As a recovery sequence for u ∈ L2(�), take a sequence (uk)k ⊂ L2(�)

such that uk → u in L2(�) and Lip(uk) ≤ δ
1/4
k , which is possible since δk → ∞ as

k → ∞. Then, using (H2δ),

Rδk (uk) = δk

ˆ
�

ˆ
�

ϕ(δ−1
k |uk(x) − uk(y)|)

|x − y|n+1 dx dy

≤ a
Lip(uk)2

δk

ˆ
�

ˆ
�

1

|x − y|n−1 dx dy ≤ aδ
−1/2
k

ˆ
�

ˆ
�

1

|x − y|n−1 dx dy.

123



9 Page 34 of 47 Applied Mathematics & Optimization (2023) 88 :9

Hence, Rδk (uk) → 0 as k → ∞, which concludes the proof. �

5.2 Aubert & Kornprobst Setting

Let � ⊂ R
n be a bounded Lipschitz domain. We fix a nonnegative function ρ :

[0,∞) → [0,∞) satisfying

(H6δ) ρ is non-increasing and
ˆ
Rn

ρ(|x |) dx = 1,

and consider the regularizers given for δ ∈ � = (0,∞) and u ∈ L2(�) by

Rδ(u) = 1

δn

ˆ
�

ˆ
�

|u(x) − u(y)|
|x − y| ρ

( |x − y|
δ

)
dx dy. (2.8)

Remark 5.4 a) As ρ is non-increasing, we have for all 0 < δ < δ̄ and x, y ∈ � that
ρ(|x − y|/δ) ≤ ρ(|x − y|/δ̄); consequently,

Rδ(u) ≤ δ̄n

δn
Rδ̄(u)

for all u ∈ L2(�).
b) Note that the assumption (H) from Sect. 2 is satisfied here; in particular, Rδ is

L2-weakly lower semicontinuous. Indeed, as the dependence of the integrand on u is
convex, it is enough to prove strong lower semicontinuity in L2(�). This is in turn a
simple consequence of Fatou’s lemma.

c) In this set-up, the sets Kδ, j in (2.1) consist of a single element w(δ)
j ∈ L2(�) in

light of the strict convexity of the fidelity term and convexity of Rδ . The upper-level
functional from (2.2) then becomes

I : (0,∞) → [0,∞), I(δ) = ‖w(δ) − uc‖2L2(�;RN )
.

The nonlocal functionals in (2.8) have been applied to problems in imaging in
[5], providing a derivative-free alternative to popular local models. The localization
behavior of these functionals as δ → 0 is well-studied, originally by Bourgain, Brezis,
& Mironescu [12] and later extended to the BV -case in [26, 51]. Using these results,
we show that, as δ → 0, the reconstruction functional in our bi-level scheme turns into
the T V -reconstruction functional, see Proposition 5.5 below.Moreover, in order to get
structural stability inside the domain �, we exploit the monotonicity properties of the
functionalRδ , cf. Remark 5.4a). Lastly, as δ → ∞, we observe that the regularization
term vanishes.

Proposition 5.5 (Mosco-convergence of the regularizers) Let � = (0,∞), � ⊂ R
n

be a bounded Lipschitz domain and assume that (H6δ) holds. Then,

Rδ := Mosc(L2)- lim
δ′→δ

Rδ′ =

⎧⎪⎨
⎪⎩

Rδ if δ ∈ (0,∞),

R0 if δ = 0,

0 if δ = ∞,

for δ ∈ � = [0,∞], (2.9)
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where

R0 : L2(�) → [0,∞], R0(u) =
{

κn|Du|(�) if u ∈ BV (�),

∞ if u ∈ L2(�) \ BV (�),
(2.10)

with κn =
 
Sn−1

|e · σ | dσ for any e ∈ S
n−1.

Proof Given (δk)k ⊂ (0,∞) with limit δ ∈ [0,∞], the arguments below, subdivided
into three different regimes, show that the Mosco-limit of (Rδk )k exists and is equal
to the right-hand side of (2.9).

Case 1: δ = 0. For the lower bound, take a sequence uk⇀u in L2(�) and assume
without loss of generality that

sup
k

Rδk (uk) < ∞.

By [12, Theorem4], (uk)k is relatively compact in L1(�), so thatuk → u in L1(�).We
nowuse the�-liminf result with respect to the L1(�)-convergence in [51, Corollary 8],
to deduce that

R0(u) ≤ lim inf
k→∞ Rδk (uk),

as desired. For the recovery sequence, we may suppose that u ∈ L2(�) ∩ BV (�).
Then, it follows from [51, Corollary 1] that

lim
k→∞

1

δnk

ˆ
�

ˆ
�

|u(x) − u(y)|
|x − y| ρ

( |x − y|
δk

)
dx dy = κn|Du|(�),

showing that the constant sequence uk = u for all k ∈ N provides a recovery sequence.
Case 2: δ ∈ (0,∞). For the liminf inequality, take a sequence (uk)k converging

weakly to u in L2(�). If δ̄ ∈ (0, δ), then δk > δ̄ for all k ∈ N large enough. Hence, it
follows from Remark 5.4a) that

lim inf
k→∞ Rδk (uk) ≥ lim inf

k→∞
δ̄n

δnk
Rδ̄ (uk) ≥ δ̄n

δn
Rδ̄ (u),

where the last inequality uses the weak lower semicontinuity ofRδ̄ , cf. Remark 5.4b).
Letting δ̄ ↗ δ and using the monotone convergence theorem gives

lim inf
k→∞ Rδk (uk) ≥ Rδ(u).

For the limsup inequality, consider u ∈ L2(�) with Rδ(u) < ∞. Since ρ is non-
increasing by (H6δ), we may extend u to a function ū ∈ L2(Rn) by reflection across
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the boundary of the Lipschitz domain � such that

ˆ
Rn

ˆ
Rn

|ū(x) − ū(y)|
|x − y| ρ

( |x − y|
δ

)
dx dy < ∞,

cf. [12, Proof of Theorem 4]. With (ϕε)ε a family of smooth standard mollifiers, the
sequence ul := ϕ1/l ∗ ū for l ∈ N converges to u in L2(�) as l → ∞, and we may
argue similarly to the proof of Lemma 4.5 to conclude that

lim
l→∞Rδ(ul) = Rδ(u).

With ρδ := δ−nρ(| · |/δ) and for a fixed l ∈ N, we find that

|Rδ(ul) − Rδk (ul)| ≤
ˆ

�

ˆ
�

|ul(x) − ul(y)|
|x − y| |ρδ(x − y) − ρδk (x − y)| dx dy

≤ Lip(ul)|�|‖ρδ − ρδk‖L1(Rn),

where Lip(ul) is the Lipschitz constant of ul . We have ρδk → ρδ in L1(Rn) as k → ∞
by a standard argument approximating ρ with smooth functions. Hence, we obtain

lim
k→∞Rδk (ul) = Rδ(ul),

and, letting l → ∞, results in

lim
l→∞ lim

k→∞Rδk (ul) = Rδ(u).

The limsup inequality now follows by extracting an appropriate diagonal sequence.
Case 3: δ = ∞. The only nontrivial case is the limsup inequality, for which we

take a sequence (ul)l ⊂ C∞
c (Rn) that converges to u in L2(�). Then, with R larger

than the diameter of �, one obtains for every l ∈ N that

Rδk (ul) = 1

δnk

ˆ
�

ˆ
�

|ul(x) − ul(y)|
|x − y| ρ

( |x − y|
δk

)
dx dy

≤ Lip(ul)
ˆ

�

ˆ
�/δk

ρ

(∣∣∣z − y

δk

∣∣∣
)
dz dy ≤ Lip(ul)

ˆ
�

ˆ
B R

δk

(0)
ρ(|w|) dw dy.

As k → ∞, the last quantity goes to zero since ρ(| · |) ∈ L1(Rn). Therefore, we
deduce that

lim
k→∞Rδk (ul) = 0,

and conclude again with a diagonal argument. �
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5.3 Conclusions and Examples

In both the Brezis & Nguyen and the Aubert & Kornprobst settings, we now find that
the extension I : [0,∞] → [0,∞] is given by

I(δ) =

⎧⎪⎨
⎪⎩

I(δ) if δ ∈ (0,∞),

‖w(0) − uc‖2
L2(�;RN )

if δ = 0,

‖uη − uc‖2
L2(�;RN )

if δ = ∞,

where w
(0)
j for j ∈ {1, . . . , N } is the unique minimizer of the T V -reconstruction

functional J 0, j (with different weight factors in the two cases). In particular, we
deduce from Theorem 2.5 and Corollary 2.8 that I is the relaxation of I and that these
extended upper-level functionals I admit minimizers δ̄ ∈ [0,∞]. To get an intuition
about when this optimal parameter is attained at the boundary or in the interior of �,
we present the following examples.

Example 5.6 a) For both settings analyzed in this section, it is clear that if the noisy
and clean image coincide, uc ≡ uη, then the reconstruction model with parameter
δ = ∞ gives the exact clean image back. Hence, in this case the optimal parameter is
attained at the boundary point δ = ∞.

b)Next,we illustrate the casewhen the optimal parameter is attained at the boundary
point δ = 0.Consider theAubert&Kornprobst setting inSect. 5.2 and let� = (−1, 1),
N = 1, uc = 0, and uη(x) = κnx for x ∈ (−1, 1). The reconstruction of uη with the
total variation regularizer R0 in (2.10) is of the form

w(0) = max{θ1,min{θ2, uη}} for some θ1, θ2 ∈ R.

To see this, we observe that J 0(ũ) ≤ J 0(u) for any u ∈ BV (−1, 1) with

ũ = max{u−,min{u+, uη}},

where u− := ess inf x∈(−1,1)u(x) and u+ := ess supx∈(−1,1) u(x). Indeed, the map
ũ has at most the same total variation as u and does not increase the distance to uη

anywhere. Next, since uη is an odd function, the same should hold for the minimizer,
meaning that −θ1 = θ2 =: θ ∈ [0, κn]. We can now determine the value of θ by
optimizing the quantity J 0(w

(0)) in θ . This boils down to minimizing

2

3
κ2
n

(
1 − θ

κn

)3

+ 2κnθ,

and yields θ = 0. Hence, the reconstruction model for δ = 0 yields the exact clean
image, so that I(0) = 0. The same conclusions can be drawn for the Brezis & Nguyen
setting by replacing κn in the example above with K (ϕ).

c) Let us finally address the case when I becomes minimal inside � = (0,∞).
We work once again with the Aubert & Kornprobst model from Sect. 5.2, and assume
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in addition to (H6δ) that the function ρ is equal to 1 in a neighborhood of zero. We
consider the following conditions on the pair of data points (uc, uη) ∈ L2(�; R

N ) ×
L2(�; R

N ):

(H7δ) ‖uη − uc‖2
L2(�;RN )

< ‖w(0) − uc‖2
L2(�;RN )

;
(H8δ)

∑N
j=1 R̃(ucj ) <

∑N
j=1 R̃(uη

j );
here, w(0) is the componentwise minimizer of the T V -reconstruction functional

J 0 and we set

R̃(u) :=
ˆ

�

ˆ
�

|u(x) − u(y)|
|x − y| dx dy for u ∈ L2(�). (2.11)

The two hypotheses above can be realized, for example, by taking uη = (1+ ε)uc for
some small ε > 0 and w(0) �= uc.

Notice that (H7δ) immediately rules out δ = 0 as an optimal candidate, since the
reconstruction at δ = ∞ is better. On the other hand, ρ is supposed to be equal to 1
near the zero, so that we infer for large enough δ that

Rδ(u) = 1

δn

ˆ
�

ˆ
�

|u(x) − u(y)|
|x − y| dx dy = 1

δn
R̃(u) (2.12)

for all u ∈ L2(�). Since, for large δ, the dependence of the regularizer on δ is of
the same type as the weight case from Sect. 3, we may apply Lemma 3.4 (i) in view
of (H8δ). This yields, for all δ large enough, that

‖uc − w(δ)‖2L2(�;RN )
< ‖uc − uη‖2L2(�;RN )

,

with w(δ) the minimizer of Jδ . This shows that the optimal parameter is not attained
at δ = ∞ either and, as a result, needs to be attained inside � = (0,∞). Hence, the
optimal regularizer lies within the class we started with.

The same conclusions can be drawn for the Brezis & Nguyen case described in
Sect. 5.1 if we assume that ϕ(t) = ctr for small t with c > 0 and r ≥ 2. One may
take, for instance, the normalized version of the second function in Example 5.1. We
then suppose that the pair of data points (uc, uη) satisfies (H7δ) and (H8δ), but now
instead of (2.11), take

R̃(u) := c
ˆ

�

ˆ
�

|u(x) − u(y)|r
|x − y|n+1 dx dy for u ∈ L2(�).

We observe with l = ‖uη‖L∞(�;RN ) (which we assume to be finite) and T l the
truncation as in the proof of Proposition 5.3 that

Jδ(T
l ◦ u) ≤ Jδ(u)

for all u ∈ L2(�) and δ ∈ (0,∞). Therefore, wemay restrict our analysis to functions
u ∈ L2(�) with |u(x) − u(y)| ≤ 2 l for all x, y ∈ �. By additionally considering δ
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large enough, we now find

ϕ

( |u(x) − u(y)|
δ

)
= c

|u(x) − u(y)|r
δr

;

hence,

Rδ(u) = c

δr−1

ˆ
�

ˆ
�

|u(x) − u(y)|r
|x − y|n+1 dx dy = 1

δr−1 R̃(u)

in analogy to (2.12).

6 Tuning the Fractional Parameter

This final section revolves around regularization via the L2-norm of the spectral frac-
tional Laplacian of order s/2, with s in the parameter range � = (0, 1). Our aim here
is twofold. First, we determine the Mosco-limits of the regularizers, which allows us
to conclude in view of the general theory in Sect. 2 that the extended bi-level problem
recovers local models at the boundary points of � = [0, 1]. Second, we provide ana-
lytic conditions ensuring that the optimal parameter lies in the interior of (0, 1), and
illustrate them with an explicit example.

The motivation behind the fractional Laplacian as a regularizer comes from [1],
where the authors show that replacing the total variation in the classical ROF model
[52] with a spectral fractional Laplacian can lead to comparable reconstruction results
with a much smaller computational cost, if the order is chosen correctly. An abstract
optimization of the fractional parameter for the spectral fractional Laplacian has
already been undertaken in [6], although we remark that a convex penalization term
is added there to the model to ensure that the optimal fractional parameter lies inside
(0, 1).

We begin with the problem set-up. Let� ⊂ R
n be a bounded Lipschitz domain and

let (ψm)m∈N ⊂ H1
0 (�) be a sequence of eigenfunctions associated with the Laplace

operator (−�) forming an orthonormal basis of L2(�).With the corresponding eigen-
values 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ↗ ∞, it holds for every m ∈ N that

{
(−�)ψm = λmψm in �,

ψm = 0 on ∂�.
(2.1)

Denoting the projection of any u ∈ L2(�) onto the mth eigenfunction ψm by

ûm := 〈u, ψm〉L2(�),

we have the representation u = ∑∞
m=1 ûmψm .
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With this at hand, one can define for s ∈ (0, 1) the fractional Sobolev spaces

H
s(�) :=

{
u =

∞∑
m=1

ûmψm ∈ L2(�) :
∞∑

m=1

λsmû
2
m < ∞

}
,

endowed with the inner product

〈u, v〉Hs (�) :=
∞∑

m=1

λsmûm v̂m .

It holds that H
s(�) is a Hilbert space for every s ∈ (0, 1); for more details on these

spaces, we refer, e.g., to [18, 46]. In view of (2.1), the so-called spectral fractional
Laplacian of order s/2 (with Dirichlet boundary conditions) on these spaces is defined
as

(−�D)s/2 : H
s(�) → L2(�), (−�D)s/2u =

∞∑
m=1

λ
s/2
m ûmψm .

For s ∈ (0, 1), we consider the regularizer

Rs : L2(�) → [0,∞], Rs(u) =
{

μ‖(−�D)s/2u‖2
L2(�)

for u ∈ H
s(�),

∞ otherwise,
(2.2)

with some μ > 0. At the end of this section (see Remark 6.4), the weight parameter μ

will be used to exhibit examples where structure preservation holds. The regularizers
Rs coincide with μ‖ · ‖2

Hs (�)
on H

s(�), and are L2-weakly lower semicontinuous

because uk⇀u in L2(�) yields

lim inf
k→∞ Rs(uk) = lim inf

k→∞ μ

∞∑
m=1

λsm (̂uk)
2
m ≥ μ

∞∑
m=1

λsmû
2
m = Rs(u)

by a discrete version of Fatou’s lemma. Therefore, the hypotheses in (H) from Sect. 2
are satisfied.

Next, we determine the Mosco-limits of the regularizers, and thereby, provide the
basis for extending the upper-level functional according to Sect. 2.

Proposition 6.1 (Mosco-convergence of the regularizers) Let � := (0, 1) andRs for
each s ∈ � be given by (2.2). Then, for u ∈ L2(�) and s ∈ � = [0, 1],

Rs(u) = Mosc(L2)- lim
s′→s

Rs′(u) =

⎧
⎪⎨
⎪⎩

Rs(u) if s ∈ (0, 1),

μ‖u‖2
L2(�)

if s = 0,

μ‖∇u‖2
L2(�)

+ χH1
0 (�)(u) if s = 1.

(2.3)
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Proof Let us observe up front that for all u ∈ L2(�),

‖u‖2L2(�)
=

∞∑
m=1

û2m and ‖∇u‖2L2(�)
+ χH1

0 (�)(u) =
∞∑

m=1

λmû
2
m; (2.4)

indeed, the first formula is simply Parseval’s identity, while the second one is a conse-
quence of ∇u = ∑∞

m=1 ûm∇ψm for u ∈ H1
0 (�) and the orthogonality in L2(�; R

n)

of the gradients (∇ψm)m with

‖∇ψm‖2L2(�;Rn)
= −

ˆ
�

ψm �ψm dx =
ˆ

�

λmψ2
m dx = λm .

Fixing a sequence (sk)k ⊂ (0, 1) with limit s ∈ [0, 1], we want to prove now that
the Mosco-limit of (Rsk )k exists and is given by the right-hand side of (2.3).

Step 1: The liminf-inequality. Let uk⇀u in L2(�), and assume without loss of
generality that lim infk→∞ Rsk (uk) < ∞. Then, since (̂uk)m → ûm for each m ∈ N

as k → ∞, it follows from a discrete version of Fatou’s lemma that

∞ > lim inf
k→∞ Rsk (uk) = lim inf

k→∞ μ

∞∑
m=1

λskm (̂uk)
2
m ≥ μ

∞∑
m=1

λsmû
2
m .

In light of (2.4) for the cases s ∈ {0, 1}, the last quantity equals the regularizer on the
right hand side of (2.3) in all the three regimes. This finishes the proof of the lower
bound.

Step 2: Construction of a recovery sequence. We first consider the u ∈ H1
0 (�) case.

By the regularity of u and Lebesgue’s dominated converge theorem (applied to the
counting measure) and by considering the constant recovery sequence uk = u, we
get

lim
k→∞Rsk (uk) = lim

k→∞Rsk (u) = lim
k→∞ μ

∞∑
m=1

λskm û
2
m = μ

∞∑
m=1

λsmû
2
m= Rs(u),

which concludes the proof for u ∈ H1
0 (�).

In the general case where u ∈ H
s(�), we consider the sequence (ul)l ⊂ H1

0 (�)

defined by ul := ∑l
m=1 ûmψm for every l ∈ N. Then, by construction, ul → u

strongly in L2(�) and

lim
l→∞

∞∑
m=1

λsm (̂ul)
2
m = lim

l→∞

l∑
m=1

λsmû
2
m =

∞∑
m=1

λsmû
2
m .

The existence of a recovery sequence follows then by classical diagonalization argu-
ments, using the previous case. �
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Given clean and noisy images, uc, uη ∈ L2(�; R
N ), we work with the reconstruc-

tion functionals

Js, j : L2(Rn) → [0,∞], Js, j (u) = ‖u − uη
j‖2L2(�)

+ Rs(u)

for s ∈ (0, 1) and j ∈ {1, . . . , N }. Recalling (T ) and (T ), we obtain as a consequence
of Proposition 6.1 that the extension of the upper-level functional I to � is given by

I : [0, 1] → [0,∞], I(s) = ‖w(s) − uc‖2L2(�;RN )
;

here, w(s) = (w
(s)
1 , . . . , w

(s)
N ) with w

(s)
j the unique minimizer of the strictly convex

functional

J s, j (u) = ‖u − uη
j‖2L2(�)

+ Rs(u) =
∞∑

m=1

(ûm −̂(uη
j )m

)2 + μλsmû
2
m . (2.5)

By Theorem 2.5, I is then the relaxation of I and has a minimizer in � = [0, 1].
Wenowcontinue by exhibiting conditions underwhich theminimumofI is attained

inside (0, 1). This is based on a direct approach, observing that the components ofw(s)

can be determined explicitly byminimizing the entries of the sum in (2.5) individually.
This gives the representation

w
(s)
j =

∞∑
m=1

1

1 + μλsm

̂(uη
j )m

ψm for j ∈ {1, . . . , N }. (2.6)

The following lemma investigates how w(s) varies with s. In the s > 0 case, this
lemma is essentially contained in [6, Theorem 2] (i.e., in a slightly different setting
with periodic instead of Dirichlet boundary conditions). The proof below contains
some additional details for the reader’s convenience.

Lemma 6.2 Assume that uη ∈ H
ε(�; R

N ) for some ε ∈ (0, 1). Then, themap [0, 1] �→
L2(�; R

N ), s �→ w(s) is Fréchet-differentiable with derivative

∂sw
(s) = −

∞∑
m=1

μ log(λm)λsm

(1 + μλsm)2
ûη

mψm . (2.7)

Proof For j ∈ {1, . . . , N }, we set

v j := −
∞∑

m=1

μ log(λm)λsm

(1 + μλsm)2
̂(uη

j )m
ψm,
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which is a well-defined element of L2(�) for all s ∈ [0, 1] because uη
j ∈ H

ε(�).
Since

w
(β)
j − w

(s)
j

t − s
=

∞∑
m=1

1

t − s

(
1

1 + μλtm
− 1

1 + μλsm

)
̂(uη

j )m
ψm, s, t ∈ [0, 1],

in view of (2.6), we can apply the mean value theorem to obtain, for each m ∈ N, a
value γ in between s and t such that

∣∣∣∣
1

t − s

(
1

1 + μλtm
− 1

1 + μλsm

)∣∣∣∣ ≤
∣∣∣∣
μ log(λm)λ

γ
m

(1 + μλ
γ
m)2

∣∣∣∣ ≤ | log(λm)|.

Exploiting once again that uη
j ∈ H

ε(�) gives

∥∥∥∥
w

(β)
j − w

(s)
j

t − s
− v j

∥∥∥∥
2

L2(�)

=
∞∑

m=1

∣∣∣∣
1

t − s

(
1

1 + μλtm
− 1

1 + μλsm

)
+ μ log(λm)λsm

(1 + μλsm)2

∣∣∣∣
2
̂(uη

j )
2

m

≤
∞∑

m=1

| log(λm)|2̂(uη
j )
2

m
< ∞.

In particular, we may take the limit t → s on the left-hand side of the preceding
estimate and interchange with the sum to show the claim. �
It follows as a consequence of Lemma 6.2 that the upper level function I : [0, 1] →
[0,∞] is differentiable with derivative

I ′
(s) = 2

〈
∂sw

(s), w(s) − uc
〉
L2(�;RN )

for s ∈ [0, 1]; at the boundary points s = 0 and s = 1, I ′
(s) stands for the one-sided

derivative. Plugging in the identities (2.7) and (2.6) in the inner product and using that
the family (ψm)m is orthonormal yields

I ′
(s) = −2

N∑
j=1

∞∑
m=1

μ log(λm)λsm

(1 + μλsm)2
̂(uη

j )m

(
1

1 + μλsm

̂(uη
j )m

− (̂ucj )m

)
, (2.8)

for s ∈ [0, 1]. Observe that the simple conditions

I ′
(0) < 0 and I ′

(1) > 0,

imply that I does not attain its minimizer at s = 0 or at s = 1, respectively. After
taking s = 0 and s = 1 in (2.8) and simplifying, these requirements can be written as
follows:

(H1s)
N∑
j=1

∞∑
m=1

log(λm)̂(uη
j )m

(
̂(uη

j )m
− (1 + μ)̂(ucj )m

)
> 0;
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(H2s)
N∑
j=1

∞∑
m=1

log(λm)λm

(1 + μλm)3
̂(uη

j )m

(
̂(uη

j )m
− (1 + μλm )̂(ucj )m

)
< 0.

Since (H1s) guarantees that the minimizer of I is not s = 0 and (H2s) ensures the
minimizer to be different from s = 1, Corollary 2.8 (iii) yields the following result.

Corollary 6.3 Suppose that uη ∈ H
ε(�; R

N ) for some ε ∈ (0, 1), and that assumptions
(H1s) and (H2s) are satisfied. Then, I admits a minimizer s̄ ∈ (0, 1).

We close this section with an interpretation of the conditions (H1s) and (H2s), and
a specific example in which they are both satisfied.

Remark 6.4 a) Suppose that N = 1. Decomposing the noisy image into the sum of the
clean image and the noise, i.e., uη = uc + η, turns (H1s) and (H2s) into

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
m=1

log(λm)
(
−μûc2m + (1 − μ)ûcm η̂m + η̂2m

)
> 0,

∞∑
m=1

log(λm)λm

(1 + μλm)3

(
−μλmûc

2
m + (1 − μλm)ûcm η̂m + η̂2m

)
< 0.

(2.9)

If we assume that the noise has mostly high frequencies and that the clean image has
mostly moderate frequencies, then the mixed terms in (2.9) will be small. The first
condition is then close to

−μ

∞∑
m=1

log(λm)ûc2m +
∞∑

m=1

log(λm )̂η2m > 0,

which holds for sufficiently small μ. Similarly, for sufficiently large μ, the second
condition is satisfied. As we analyse in b) below, there are instances where we can
find a range for μ that implies both conditions.

b) In the case where � = (0, π)2, by indexing the eigenfunctions via m =
(m1,m2) ∈ N

2, we find

ψm(x) = sin(m1x1) sin(m2x2)

with corresponding eigenvalues λm = m2
1 +m2

2. By choosing u
c = ψ(1,1) as the clean

image and η = 1
10ψ(10,10) as the noise, the condition (2.9) turns into

⎧⎨
⎩

−100μ log(2) + log(200) > 0,

−μ
4 log(2)

(1 + 2μ)3
+ 2 log(200)

(1 + 200μ)3
< 0,

which is satisfied for

0.0236 ≈ μ− < μ < μ+ ≈ 0.0764.
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On the other hand, when μ = 0.023, then s = 1 is optimal, while the optimal solution
for μ = 0.11 is s = 0. This can be seen numerically as for these values of μ, the
derivative I ′

is either negative or positive on [0, 1], respectively.
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