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1. Introduction

The estimation of forest state and change is crucial for the assessment of the changes in the carbon stocks 

which are necessary as per the requirements of the Kyoto Protocol (UNFCCC 2021). The estimation of 

the dynamics of forest aboveground biomass (AGB) is also important to study the impact of forest 

management towards climate change mitigation (e.g., Eggleston et al. 2006; Puliti and Astrup 2020). 

The field data from the National Forest Inventories (NFIs) are commonly used to estimate the state and 

change of forest attributes such as AGB and growing stock volume for countries and regions within 

countries (e.g., Tomppo et al. 2010). However the collection of the data is expensive, time consuming 

and sometimes also impossible in inaccessible areas (e.g., Saarela et al. 2020). To improve cost-

efficiency of the forest attribute estimation, remotely sensed (RS) data are incorporated along with the 

field data. The use of RS data enables mapping of parameters across the landscape it covers as well as 

estimation of the target population mean and total (e.g., Saarela et al. 2020). Previous studies have been 

conducted combining field data with Light Detection and Ranging (LiDAR) data that proved to be 

efficient in monitoring AGB changes (e.g., Dubayah et al. 2010, Bollandsås et al. 2013, Næsset et al. 

2013, Skowronski et al. 2014, McRoberts et al. 2015, Magnussen et al. 2015, Hopkinson et al. 2016, 

Ene et al. 2017, Puliti and Astrup 2020). Hudak et al. (2012) estimated the change in above ground 

biomass (∆AGB, where ∆ represents the change) through direct and indirect approaches from the 

changes in the predictor variables retrieved from the airborne laser scanning (ALS) data. McRoberts et 

al. (2015) presented direct and indirect estimation methods for ∆AGB using ALS data along with forest 

inventory data for a boreal forest in Våler Municipality, Norway. 

Categorical variables have been implemented for the estimation of AGB using RS data and field 

inventory data in a number of studies (e.g., Ou et al. 2019, Li et al. 2019 and 2020). In Li et al. (2019) 

and Li et al. (2020) the categorical variables were formed based on the available field data and Landsat 

8 data for different classes of forest crown densities. The categorical variables were used in the 

parametric models for the estimation of AGB. A comparative analysis between the models with and 

without categorical variables was performed proving the efficiency of the inclusion of categorical 

variables in modelling. In Ou et al. (2019), a comparative analysis of parametric models (linear model 

(LM) and LM with combined variables) and non-parametric methods (random forest (RF) and artificial 

neural network (ANN)) was conducted based on the inclusion of categorical variables for different age 

classes of Pinus densata forests. The models included categorical variables were observed to improve 

the overall accuracy of estimation by 14-42% and 32-44% for the training and testing plots based on the 

root mean-squared error (RMSE) values. 

The objective of this study was to incorporate parametric models (LMs) and non-parametric (RF) 

methods along with categorical variables and using NFI field data and auxiliary LiDAR data for the 

estimation of ∆AGB. The study is mainly focused to observe the ability of LiDAR for ∆AGB estimation 

when different management practices of the forests are taken into account. The categorical variables 

were grouped based on the management practices such as, thinning and felling operations conducted in 

the plots. 
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2. Material and Methods

The study area is located in south of Sweden with a forest cover of 332171.8 ha and species composition 

with proportions such as, 24.6% Pine (Pinus sylvestris), 53.8% Spruce (Picea abies), 11.1% Birch 

(Betula spp.) and 24.5% of other broadleaved tree species. The Swedish NFI field data were available 

for 218 plots for two time periods, 2010-2014 and 2015-2019. The plots were circular with 10m radius 

sampled using the systematic cluster sampling method. 

For each corresponding field plot the LiDAR metrics were retrieved using the Fusion software 

(McGaughey 2020). Laser returns above 1.5m height were retained in order to eliminate the non-

vegetation returns. The LiDAR metrics used for the regression modelling were 80% height percentile 

(hp80) and the vegetation ratio (vr) based on the previous studies (Nilsson et al. 2017, Saarela et al. 2020). 

The ∆AGB was estimated directly from the plot-level NFI data available for time period 2 (2015-

2019) and 1 (2010-2014). The data were grouped based on the silvicultural operations into three 

categories namely, plots with thinning operation, plots with clear felling operations and plots with no 

activity. The plot-level values for ∆AGB and the change in LiDAR metrics (∆LiDAR metrics) were 

used for developing the relationship between the response variable (∆AGB) and the predictor variables 

(∆hp80 and ∆vr) along with the categorical variables (indicators I1 and I2). I1 and I2 represent the categories 

of plots with no activity and with thinning operation, respectively. Figure 1 presents an overview of the 

modelling workflow.  

For the parametric modelling, the LMs with and without accounting for heteroscedasticity were 

used along with the LiDAR metrics and categorical variables. For the model accounting for 

heteroscedasticity the nlme package in R was used (Pinheiro et al. 2021). The first model selected for 

the study was the LM with no intercept and with the LiDAR metrics and the categorical variables 

assuming that the random errors are homoscedastic. The second parametric model accounted for 

heteroscedasticity in random errors. To calculate weights, the variance function with the exponential 

form of the random error variance was selected from the nlme package in R (Pinheiro et al. 2021). The 

selection was based on the Akaike information criterion (AIC). The models have been represented in 

Table 1. 

Table 1. The model forms of the parametric LMs, where, β and γ represent the coefficients and ɛ represents the 
random error for the first model. α and δ represent the coefficients and ʋ represents the random error for the 
second model. And, I1 and I2 represent the first and the second group of the categorical variables. 

Model type Model form 

LM (no account for 

heteroscedasticity) 
∆𝐴𝐺𝐵 = 𝛽1∆ℎ𝑝80 +  𝛽2∆𝑣𝑟 +  𝛾1(∆ℎ𝑝80 ∙ 𝐼1) +  𝛾2(∆𝑣𝑟 ∙ 𝐼1)

+ 𝛾3(∆ℎ𝑝80 ∙ 𝐼2) +  𝛾4(∆𝑣𝑟 ∙ 𝐼2) +  ɛ

LM (account for 

heteroscedasticity) 
∆𝐴𝐺𝐵 = 𝛼1∆ℎ𝑝80 + 𝛼2∆𝑣𝑟 + 𝛿1(∆ℎ𝑝80 ∙ 𝐼1) + 𝛿2(∆𝑣𝑟 ∙ 𝐼1)

+ 𝛿3(∆ℎ𝑝80 ∙ 𝐼2) +  𝛿4(∆𝑣𝑟 ∙ 𝐼2) +  ʋ

For the non-parametric modelling, the RF method with and without categorical variables were used. 

The RF methods were formed using the randomForest package in R (Liaw and Wiener 2002). For this 

study, the default value of ‘ntree’ = 500 trees was used and the same dataset was used to fit the parametric 

models and the non-parametric methods for ∆AGB prediction. 

Figure 1: The methodological overview of this study. 
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3. Results and Discussion

The predicted ∆AGBs versus the field ∆AGBs were plotted for the four models, as seen in Figure 2. In 

case of the parametric models the under estimation of ∆AGB values for the plots for category 1 (plots 

with no activity) is higher compared to that of the non-parametric models where the underestimation is 

observed to be mostly in the positive range of the predicted ∆AGB values. The overestimation of the 

∆AGB values for category 1 is observed to be clustered around 0 in case of the parametric models 

whereas, the RF model with categorical variables has a lower range of overestimated ∆AGB values. For 

category 2 (plots with thinning operation) the range of overestimation of ∆AGB values is observed to 

be lower and more spread out in case of the RF model with categorical variables compared to the other 

three models. The RMSE values of the four models have been listed in Table 2. The models with 

interactions with categorical variables have lower RMSE values. Out of the three models with 

categorical variable interactions, the LM model (with no account of heteroscedasticity) is observed to 

have a wider range of predicted ∆AGB values and the lowest RMSE value of 32.269 Mgha-1 followed 

by the RF method with RMSE value of 34.608 Mgha-1. 

The ∆AGB values can be predicted for the entire study area on the availability of the raster maps 

for the categorical variables based on the silvicultural operations conducted. From the trend in the above 

plots it can be expected to have a more heterogeneous map of predicted values of ∆AGB in case of the 

non-parametric RF method as the overestimation and underestimation of the smaller and larger ∆AGB 

values, respectively, is lesser compared to that of the parametric models.  

Table 2. The models with their respective RMSE values in Mgha-1. 

Model/ Method RMSE (Mgha-1) 

LM (no account for heteroscedasticity) 32.269 

LM (account for heteroscedasticity) 35.882 

RF (without categorical variables) 43.708 

RF (with categorical variables) 34.608 

4. Conclusions

In this study, we incorporated the parametric and non-parametric models with categorical variables 

based on the different silvicultural operations conducted in the sample plots. The incorporation of the 

categorical variables along with LiDAR metrics was seen to improve the accuracy of ∆AGB prediction. 

It was observed from this study that the models with interactions with categorical variables perform 

better, out of which the LM assuming the random errors are homoscedastic was observed to perform the 

best in terms of yielding the lowest RMSE value of 32.269 Mgha-1. And, also the overestimation of 

lower ∆AGB values and underestimation of higher ∆AGB values was seen to improve in case of the 

non-parametric RF model along with the grouped factor of silvicultural operations. 

Figure 2: Predicted ∆AGB versus measured ∆AGB for: (a) LM without account for heteroscedasticity, (b) LM with 
account for heteroscedasticity, (c) RF without categorical variables, and, (d) RF with categorical variables. 
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