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1. Introduction
Spatially representative maps of forest biodiversity are directly limited by a lack of suitable in-situ 
representations and drivers of ecosystem structure. Biota interact with ecosystems in three dimensions, 
yet structural indicators of biodiversity are typically only captured with one- (e.g. tree height) or two-
dimensional (e.g. canopy cover) measures. More complex and objective measures of habitat structure 
or, what we call structural biodiversity traits (SBTs; e.g. volume, crown dimensions, tree-level leaf area, 
branching architecture) that are more compatible with remotely sensed measurements would refine 
floral and faunal biodiversity mapping efforts, but we currently lack a consistent, spatially representative 
global dataset of SBTs for testing scaling predictions.  
Terrestrial Laser Scanning (TLS) is a ground-based LiDAR technology that directly addresses a lack of 
SBTs by enabling collection of unprecedented 3D measurements of tree- and plot-level structure, 
revolutionizing how we characterize forests (Calders et al., 2020; Disney, 2019). Now, we are able to 
capture detailed 3D tree measurements with TLS - from branching angle and crown architecture to tree 
volume and biomass - directly capturing the fundamental elements of structural biodiversity and habitat 
structure (Verbeeck et al., 2019). The measurements capable with TLS make it the single most promising 
technology for moving from traditional plot-based measures to next-generation 3D characterization of 
forests (Disney et al., 2019; Stovall & Shugart, 2018).  

Here, we provide an overview of a recently funded project that will bring together thousands of TLS 
plot locations from the laser scanning community to develop a first of its kind global database of SBTs 
(Figure 1). With this database this project will enable hypothesis testing of unprecedented ecological 
questions.  

Figure 1: Current global TLS database of >1000 forest plots covering 10 biomes. 
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2. Methods
TLS is already collected at forest sites around the globe (Figure 1). Sites with processed tree-level 

data (triangles) span a large proportion of our database. Our preliminary assessment also highlights data 
gaps for future contributions and field campaigns planned in South Africa. 

We will derive a standardized set of tree-level metrics from TLS data (See Table 1; Calders et al., 
2015a; Krishna Moorthy et al., 2019; Raumonen et al., 2013; Verbeeck et al., 2019; Walter et al., 2021). 
In addition, we will derive plot-level estimates of cover, plant area index, plant area vegetation density, 
and leaf angle distribution (Calders et al., 2014; Stovall et al., 2021). 

3. Outlook and Impact
The key deliverable from this work will be a global database of 3D structural biodiversity traits 

(SBTs) that will refine our understanding of scaling relationships and can be leveraged for improved 
biodiversity mapping. Our work will provide a first-of-its-kind global analysis of the drivers of SBTs, 
directly improving predictions of aboveground structure in forests. Indeed, the results gleaned from this 
global-scale analysis of the controls on scaling relationships will inform functional ecosystem modeling 
efforts and remote sensing of biodiversity. A database of SBTs is a critical step towards informing a 
global remote sensing-based approach to mapping and monitoring the habitat structure and biodiversity, 
directly supporting conservation efforts. 
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