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Background

Demand:

In profile extrusion, the die is a very important component. It ensures that the
material is shaped into the desired profile. During the cooling process, the
imparted shape will deform due to temperature-based shrinkage as well as
inhomogeneities in the material. This can be accounted for in the die design, as
the optimization of the die shape currently is computationally very expensive.

Aim:

As seen in |2|, there have been advances in RL-based Shape Optimization.
RL-based Shape Optimization splits the computational load into an offline
part where the agent (optimizer) is trained for a preselected training domain.
Inference, that is, the online optimization of a single problem from the domain
of feasible parameters, is then much shorter.

Reinforcement Learning

In RL, the agent selects an action .
(new design variables). This action | _environment
is used in the environment to produce action <{

a new observation (geometry). During agent
training, also a reward (objective

observation
& reward

function) is supplied. It informs the agent whether the last action improved
the geometry.

Results - Serial

There are two shape
optimization strategies for RL.
For the incremental approach,
the agent iteratively outputs
incremental optimizations ot
the previous design variables. For the direct approach, in contrast, the agent
directly vields the optimal design variables.
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Incremental vs. Direct:

Direct converges after additional
training but is overall 10 times

Incremental converges, but Direct
does not converge atter 100k

iterations. slower.
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Results - Parallel

Vectorized Environment Training:

To reduce the wall-clock offline training €ny env
time, the agent learns with multiple envi- agent
ronments in parallel. ony oy

Bnvironments Results in an increase of com-
: putational load by 38%, but also
— 1 in a wall-clock time speedup of 5.

Episode reward
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Agent:

We used the PPO agent as our baseline. Depending on the action space, we

compare this baseline to other agents (A2C, DQN, SAC, DDPG).
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o PPO is the fastest.
o A2C and DQN do not fully

converge.

o PPO is slowest to converge,
DDPG fastest.

o A2C does not converge,
SAC shows inconsistent behavior.

o Apply methodology to 3D shapes.
o Expand observation space for better generalization of learned optimizations.
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