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OPTIMAL CONVERGENCE RATES IN 𝐿2 FOR A FIRST ORDER SYSTEM
LEAST SQUARES FINITE ELEMENT METHOD

PART I: HOMOGENEOUS BOUNDARY CONDITIONS

Maximilian Bernkopf* and Jens Markus Melenk

Abstract. We analyze a divergence based first order system least squares method applied to a second
order elliptic model problem with homogeneous boundary conditions. We prove optimal convergence
in the 𝐿2(Ω) norm for the scalar variable. Numerical results confirm our findings.

Mathematics Subject Classification. 65N30, 65N35, 65N12.

Received December 24, 2020. Accepted March 7, 2022.

1. Introduction

Least Squares Finite Element Methods (LSFEM) are an important class of numerical methods for the solution
of partial differential equations with a variety of applications. The main idea of the LSFEM is to reformulate
the partial differential equation of interest as a minimization problem, for which a variety of tools is available.
For example, even for non-symmetric or indefinite problems, the discretization with the least squares approach
leads to symmetric, positive definite systems, which can be solved with well-established numerical technologies.
Furthermore, the least squares technique is naturally quasi-optimal, albeit in a problem-dependent norm. For
second order PDEs, which is the setting of the present work, the most common least squares approach is that of
rewriting the equation as a First Order Least Squares System (FOSLS) that can be discretized with established
finite element techniques. A benefit is that many quantities of interest are approximated directly without the
need of postprocessing. We mention [5] as a classical monograph on the topic as well as the papers [4, 7, 9, 15].

The present work considers a Poisson-like second order model problem written as a system of first order
equations. For the discretization, an 𝐻𝐻𝐻(Ω,div)×𝐻1(Ω)-conforming least squares formulation is employed. Even
though our model problem in its standard 𝐻1(Ω) formulation is coercive our methods and lines of proof can
most certainly be applied to other problems as well, see [2, 10] for an application to the Helmholtz equation.
The LSFEM is typically quasi-optimal in some problem-dependent energy norm, which is, however, somewhat
intractable; a priori error estimates in more familiar norms such as the 𝐿2(Ω) norm of the scalar variable are
thus desirable. Numerical examples in our previous work [2] suggested convergence rates in standard norms such
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as the 𝐿2(Ω)-norm which, to our best knowledge, are not fully explained by the current theory. In the present
work, we develop a convergence theory with minimal assumptions on the regularity of the right-hand side.

1.1. Contribution of the present work

Our main contribution are optimal 𝐿2(Ω) based convergence result for the least squares approximation 𝑢ℎ to
the scalar variable 𝑢. Furthermore, we derive ℎ𝑝 error estimates for the gradient of the scalar variable 𝑢 as well
as an ℎ𝑝 error estimate for the vector variable 𝜙𝜙𝜙 = −∇𝑢 in the 𝐿2(Ω) norm. Simultaneous error estimates of the
gradient of the the scalar variable 𝑢 and the vector variable 𝜙𝜙𝜙 in the 𝐿2(Ω) norm are available in the literature,
see Lemma 6.2 of [12]. We derive error estimates for these two quantities of interest separately. These optimality
results are new in the sense that we achieve optimal convergence rates under minimal regularity assumptions
on the data. Here, we call a method optimal in a certain norm, if the norm of the error made by the method is
of the same order as the best approximation of the employed space.

1.1.1. Review of related results

In [15] the author considered the classical model problem −∆𝑢 = 𝑓 with inhomogeneous Dirichlet boundary
condition 𝑢 = 𝑔 in some smooth domain Ω. Unlike the present work the least squares formulation employs
vector valued 𝐻1(Ω) functions instead of 𝐻𝐻𝐻(Ω,div) for the vector variable. The corresponding finite element
spaces are chosen such that they satisfy simultaneous approximation properties in 𝐿2(Ω) and 𝐻1(Ω) for both
the scalar variable 𝑢 and the vector variable 𝜙𝜙𝜙. Using a duality argument akin to the one used in the present
work the author arrived at the error estimate

‖𝑢− 𝑢ℎ‖𝐿2(Ω) . ℎ‖(𝜙𝜙𝜙−𝜙𝜙𝜙ℎ, 𝑢− 𝑢ℎ)‖𝑏,

see Theorem 4.1 of [15], where ‖(·, ·)‖𝑏 denotes the corresponding energy norm. At this point higher order
convergence rates are just a question of approximation properties in ‖(·, ·)‖𝑏, see Lemma 3.1 of [15] for a precise
statement. As stated after the proof of Theorem 4.1 of [15], one can extract optimal convergence rates for
sufficiently smooth data 𝑓 and 𝑔. The smoothness of the data is important as the following considerations show:
For the case of a smooth boundary Γ and 𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈ 𝐻3/2(Γ), elliptic regularity gives 𝑢 ∈ 𝐻2(Ω).
Therefore 𝑢 can be approximated by globally continuous piecewise polynomials of degree greater or equal to one
with a error 𝑂(ℎ2) in the 𝐿2(Ω) norm, which is achieved by classical FEM, due to the Aubin-Nitsche trick. In
contrast, the above least squares estimate does not give the desired rate: The norm ‖(𝜙𝜙𝜙−𝜙𝜙𝜙ℎ, 𝑢− 𝑢ℎ)‖𝑏 contains
a term of the form

‖∇ · (𝜙𝜙𝜙−𝜙𝜙𝜙ℎ)‖𝐿2(Ω) = ‖𝑓 −∇ ·𝜙𝜙𝜙ℎ‖𝐿2(Ω),

from which no further convergence rate can be extracted, since 𝑓 is only in 𝐿2(Ω).
In [7] (see also [9]) the problem −∇ · (𝐴∇𝑢) + 𝑋𝑢 = 𝑓 with uniformly elliptic diffusion matrix 𝐴 and 𝑋

a linear differential operator of order at most one together with homogeneous mixed Dirichlet and Neumann
boundary conditions was considered. The least squares formulation presented therein employs the same spaces
as the present work. Apart from nontrivial norm equivalence results, see Theorem 3.1 of [7], they also derived
the following estimate of the least squares approximation

‖𝑢− 𝑢ℎ‖𝐻1(Ω) + ‖𝜙𝜙𝜙−𝜙𝜙𝜙ℎ‖𝐻(div,Ω) . ℎ
𝑠(‖𝑢‖𝐻𝑠+1(Ω) + ‖𝜙𝜙𝜙‖𝐻𝑠+1(Ω)),

assuming 𝑢 ∈ 𝐻𝑠+1(Ω) and 𝜙𝜙𝜙 ∈𝐻𝐻𝐻𝑠+1(Ω). This result is then optimal in the stated norm, however, the assumed
regularity is somewhat unsatisfactory in the sense that if the solution 𝑢 ∈ 𝐻𝑠+1(Ω) then the relation ∇𝑢+𝜙𝜙𝜙 = 0
merely provides the regularity 𝜙𝜙𝜙 ∈𝐻𝐻𝐻𝑠(Ω) and not the assumed regularity 𝜙𝜙𝜙 ∈𝐻𝐻𝐻𝑠+1(Ω).

In [4] the same model problem as well as the same least squares formulation is considered. The main goal
of [4] is to establish 𝐿2(Ω) error estimates for 𝑢 and 𝜙𝜙𝜙. In Lemma 3.4 of [4] a result similar to Theorem 4.1 of
[15] is obtained. This result, however, suffers from the same drawback as elaborated above. Furthermore, they
prove optimality of the error of the vector variable 𝜙𝜙𝜙 in the 𝐿2(Ω) norm, see Corollary 3.7 of [4].
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Recently in Section 6.2 of [12] the authors also considered a first order system least squares formulation of
−∆𝑢 = 𝑓 with homogeneous Dirichlet boundary condition. A simultaneous error estimate of the gradient of the
the scalar variable 𝑢 and the vector variable 𝜙𝜙𝜙 in the 𝐿2(Ω) norm is derived in Lemma 6.2 of [12]. Note that
the method of proof therein does not hinge on duality arguments. We point out that in our results we derive
error estimates separately for these two quantities in the Theorems 4.8 and 4.10, which also manifests itself in
the error estimates of Corollary 4.14.

The main tools for a priori error estimates in more tractable norms such as 𝐿2(Ω) instead of the energy norm
in a least squares setting are, as it is done in the present paper and the above literature, duality arguments,
which lead to an estimate of the form

‖𝑢− 𝑢ℎ‖𝐿2(Ω) . ℎ‖(𝜙𝜙𝜙−𝜙𝜙𝜙ℎ, 𝑢− 𝑢ℎ)‖𝑏.

As elaborated above it is not possible to extract the desired optimal rate from this estimate directly. In the
proof of one of our main result (Thm. 4.12) we exploit the duality argument in a more delicate way, which
allows us to lower the regularity requirements on 𝜙𝜙𝜙 to what could be expected from the regularity of the data
𝑓 . Key components in the proof are the div-conforming approximation operators 𝐼𝐼𝐼0

ℎ and 𝐼𝐼𝐼ℎ (cf. Lems. 4.3, 4.6),
which are also of independent interest.

1.1.2. Notation

Throughout this work, Ω denotes a bounded simply connected domain in R𝑑, 𝑑 = 2, 3 with connected
boundary Γ := 𝜕Ω and outward unit normal vector 𝑛𝑛𝑛. Let Γ consist of two disjoint parts Γ𝐷 and Γ𝑁 . For scalar
functions in 𝑑 variables the gradient ∇ and for R𝑑-valued functions 𝜙𝜙𝜙 the divergence ∇· are defined as usual as
∇𝑢 = (𝜕𝑥1 , · · · , 𝜕𝑥𝑑

) and ∇·𝜙𝜙𝜙 =
∑︀𝑑
𝑖=1 𝜕𝑥𝑖𝜙𝜙𝜙𝑖. For 𝑑 = 3 the curl operator ∇× of a vector field 𝜙𝜙𝜙 is given as usual

by ∇×𝜙𝜙𝜙 = (𝜕𝑥2𝜙𝜙𝜙3 − 𝜕𝑥3𝜙𝜙𝜙2,−(𝜕𝑥1𝜙𝜙𝜙3 − 𝜕𝑥3𝜙𝜙𝜙1), 𝜕𝑥1𝜙𝜙𝜙2 − 𝜕𝑥2𝜙𝜙𝜙1)𝑇 . In spatial dimension 𝑑 = 2 the scalar-valued
curl operator acting on vector fields is given by curl𝜙𝜙𝜙 = 𝜕𝑥1𝜙𝜙𝜙2 − 𝜕𝑥2𝜙𝜙𝜙1 and the vector-valued curl operator
acting on scalar functions by curlcurlcurl𝑢 = (𝜕𝑥2𝑢,−𝜕𝑥1𝑢). We remind the reader of the exact sequences in spatial
dimension 𝑑 = 3

R id−→ 𝐻1(Ω) ∇−→𝐻𝐻𝐻(Ω,curlcurlcurl) ∇×−→𝐻𝐻𝐻(Ω,div) ∇·−→ 𝐿2(Ω) 0−→ {0},

as well as with zero boundary conditions

{0} id−→ 𝐻1
0 (Ω) ∇−→𝐻𝐻𝐻0(Ω,curlcurlcurl) ∇×−→𝐻𝐻𝐻0(Ω,div) ∇·−→ 𝐿2

0(Ω) 0−→ {0}.

In spatial dimension 𝑑 = 2 there are two exact sequences which are isomorphic to each other via rotation

R id−→ 𝐻1(Ω) ∇−→𝐻𝐻𝐻(Ω, curl) curl−→ 𝐿2(Ω) 0−→ {0}, (1.1)

as well as
R id−→ 𝐻1(Ω) curlcurlcurl−→𝐻𝐻𝐻(Ω,div) ∇·−→ 𝐿2(Ω) 0−→ {0}. (1.2)

Note that via rotation the sequence in (1.2) can be obtained from the sequence in (1.1): With the matrix
𝑅 =

(︀
0 1
−1 0

)︀
we have curl𝜙𝜙𝜙 = ∇ · (𝑅𝜙𝜙𝜙) and curlcurlcurl𝑢 = 𝑅∇𝑢.

We consider the following spaces in spatial dimension 𝑑 = 2, 3:

𝐻1(Ω) = {𝑢 ∈ 𝐿2(Ω): ∇𝑢 ∈ 𝐿𝐿𝐿2(Ω)}, 𝐻𝐻𝐻(Ω,div) = {𝜙𝜙𝜙 ∈ 𝐿𝐿𝐿2(Ω): ∇ ·𝜙𝜙𝜙 ∈ 𝐿2(Ω)},
𝐻1
𝐷(Ω) = {𝑢 ∈ 𝐻1(Ω): 𝑢 = 0 on Γ𝐷}, 𝐻𝐻𝐻𝑁 (Ω,div) = {𝜙𝜙𝜙 ∈𝐻𝐻𝐻(Ω,div) : 𝜙𝜙𝜙 ·𝑛𝑛𝑛 = 0 on Γ𝑁},
𝐻1

0 (Ω) = {𝑢 ∈ 𝐻1(Ω): 𝑢 = 0 on Γ}, 𝐻𝐻𝐻0(Ω,div) = {𝜙𝜙𝜙 ∈𝐻𝐻𝐻(Ω,div) : 𝜙𝜙𝜙 ·𝑛𝑛𝑛 = 0 on Γ}.

Additionally, we introduce the spaces corresponding to the curl operator in spatial dimension 𝑑 = 3 as well as
the scalar valued curl operator in spatial dimension 𝑑 = 2:

𝐻𝐻𝐻(Ω,curlcurlcurl) = {𝜙𝜙𝜙 ∈ 𝐿𝐿𝐿2(Ω): ∇×𝜙𝜙𝜙 ∈ 𝐿𝐿𝐿2(Ω)}, 𝐻𝐻𝐻(Ω, curl) = {𝜙𝜙𝜙 ∈ 𝐿𝐿𝐿2(Ω): curl𝜙𝜙𝜙 ∈ 𝐿2(Ω)},
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𝐻𝐻𝐻𝐷(Ω,curlcurlcurl) = {𝜙𝜙𝜙 ∈𝐻𝐻𝐻(Ω,curlcurlcurl) : 𝑛𝑛𝑛×𝜙𝜙𝜙 = 0 on Γ𝐷}, 𝐻𝐻𝐻𝐷(Ω, curl) = {𝜙𝜙𝜙 ∈𝐻𝐻𝐻(Ω, curl) : 𝑡𝑡𝑡 ·𝜙𝜙𝜙 = 0 on Γ𝐷},
𝐻𝐻𝐻0(Ω,curlcurlcurl) = {𝜙𝜙𝜙 ∈𝐻𝐻𝐻(Ω,curlcurlcurl) : 𝑛𝑛𝑛×𝜙𝜙𝜙 = 0 on Γ}, 𝐻𝐻𝐻0(Ω, curl) = {𝜙𝜙𝜙 ∈𝐻𝐻𝐻(Ω, curl) : 𝑡𝑡𝑡 ·𝜙𝜙𝜙 = 0 on Γ}.

where 𝑡𝑡𝑡 = 𝑅𝑇𝑛𝑛𝑛 is the corresponding tangential vector in spatial dimension 𝑑 = 2. For further detail and
references see [6, 11,18,19].

Since we also consider smooth boundaries we employ curved elements. We make the following assumptions
on the triangulation.

Assumption 1.1 (Quasi-uniform regular meshes). Let ̂︀𝐾 be the reference simplex. Each element map 𝐹𝐾 : ̂︀𝐾 →
𝐾 can be written as 𝐹𝐾 = 𝑅𝐾 ∘𝐴𝐾 , where 𝐴𝐾 is an affine map and the maps 𝑅𝐾 and 𝐴𝐾 satisfy, for constants
𝐶affine, 𝐶metric, 𝜌 > 0 independent of 𝐾:

‖𝐴′𝐾‖𝐿∞( ̂︀𝐾) ≤ 𝐶affineℎ𝐾 ,
⃦⃦

(𝐴′𝐾)−1
⃦⃦
𝐿∞( ̂︀𝐾)

≤ 𝐶affineℎ
−1
𝐾 ,⃦⃦

(𝑅′𝐾)−1
⃦⃦
𝐿∞(�̃�)

≤ 𝐶metric, ‖∇𝑛𝑅𝐾‖𝐿∞(�̃�) ≤ 𝐶metric𝜌
𝑛𝑛! ∀𝑛 ∈ N0.

Here, �̃� = 𝐴𝐾( ̂︀𝐾) and ℎ𝐾 > 0 denotes the element diameter.

On the reference simplex ̂︀𝐾 we introduce the Raviart–Thomas RTRTRT and Brezzi–Douglas–Marini BDMBDMBDM elements:

𝒫𝑝( ̂︀𝐾) := span{𝑥𝑥𝑥𝛼𝛼𝛼 : |𝛼𝛼𝛼| ≤ 𝑝},

RTRTRT𝑝−1( ̂︀𝐾) := {𝑝𝑝𝑝+ 𝑥𝑥𝑥𝑞 : 𝑝𝑝𝑝 ∈ 𝒫𝑝−1( ̂︀𝐾)𝑑, 𝑞 ∈ 𝒫𝑝−1( ̂︀𝐾)},

BDMBDMBDM𝑝( ̂︀𝐾) := 𝒫𝑝( ̂︀𝐾)𝑑.

Furthermore, we introduce the Nédélec type one and two elements in spatial dimension 𝑑 = 2 and
𝑑 = 3 by

NNN𝐼
𝑝−1( ̂︀𝐾) := {𝑝𝑝𝑝+ 𝑞(𝑦,−𝑥)𝑇 : 𝑝𝑝𝑝 ∈ 𝒫𝑝−1( ̂︀𝐾)2, 𝑞 ∈ 𝒫𝑝−1( ̂︀𝐾)} for 𝑑 = 2,

NNN𝐼
𝑝−1( ̂︀𝐾) := {𝑝𝑝𝑝+ 𝑥𝑥𝑥× 𝑝𝑝𝑝 : 𝑞𝑞𝑞, 𝑞𝑞𝑞 ∈ 𝒫𝑝−1( ̂︀𝐾)3} for 𝑑 = 3,

NNN𝐼𝐼
𝑝 ( ̂︀𝐾) := 𝒫𝑝( ̂︀𝐾)𝑑.

We also recall the classical Piola transformation, which is the appropriate change of variables for 𝐻𝐻𝐻(Ω,div). For
a function 𝜙𝜙𝜙 : 𝐾 → R𝑑 and the element map 𝐹𝐾 : ̂︀𝐾 → 𝐾 its Piola transform ̂︀𝜙𝜙𝜙 : ̂︀𝐾 → R𝑑 is given by

̂︀𝜙𝜙𝜙 = (det𝐹 ′𝐾)(𝐹 ′𝐾)−1𝜙𝜙𝜙 ∘ 𝐹𝐾 .

The spaces 𝑆𝑝(𝒯ℎ), BDMBDMBDM𝑝(𝒯ℎ), and RTRTRT𝑝−1(𝒯ℎ) are given by standard transformation and (contravariant) Piola
transformation of functions on the reference element:

𝑆𝑝(𝒯ℎ) := {𝑢 ∈ 𝐻1(Ω): 𝑢
⃒⃒
𝐾
∘ 𝐹𝐾 ∈ 𝒫𝑝( ̂︀𝐾) for all 𝐾 ∈ 𝒯ℎ},

BDMBDMBDM𝑝(𝒯ℎ) := {𝜙𝜙𝜙 ∈𝐻𝐻𝐻(div,Ω): (det𝐹 ′𝐾)(𝐹 ′𝐾)−1𝜙𝜙𝜙
⃒⃒
𝐾
∘ 𝐹𝐾 ∈ BDMBDMBDM𝑝( ̂︀𝐾) for all 𝐾 ∈ 𝒯ℎ},

RTRTRT𝑝−1(𝒯ℎ) := {𝜙𝜙𝜙 ∈𝐻𝐻𝐻(div,Ω): (det𝐹 ′𝐾)(𝐹 ′𝐾)−1𝜙𝜙𝜙
⃒⃒
𝐾
∘ 𝐹𝐾 ∈ RTRTRT𝑝−1( ̂︀𝐾) for all 𝐾 ∈ 𝒯ℎ}.

Similarly for Nédélec elements of type one in spatial dimension 𝑑 = 3 with the aid of the covariant Piola
transformation we introduce

NNN𝐼
𝑝(𝒯ℎ) :=

{︁
𝜙𝜙𝜙 ∈𝐻𝐻𝐻(Ω,curlcurlcurl) : (𝐹 ′𝐾)𝑇𝜙𝜙𝜙

⃒⃒
𝐾
∘ 𝐹𝐾 ∈ NNN𝐼

𝑝( ̂︀𝐾) for all 𝐾 ∈ 𝒯ℎ
}︁
,

and analogously for Nédélec elements of type two and spatial dimension 𝑑 = 2. Note that the Nédélec elements
in spatial dimension 𝑑 = 2 are just the rotated Raviart–Thomas and Brezzi–Douglas–Marini elements.
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For the approximation properties of the 𝐻𝐻𝐻(Ω,div) conforming finite element spaces see Proposition 2.5.4 of
[6] as a standard reference for non-curved elements and without the 𝑝-aspect. For an analysis of the ℎ𝑝-version
under Assumption 1.1 we refer to Section 4 of [2].

Since we will look at a first order system formulation of a second order model problem we have two finite
element spaces to choose, one for the scalar variable 𝑢, i.e., the solution of the second order equation, and
one for the vector variable 𝜙𝜙𝜙, which will be related to the scalar variable via 𝜙𝜙𝜙 = −∇𝑢. Summarizing, for the
numerical discretization of the first order system we consider the following finite element spaces:

𝑆𝑝𝑠(𝒯ℎ) ⊆ 𝐻1(Ω), 𝑆𝐷𝑝𝑠
(𝒯ℎ) ⊆ 𝐻1

𝐷(Ω), 𝑆0
𝑝𝑠

(𝒯ℎ) ⊆ 𝐻1
0 (Ω),

VVV𝑝𝑣
(𝒯ℎ) ⊆𝐻𝐻𝐻(Ω,div), VVV𝑁

𝑝𝑣
(𝒯ℎ) ⊆𝐻𝐻𝐻𝑁 (Ω,div), VVV0

𝑝𝑣
(𝒯ℎ) ⊆𝐻𝐻𝐻0(Ω,div),

where the polynomial approximation of the scalar and vector variable is denoted by 𝑝𝑠 ≥ 1 and 𝑝𝑣 ≥ 1
respectively. For brevity denote by VVV𝑝𝑣

(𝒯ℎ) either the Raviart–Thomas space RTRTRT𝑝𝑣−1(𝒯ℎ) or the Brezzi–Douglas–
Marini space BDMBDMBDM𝑝𝑣 (𝒯ℎ). The spaces VVV𝑁

𝑝𝑣
(𝒯ℎ) and VVV0

𝑝𝑣
(𝒯ℎ) are denoted analogously. Furthermore, for brevity

the Nédélec space NNN𝑝𝑣
(𝒯ℎ) is either of type one or two, depending on the choice of VVV𝑝𝑣

(𝒯ℎ). The same convention
applies to the spaces with boundary conditions. See again [6, 11,18,19] for further details.

Further notational conventions will be:

– lower case roman letters like 𝑢 and 𝑣 will be reserved for scalar valued functions;
– lower case boldface greek letters like 𝜙𝜙𝜙 and 𝜓𝜓𝜓 will be reserved for vector valued functions;
– 𝐾 denotes the physical element and ̂︀𝐾 denotes the reference element;
– quantities like 𝑢ℎ and 𝜙𝜙𝜙ℎ will be reserved for functions from the corresponding finite element space, again

scalar and vector valued respectively;
– if not stated otherwise discrete functions without a ·̃ will be in some sense fixed, e.g., resulting from

a certain discretization scheme, whereas functions with a ·̃ will be arbitrary, e.g., when dealing with
quasi-optimality results;

– generic constants will either be denoted by 𝐶 or hidden inside a . and will be independent of the mesh size
ℎ and the polynomial degree 𝑝, if not otherwise stated. Note that the parameter 𝛾 in the definition of the
model problem in (2.1) will not be explicitly tracked.

1.1.3. Outline

The outline of this paper is as follows. In Section 2 we introduce the model problem, the first order system
least squares (FOSLS) method and prove norm equivalence results, which in turn guarantee unique solvability
of the continuous as well as the discrete least squares formulation. Section 3 is devoted to the proof of duality
results for the scalar variable, the gradient of the scalar variable as well as the vector variable. In the beginning
of Section 4 we first exploit the duality result of Section 3 in order to prove 𝐿2(Ω) error estimates for the
scalar variable of the primal as well as the dual problem. We then argue first heuristically that these results are
actually suboptimal and can be further improved. To that end we introduce an approximation operator that
also satisfies certain orthogonality relations and prove best approximation results for this operator, which are
then used to prove our main result (Thm. 4.12). Furthermore, we derive 𝐿2(Ω) error estimates for the gradient
of the scalar variable as well as the vector variable. In Section 5 we present numerical examples showcasing the
proved convergence rates, focusing especially on the case of finite Sobolev regularity.

2. Model problem

Let Γ = 𝜕Ω consist of two disjoint parts Γ𝐷 and Γ𝑁 and let 𝑓 ∈ 𝐿2(Ω). (Later, we will focus on the special
cases Γ = Γ𝐷 and Γ = Γ𝑁 .) For 𝛾 > 0 fixed we consider the following model problem
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−∆𝑢+ 𝛾𝑢 = 𝑓 in Ω,
𝑢 = 0 on Γ𝐷, (2.1)

𝜕𝑛𝑢 = 0 on Γ𝑁 .

We formulate (2.1) a first order system. Introducing the new variable 𝜙𝜙𝜙 = −∇𝑢 we formally arrive at the
system

∇ ·𝜙𝜙𝜙+ 𝛾𝑢 = 𝑓 in Ω, (2.2a)
∇𝑢+𝜙𝜙𝜙 = 000 in Ω, (2.2b)

𝑢 = 0 on Γ𝐷, (2.2c)
𝜙𝜙𝜙 ·𝑛𝑛𝑛 = 0 on Γ𝑁 . (2.2d)

Introducing the differential operator ℒ : 𝐻𝐻𝐻𝑁 (Ω,div)×𝐻1
𝐷(Ω) → 𝐿2(Ω)×𝐿𝐿𝐿2(Ω), given by

ℒ

⎛⎜⎝𝜙𝜙𝜙
𝑢

⎞⎟⎠ =

⎛⎜⎝∇· 𝛾
1 ∇

⎞⎟⎠
⎛⎜⎝𝜙𝜙𝜙
𝑢

⎞⎟⎠ =

⎛⎜⎝∇ ·𝜙𝜙𝜙+ 𝛾𝑢

∇𝑢+𝜙𝜙𝜙

⎞⎟⎠,
we want to solve the equation

ℒ

⎛⎜⎝𝜙𝜙𝜙
𝑢

⎞⎟⎠ =

⎛⎜⎝𝑓
000

⎞⎟⎠.
The least squares approach to this problem is to find (𝜙𝜙𝜙, 𝑢) ∈𝐻𝐻𝐻𝑁 (Ω,div)×𝐻1

𝐷(Ω) such that⎛⎜⎝ℒ
⎛⎜⎝𝜙𝜙𝜙
𝑢

⎞⎟⎠,ℒ
⎛⎜⎝𝜓𝜓𝜓
𝑣

⎞⎟⎠
⎞⎟⎠

Ω

=

⎛⎜⎝
⎛⎜⎝𝑓

000

⎞⎟⎠,ℒ
⎛⎜⎝𝜓𝜓𝜓
𝑣

⎞⎟⎠
⎞⎟⎠

Ω

∀ (𝜓𝜓𝜓, 𝑣) ∈𝐻𝐻𝐻𝑁 (Ω,div)×𝐻1
𝐷(Ω),

where (·, ·)Ω denotes the usual 𝐿2(Ω) scalar product. Introducing now the bilinear form 𝑏 and the linear functional
𝐹 by

𝑏((𝜙𝜙𝜙, 𝑢), (𝜓𝜓𝜓, 𝑣)) := (∇ ·𝜙𝜙𝜙+ 𝛾𝑢,∇ ·𝜓𝜓𝜓 + 𝛾𝑣)Ω + (∇𝑢+𝜙𝜙𝜙,∇𝑣 +𝜓𝜓𝜓)Ω, (2.3)
𝐹 ((𝜓𝜓𝜓, 𝑣)) := (𝑓,∇ ·𝜓𝜓𝜓 + 𝛾𝑣)Ω, (2.4)

we can state the mixed weak least squares formulation: Find (𝜙𝜙𝜙, 𝑢) ∈𝐻𝐻𝐻𝑁 (Ω,div)×𝐻1
𝐷(Ω) such that

𝑏((𝜙𝜙𝜙, 𝑢), (𝜓𝜓𝜓, 𝑣)) = 𝐹 ((𝜓𝜓𝜓, 𝑣)) ∀ (𝜓𝜓𝜓, 𝑣) ∈𝐻𝐻𝐻𝑁 (Ω,div)×𝐻1
𝐷(Ω). (2.5)

To see solvability of (2.5), let 𝑢 ∈ 𝐻1
𝐷(Ω) be the unique solution of (2.1). In view of 𝑓 ∈ 𝐿2(Ω) the pair

(−∇𝑢, 𝑢) is a solution of (2.5). Uniqueness follows if one can show that 𝑏((𝜙𝜙𝜙, 𝑢), (𝜓𝜓𝜓, 𝑣)) = 0 for all (𝜓𝜓𝜓, 𝑣) ∈
𝐻𝐻𝐻𝑁 (Ω,div)×𝐻1

𝐷(Ω) implies (𝜙𝜙𝜙, 𝑢) = (000, 0). To that end we introduce the (yet to be verified) norm ‖·‖𝑏 induced
by 𝑏:

‖(𝜙𝜙𝜙, 𝑢)‖𝑏 :=
√︀
𝑏((𝜙𝜙𝜙, 𝑢), (𝜙𝜙𝜙, 𝑢)). (2.6)

A general approach would be to show norm equivalence. In our case:

‖𝑢‖𝐻1(Ω) + ‖𝜙𝜙𝜙‖𝐻𝐻𝐻(Ω,div) . ‖(𝜙𝜙𝜙, 𝑢)‖𝑏 . ‖𝑢‖𝐻1(Ω) + ‖𝜙𝜙𝜙‖𝐻𝐻𝐻(Ω,div).

We will employ methods similar to a duality argument in the following Theorem 2.1 to prove such a norm
equivalence.
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Theorem 2.1 (Norm equivalence). For all (𝜙𝜙𝜙, 𝑢) ∈𝐻𝐻𝐻𝑁 (Ω,div)×𝐻1
𝐷(Ω) there holds the norm equivalence

‖𝑢‖2𝐻1(Ω) + ‖𝜙𝜙𝜙‖2𝐻𝐻𝐻(Ω,div) . 𝑏((𝜙𝜙𝜙, 𝑢), (𝜙𝜙𝜙, 𝑢)) . ‖𝑢‖2𝐻1(Ω) + ‖𝜙𝜙𝜙‖2𝐻𝐻𝐻(Ω,div). (2.7)

Proof. First note that by definition

𝑏((𝜙𝜙𝜙, 𝑢), (𝜙𝜙𝜙, 𝑢)) =

⃦⃦⃦⃦
⃦⃦∇ ·𝜙𝜙𝜙+ 𝛾𝑢⏟  ⏞  

=:𝑤

⃦⃦⃦⃦
⃦⃦

2

𝐿2(Ω)

+

⃦⃦⃦⃦
⃦⃦∇𝑢+𝜙𝜙𝜙⏟  ⏞  

=:𝜂𝜂𝜂

⃦⃦⃦⃦
⃦⃦

2

𝐿2(Ω)

,

from which the second inequality in (2.7) is obvious. For the first inequality, we start by noting that 𝜙𝜙𝜙 and 𝑢
are unique given 𝑤 and 𝜂𝜂𝜂. We now split 𝜙𝜙𝜙 and 𝑢 as follows:

∇ ·𝜙𝜙𝜙1 + 𝛾𝑢1 = 𝑤 in Ω,
∇𝑢1 +𝜙𝜙𝜙1 = 000 in Ω,

𝑢1 = 0 on Γ𝐷,
𝜙𝜙𝜙1 ·𝑛𝑛𝑛 = 0 on Γ𝑁 ,

∇ ·𝜙𝜙𝜙2 + 𝛾𝑢2 = 0 in Ω,
∇𝑢2 +𝜙𝜙𝜙2 = 𝜂𝜂𝜂 in Ω,

𝑢2 = 0 on Γ𝐷,
𝜙𝜙𝜙2 ·𝑛𝑛𝑛 = 0 on Γ𝑁 ,

with yet to be determined functions 𝜙𝜙𝜙1, 𝜙𝜙𝜙2, 𝑢1, and 𝑢2. By summing up the two systems of equations we observe
that 𝜙𝜙𝜙 = 𝜙𝜙𝜙1 +𝜙𝜙𝜙2 and 𝑢 = 𝑢1 + 𝑢2. Simply eliminating 𝜙𝜙𝜙1 and 𝜙𝜙𝜙2 in the above equations, we expect 𝑢1 and 𝑢2

to be solutions to

−∆𝑢1 + 𝛾𝑢1 = 𝑤 in Ω,
𝑢1 = 0 on Γ𝐷,

𝜕𝑛𝑢1 = 0 on Γ𝑁 ,

−∆𝑢2 + 𝛾𝑢2 = −∇ · 𝜂𝜂𝜂 in Ω,
𝑢2 = 0 on Γ𝐷,

𝜕𝑛𝑢2 = 0 on Γ𝑁 ,

where −∇ · 𝜂𝜂𝜂 is to be understood as an element of (𝐻1
𝐷(Ω))′ given by 𝐹 : 𝑣 ↦→ (𝜂𝜂𝜂,∇𝑣)Ω. Both equations are

therefore uniquely solvable. This then determines the desired functions 𝑢1, 𝑢2 and consequently the functions
𝜙𝜙𝜙1, 𝜙𝜙𝜙2, using the second equation in the first order systems.

Let us show that (𝜙𝜙𝜙1, 𝑢1) solves the above system. By construction it satisfies the differential equations and
furthermore, since 𝜙𝜙𝜙1 = −∇𝑢1, we have 𝜙𝜙𝜙1 ·𝑛𝑛𝑛 = −∇𝑢1 ·𝑛𝑛𝑛 = −𝜕𝑛𝑢1 = 0.

Let us show that (𝜙𝜙𝜙2, 𝑢2) satisfies the above system. Let 𝑣 ∈ 𝐶∞0 (Ω) be arbitrary. Integration by parts and
exploiting the weak formulation gives

(∇ ·𝜙𝜙𝜙2, 𝑣)Ω = −(𝜙𝜙𝜙2,∇𝑣)Ω = −(𝜂𝜂𝜂,∇𝑣)Ω + (∇𝑢2,∇𝑣)Ω = −(𝛾𝑢2, 𝑣)Ω.

Therefore the div-equation is satisfied. To verify the boundary conditions we calculate for any 𝑣 ∈ 𝐻1
𝐷(Ω)

⟨𝜙𝜙𝜙2 ·𝑛𝑛𝑛, 𝑣⟩𝐻−1/2(Γ)×𝐻1/2(Γ) = (𝜙𝜙𝜙2,∇𝑣)Ω + (∇ ·𝜙𝜙𝜙2, 𝑣)Ω
= (−∇𝑢2 + 𝜂𝜂𝜂,∇𝑣)Ω + (∇ ·𝜙𝜙𝜙2, 𝑣)Ω = 0,

where we first used Green’s theorem, then the equations of the first order system and at last the weak formulation
for 𝑢2. The a priori estimate of the Lax–Milgram theorem gives

‖𝑢1‖𝐻1(Ω) . ‖𝑤‖(𝐻1
𝐷(Ω))′ ≤ ‖𝑤‖𝐿2(Ω), ‖𝑢2‖𝐻1(Ω) . ‖𝐹‖(𝐻1

𝐷(Ω))′ ≤ ‖𝜂𝜂𝜂‖𝐿2(Ω).

Due to the splitting 𝑢 = 𝑢1 + 𝑢2 it is now obvious that

‖𝑢‖2𝐻1(Ω) . ‖𝑤‖
2
𝐿2(Ω) + ‖𝜂𝜂𝜂‖2𝐿2(Ω).

We finally estimate the 𝐻𝐻𝐻(Ω,div) norms of 𝜙𝜙𝜙1 and 𝜙𝜙𝜙2 as follows

‖𝜙𝜙𝜙1‖2𝐻𝐻𝐻(Ω,div) = ‖𝜙𝜙𝜙1‖2𝐿2(Ω) + ‖∇ ·𝜙𝜙𝜙1‖2𝐿2(Ω) = ‖−∇𝑢1‖2𝐿2(Ω) + ‖𝑤 − 𝛾𝑢1‖2𝐿2(Ω) . ‖𝑤‖
2
𝐿2(Ω),

‖𝜙𝜙𝜙2‖2𝐻𝐻𝐻(Ω,div) = ‖𝜙𝜙𝜙2‖2𝐿2(Ω) + ‖∇ ·𝜙𝜙𝜙2‖2𝐿2(Ω) = ‖𝜂𝜂𝜂 −∇𝑢2‖2𝐿2(Ω) + ‖−𝛾𝑢2‖2𝐿2(Ω) . ‖𝜂𝜂𝜂‖
2
𝐿2(Ω),

which completes the proof. �
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Remark 2.2. Theorem 2.1 (norm equivalence) does not hold on all of𝐻𝐻𝐻(Ω,div)×𝐻1(Ω) since one can construct
non-trivial solutions to the system

∇ ·𝜙𝜙𝜙+ 𝛾𝑢 = 0 in Ω, ∇𝑢+𝜙𝜙𝜙 = 000 in Ω,

due to the missing boundary conditions, even though ‖(𝜙𝜙𝜙, 𝑢)‖𝑏 = 0 by construction.

Remark 2.3. Theorem 2.1 (norm equivalence) is in fact much stronger than what we need to establish unique
solvability of the system (2.5): The weaker coercivity estimate ‖𝑢‖2𝐿2(Ω) + ‖𝜙𝜙𝜙‖2𝐿2(Ω) . 𝑏((𝜙𝜙𝜙, 𝑢), (𝜙𝜙𝜙, 𝑢)) suffices to
establish uniqueness.

Remark 2.4. In the literature there are two main ideas for showing unique solvability when working in a least
squares setting concerning a first order system derived from a second order equation:

– The first one deduces solvability from the second order equation and uses a weaker coercivity estimates, as in
Remark 2.3, to establish uniqueness. See also [2,10] for these kind of arguments for the Helmholtz equation.

– The second approach is to establish a stronger coercivity estimate as in Theorem 2.1 and directly apply the
Lax–Milgram theorem to (2.5), where the right-hand side is a suitable continuous linear functional. See also
[7, 9] concerning the model problem in question and also [8] for the Stokes equation.

3. Duality argument

The current section is devoted to duality arguments that are later used for the analysis of the 𝐿2(Ω) norms of
𝑢−𝑢ℎ, ∇(𝑢−𝑢ℎ), and 𝜙𝜙𝜙−𝜙𝜙𝜙ℎ. Since these duality arguments rely heavily on the elliptic shift theorem we restrict
ourself to either the pure Neumann or Dirichlet boundary conditions, i.e., Γ = Γ𝑁 or Γ = Γ𝐷. In contrast, when
considering mixed boundary conditions one has to expect a singularity at the interface between the Dirichlet
and Neumann condition, which has to be properly accounted for in the numerical analysis by graded meshes
for both the primal and dual problem. This is beyond the scope of the present work. We introduce the following
assumption regarding a shift theorem:

Assumption 3.1 (𝑠 shift property). Let 𝑠 ≥ −1 be given. Then for every 𝑓 ∈ 𝐻𝑠(Ω), 𝑠 ∈ [−1, 𝑠] the problem

−∆𝑢+ 𝛾𝑢 = 𝑓 in Ω,

with homogeneous Dirichlet or Neumann boundary conditions admits the regularity shift 𝑢 ∈ 𝐻𝑠+2(Ω) with
‖𝑢‖𝐻𝑠+2(Ω) . ‖𝑓‖𝐻𝑠(Ω) if 𝑠 ≥ 0 and, if 𝑠 < 0,

‖𝑢‖𝐻𝑠+2(Ω) .

⎧⎪⎨⎪⎩
‖𝑓‖𝐻𝑠(Ω) for Dirichlet boundary conditions

‖𝑓‖�̃�𝑠(Ω) for Neumann boundary conditions.

Here, for 𝑠 ∈ (−1, 0), we set 𝐻𝑠(Ω) = (�̃�−𝑠(Ω))′, �̃�𝑠(Ω) = (𝐻−𝑠(Ω))′ with the Sobolev spaces 𝐻−𝑠(Ω) =
(𝐿2(Ω), 𝐻1(Ω))−𝑠,2 and �̃�−𝑠(Ω) = (𝐿2(Ω), 𝐻1

0 (Ω))−𝑠,2 defined by the real method of interpolation (see [16] for
details).

Remark 3.2. For smooth, bounded domains Assumption 3.1 is satisfied for any 𝑠 < ∞, see e.g., [13]. For
convex domains Assumption 3.1 is satisfied for 𝑠 = 0 ([14], Chap. 2). For general bounded Lipschitz domains,
Assumption 3.1 holds for any 𝑠 < −1/2, [21]. For general Lipschitz polygonals or polyhedra, Assumption 3.1
holds for some 𝑠 > −1/2, e.g., for polygonals and Dirichlet boundary conditions, one has 𝑠 = −1 + 𝜋/𝜔− 𝜀, for
any 𝜀 > 0, [1, 14], where 𝜔 is the largest interior angle.

Our overall agenda is to derive regularity results for the dual solutions, always denoted by (𝜓𝜓𝜓, 𝑣). For 𝑤 ∈
𝐻1(Ω) and 𝜂 ∈𝐻𝐻𝐻0(Ω,div) we prove the existence of dual solutions such that:
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– ‖𝑤‖2𝐿2(Ω) = 𝑏((𝜙𝜙𝜙,𝑤), (𝜓𝜓𝜓, 𝑣)), see Theorem 3.3,

– ‖∇𝑤‖2𝐿2(Ω) = 𝑏((𝜙𝜙𝜙,𝑤), (𝜓𝜓𝜓, 𝑣)), see Theorem 3.4,

– ‖𝜂𝜂𝜂‖2𝐿2(Ω) = 𝑏((𝜂𝜂𝜂, 𝑢), (𝜓𝜓𝜓, 𝑣)), see Theorem 3.5.

These results are exploited in Section 4 with the special choices of 𝑤 = 𝑢− 𝑢ℎ and 𝜂𝜂𝜂 = 𝜙𝜙𝜙−𝜙𝜙𝜙ℎ, respectively.

Theorem 3.3 (Duality argument for the scalar variable). Let Ω satisfy Assumption 3.1 for some 𝑠 ≥ −1. Then
there holds:

(i) For Γ = Γ𝑁 and any (𝜙𝜙𝜙,𝑤) ∈ 𝐻𝐻𝐻0(Ω,div) × 𝐻1(Ω) there exists (𝜓𝜓𝜓, 𝑣) ∈ 𝐻𝐻𝐻0(Ω,div) × 𝐻1(Ω) such
that ‖𝑤‖2𝐿2(Ω) = 𝑏((𝜙𝜙𝜙,𝑤), (𝜓𝜓𝜓, 𝑣)). Furthermore, 𝜓𝜓𝜓 ∈ 𝐻𝐻𝐻min(𝑠,2)+1(Ω), ∇ · 𝜓𝜓𝜓 ∈ 𝐻min(𝑠+2,2)(Ω), and 𝑣 ∈
𝐻min(𝑠+2,2)(Ω). Additionally the following estimates hold:

‖𝑣‖𝐻min(𝑠+2,2)(Ω) + ‖𝜓𝜓𝜓‖𝐻min(𝑠,2)+1(Ω) + ‖∇ ·𝜓𝜓𝜓‖𝐻min(𝑠+2,2)(Ω) . ‖𝑤‖𝐿2(Ω).

(ii) For Γ = Γ𝐷 and any (𝜙𝜙𝜙,𝑤) ∈ 𝐻𝐻𝐻(Ω,div) × 𝐻1
0 (Ω) there exists (𝜓𝜓𝜓, 𝑣) ∈ 𝐻𝐻𝐻(Ω,div) × 𝐻1

0 (Ω) such that
‖𝑤‖2𝐿2(Ω) = 𝑏((𝜙𝜙𝜙,𝑤), (𝜓𝜓𝜓, 𝑣)). The same regularity results and estimates as in (i) hold.

Proof. We prove (i). Theorem 2.1 gives the existence of a unique (𝜓𝜓𝜓, 𝑣) ∈𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω) satisfying

(𝑢,𝑤)Ω = 𝑏((𝜙𝜙𝜙, 𝑢), (𝜓𝜓𝜓, 𝑣)) ∀ (𝜙𝜙𝜙, 𝑢) ∈𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω). (3.1)

For the regularity assertions, we introduce the auxiliary functions 𝑧 and 𝜇𝜇𝜇 by

∇ ·𝜓𝜓𝜓 + 𝛾𝑣 = 𝑧 in Ω,
∇𝑣 +𝜓𝜓𝜓 = 𝜇𝜇𝜇 in Ω.

(3.2)

Regularity properties of 𝑧𝑧𝑧 and 𝜇𝜇𝜇: regularity properties of 𝑧 are inferred from a scalar elliptic equation
satisfied by 𝑧. To that end, we note that (3.1) is equivalent to

(𝑢,𝑤)Ω = (∇𝑢+𝜙𝜙𝜙,𝜇𝜇𝜇)Ω + (∇ ·𝜙𝜙𝜙+ 𝛾𝑢, 𝑧)Ω ∀ (𝜙𝜙𝜙, 𝑢) ∈𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω). (3.3)

For 𝑢 = 0 and integrating by parts we find

0 = (𝜙𝜙𝜙,𝜇𝜇𝜇)Ω + (∇ ·𝜙𝜙𝜙, 𝑧)Ω = (𝜙𝜙𝜙,𝜇𝜇𝜇−∇𝑧)Ω ∀𝜙𝜙𝜙 ∈𝐻𝐻𝐻0(Ω,div),

which gives 𝑧 ∈ 𝐻1(Ω) as well as 𝜇𝜇𝜇 = ∇𝑧. Inserting 𝜇𝜇𝜇 = ∇𝑧 and setting 𝜙𝜙𝜙 = 0 in (3.3) we find

(𝑢,𝑤)Ω = (∇𝑢,∇𝑧)Ω + (𝛾𝑢, 𝑧)Ω ∀𝑢 ∈ 𝐻1(Ω).

Therefore 𝑧 satisfies, in strong form,
−∆𝑧 + 𝛾𝑧 = 𝑤 in Ω,

𝜕𝑛𝑧 = 0 on Γ,
(3.4)

and Assumption 3.1 immediately give 𝑧 ∈ 𝐻min(𝑠+2,2)(Ω) with the estimate ‖𝑧‖𝐻min(𝑠+2,2)(Ω) . ‖𝑤‖𝐿2(Ω).

Regularity properties of 𝑣𝑣𝑣: eliminating 𝜓𝜓𝜓 in (3.2), we discover that 𝑣 satisfies

−∆𝑣 + 𝛾𝑣 = 𝑤 + (1− 𝛾)𝑧 in Ω,
𝜕𝑛𝑣 = 0 on Γ.

(3.5)

By Assumption 3.1 we find 𝑣 ∈ 𝐻min(𝑠+2,2)(Ω) with the a priori estimate

‖𝑣‖𝐻min(𝑠+2,2)(Ω) . ‖𝑤 + (1− 𝛾)𝑧‖𝐿2(Ω) . ‖𝑤‖𝐿2(Ω).
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Regularity properties of 𝜓𝜓𝜓: setting 𝜓𝜓𝜓 = ∇(𝑧−𝑣), we have found the desired pair (𝜓𝜓𝜓, 𝑣) ∈𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω).
Since 𝜓𝜓𝜓 = ∇(𝑧 − 𝑣) we first look at the regularity of 𝑧 − 𝑣. Subtracting the equations (3.4), (3.5) satisfied by 𝑧
and 𝑣 respectively we obtain

−∆(𝑧 − 𝑣) + 𝛾(𝑧 − 𝑣) = (𝛾 − 1)𝑧 in Ω,
𝜕𝑛(𝑧 − 𝑣) = 0 on Γ,

which gives 𝑧 − 𝑣 ∈ 𝐻min(𝑠,2)+2(Ω) by Assumption 3.1 together with the estimate

‖𝑧 − 𝑣‖𝐻min(𝑠,2)+2(Ω) . ‖𝑤‖𝐿2(Ω).

We can therefore conclude

‖𝜓𝜓𝜓‖𝐻min(𝑠,2)+1(Ω) = ‖∇(𝑧 − 𝑣)‖𝐻min(𝑠,2)+1(Ω) ≤ ‖𝑧 − 𝑣‖𝐻min(𝑠,2)+2(Ω) . ‖𝑤‖𝐿2(Ω).

Since ∇ ·𝜓𝜓𝜓 = 𝑧 − 𝛾𝑣, we have

‖∇ ·𝜓𝜓𝜓‖𝐻min(𝑠+2,2)(Ω) = ‖𝑧 − 𝛾𝑣‖𝐻min(𝑠+2,2)(Ω) . ‖𝑤‖𝐿2(Ω),

which concludes the proof of (i). For the Dirichlet case (ii) the proof is completely analogous by replacing every
Neumann boundary condition with a Dirichlet one. �

Theorem 3.4 (Duality argument for the gradient of the scalar variable). Let Ω satisfy Assumption 3.1 for
some 𝑠 ≥ −1. Then there holds:

(i) For Γ = Γ𝑁 and any (𝜙𝜙𝜙,𝑤) ∈ 𝐻𝐻𝐻0(Ω,div) × 𝐻1(Ω) there exists (𝜓𝜓𝜓, 𝑣) ∈ 𝐻𝐻𝐻0(Ω,div) × 𝐻1(Ω) such that
‖∇𝑤‖2𝐿2(Ω) = 𝑏((𝜙𝜙𝜙,𝑤), (𝜓𝜓𝜓, 𝑣)). Furthermore, 𝜓𝜓𝜓 ∈𝐻𝐻𝐻min(𝑠,1)+1(Ω), ∇·𝜓𝜓𝜓 ∈ 𝐻1(Ω), and 𝑣 ∈ 𝐻1(Ω). Addition-
ally the following estimates hold:

‖𝑣‖𝐻1(Ω) + ‖𝜓𝜓𝜓‖𝐻min(𝑠,1)+1(Ω) + ‖∇ ·𝜓𝜓𝜓‖𝐻1(Ω) . ‖∇𝑤‖𝐿2(Ω).

(ii) For Γ = Γ𝐷 and any (𝜙𝜙𝜙,𝑤) ∈ 𝐻𝐻𝐻(Ω,div) × 𝐻1
0 (Ω) there exists (𝜓𝜓𝜓, 𝑣) ∈ 𝐻𝐻𝐻(Ω,div) × 𝐻1

0 (Ω) such that
‖∇𝑤‖2𝐿2(Ω) = 𝑏((𝜙𝜙𝜙,𝑤), (𝜓𝜓𝜓, 𝑣)). The same regularity results and estimates as in (i) hold.

Proof. We prove (i). Theorem 2.1 gives the existence of a unique (𝜓𝜓𝜓, 𝑣) ∈𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω) satisfying

(∇𝑢,∇𝑤)Ω = 𝑏((𝜙𝜙𝜙, 𝑢), (𝜓𝜓𝜓, 𝑣)) ∀ (𝜙𝜙𝜙, 𝑢) ∈𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω). (3.6)

For the regularity assertion, we introduce the auxiliary functions 𝑧 and 𝜇𝜇𝜇 by

∇ ·𝜓𝜓𝜓 + 𝛾𝑣 = 𝑧 in Ω,
∇𝑣 +𝜓𝜓𝜓 = 𝜇𝜇𝜇 in Ω.

(3.7)

Regularity properties of 𝑧𝑧𝑧 and 𝜇𝜇𝜇: we note that (3.6) is equivalent to

(∇𝑢,∇𝑤)Ω = (∇𝑢+𝜙𝜙𝜙,𝜇𝜇𝜇)Ω + (∇ ·𝜙𝜙𝜙+ 𝛾𝑢, 𝑧)Ω ∀ (𝜙𝜙𝜙, 𝑢) ∈𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω). (3.8)

For 𝑢 = 0 and integrating by parts we find

0 = (𝜙𝜙𝜙,𝜇𝜇𝜇)Ω + (∇ ·𝜙𝜙𝜙, 𝑧)Ω = (𝜙𝜙𝜙,𝜇𝜇𝜇−∇𝑧)Ω

which gives 𝜇𝜇𝜇 = ∇𝑧. Inserting 𝜇𝜇𝜇 = ∇𝑧 and setting 𝜙𝜙𝜙 = 0 in (3.8) we find

(∇𝑢,∇𝑤)Ω = (∇𝑢,∇𝑧)Ω + (𝛾𝑢, 𝑧)Ω ∀𝑢 ∈ 𝐻1(Ω),
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which can be solved for 𝑧 ∈ 𝐻1(Ω) with the a priori estimate ‖𝑧‖𝐻1(Ω) . ‖∇𝑤‖𝐿2(Ω). Formally, 𝑧 satisfies

−∆𝑧 + 𝛾𝑧 = −∇ · ∇𝑤 in Ω,
𝜕𝑛𝑧 = 0 on Γ.

(3.9)

where −∇ · ∇𝑤 ∈ (𝐻1(Ω))′ is to be understood as the mapping 𝑢 ↦→ (∇𝑢,∇𝑤)Ω.
Regularity of 𝑣𝑣𝑣: eliminating 𝜓𝜓𝜓 from (3.7) and using 𝜇𝜇𝜇 = ∇𝑧, we discover that 𝑣 satisfies

−∆𝑣 + 𝛾𝑣 = (1− 𝛾)𝑧 −∇ · ∇𝑤 in Ω,
𝜕𝑛𝑣 = 0 on Γ.

By the Lax–Milgram theorem we find that 𝑣 ∈ 𝐻1(Ω) as well as

‖𝑣‖𝐻1(Ω) . ‖(1− 𝛾)𝑧 −∇ · ∇𝑤‖(𝐻1(Ω))′ . ‖∇𝑤‖𝐿2(Ω).

Regularity of 𝜓𝜓𝜓: upon setting 𝜓𝜓𝜓 = ∇(𝑧− 𝑣), we have found the solution (𝜓𝜓𝜓, 𝑣) ∈𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω) of (3.6).
To prove the estimates and regularity results for 𝜓𝜓𝜓 first note that

−∆(𝑧 − 𝑣) + 𝛾(𝑧 − 𝑣) = (1− 𝛾)𝑧 in Ω,
𝜕𝑛(𝑧 − 𝑣) = 0 on Γ,

and therefore by Assumption 3.1 we find 𝑧 − 𝑣 ∈ 𝐻min(𝑠,1)+2(Ω) with the estimate

‖𝑧 − 𝑣‖𝐻min(𝑠,1)+2(Ω) . ‖∇𝑤‖𝐿2(Ω).

Finally since 𝜓𝜓𝜓 = ∇(𝑧 − 𝑣) the regularity assertion for 𝜓𝜓𝜓 ∈ 𝐻𝐻𝐻min(𝑠,1)+1(Ω) follows. For the Dirichlet case (ii)
the proof is completely analogous by replacing every Neumann boundary condition with a Dirichlet one. �

Theorem 3.5 (Duality argument for the vector valued variable). Let Ω satisfy Assumption 3.1 for some 𝑠 ≥ −1.
Then there holds:

(i) For Γ = Γ𝑁 and any (𝜂𝜂𝜂, 𝑢) ∈ 𝐻𝐻𝐻0(Ω,div) × 𝐻1(Ω) there exists (𝜓𝜓𝜓, 𝑣) ∈ 𝐻𝐻𝐻0(Ω,div) × 𝐻1(Ω) such that
‖𝜂𝜂𝜂‖2𝐿2(Ω) = 𝑏((𝜂𝜂𝜂, 𝑢), (𝜓𝜓𝜓, 𝑣)). Furthermore, 𝜓𝜓𝜓 ∈ 𝐿𝐿𝐿2(Ω), ∇ ·𝜓𝜓𝜓 ∈ 𝐻1(Ω) and 𝑣 ∈ 𝐻min(𝑠,1)+2(Ω). Additionally
the following estimates hold:

‖𝑣‖𝐻min(𝑠,1)+2(Ω) + ‖𝜓𝜓𝜓‖𝐿2(Ω) + ‖∇ ·𝜓𝜓𝜓‖𝐻1(Ω) . ‖𝜂𝜂𝜂‖𝐿2(Ω).

(ii) For Γ = Γ𝐷 and any (𝜂𝜂𝜂, 𝑢) ∈ 𝐻𝐻𝐻(Ω,div) × 𝐻1
0 (Ω) there exists (𝜓𝜓𝜓, 𝑣) ∈ 𝐻𝐻𝐻(Ω,div) × 𝐻1

0 (Ω) such that
‖𝜂𝜂𝜂‖2𝐿2(Ω) = 𝑏((𝜂𝜂𝜂, 𝑢), (𝜓𝜓𝜓, 𝑣)). The same regularity results and estimates as in (i) hold.

Proof. We prove (i). Theorem 2.1 gives the existence of a unique (𝜓𝜓𝜓, 𝑣) ∈𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω) such that

(𝜙𝜙𝜙,𝜂𝜂𝜂)Ω = 𝑏((𝜙𝜙𝜙, 𝑢), (𝜓𝜓𝜓, 𝑣)) ∀ (𝜙𝜙𝜙, 𝑢) ∈𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω). (3.10)

For the regularity assertions, we introduce the auxiliary functions 𝑧 and 𝜇𝜇𝜇 by

∇ ·𝜓𝜓𝜓 + 𝛾𝑣 = 𝑧 in Ω,
∇𝑣 +𝜓𝜓𝜓 = 𝜇𝜇𝜇 in Ω.

(3.11)

Regularity of 𝑧𝑧𝑧 and 𝜇𝜇𝜇: equation (3.10) is equivalent to

(𝜙𝜙𝜙,𝜂𝜂𝜂)Ω = (∇𝑢+𝜙𝜙𝜙,𝜇𝜇𝜇)Ω + (∇ ·𝜙𝜙𝜙+ 𝛾𝑢, 𝑧)Ω ∀ (𝜙𝜙𝜙, 𝑢) ∈𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω). (3.12)
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Table 1. Overview of regularity results of Theorems 3.3–3.5.

Ω Duality for 𝑢 Duality for ∇𝑢 Duality for 𝜙𝜙𝜙

Γ smooth 𝑣 ∈ 𝐻3, 𝜓𝜓𝜓 ∈𝐻𝐻𝐻2, ∇ ·𝜓𝜓𝜓 ∈ 𝐻2 𝑣 ∈ 𝐻1, 𝜓𝜓𝜓 ∈𝐻𝐻𝐻2, ∇ ·𝜓𝜓𝜓 ∈ 𝐻1 𝑣 ∈ 𝐻3, 𝜓𝜓𝜓 ∈ 𝐿𝐿𝐿2, ∇ ·𝜓𝜓𝜓 ∈ 𝐻1

Ω convex
polygonal/
polyhedral

𝑣 ∈ 𝐻2, 𝜓𝜓𝜓 ∈𝐻𝐻𝐻1, ∇ ·𝜓𝜓𝜓 ∈ 𝐻2 𝑣 ∈ 𝐻1, 𝜓𝜓𝜓 ∈𝐻𝐻𝐻1, ∇ ·𝜓𝜓𝜓 ∈ 𝐻1 𝑣 ∈ 𝐻2, 𝜓𝜓𝜓 ∈ 𝐿𝐿𝐿2, ∇ ·𝜓𝜓𝜓 ∈ 𝐻1

Ω 2D
polygonal

𝑣 ∈ 𝐻3/2, 𝜓𝜓𝜓 ∈𝐻𝐻𝐻1/2, ∇ ·𝜓𝜓𝜓 ∈ 𝐻3/2 𝑣 ∈ 𝐻1, 𝜓𝜓𝜓 ∈𝐻𝐻𝐻1/2, ∇ ·𝜓𝜓𝜓 ∈ 𝐻1 𝑣 ∈ 𝐻3/2, 𝜓𝜓𝜓 ∈ 𝐿𝐿𝐿2, ∇ ·𝜓𝜓𝜓 ∈ 𝐻1

For 𝑢 = 0 and integrating by parts we find

(𝜙𝜙𝜙,𝜂𝜂𝜂)Ω = (𝜙𝜙𝜙,𝜇𝜇𝜇)Ω + (∇ ·𝜙𝜙𝜙, 𝑧)Ω = (𝜙𝜙𝜙,𝜇𝜇𝜇−∇𝑧)Ω

which gives 𝜇𝜇𝜇−∇𝑧 = 𝜂𝜂𝜂. Inserting 𝜇𝜇𝜇 = 𝜂𝜂𝜂 +∇𝑧 and setting 𝜙𝜙𝜙 = 0 in (3.10) we find

0 = (∇𝑢,𝜂𝜂𝜂 +∇𝑧)Ω + (𝛾𝑢, 𝑧)Ω ∀𝑢 ∈ 𝐻1(Ω).

Hence, with the understanding that ∇ · 𝜂𝜂𝜂 means 𝑢 ↦→ (∇𝑢,𝜂𝜂𝜂), the function 𝑧 solves

−∆𝑧 + 𝛾𝑧 = ∇ · 𝜂𝜂𝜂 in Ω,
𝜕𝑛𝑧 = 0 on Γ.

(3.13)

Thus, 𝑧 ∈ 𝐻1(Ω) and setting 𝜇𝜇𝜇 = 𝜂𝜂𝜂+∇𝑧 we find (3.12) to be satisfied. Furthermore, note that by Lax–Milgram
and our understanding of ∇ · 𝜂𝜂𝜂

‖𝑧‖𝐻1(Ω) . ‖∇ · 𝜂𝜂𝜂‖(𝐻1(Ω))′ ≤ ‖𝜂𝜂𝜂‖𝐿2(Ω).

Regularity of 𝑣𝑣𝑣: by eliminating 𝜓𝜓𝜓 we find that 𝑣 solves

−∆𝑣 + 𝛾𝑣 = (1− 𝛾)𝑧 in Ω,
𝜕𝑛𝑣 = 0 on Γ.

Again by Assumption 3.1 we find that 𝑣 ∈ 𝐻min(𝑠,1)+2(Ω) as well as

‖𝑣‖𝐻min(𝑠,1)+2(Ω) . ‖𝜂‖𝐿2(Ω).

Regularity of 𝜓𝜓𝜓: we have 𝜓𝜓𝜓 = 𝜂𝜂𝜂+∇(𝑧−𝑣), and the regularity of 𝜓𝜓𝜓 follows from that of 𝑧 of 𝑣. For the Dirichlet
case (ii) the proof is completely analogous by replacing every Neumann boundary condition with a Dirichlet
one. �

Remark 3.6 (On the smoothness of Γ). The results of Theorems 3.3–3.5 all hinge on a regularity shift for
the Laplacian. We summarize the different regularity results for different assumptions on the domain and the
boundary in Table 1, which follow from the observation 𝑠 = ∞ for smooth Γ, 𝑠 = 0 for convex Ω, and 𝑠 = −1/2
for general polygons (in fact, 𝑠 > −1/2 for polygons with the precise value given by the largest interior angle.
In Section 4 we will only focus on the case where Assumption 3.1 is satisfied for some 𝑠 ≥ 0. Hence, later results
are also valid in convex polygonal/polyhedral domains. We track the parameter 𝑠 ≥ 0 in the corresponding
error estimates.
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4. Error analysis

The goal of the present section is to establish optimal convergence rates for an ℎ𝑝 version of the FOSLS
method for the scalar variable, the gradient of the scalar variable as well as the vector variable, all measured in
the 𝐿2(Ω) norm, as long as the polynomial degree of the other variable is chosen appropriately.

4.1. Notation, assumptions, and road map of the current section

Throughout we denote by (𝜙𝜙𝜙ℎ, 𝑢ℎ) the least squares approximation of (𝜙𝜙𝜙, 𝑢). Furthermore, let 𝑒𝑢 = 𝑢 − 𝑢ℎ
and 𝑒𝑒𝑒𝜙𝜙𝜙 = 𝜙𝜙𝜙 − 𝜙𝜙𝜙ℎ denote the corresponding error terms. For simplicity we also assume Γ = Γ𝑁 , i.e., Γ𝐷 = ∅.
Furthermore, 𝑝 will denote the minimum of the two polynomial degrees 𝑝𝑠 and 𝑝𝑣, i.e., 𝑝 = min(𝑝𝑠, 𝑝𝑣). From
here on we will only consider domains Ω satisfying Assumption 3.1 with 𝑠 ≥ 0. Especially, we will not consider
non-convex polygonal domains, where no full 𝐻2(Ω) shift is satisfied. The overall agenda of the present section
is as follows:

(1) We start by proving Lemma 3.4 of [4] in an ℎ𝑝 setting using our duality argument, i.e., the (in our sense)
suboptimal 𝐿2(Ω) estimate

‖𝑒𝑢‖𝐿2(Ω) . ℎ/𝑝‖(𝑒𝑒𝑒
𝜙𝜙𝜙, 𝑒𝑢)‖𝑏.

This is done in Lemma 4.1. In Remark 4.2 we present heuristic arguments that suggest the possibility of
optimal 𝐿2(Ω) convergence rates. These arguments suggest to construct an 𝐻𝐻𝐻0(Ω,div) conforming approx-
imation operator 𝐼𝐼𝐼0

ℎ with additional orthogonality properties.
(2) In Lemma 4.3 we prove that the operator 𝐼𝐼𝐼0

ℎ is in fact well defined. As a tool of independent interest we derive
certain continuous and discrete Helmholtz decompositions in Lemmas 4.4 and 4.5. These decompositions
are then used in Lemma 4.6 to analyze the 𝐿2(Ω) error of the operator 𝐼𝐼𝐼0

ℎ.
(3) Next we prove an ℎ𝑝 version of Lemma 3.6 of [4] (an ℎ analysis of 𝑒𝑒𝑒𝜙𝜙𝜙 in the 𝐿2(Ω) norm).
(4) In Theorem 4.10 we exploit the results of Lemma 4.9, which analyzes the convergence rate of the FOSLS

approximation of the dual solution for the gradient of the scalar variable, in order to prove new optimal
𝐿2(Ω) error estimates for ∇𝑒𝑢.

(5) We analyze the convergence rate of the FOSLS approximation of the dual solution in various norms in
Lemma 4.11. Finally we prove our main result, Theorem 4.12, which analyzes the convergence of 𝑒𝑢 in the
𝐿2(Ω) norm.

(6) Closing this section we derive Corollary 4.14, which summarizes the results for general right-hand side
𝑓 ∈ 𝐻𝑠(Ω), by exploiting the estimates given by the Theorems 4.8, 4.10 and 4.12 together with the
approximation properties of the employed finite element spaces.

4.2. The standard duality argument

Before formulating various duality arguments, we recall that the conforming least squares approximation
(𝜙𝜙𝜙ℎ, 𝑢ℎ) is the best approximation in the ‖ · ‖𝑏 norm:

‖(𝜙𝜙𝜙−𝜙𝜙𝜙ℎ, 𝑢− 𝑢ℎ)‖𝑏 = min
�̃�ℎ∈𝑆𝑝𝑠 (𝒯ℎ),

�̃�𝜙𝜙ℎ∈VVV0
𝑝𝑣

(𝒯ℎ)

‖(𝜙𝜙𝜙− �̃�𝜙𝜙ℎ, 𝑢− �̃�ℎ)‖𝑏. (4.1)

Lemma 4.1. Let Ω satisfy Assumption 3.1 for some 𝑠 ≥ 0 and (𝜙𝜙𝜙ℎ, 𝑢ℎ) be the least squares approximation of
(𝜙𝜙𝜙, 𝑢). Furthermore, let 𝑒𝑢 = 𝑢− 𝑢ℎ and 𝑒𝑒𝑒𝜙𝜙𝜙 = 𝜙𝜙𝜙−𝜙𝜙𝜙ℎ. Then, for any �̃�ℎ ∈ 𝑆𝑝𝑠(𝒯ℎ), �̃�𝜙𝜙ℎ ∈ VVV0

𝑝𝑣
(𝒯ℎ),

‖𝑒𝑢‖𝐿2(Ω) .
ℎ

𝑝
‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏 .

ℎ

𝑝
‖𝑢− �̃�ℎ‖𝐻1(Ω) +

ℎ

𝑝
‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) +

ℎ

𝑝
‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω).
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Proof. Apply Theorem 3.3 (duality argument for the scalar variable) with 𝑤 = 𝑒𝑢. For any 𝑣ℎ ∈ 𝑆𝑝𝑠
(𝒯ℎ),

�̃�𝜓𝜓ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ), we find due to the Galerkin orthogonality and the Cauchy–Schwarz inequality:

‖𝑒𝑢‖2𝐿2(Ω) = 𝑏((𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢), (𝜓𝜓𝜓, 𝑣)) = 𝑏((𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢), (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ, 𝑣 − 𝑣ℎ)) ≤ ‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏
⃦⃦⃦

(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ, 𝑣 − 𝑣ℎ)
⃦⃦⃦
𝑏
. (4.2)

Using Theorem 2.1 (norm equivalence), and exploiting the regularity results and estimates of Theorem 3.3 as
well as the 𝐻1(Ω) and 𝐻𝐻𝐻(Ω,div) conforming operators in [17], we can find 𝑣ℎ ∈ 𝑆𝑝𝑠

(𝒯ℎ), �̃�𝜓𝜓ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ), such
that

‖(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ, 𝑣 − 𝑣ℎ)‖𝑏 . ‖𝑣 − 𝑣ℎ‖𝐻1(Ω) + ‖𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ‖𝐻𝐻𝐻(Ω,div)

. (ℎ/𝑝)min(𝑠+1,1)‖𝑣‖𝐻min(𝑠+2,2)(Ω) + (ℎ/𝑝)min(𝑠+1,2)‖𝜓𝜓𝜓‖𝐻𝐻𝐻min(𝑠+1,2)(Ω,div)

. (ℎ/𝑝)min(𝑠+1,1)‖𝑒𝑢‖𝐿2(Ω) = ℎ/𝑝‖𝑒𝑢‖𝐿2(Ω),

where we exploited the regularity for (𝜓𝜓𝜓, 𝑣) and the a priori estimates of Theorem 3.3, which proves the first
estimate. The second one follows by the fact that the least squares solution is the projection with respect to
the scalar product 𝑏. Therefore ‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏 ≤ ‖(𝜙𝜙𝜙 − �̃�𝜙𝜙ℎ, 𝑢 − �̃�ℎ)‖𝑏. The result follows by applying the norm
equivalence given in Theorem 2.1. �

Remark 4.2 (Heuristic arguments for improved 𝐿2(Ω) convergence). We present an argument why improved
convergence of the scalar variable 𝑢 can be expected. Assume Γ to be smooth, so that Assumption 3.1 is satisfied
with 𝑠 = ∞. We again start by applying our duality argument and exploit the Galerkin orthogonality as in (4.2)
in the proof of Lemma 4.1. Instead of immediately applying the Cauchy–Schwarz inequality we investigate the
terms in the 𝑏 scalar product and analyze the best rate we can expect from the regularity of the dual problem:

‖𝑒𝑢‖2𝐿2(Ω) = 𝑏((𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢), (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ, 𝑣 − 𝑣ℎ))

= (∇ · 𝑒𝑒𝑒𝜙𝜙𝜙 + 𝛾𝑒𝑢⏟  ⏞  
/

,∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)⏟  ⏞  
∼ℎ2

+𝛾 (𝑣 − 𝑣ℎ)⏟  ⏞  
∼ℎ2

)Ω + (∇𝑒𝑢 + 𝑒𝑒𝑒𝜙𝜙𝜙⏟  ⏞  
/

,∇(𝑣 − 𝑣ℎ)⏟  ⏞  
∼ℎ

+𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ⏟  ⏞  
∼ℎ3

)Ω.

Note that the terms are not equilibrated and we cannot expect any rate from the terms marked by / for
𝑢 ∈ 𝐻1(Ω) and 𝜙𝜙𝜙 ∈ 𝐻𝐻𝐻0(Ω,div). Let (𝜓𝜓𝜓ℎ, 𝑣ℎ) be the least squares approximation of (𝜓𝜓𝜓, 𝑣). Choosing now
(�̃�𝜓𝜓ℎ, 𝑣ℎ) = (𝜓𝜓𝜓ℎ, 𝑣ℎ), i.e., choosing the least squares approximation of the dual solution, and again exploiting the
Galerkin orthogonality we have for any (�̃�𝜙𝜙ℎ, �̃�ℎ):

‖𝑒𝑢‖2𝐿2(Ω) = 𝑏((𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢), (𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣)) = 𝑏((𝜙𝜙𝜙− �̃�𝜙𝜙ℎ, 𝑢− �̃�ℎ), (𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣))

= (∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)⏟  ⏞  
/

+𝛾 (𝑢− �̃�ℎ)⏟  ⏞  
∼ℎ2

,∇ · 𝑒𝑒𝑒𝜓𝜓𝜓⏟  ⏞  
∼ℎ

+𝛾 𝑒𝑣⏟ ⏞ 
∼ℎ2

)Ω + (∇(𝑢− �̃�ℎ)⏟  ⏞  
∼ℎ

+𝜙𝜙𝜙− �̃�𝜙𝜙ℎ⏟  ⏞  
∼ℎ

,∇𝑒𝑣 + 𝑒𝑒𝑒𝜓𝜓𝜓⏟  ⏞  
∼ℎ

)Ω.

The improved convergence of the dual solution will be shown in Lemma 4.11. From a best approximation
viewpoint the ∇· term involving 𝜙𝜙𝜙 still has no rate. To be more precise, the second term has the right powers
of ℎ resulting in an overall ℎ2. Since the term 𝛾(𝑢 − �̃�ℎ) already has order ℎ2 we have no problem with that
one. The term with the worst rate is

(∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ),∇ · 𝑒𝑒𝑒𝜓𝜓𝜓)Ω ∼ ℎ.

Out of the box we cannot find an extra ℎ to get optimal convergence. We note that 𝜓𝜓𝜓 has significant regularity,
which we did not exploit yet. To do so, we use an operator 𝐼𝐼𝐼0

ℎ mapping into the conforming finite element space
of the vector variable. We add and subtract any �̃�𝜓𝜓ℎ ∈ VVV0

𝑝𝑣
(𝒯ℎ) in the right argument of (∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ),∇ · 𝑒𝑒𝑒𝜓𝜓𝜓)Ω.

We then find with �̃�𝜙𝜙ℎ = 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙

(∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙),∇ · 𝑒𝑒𝑒𝜓𝜓𝜓)Ω = (∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙),∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ))Ω + (∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙),∇ · (�̃�𝜓𝜓ℎ −𝜓𝜓𝜓ℎ))Ω.
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Note that �̃�𝜓𝜓ℎ −𝜓𝜓𝜓ℎ is a discrete object. If we assume 𝐼𝐼𝐼0
ℎ to satisfy the orthogonality condition

(∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙),∇ ·𝜒𝜒𝜒ℎ)Ω = 0, ∀𝜒𝜒𝜒ℎ ∈ VVV0

𝑝𝑣
(𝒯ℎ)

we arrive in view of the smoothness of 𝜓𝜓𝜓 at

(∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙),∇ · 𝑒𝑒𝑒𝜓𝜓𝜓)Ω = (∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙),∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)⏟  ⏞  
ℎ2

)Ω ∼ ℎ2.

Therefore the operator 𝐼𝐼𝐼0
ℎ should satisfy the aforementioned orthogonality condition and have good approxi-

mation properties in 𝐿2(Ω), as needed above. In the following we will construct operators 𝐼𝐼𝐼0
ℎ and 𝐼𝐼𝐼ℎ acting on

𝐻𝐻𝐻0(Ω,div) and 𝐻𝐻𝐻(Ω,div) respectively.

4.3. The operators 𝐼𝐼𝐼0
ℎ and 𝐼𝐼𝐼ℎ

In the spirit of Remark 4.2 a natural choice for the operator 𝐼𝐼𝐼0
ℎ is the following constrained minimization

problem

𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙 = argmin

𝜙𝜙𝜙ℎ∈VVV0
𝑝𝑣

(𝒯ℎ)

1
2
‖𝜙𝜙𝜙−𝜙𝜙𝜙ℎ‖2𝐿2(Ω) s.t. (∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙),∇ ·𝜒𝜒𝜒ℎ)Ω = 0 ∀𝜒𝜒𝜒ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ).

The corresponding Lagrange function is

𝐿(𝜙𝜙𝜙ℎ,𝜆𝜆𝜆ℎ) =
1
2
‖𝜙𝜙𝜙ℎ −𝜙𝜙𝜙‖2𝐿2(Ω) + (∇ · (𝜙𝜙𝜙ℎ −𝜙𝜙𝜙),∇ · 𝜆𝜆𝜆ℎ)Ω

and the associated saddle point problem is to find (𝜙𝜙𝜙ℎ,𝜆𝜆𝜆ℎ) ∈ VVV0
𝑝𝑣

(𝒯ℎ)×VVV0
𝑝𝑣

(𝒯ℎ) such that

(𝜙𝜙𝜙ℎ −𝜙𝜙𝜙,𝜇𝜇𝜇ℎ)Ω + (∇ ·𝜇𝜇𝜇ℎ,∇ · 𝜆𝜆𝜆ℎ)Ω = 0 ∀𝜇𝜇𝜇ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ), (4.3a)

(∇ · (𝜙𝜙𝜙ℎ −𝜙𝜙𝜙),∇ · 𝜂𝜂𝜂ℎ)Ω = 0 ∀𝜂𝜂𝜂ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ). (4.3b)

Uniqueness is not given since only the divergence of the Lagrange parameter appears. However, by focussing on
the divergence of the Lagrange parameter, we can formulate it in the following way: Find (𝜙𝜙𝜙ℎ, 𝜆ℎ) ∈ VVV0

𝑝𝑣
(𝒯ℎ)×

∇ ·VVV0
𝑝𝑣

(𝒯ℎ) such that

(𝜙𝜙𝜙ℎ,𝜇𝜇𝜇ℎ)Ω + (∇ ·𝜇𝜇𝜇ℎ, 𝜆ℎ)Ω = (𝜙𝜙𝜙,𝜇𝜇𝜇ℎ)Ω ∀𝜇𝜇𝜇ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ), (4.4a)

(∇ ·𝜙𝜙𝜙ℎ, 𝜂ℎ)Ω = (∇ ·𝜙𝜙𝜙, 𝜂ℎ)Ω ∀𝜂ℎ ∈ ∇ ·VVV0
𝑝𝑣

(𝒯ℎ). (4.4b)

The construction of 𝐼𝐼𝐼ℎ is completely analogous, one just drops the zero boundary conditions everywhere.
Problem (4.4) defining the operator 𝐼𝐼𝐼0

ℎ is in fact a classical mixed finite element discretization of the Laplacian,
with both scalar valued right-hand side ∇·𝜙𝜙𝜙 in (4.4b) and vector valued right-hand side 𝜙𝜙𝜙 in (4.4a). For unique
solvability and stability of 𝐼𝐼𝐼0

ℎ and 𝐼𝐼𝐼ℎ, we refer to Section 7.1 of [6]. Regarding the stability with respect to the
polynomial degree 𝑝 we refer to Section 4.3 of [3]. We therefore have

Lemma 4.3. For any mesh 𝒯ℎ satisfying Assumption 1.1, the operators 𝐼𝐼𝐼0
ℎ : 𝐻𝐻𝐻0(Ω,div) → VVV0

𝑝𝑣
(𝒯ℎ) and 𝐼𝐼𝐼ℎ :

𝐻𝐻𝐻(Ω,div) → VVV𝑝𝑣 (𝒯ℎ) are well defined with bounds independent of the mesh size ℎ and the polynomial degree 𝑝.
They are projections.

We now analyze the approximation properties of the operator 𝐼𝐼𝐼0
ℎ and 𝐼𝐼𝐼ℎ in the 𝐿2(Ω) norm. To that end we

need certain decompositions on the continuous as well as the discrete level.
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Lemma 4.4 (Continuous and discrete Helmholtz-like decomposition – no boundary conditions). Let Ω satisfy
Assumption 3.1 for some 𝑠 ≥ 0. In spatial dimension 𝑑 = 3 the operators ΠΠΠcurl : 𝐻𝐻𝐻(Ω,div) → ∇×𝐻𝐻𝐻(Ω,curlcurlcurl)
and ΠΠΠcurl

ℎ : VVV𝑝𝑣 (𝒯ℎ) → ∇×NNN𝑝𝑣 (𝒯ℎ) given by

(ΠΠΠcurl𝜙𝜙𝜙,∇×𝜇𝜇𝜇)Ω = (𝜙𝜙𝜙,∇×𝜇𝜇𝜇)Ω ∀𝜇𝜇𝜇 ∈𝐻𝐻𝐻(Ω,curlcurlcurl), (4.5)

(ΠΠΠcurl
ℎ 𝜙𝜙𝜙ℎ,∇×𝜇𝜇𝜇)Ω = (𝜙𝜙𝜙ℎ,∇×𝜇𝜇𝜇)Ω ∀𝜇𝜇𝜇 ∈ NNN𝑝𝑣 (𝒯ℎ) (4.6)

are well defined. Furthermore, the remainder 𝑟𝑟𝑟 of the continuous decomposition 𝜙𝜙𝜙 = ΠΠΠcurl𝜙𝜙𝜙+ 𝑟𝑟𝑟 satisfies

∇ · 𝑟𝑟𝑟 = ∇ ·𝜙𝜙𝜙 in Ω,
∇× 𝑟𝑟𝑟 = 0 in Ω,
𝑛𝑛𝑛× 𝑟𝑟𝑟 = 0 on Γ,

as well as 𝑟𝑟𝑟 ∈𝐻𝐻𝐻1(Ω). Additionally there exists 𝑅 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) such that 𝑟𝑟𝑟 = ∇𝑅, where 𝑅 satisfies

∆𝑅 = ∇ ·𝜙𝜙𝜙 in Ω,
𝑅 = 0 on Γ.

(4.7)

Finally, the estimate ‖𝑟𝑟𝑟‖𝐻1(Ω) . ‖𝑅‖𝐻2(Ω) . ‖∇ ·𝜙𝜙𝜙‖𝐿2(Ω) holds. In spatial dimension 𝑑 = 2 analogous results
hold for the operators ΠΠΠcurl : 𝐻𝐻𝐻(Ω,div) → curlcurlcurl𝐻1(Ω) and ΠΠΠcurl

ℎ : VVV𝑝𝑣
(𝒯ℎ) → curlcurlcurl𝑆𝑝𝑣+1(𝒯ℎ) given by

(ΠΠΠcurl𝜙𝜙𝜙,curlcurlcurl𝜇)Ω = (𝜙𝜙𝜙,curlcurlcurl𝜇)Ω ∀𝜇 ∈ 𝐻1(Ω), (4.8)

(ΠΠΠcurl
ℎ 𝜙𝜙𝜙ℎ,curlcurlcurl𝜇)Ω = (𝜙𝜙𝜙ℎ,curlcurlcurl𝜇)Ω ∀𝜇 ∈ 𝑆𝑝𝑣+1(𝒯ℎ). (4.9)

Proof. We prove the results for 𝑑 = 3 first. For unique solvability of the variational definition of the operators,
just note that they are the 𝐿2(Ω) orthogonal projections on ∇×𝐻𝐻𝐻(Ω,curlcurlcurl) and ∇×NNN𝑝𝑣 (𝒯ℎ) respectively. By
construction we have

(𝑟𝑟𝑟,∇×𝜇𝜇𝜇)Ω = 0 ∀𝜇𝜇𝜇 ∈𝐻𝐻𝐻(Ω,curlcurlcurl)

which by definition gives ∇×𝑟𝑟𝑟 = 0. Furthermore, by the characterization of 𝐻𝐻𝐻0(Ω,curlcurlcurl) given in Theorem 3.33
of [19] we have 𝑛𝑛𝑛 × 𝑟𝑟𝑟 = 0. Since ΠΠΠcurl𝜙𝜙𝜙 ∈ ∇ ×𝐻𝐻𝐻(Ω,curlcurlcurl) we immediately have ∇ · 𝑟𝑟𝑟 = ∇ · 𝜙𝜙𝜙. Exploiting the
exact sequence property of the following de Rahm complex

{0} id−→ 𝐻1
0 (Ω) ∇−→𝐻𝐻𝐻0(Ω,curlcurlcurl) ∇×−→𝐻𝐻𝐻0(Ω,div) ∇·−→ 𝐿2

0(Ω) 0−→ {0}

in the case that both Ω and Γ are simply connected, we can find 𝑅 ∈ 𝐻1
0 (Ω) such that 𝑟𝑟𝑟 = ∇𝑅. Therefore 𝑅

solves (4.7). The Friedrichs inequality and elliptic regularity theory then give the desired estimate. In spatial
dimension 𝑑 = 2 the results and lines of proof stay the same. The only difference is the use of the two dimensional
exact sequence (1.1): As in the case 𝑑 = 3 we have

(𝑟𝑟𝑟,curlcurlcurl𝜇)Ω = 0 ∀𝜇 ∈ 𝐻1(Ω).

By partial integration we again find curl𝑟𝑟𝑟 = 0 as well as 𝑡𝑡𝑡 ·𝑟𝑟𝑟 = 0. Hence, by the exact sequence (1.1) (with zero
boundary conditions), we can find 𝑅 ∈ 𝐻1

0 (Ω) such that 𝑟𝑟𝑟 = ∇𝑅. The remainder of the proof is completely
analogous to the case 𝑑 = 3. �

By nearly the same arguments we also have a version for zero boundary conditions:

Lemma 4.5 (Continuous and discrete Helmholtz-like decomposition - zero boundary conditions). Let Ω satisfy
Assumption 3.1 for some 𝑠 ≥ 0. The operators ΠΠΠcurl,0 : 𝐻𝐻𝐻0(Ω,div) → ∇×𝐻𝐻𝐻0(Ω,curlcurlcurl) and ΠΠΠcurl,0

ℎ : VVV0
𝑝𝑣

(𝒯ℎ) →
∇×NNN0

𝑝𝑣
(𝒯ℎ) given by

(ΠΠΠcurl,0𝜙𝜙𝜙,∇×𝜇𝜇𝜇)Ω = (𝜙𝜙𝜙,∇×𝜇𝜇𝜇)Ω ∀𝜇𝜇𝜇 ∈𝐻𝐻𝐻0(Ω,curlcurlcurl) (4.10)
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(ΠΠΠcurl,0
ℎ 𝜙𝜙𝜙ℎ,∇×𝜇𝜇𝜇)Ω = (𝜙𝜙𝜙ℎ,∇×𝜇𝜇𝜇)Ω ∀𝜇𝜇𝜇 ∈ NNN0

𝑝𝑣
(𝒯ℎ) (4.11)

are well defined. Furthermore, the remainder 𝑟𝑟𝑟 of the continuous decomposition 𝜙𝜙𝜙 = ΠΠΠcurl,0𝜙𝜙𝜙+ 𝑟𝑟𝑟 satisfies

∇ · 𝑟𝑟𝑟 = ∇ ·𝜙𝜙𝜙 in Ω,
∇× 𝑟𝑟𝑟 = 0 in Ω,
𝑟𝑟𝑟 ·𝑛𝑛𝑛 = 0 on Γ,

as well as 𝑟𝑟𝑟 ∈𝐻𝐻𝐻1(Ω). Additionally there exists an 𝑅 ∈ 𝐻2(Ω)∩𝐻1(Ω)/R such that 𝑟𝑟𝑟 = ∇𝑅, where 𝑅 satisfies

∆𝑅 = ∇ ·𝜙𝜙𝜙 in Ω,
𝜕𝑛𝑅 = 0 on Γ.

(4.12)

Finally, the estimate ‖𝑟𝑟𝑟‖𝐻1(Ω) . ‖𝑅‖𝐻2(Ω) . ‖∇ ·𝜙𝜙𝜙‖𝐿2(Ω) holds. Analogous results hold in spatial dimension
𝑑 = 2 as in Lemma 4.4.

Proof. We only sketch the proof for 𝑑 = 3. The results for 𝑑 = 2 follow as in Lemma 4.4. Unique solvability
as well as ∇ × 𝑟𝑟𝑟 = 0 and ∇ · 𝑟𝑟𝑟 = ∇ · 𝜙𝜙𝜙 follows by the same arguments as in the proof of Lemma 4.4. Since
𝜙𝜙𝜙 ∈𝐻𝐻𝐻0(Ω,div) and ΠΠΠcurl,0𝜙𝜙𝜙 ∈ ∇×𝐻𝐻𝐻0(Ω,curlcurlcurl) ⊂𝐻𝐻𝐻0(Ω,div) we find

𝑟𝑟𝑟 ·𝑛𝑛𝑛 = 𝜙𝜙𝜙 ·𝑛𝑛𝑛−ΠΠΠcurl,0𝜙𝜙𝜙 ·𝑛𝑛𝑛 = 0.

Again by the exact sequence

R id−→ 𝐻1(Ω) ∇−→𝐻𝐻𝐻(Ω,curlcurlcurl) ∇×−→𝐻𝐻𝐻(Ω,div) ∇·−→ 𝐿2(Ω) 0−→ {0}

we can find 𝑅 ∈ 𝐻1(Ω) such that 𝑟𝑟𝑟 = ∇𝑅. Finally since 𝜕𝑛𝑅 = ∇𝑅 ·𝑛𝑛𝑛 = 𝑟𝑟𝑟 ·𝑛𝑛𝑛 = 0, we find that 𝑅 solves (4.12).
The Poincaré inequality and elliptic regularity theory then give the desired results. �

Lemma 4.6. Let Ω satisfy Assumption 3.1 for some 𝑠 ≥ 0. The operator 𝐼𝐼𝐼0
ℎ satisfies for arbitrary �̃�𝜙𝜙ℎ ∈ VVV0

𝑝𝑣
(𝒯ℎ)

the estimates ⃦⃦
𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙
⃦⃦
𝐿2(Ω)

. ‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) +
ℎ

𝑝𝑣
‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω), (4.13)⃦⃦

∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙)

⃦⃦
𝐿2(Ω)

≤ ‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω). (4.14)

The same estimates hold true for the operator 𝐼𝐼𝐼ℎ for arbitrary �̃�𝜙𝜙ℎ ∈ VVV𝑝𝑣 (𝒯ℎ).

Proof. We prove the result for 𝑑 = 3 first. Let �̃�𝜙𝜙ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ) be arbitrary. Due to the orthogonality relation
satisfied by the operator 𝐼𝐼𝐼0

ℎ the estimate (4.14) is obvious. We have with 𝑒𝑒𝑒 = 𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙

‖𝑒𝑒𝑒‖2𝐿2(Ω) = (𝑒𝑒𝑒,𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)Ω + (𝑒𝑒𝑒, �̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙)Ω.

In order to treat the second term we apply Lemma 4.5 and split the discrete object �̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙 ∈ VVV0

𝑝𝑣
(𝒯ℎ) on the

discrete and the continuous level. That is, we write

�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙 = ∇×𝜇𝜇𝜇+ 𝑟𝑟𝑟, �̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙 = ∇×𝜇𝜇𝜇ℎ + 𝑟𝑟𝑟ℎ

for certain 𝜇𝜇𝜇 ∈𝐻𝐻𝐻0(Ω,curlcurlcurl), 𝑟𝑟𝑟 ∈𝐻𝐻𝐻0(Ω,div), 𝜇𝜇𝜇ℎ ∈ NNN0
𝑝𝑣

(𝒯ℎ), and 𝑟𝑟𝑟ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ). Since ∇ · ∇× = 0 we have

(𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙,∇×𝜇𝜇𝜇ℎ)Ω = 0
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by definition of the operator 𝐼𝐼𝐼0
ℎ and consequently

(𝑒𝑒𝑒, �̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙)Ω = (𝑒𝑒𝑒,∇×𝜇𝜇𝜇ℎ + 𝑟𝑟𝑟ℎ)Ω = (𝑒𝑒𝑒,𝑟𝑟𝑟ℎ)Ω = (𝑒𝑒𝑒,𝑟𝑟𝑟ℎ − 𝑟𝑟𝑟)Ω + (𝑒𝑒𝑒,𝑟𝑟𝑟)Ω =: 𝑇1 + 𝑇2.

Treatment of 𝑇1𝑇1𝑇1: to estimate 𝑇1 we first need one of the commuting projection based interpolation operators
defined in [17]. Specifically, the global operator ΠΠΠdiv

𝑝 given in Remark 2.9 of [17], see also [20]. Let therefore
ΠΠΠdiv,⋆
𝑝𝑣

denote either the operator ΠΠΠdiv
𝑝𝑣−1 if VVV0

𝑝𝑣
(𝒯ℎ) = RTRTRT0

𝑝𝑣−1(𝒯ℎ) or the analogous operator ΠΠΠdiv
𝑝𝑣

in the case
VVV0
𝑝𝑣

(𝒯ℎ) = BDMBDMBDM0
𝑝𝑣

(𝒯ℎ). First note that ∇ · 𝑟𝑟𝑟 = ∇ · 𝑟𝑟𝑟ℎ ∈ ∇ ·VVV0
𝑝𝑣

(𝒯ℎ). By the commuting diagram property of
the operator ΠΠΠdiv,⋆

𝑝𝑣
as well as the projection property we therefore have

∇ · (ΠΠΠdiv,⋆
𝑝𝑣

𝑟𝑟𝑟 − 𝑟𝑟𝑟ℎ) = ΠΠΠ𝐿2

𝑝𝑣
(∇ · 𝑟𝑟𝑟)−∇ · 𝑟𝑟𝑟ℎ = ΠΠΠ𝐿2

𝑝𝑣
(∇ · 𝑟𝑟𝑟ℎ)−∇ · 𝑟𝑟𝑟ℎ = 0.

By the exact sequence property we therefore have ΠΠΠdiv,⋆
𝑝𝑣

𝑟𝑟𝑟− 𝑟𝑟𝑟ℎ ∈ ∇×NNN0
𝑝𝑣

(𝒯ℎ). Furthermore, the definition of 𝑟𝑟𝑟
and 𝑟𝑟𝑟ℎ in Lemma 4.5 gives the orthogonality relation 𝑟𝑟𝑟 − 𝑟𝑟𝑟ℎ ⊥ ∇×NNN0

𝑝𝑣
(𝒯ℎ). Putting it all together we have

‖𝑟𝑟𝑟 − 𝑟𝑟𝑟ℎ‖2𝐿2(Ω) = (𝑟𝑟𝑟 − 𝑟𝑟𝑟ℎ, 𝑟𝑟𝑟 −ΠΠΠdiv,⋆
𝑝𝑣

𝑟𝑟𝑟)Ω + (𝑟𝑟𝑟 − 𝑟𝑟𝑟ℎ,ΠΠΠdiv,⋆
𝑝𝑣

𝑟𝑟𝑟 − 𝑟𝑟𝑟ℎ)Ω = (𝑟𝑟𝑟 − 𝑟𝑟𝑟ℎ, 𝑟𝑟𝑟 −ΠΠΠdiv,⋆
𝑝𝑣

𝑟𝑟𝑟)Ω,

which, by the Cauchy–Schwarz inequality, gives

‖𝑟𝑟𝑟 − 𝑟𝑟𝑟ℎ‖𝐿2(Ω) ≤ ‖𝑟𝑟𝑟 −ΠΠΠdiv,⋆
𝑝𝑣

𝑟𝑟𝑟‖𝐿2(Ω).

Since ∇ ·𝑟𝑟𝑟 = ∇ ·𝑟𝑟𝑟ℎ is discrete we may apply ([17], Thm. 2.10(vi)) as well as perform a simple scaling argument
to arrive at ⃦⃦

𝑟𝑟𝑟 −ΠΠΠdiv,⋆
𝑝𝑣

𝑟𝑟𝑟
⃦⃦
𝐿2(Ω)

.
ℎ

𝑝𝑣
‖𝑟𝑟𝑟‖𝐻1(Ω) .

ℎ

𝑝𝑣

⃦⃦
∇ · (�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

,

where the last estimate is due to the a priori estimate of Lemma 4.5. Summarizing we have

𝑇1 .
ℎ

𝑝𝑣
‖𝑒𝑒𝑒‖𝐿2(Ω)

⃦⃦
∇ · (�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

.
ℎ

𝑝𝑣
‖𝑒𝑒𝑒‖𝐿2(Ω)‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω),

where the last estimate follows by adding and subtracting 𝜙𝜙𝜙, the triangle inequality as well as the second
inequality of the present lemma.
Treatment of 𝑇2𝑇2𝑇2: the term 𝑇2 is treated with a duality argument. We select 𝜓𝜓𝜓 ∈𝐻𝐻𝐻(Ω,div) such that

(∇ · 𝑣𝑣𝑣,∇ ·𝜓𝜓𝜓)Ω = (𝑣𝑣𝑣,𝑟𝑟𝑟)Ω ∀𝑣𝑣𝑣 ∈𝐻𝐻𝐻0(Ω,div).

To that end, we note that by Lemma 4.5 we have 𝑟𝑟𝑟 = ∇𝑅 for some 𝑅 ∈ 𝐻2(Ω). Therefore for 𝑣𝑣𝑣 ∈ 𝐻𝐻𝐻0(Ω,div)
we have

(∇ · 𝑣𝑣𝑣,∇ ·𝜓𝜓𝜓)Ω = (𝑣𝑣𝑣,𝑟𝑟𝑟)Ω = (𝑣𝑣𝑣,∇𝑅)Ω = −(∇ · 𝑣𝑣𝑣,𝑅)Ω

so that a desired 𝜓𝜓𝜓 can be found as 𝜓𝜓𝜓 = ∇𝑤 with 𝑤 solving

−∆𝑤 = 𝑅 in Ω,
𝑤 = 0 on Γ.

Furthermore, since 𝑅 ∈ 𝐻2(Ω), we have by construction −𝑅 = ∇ ·𝜓𝜓𝜓 ∈ 𝐻2(Ω). Finally, the following estimates
hold

‖∇ ·𝜓𝜓𝜓‖𝐻2(Ω) = ‖𝑅‖𝐻2(Ω) .
⃦⃦
∇ · (�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

, (4.15)

due to elliptic regularity and the results of Lemma 4.5. We therefore have for any 𝜓𝜓𝜓ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ)

𝑇2 = (𝑒𝑒𝑒,𝑟𝑟𝑟)Ω = (∇ · 𝑒𝑒𝑒,∇ ·𝜓𝜓𝜓)Ω = (∇ · 𝑒𝑒𝑒,∇ · (𝜓𝜓𝜓 −𝜓𝜓𝜓ℎ))Ω ≤ ‖∇ · 𝑒𝑒𝑒‖𝐿2(Ω)‖∇ · (𝜓𝜓𝜓 −𝜓𝜓𝜓ℎ)‖𝐿2(Ω),
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where we used the definition of 𝑇2, the duality argument elaborated above, the orthogonality relation of 𝐼𝐼𝐼0
ℎ to

insert any 𝜓𝜓𝜓ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ), and the Cauchy–Schwarz inequality. Finally exploiting the a priori estimate of 𝜓𝜓𝜓 in
(4.15) we find for 𝑝𝑣 > 1 that

𝑇2 ≤ ‖∇ · 𝑒𝑒𝑒‖𝐿2(Ω) · inf
𝜓𝜓𝜓ℎ∈VVV0

𝑝𝑣
(𝒯ℎ)

‖∇ · (𝜓𝜓𝜓 −𝜓𝜓𝜓ℎ)‖𝐿2(Ω) . ‖∇ · 𝑒𝑒𝑒‖𝐿2(Ω)(ℎ/𝑝𝑣)
2‖∇ ·𝜓𝜓𝜓‖𝐻2(Ω)

. ‖∇ · 𝑒𝑒𝑒‖𝐿2(Ω)(ℎ/𝑝𝑣)
2
⃦⃦
∇ · (�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

.

In the lowest order case 𝑝𝑣 = 1 we cannot fully exploit the regularity. However, we find

‖∇ ·𝜓𝜓𝜓‖𝐻1(Ω) = ‖𝑅‖𝐻1(Ω) .
⃦⃦
∇ · (�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦

(𝐻1(Ω))′
. (4.16)

Proceeding as above and using estimate (4.16) we find

𝑇2 ≤ ‖∇ · 𝑒𝑒𝑒‖𝐿2(Ω) · inf
𝜓𝜓𝜓ℎ∈VVV0

𝑝𝑣
(𝒯ℎ)

‖∇ · (𝜓𝜓𝜓 −𝜓𝜓𝜓ℎ)‖𝐿2(Ω) . ‖∇ · 𝑒𝑒𝑒‖𝐿2(Ω)ℎ/𝑝𝑣‖∇ ·𝜓𝜓𝜓‖𝐻1(Ω)

. ‖∇ · 𝑒𝑒𝑒‖𝐿2(Ω)ℎ/𝑝𝑣
⃦⃦
∇ · (�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦

(𝐻1(Ω))′
. ‖∇ · 𝑒𝑒𝑒‖𝐿2(Ω)ℎ/𝑝𝑣

⃦⃦
�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙
⃦⃦
𝐿2(Ω)

.

The last last estimate is due to integration by parts and the boundary condition of �̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙; in fact⃦⃦

∇ · (�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙)

⃦⃦
(𝐻1(Ω))′

= sup
𝑣∈𝐻1(Ω)

|(∇ · (�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙), 𝑣)Ω|

‖𝑣‖𝐻1(Ω)

= sup
𝑣∈𝐻1(Ω)

|(�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙,∇𝑣)Ω|

‖𝑣‖𝐻1(Ω)

≤
⃦⃦
�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙
⃦⃦
𝐿2(Ω)

holds. Putting everything together we have for 𝑝𝑣 > 1

‖𝑒𝑒𝑒‖2𝐿2(Ω) = (𝑒𝑒𝑒,𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)Ω + (𝑒𝑒𝑒, �̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙)Ω = (𝑒𝑒𝑒,𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)Ω + 𝑇1 + 𝑇2

. ‖𝑒𝑒𝑒‖𝐿2(Ω)‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) +
ℎ

𝑝𝑣
‖𝑒𝑒𝑒‖𝐿2(Ω)‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω)

+
ℎ2

𝑝2
𝑣

‖∇ · 𝑒𝑒𝑒‖𝐿2(Ω)

⃦⃦
∇ · (�̃�𝜙𝜙ℎ − 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

. ‖𝑒𝑒𝑒‖𝐿2(Ω)‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) +
ℎ

𝑝𝑣
‖𝑒𝑒𝑒‖𝐿2(Ω)‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω) +

ℎ2

𝑝2
𝑣

‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖2𝐿2(Ω),

where the last estimate again follows from inserting 𝜙𝜙𝜙 and using the second estimate of the present lemma.
Young’s inequality then yields the result for the operator 𝐼𝐼𝐼0

ℎ. The lowest order case is treated analogous. For the
operator 𝐼𝐼𝐼ℎ the only difference is that one applies Lemma 4.4 instead of Lemma 4.5 and perform the duality
argument on all of 𝐻𝐻𝐻(Ω,div) instead of 𝐻𝐻𝐻0(Ω,div). Here it is important to note that the potential 𝑅 given
by Lemma 4.4 satisfies homogeneous boundary conditions, so that the boundary term vanishes in the partial
integration. In spatial dimension 𝑑 = 2 there are two adjustments to be made: First, in the continuous and
discrete splitting of �̃�𝜙𝜙ℎ−𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙 one utilizes the results of Lemma 4.5 for 𝑑 = 2. Second, the treatment of 𝑇1 needs
to be adjusted. In spatial dimension 𝑑 = 2 in [17] the exact sequence

R id−→ 𝐻1(Ω) ∇−→𝐻𝐻𝐻(Ω, curl) curl−→ 𝐿2(Ω) 0−→ {0}, (4.17)

is considered and a corresponding operator ΠΠΠcurl
𝑝 is constructed, see Definition 2.6 and Remark 2.9 of [17].

However, since, as discussed in Section 1, the exact sequence (4.17) can be obtained from the exact sequence

R id−→ 𝐻1(Ω) curlcurlcurl−→𝐻𝐻𝐻(Ω,div) ∇·−→ 𝐿2(Ω) 0−→ {0}. (4.18)

via rotation the operator ΠΠΠcurl
𝑝 is applicable and one employs ([17], Thm. 2.13 (iv)) instead of Theorem 2.10(vi)

of [17] in the treatment of 𝑇1. The remainder of the proof stays the same and is therefore omitted. �
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Remark 4.7. 𝐻𝐻𝐻(Ω,div)-conforming approximation operators similar to 𝐼𝐼𝐼ℎ and 𝐼𝐼𝐼0
ℎ are presented in [12], where

the focus is on a patchwise construction rather than the (global) orthogonalities (4.3b), (4.4b). We stress,
however, that we do not use the operator of [12] since the operator constructed and analyzed in Theorem 3.2
of [12] is not 𝑝 robust, i.e., the constants in the error estimates may depend on 𝑝.

Theorem 4.8. Let Ω satisfy Assumption 3.1 for some 𝑠 ≥ 0 and (𝜙𝜙𝜙ℎ, 𝑢ℎ) be the least squares approximation
of (𝜙𝜙𝜙, 𝑢). Furthermore, let 𝑒𝑢 = 𝑢− 𝑢ℎ and 𝑒𝑒𝑒𝜙𝜙𝜙 = 𝜙𝜙𝜙−𝜙𝜙𝜙ℎ. Then, for any �̃�ℎ ∈ 𝑆𝑝𝑠

(𝒯ℎ), �̃�𝜙𝜙ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ),

‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) .
ℎ

𝑝
‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏 + ‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) +

ℎ

𝑝
‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω)

.
ℎ

𝑝
‖𝑢− �̃�ℎ‖𝐻1(Ω) + ‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) +

ℎ

𝑝
‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω).

Proof. We prove the result for 𝑑 = 3 first. Let (𝜓𝜓𝜓, 𝑣) ∈ 𝐻𝐻𝐻0(Ω,div) ×𝐻1(Ω) denote the dual solution given by
Theorem 3.5 applied to 𝜂𝜂𝜂 = 𝑒𝑒𝑒𝜙𝜙𝜙. Theorem 3.5 gives 𝜓𝜓𝜓 ∈ 𝐿𝐿𝐿2(Ω), ∇ ·𝜓𝜓𝜓 ∈ 𝐻1(Ω), and 𝑣 ∈ 𝐻min(𝑠,1)+2(Ω). Due to
the Galerkin orthogonality we have for any (�̃�𝜓𝜓ℎ, 𝑣ℎ)

‖𝑒𝑒𝑒𝜙𝜙𝜙‖2𝐿2(Ω) = 𝑏((𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢), (𝜓𝜓𝜓, 𝑣)) = 𝑏((𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢), (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ, 𝑣 − 𝑣ℎ)). (4.19)

We now estimate all terms in the above equation (4.19):

(∇𝑒𝑢 + 𝑒𝑒𝑒𝜙𝜙𝜙,∇(𝑣 − 𝑣ℎ))Ω ≤ ‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏‖∇(𝑣 − 𝑣ℎ)‖𝐿2(Ω),

(∇ · 𝑒𝑒𝑒𝜙𝜙𝜙 + 𝛾𝑒𝑢,∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ) + 𝛾(𝑣 − 𝑣ℎ))Ω . ‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏
[︁
‖∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)‖𝐿2(Ω) + ‖𝑣 − 𝑣ℎ‖𝐿2(Ω)

]︁
,

(∇𝑒𝑢,𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)Ω = −(𝑒𝑢,∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ))Ω ≤ ‖𝑒𝑢‖𝐿2(Ω)‖∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)‖𝐿2(Ω).

Therefore, we conclude that

‖𝑒𝑒𝑒𝜙𝜙𝜙‖2𝐿2(Ω) . ‖(𝑒𝑒𝑒
𝜙𝜙𝜙, 𝑒𝑢)‖𝑏

[︂⃦⃦⃦
∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)

⃦⃦⃦
𝐿2(Ω)

+ ‖𝑣 − 𝑣ℎ‖𝐻1(Ω)

]︂
+ (𝑒𝑒𝑒𝜙𝜙𝜙,𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)Ω, (4.20)

the limiting term being for now the last one. To overcome the lack of regularity of 𝜓𝜓𝜓 we perform a Helmholtz
decomposition. In fact, since 𝜓𝜓𝜓 ∈𝐻𝐻𝐻0(Ω,div) as well as ∇·𝜓𝜓𝜓 ∈ 𝐻1(Ω) there exist 𝜌𝜌𝜌 ∈𝐻𝐻𝐻0(Ω,curlcurlcurl) and 𝑧 ∈ 𝐻2(Ω)
such that 𝜓𝜓𝜓 = ∇× 𝜌𝜌𝜌+∇𝑧. The construction is as follows: Let 𝑧 ∈ 𝐻1(Ω) solve

−∆𝑧 = −∇ ·𝜓𝜓𝜓 in Ω,
𝜕𝑛𝑧 = 0 on Γ.

Since ∇· (𝜓𝜓𝜓−∇𝑧) = 0 as well as (𝜓𝜓𝜓−∇𝑧) ·𝑛𝑛𝑛 = 0 by construction, the exact sequence property of the employed
spaces allows for the existence of 𝜌𝜌𝜌 ∈ 𝐻𝐻𝐻0(Ω,curlcurlcurl) such that 𝜓𝜓𝜓 − ∇𝑧 = ∇ × 𝜌𝜌𝜌. Finally the following estimates
hold due to the a priori estimate of the Lax–Milgram theorem and partial integration for the first estimate,
Assumption 3.1 for the second, and the triangle inequality together with the first estimate for the third one:

‖𝑧‖𝐻1(Ω) . ‖∇ ·𝜓𝜓𝜓‖(𝐻1(Ω))′ ≤ ‖𝜓𝜓𝜓‖𝐿2(Ω),

‖𝑧‖𝐻2(Ω) . ‖∇ ·𝜓𝜓𝜓‖𝐿2(Ω),

‖∇ × 𝜌𝜌𝜌‖𝐿2(Ω) ≤ ‖𝜓𝜓𝜓‖𝐿2(Ω) + ‖∇𝑧‖𝐿2(Ω) . ‖𝜓𝜓𝜓‖𝐿2(Ω).

We now continue estimating (4.20) by applying the Helmholtz decomposition. For any �̃�𝜓𝜓
𝑐

ℎ, �̃�𝜓𝜓
𝑔

ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ) we
have with �̃�𝜓𝜓ℎ = �̃�𝜓𝜓

𝑐

ℎ + �̃�𝜓𝜓
𝑔

ℎ

(𝑒𝑒𝑒𝜙𝜙𝜙,𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)Ω = (𝑒𝑒𝑒𝜙𝜙𝜙,∇× 𝜌𝜌𝜌− �̃�𝜓𝜓
𝑐

ℎ)Ω + (𝑒𝑒𝑒𝜙𝜙𝜙,∇𝑧 − �̃�𝜓𝜓
𝑔

ℎ)Ω =: 𝑇 𝑐 + 𝑇 𝑔.
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Treatment of 𝑇 𝑔𝑇 𝑔𝑇 𝑔: by the Cauchy–Schwarz inequality we have

𝑇 𝑔 = (𝑒𝑒𝑒𝜙𝜙𝜙,∇𝑧 − �̃�𝜓𝜓
𝑔

ℎ)Ω ≤ ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω)

⃦⃦⃦
∇𝑧 − �̃�𝜓𝜓

𝑔

ℎ

⃦⃦⃦
𝐿2(Ω)

.

Treatment of 𝑇 𝑐𝑇 𝑐𝑇 𝑐: for any �̃�𝜙𝜙ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ) we have

𝑇 𝑐 = (𝑒𝑒𝑒𝜙𝜙𝜙,∇× 𝜌𝜌𝜌− �̃�𝜓𝜓
𝑐

ℎ)Ω = (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ,∇× 𝜌𝜌𝜌− �̃�𝜓𝜓
𝑐

ℎ)Ω + (�̃�𝜙𝜙ℎ −𝜙𝜙𝜙ℎ,∇× 𝜌𝜌𝜌− �̃�𝜓𝜓
𝑐

ℎ)Ω =: 𝑇 𝑐1 + 𝑇 𝑐2 .

Treatment of 𝑇 𝑐1𝑇
𝑐
1𝑇
𝑐
1 : by the Cauchy–Schwarz inequality we have

𝑇 𝑐1 = (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ,∇× 𝜌𝜌𝜌− �̃�𝜓𝜓
𝑐

ℎ)Ω ≤ ‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω)

⃦⃦⃦
∇× 𝜌𝜌𝜌− �̃�𝜓𝜓

𝑐

ℎ

⃦⃦⃦
𝐿2(Ω)

.

Treatment of 𝑇 𝑐2𝑇
𝑐
2𝑇
𝑐
2 : in order to treat 𝑇 𝑐2 we proceed as in the proof of Lemma 4.6 and apply Lemma 4.5 to split

the discrete object �̃�𝜙𝜙ℎ −𝜙𝜙𝜙ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ) on the discrete and the continuous level:

�̃�𝜙𝜙ℎ −𝜙𝜙𝜙ℎ = ∇×𝜇𝜇𝜇+ 𝑟𝑟𝑟, �̃�𝜙𝜙ℎ −𝜙𝜙𝜙ℎ = ∇×𝜇𝜇𝜇ℎ + 𝑟𝑟𝑟ℎ,

for certain 𝜇𝜇𝜇 ∈𝐻𝐻𝐻0(Ω,curlcurlcurl), 𝑟𝑟𝑟 ∈𝐻𝐻𝐻0(Ω,div), 𝜇𝜇𝜇ℎ ∈ NNN0
𝑝𝑣

(𝒯ℎ), and 𝑟𝑟𝑟ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ). We now choose �̃�𝜓𝜓
𝑐

ℎ = ΠΠΠcurl,0
ℎ ∇×𝜌𝜌𝜌

given by Lemma 4.5. Exploiting the definition of the operator ΠΠΠcurl,0
ℎ we find

𝑇 𝑐2 = (�̃�𝜙𝜙ℎ −𝜙𝜙𝜙ℎ,∇× 𝜌𝜌𝜌− �̃�𝜓𝜓
𝑐

ℎ)Ω = (∇×𝜇𝜇𝜇ℎ,∇× 𝜌𝜌𝜌−ΠΠΠcurl,0
ℎ ∇× 𝜌𝜌𝜌)Ω⏟  ⏞  

=0

+(𝑟𝑟𝑟ℎ,∇× 𝜌𝜌𝜌−ΠΠΠcurl,0
ℎ ∇× 𝜌𝜌𝜌)Ω

= (𝑟𝑟𝑟ℎ − 𝑟𝑟𝑟,∇× 𝜌𝜌𝜌−ΠΠΠcurl,0
ℎ ∇× 𝜌𝜌𝜌)Ω + (𝑟𝑟𝑟,∇× 𝜌𝜌𝜌−ΠΠΠcurl,0

ℎ ∇× 𝜌𝜌𝜌)Ω
=: 𝑇1 + 𝑇2.

Treatment of 𝑇1𝑇1𝑇1: with the same notation as in the proof of Lemma 4.6 and with exactly the same arguments
we have

‖𝑟𝑟𝑟 − 𝑟𝑟𝑟ℎ‖𝐿2(Ω) .
ℎ

𝑝𝑣
‖𝑟𝑟𝑟‖𝐻1(Ω) .

ℎ

𝑝𝑣
‖∇ · (�̃�𝜙𝜙ℎ −𝜙𝜙𝜙ℎ)‖𝐿2(Ω).

By the Cauchy–Schwarz inequality we have

𝑇1 .
ℎ

𝑝𝑣
‖∇ · (�̃�𝜙𝜙ℎ −𝜙𝜙𝜙ℎ)‖𝐿2(Ω)

⃦⃦⃦
∇× 𝜌𝜌𝜌−ΠΠΠcurl,0

ℎ ∇× 𝜌𝜌𝜌
⃦⃦⃦
𝐿2(Ω)

.
ℎ

𝑝𝑣
‖∇ · (�̃�𝜙𝜙ℎ −𝜙𝜙𝜙ℎ)‖𝐿2(Ω)‖∇ × 𝜌𝜌𝜌‖𝐿2(Ω),

where the last estimate follows from the fact that⃦⃦⃦
∇× 𝜌𝜌𝜌−ΠΠΠcurl,0

ℎ ∇× 𝜌𝜌𝜌
⃦⃦⃦
𝐿2(Ω)

≤ ‖∇× 𝜌𝜌𝜌−∇× 𝜌𝜌𝜌ℎ‖𝐿2(Ω)

for any 𝜌𝜌𝜌ℎ ∈ NNN0
𝑝𝑣

(𝒯ℎ) since it is a projection. Finally inserting 𝜙𝜙𝜙 and applying the triangle inequality as well as
estimating ‖∇ · (𝜙𝜙𝜙−𝜙𝜙𝜙ℎ)‖𝐿2(Ω) by ‖(𝑒𝑢, 𝑒𝑒𝑒𝜙𝜙𝜙)‖𝑏 we find

𝑇1 .
ℎ

𝑝𝑣
‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω)‖∇ × 𝜌𝜌𝜌‖𝐿2(Ω) +

ℎ

𝑝𝑣
‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏‖∇ × 𝜌𝜌𝜌‖𝐿2(Ω).

Treatment of 𝑇2𝑇2𝑇2: note again that 𝜌𝜌𝜌 ∈𝐻𝐻𝐻0(Ω,curlcurlcurl) and the fact that ΠΠΠcurl,0
ℎ maps into ∇×NNN0

𝑝𝑣
(𝒯ℎ). Therefore,

we can write ∇ × 𝜌𝜌𝜌 −ΠΠΠcurl,0
ℎ ∇ × 𝜌𝜌𝜌 = ∇ × ̂︀𝜌𝜌𝜌 for some ̂︀𝜌𝜌𝜌 ∈ 𝐻𝐻𝐻0(Ω,curlcurlcurl) and the boundary terms consequently

vanish in the following integration by parts

𝑇2 = (𝑟𝑟𝑟,∇× ̂︀𝜌𝜌𝜌)Ω = (∇× 𝑟𝑟𝑟,̂︀𝜌𝜌𝜌)Ω.
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Finally, 𝑇2 = 0, since ∇× 𝑟𝑟𝑟 = 0 by Lemma 4.5.

Collecting all the terms: collecting the terms together with the estimate ‖∇ × 𝜌𝜌𝜌‖𝐿2(Ω) . ‖𝜓𝜓𝜓‖𝐿2(Ω) .
‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) from the Helmholtz decomposition and the regularity estimates of Lemma 3.5 we find

(𝑒𝑒𝑒𝜙𝜙𝜙,𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)Ω .

[︃⃦⃦⃦
∇𝑧 − �̃�𝜓𝜓

𝑔

ℎ

⃦⃦⃦
𝐿2(Ω)

+ ‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) +
ℎ

𝑝𝑣
‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω) +

ℎ

𝑝𝑣
‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏

]︃
× ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω). (4.21)

For the choice �̃�𝜓𝜓
𝑐

ℎ = ΠΠΠcurl,0
ℎ ∇× 𝜌𝜌𝜌 ∈ ∇×NNN0

𝑝𝑣
(𝒯ℎ) we have⃦⃦⃦

∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)
⃦⃦⃦
𝐿2(Ω)

=
⃦⃦⃦
∇ · (∇𝑧 − �̃�𝜓𝜓

𝑔

ℎ)
⃦⃦⃦
𝐿2(Ω)

.

Due to the regularity of 𝑧 ∈ 𝐻2(Ω) as well as ∇ · ∇𝑧 = ∆𝑧 = ∇ · 𝜓𝜓𝜓 ∈ 𝐻1(Ω) we can find �̃�𝜓𝜓
𝑔

ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ) such
that ⃦⃦⃦

∇𝑧 − �̃�𝜓𝜓
𝑔

ℎ

⃦⃦⃦
𝐻𝐻𝐻(Ω,div)

.
ℎ

𝑝𝑣
‖∇𝑧‖𝐻𝐻𝐻1(Ω,div) .

ℎ

𝑝𝑣
‖∇ ·𝜓𝜓𝜓‖𝐻1(Ω) .

ℎ

𝑝𝑣
‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) .

ℎ

𝑝𝑣
‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏.

Therefore, estimate (4.21) can be summarized as follows:

(𝑒𝑒𝑒𝜙𝜙𝜙,𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)Ω .
[︂
ℎ

𝑝𝑣
‖(𝑒𝑢, 𝑒𝑒𝑒𝜙𝜙𝜙)‖𝑏 + ‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) +

ℎ

𝑝𝑣
‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω)

]︂
‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω). (4.22)

Again due to the regularity of 𝑣 ∈ 𝐻min(𝑠,1)+2(Ω) we can find 𝑣ℎ ∈ 𝑆𝑝𝑠(𝒯ℎ) such that

‖𝑣 − 𝑣ℎ‖𝐻1(Ω) .
ℎ

𝑝𝑠
‖𝑣‖𝐻2(Ω) .

ℎ

𝑝𝑠
‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω).

Finally, summarizing the estimates (4.20) and (4.22) and again using⃦⃦⃦
∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)

⃦⃦⃦
𝐿2(Ω)

=
⃦⃦⃦
∇ · (∇𝑧 − �̃�𝜓𝜓

𝑔

ℎ)
⃦⃦⃦
𝐿2(Ω)

.
ℎ

𝑝𝑣
‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏

we find

‖𝑒𝑒𝑒𝜙𝜙𝜙‖2𝐿2(Ω) .

[︂
ℎ

𝑝
‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏 + ‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) +

ℎ

𝑝
‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω)

]︂
‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω).

Canceling one power of ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) then yields the first estimate. The second one follows again by the fact that the
least squares approximation is the projection with respect to 𝑏 and the norm equivalence given in Theorem 2.1.
In spatial dimension 𝑑 = 2 there is one important adjustments to be made: The Helmholtz decomposition of 𝜓𝜓𝜓
after equation (4.20) now reads 𝜓𝜓𝜓 = curlcurlcurl 𝜌+∇𝑧, for some 𝜌 ∈ 𝐻1

0 (Ω), i.e., a scalar potential instead of a vector
field in three dimensions, and 𝑧 ∈ 𝐻2(Ω). The construction stays exactly the same. The remainder of the proof
is adjusted analogously to the proof of Lemma 4.6. �

Lemma 4.9. Let Ω satisfy Assumption 3.1 for some 𝑠 ≥ 0 and (𝜙𝜙𝜙ℎ, 𝑢ℎ) be the least squares approximation of
(𝜙𝜙𝜙, 𝑢). Set 𝑒𝑢 = 𝑢− 𝑢ℎ and 𝑒𝑒𝑒𝜙𝜙𝜙 = 𝜙𝜙𝜙−𝜙𝜙𝜙ℎ. Let (𝜓𝜓𝜓, 𝑣) ∈ 𝐻𝐻𝐻0(Ω,div)×𝐻1(Ω) be the solution of the dual problem
given by Theorem 3.4 with 𝑤 = 𝑒𝑢. Additionally, let (𝜓𝜓𝜓ℎ, 𝑣ℎ) be the least squares approximation of (𝜓𝜓𝜓, 𝑣) and
denote 𝑒𝑣 = 𝑣 − 𝑣ℎ and 𝑒𝑒𝑒𝜓𝜓𝜓 = 𝜓𝜓𝜓 −𝜓𝜓𝜓ℎ. Then,⃦⃦⃦

(𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣)
⃦⃦⃦
𝑏
. ‖∇𝑒𝑢‖𝐿2(Ω) and ‖𝑒𝑣‖𝐿2(Ω) .

ℎ

𝑝
‖∇𝑒𝑢‖𝐿2(Ω) and

⃦⃦⃦
𝑒𝑒𝑒𝜓𝜓𝜓

⃦⃦⃦
𝐿2(Ω)

.
ℎ

𝑝
‖∇𝑒𝑢‖𝐿2(Ω).
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Proof. Theorem 3.4 provides ‖𝜓𝜓𝜓‖𝐻𝐻𝐻min(𝑠,1)+1(Ω) + ‖∇ · 𝜓𝜓𝜓‖𝐻1(Ω) + ‖𝑣‖𝐻1(Ω) . ‖∇𝑒𝑢‖𝐿2(Ω). Stability of the least
squares method (cf. (4.1)) yields ⃦⃦⃦

(𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣)
⃦⃦⃦
𝑏
. ‖∇𝑒𝑢‖𝐿2(Ω).

By Lemma 4.1 we have
‖𝑒𝑣‖𝐿2(Ω) . ℎ/𝑝

⃦⃦⃦
(𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣)

⃦⃦⃦
𝑏
,

which together with the above gives the second estimate. By Theorem 4.8 we have⃦⃦⃦
𝑒𝑒𝑒𝜓𝜓𝜓

⃦⃦⃦
𝐿2(Ω)

.
ℎ

𝑝
‖𝑣 − 𝑣ℎ‖𝐻1(Ω) +

⃦⃦⃦
𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ

⃦⃦⃦
𝐿2(Ω)

+
ℎ

𝑝

⃦⃦⃦
∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)

⃦⃦⃦
𝐿2(Ω)

for any 𝑣ℎ ∈ 𝑆𝑝𝑠(𝒯ℎ), �̃�𝜓𝜓ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ). The result follows immediately by again exploiting the regularity of the
dual solution and the approximation properties of the employed spaces. �

Theorem 4.10. Let Ω satisfy Assumption 3.1 for some 𝑠 ≥ 0 and (𝜙𝜙𝜙ℎ, 𝑢ℎ) be the least squares approximation
of (𝜙𝜙𝜙, 𝑢). Furthermore, let 𝑒𝑢 = 𝑢− 𝑢ℎ. Then, for any �̃�𝜙𝜙ℎ ∈ VVV0

𝑝𝑣
(𝒯ℎ), �̃�ℎ ∈ 𝑆𝑝𝑠

(𝒯ℎ),

‖∇𝑒𝑢‖𝐿2(Ω) . ‖𝑢− �̃�ℎ‖𝐻1(Ω) +
ℎ

𝑝
‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) +

ℎ

𝑝
‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω).

Proof. As in Remark 4.2 with (𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣) denoting the error of the FOSLS approximation of the dual solution given
by Theorem 3.4 (duality argument for the gradient of the scalar variable) applied to 𝑤 = 𝑒𝑢 we have for any
�̃�𝜙𝜙ℎ ∈ VVV0

𝑝𝑣
(𝒯ℎ), �̃�ℎ ∈ 𝑆𝑝𝑠(𝒯ℎ)

‖∇𝑒𝑢‖2𝐿2(Ω) = 𝑏((𝜙𝜙𝜙− �̃�𝜙𝜙ℎ, 𝑢− �̃�ℎ), (𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣))

= (∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ) + 𝛾(𝑢− �̃�ℎ),∇ · 𝑒𝑒𝑒𝜓𝜓𝜓 + 𝛾𝑒𝑣)Ω + (∇(𝑢− �̃�ℎ) +𝜙𝜙𝜙− �̃�𝜙𝜙ℎ,∇𝑒𝑣 + 𝑒𝑒𝑒𝜓𝜓𝜓)Ω.

We specifically choose �̃�𝜙𝜙ℎ = 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙. In the following we heavily use the properties of the operator 𝐼𝐼𝐼0

ℎ given in
Lemma 4.6. First we exploit the regularity of the dual solution using Lemma 4.9 as well as the estimates of
Theorem 3.4:

(𝛾(𝑢− �̃�ℎ),∇ · 𝑒𝑒𝑒𝜓𝜓𝜓 + 𝛾𝑒𝑣)Ω . ‖𝑢− �̃�ℎ‖𝐿2(Ω)

⃦⃦⃦
(𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣)

⃦⃦⃦
𝑏
. ‖𝑢− �̃�ℎ‖𝐻1(Ω)‖∇𝑒

𝑢‖𝐿2(Ω),

(∇(𝑢− �̃�ℎ),∇𝑒𝑣 + 𝑒𝑒𝑒𝜓𝜓𝜓)Ω . ‖∇(𝑢− �̃�ℎ)‖𝐿2(Ω)

⃦⃦⃦
(𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣)

⃦⃦⃦
𝑏
. ‖𝑢− �̃�ℎ‖𝐻1(Ω)‖∇𝑒

𝑢‖𝐿2(Ω),

(𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙,∇𝑒𝑣)Ω = −(∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙), 𝑒𝑣)Ω ≤
⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

‖𝑒𝑣‖𝐿2(Ω)

. ℎ/𝑝
⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

‖∇𝑒𝑢‖𝐿2(Ω),

(∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙), 𝛾𝑒𝑣)Ω ≤

⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

‖𝑒𝑣‖𝐿2(Ω) . ℎ/𝑝
⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

‖∇𝑒𝑢‖𝐿2(Ω),

(𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙,𝑒𝑒𝑒

𝜓𝜓𝜓)Ω .
⃦⃦
𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙
⃦⃦
𝐿2(Ω)

⃦⃦⃦
𝑒𝑒𝑒𝜓𝜓𝜓

⃦⃦⃦
𝐿2(Ω)

. ℎ/𝑝
⃦⃦
𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙
⃦⃦
𝐿2(Ω)

‖∇𝑒𝑢‖𝐿2(Ω),

(∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙),∇ · 𝑒𝑒𝑒𝜓𝜓𝜓)Ω = (∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙),∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ))Ω ≤
⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

⃦⃦⃦
∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)

⃦⃦⃦
𝐿2(Ω)

. ℎ/𝑝
⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

‖∇𝑒𝑢‖𝐿2(Ω).

Canceling one power of ‖∇𝑒𝑢‖𝐿2(Ω), collecting the terms, and using the estimate for 𝐼𝐼𝐼0
ℎ we arrive at the asserted

estimate. �

As a tool in the proof of our main theorem (Thm. 4.12) we need to analyze the error of the FOSLS approxi-
mation of the dual solution. This is summarized in
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Lemma 4.11. Let Ω satisfy Assumption 3.1 for some 𝑠 ≥ 0 and (𝜙𝜙𝜙ℎ, 𝑢ℎ) be the least squares approximation of
(𝜙𝜙𝜙, 𝑢). Furthermore, let 𝑒𝑢 = 𝑢 − 𝑢ℎ and 𝑒𝑒𝑒𝜙𝜙𝜙 = 𝜙𝜙𝜙 −𝜙𝜙𝜙ℎ. Let (𝜓𝜓𝜓, 𝑣) ∈ 𝐻𝐻𝐻0(Ω,div) ×𝐻1(Ω) be the solution of the
dual problem given by Theorem 3.3 with 𝑤 = 𝑒𝑢. Additionally, let (𝜓𝜓𝜓ℎ, 𝑣ℎ) be the least squares approximation of
(𝜓𝜓𝜓, 𝑣) and denote 𝑒𝑣 = 𝑣 − 𝑣ℎ and 𝑒𝑒𝑒𝜓𝜓𝜓 = 𝜓𝜓𝜓 −𝜓𝜓𝜓ℎ. Then,⃦⃦⃦

(𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣)
⃦⃦⃦
𝑏
.
ℎ

𝑝
‖𝑒𝑢‖𝐿2(Ω) and ‖𝑒𝑣‖𝐿2(Ω) .

(︂
ℎ

𝑝

)︂2

‖𝑒𝑢‖𝐿2(Ω).

Furthermore, ⃦⃦⃦
𝑒𝑒𝑒𝜓𝜓𝜓

⃦⃦⃦
𝐿2(Ω)

.

⎧⎪⎨⎪⎩
ℎ‖𝑒𝑢‖𝐿2(Ω) if VVV0

𝑝𝑣
(𝒯ℎ) = RTRTRT0

0(𝒯ℎ),(︁
ℎ
𝑝

)︁min(𝑠+1,2)

‖𝑒𝑢‖𝐿2(Ω) else.

Proof. Theorem 3.3 gives 𝜓𝜓𝜓 ∈ 𝐻𝐻𝐻min(𝑠,2)+1(Ω), ∇ · 𝜓𝜓𝜓 ∈ 𝐻min(𝑠+2,2)(Ω) and 𝑣 ∈ 𝐻min(𝑠+2,2)(Ω) with norms
bounded by ‖𝑒𝑢‖𝐿2(Ω). Therefore we have in view of optimality of the FOSLS method in the 𝑏-norm⃦⃦⃦

(𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣)
⃦⃦⃦
𝑏

(4.1)

≤
⃦⃦⃦
(𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ, 𝑣 − 𝑣ℎ)

⃦⃦⃦
𝑏
. ℎ/𝑝‖𝑒𝑢‖𝐿2(Ω),

where the first estimate holds for any 𝑣ℎ ∈ 𝑆𝑝𝑠+1(𝒯ℎ), �̃�𝜓𝜓ℎ ∈ VVV0
𝑝𝑣

(𝒯ℎ) and the second one follows with the same
arguments as in the proof of Lemma 4.1. By Lemma 4.1 we have

‖𝑒𝑣‖𝐿2(Ω) . ℎ/𝑝
⃦⃦⃦
(𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣)

⃦⃦⃦
𝑏
,

which together with the above gives the second estimate. By Theorem 4.8 we have⃦⃦⃦
𝑒𝑒𝑒𝜓𝜓𝜓

⃦⃦⃦
𝐿2(Ω)

.
ℎ

𝑝
‖𝑣 − 𝑣ℎ‖𝐻1(Ω) +

⃦⃦⃦
𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ

⃦⃦⃦
𝐿2(Ω)

+
ℎ

𝑝

⃦⃦⃦
∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)

⃦⃦⃦
𝐿2(Ω)

for any 𝑣ℎ ∈ 𝑆𝑝𝑠
(𝒯ℎ), �̃�𝜓𝜓ℎ ∈ VVV0

𝑝𝑣
(𝒯ℎ). The result follows immediately by again exploiting the regularity of the

dual solution and the approximation properties of the employed spaces. �

Theorem 4.12. Let Ω satisfy Assumption 3.1 for some 𝑠 ≥ 0 and (𝜙𝜙𝜙ℎ, 𝑢ℎ) be the least squares approximation
of (𝜙𝜙𝜙, 𝑢). Furthermore, let 𝑒𝑢 = 𝑢− 𝑢ℎ. Then, for any �̃�𝜙𝜙ℎ ∈ VVV0

𝑝𝑣
(𝒯ℎ), �̃�ℎ ∈ 𝑆𝑝𝑠(𝒯ℎ),

‖𝑒𝑢‖𝐿2(Ω) .

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ℎ‖𝑢− �̃�ℎ‖𝐻1(Ω) + ℎ‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) + ℎ‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω) for RTRTRT0

0(𝒯ℎ),

ℎ‖𝑢− �̃�ℎ‖𝐻1(Ω) + ℎmin(𝑠+1,2)‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) + ℎ‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω) for BDMBDMBDM0
1(𝒯ℎ),

ℎ
𝑝‖𝑢− �̃�ℎ‖𝐻1(Ω) + (ℎ𝑝 )min(𝑠+1,2)‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) + (ℎ𝑝 )2‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω) else.

Proof. As in Remark 4.2 with (𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣) denoting the FOSLS approximation of the dual solution given by Theo-
rem 3.3 applied to 𝑤 = 𝑒𝑢 we have for any �̃�𝜙𝜙ℎ ∈ VVV0

𝑝𝑣
(𝒯ℎ), �̃�ℎ ∈ 𝑆𝑝𝑠(𝒯ℎ)

‖𝑒𝑢‖2𝐿2(Ω) = 𝑏((𝜙𝜙𝜙− �̃�𝜙𝜙ℎ, 𝑢− �̃�ℎ), (𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣))

= (∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ) + 𝛾(𝑢− �̃�ℎ),∇ · 𝑒𝑒𝑒𝜓𝜓𝜓 + 𝛾𝑒𝑣)Ω + (∇(𝑢− �̃�ℎ) +𝜙𝜙𝜙− �̃�𝜙𝜙ℎ,∇𝑒𝑣 + 𝑒𝑒𝑒𝜓𝜓𝜓)Ω.

We specifically choose �̃�𝜙𝜙ℎ = 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙. In the following we heavily use the properties of the operator 𝐼𝐼𝐼0

ℎ given in
Lemma 4.6. First we exploit the regularity of the dual solution using Lemma 4.11 as well as the estimates of
Theorem 3.3:

(𝛾(𝑢− �̃�ℎ),∇ · 𝑒𝑒𝑒𝜓𝜓𝜓 + 𝛾𝑒𝑣)Ω . ‖𝑢− �̃�ℎ‖𝐿2(Ω)

⃦⃦⃦
(𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣)

⃦⃦⃦
𝑏
. ℎ/𝑝‖𝑢− �̃�ℎ‖𝐻1(Ω)‖𝑒

𝑢‖𝐿2(Ω),
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(∇(𝑢− �̃�ℎ),∇𝑒𝑣 + 𝑒𝑒𝑒𝜓𝜓𝜓)Ω . ‖∇(𝑢− �̃�ℎ)‖𝐿2(Ω)

⃦⃦⃦
(𝑒𝑒𝑒𝜓𝜓𝜓, 𝑒𝑣)

⃦⃦⃦
𝑏
. ℎ/𝑝‖𝑢− �̃�ℎ‖𝐻1(Ω)‖𝑒

𝑢‖𝐿2(Ω),

(𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙,∇𝑒𝑣)Ω = −(∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙), 𝑒𝑣)Ω ≤
⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

‖𝑒𝑣‖𝐿2(Ω)

. (ℎ/𝑝)2
⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

‖𝑒𝑢‖𝐿2(Ω),

(∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙), 𝛾𝑒𝑣)Ω ≤

⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

‖𝑒𝑣‖𝐿2(Ω)

. (ℎ/𝑝)2
⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

‖𝑒𝑢‖𝐿2(Ω),

(𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙,𝑒𝑒𝑒

𝜓𝜓𝜓)Ω .
⃦⃦
𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙
⃦⃦
𝐿2(Ω)

‖𝑒𝑒𝑒𝜓𝜓𝜓‖𝐿2(Ω)

.

⎧⎪⎨⎪⎩
ℎ
⃦⃦
𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙
⃦⃦
𝐿2(Ω)

‖𝑒𝑢‖𝐿2(Ω) if VVV0
𝑝𝑣

(𝒯ℎ) = RTRTRT0
0(𝒯ℎ),(︁

ℎ
𝑝

)︁min(𝑠+1,2)⃦⃦
𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙
⃦⃦
𝐿2(Ω)

‖𝑒𝑢‖𝐿2(Ω) else,

(∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0
ℎ𝜙𝜙𝜙),∇ · 𝑒𝑒𝑒𝜓𝜓𝜓)Ω = (∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙),∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ))Ω ≤
⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

⃦⃦⃦
∇ · (𝜓𝜓𝜓 − �̃�𝜓𝜓ℎ)

⃦⃦⃦
𝐿2(Ω)

.

⎧⎨⎩ℎ
⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

‖𝑒𝑢‖𝐿2(Ω) if 𝑝𝑣 = 1,(︁
ℎ
𝑝

)︁2⃦⃦
∇ · (𝜙𝜙𝜙− 𝐼𝐼𝐼0

ℎ𝜙𝜙𝜙)
⃦⃦
𝐿2(Ω)

‖𝑒𝑢‖𝐿2(Ω) else.

Canceling one power of ‖𝑒𝑢‖𝐿2(Ω), collecting the terms, and using the estimate for 𝐼𝐼𝐼0
ℎ we arrive at the asserted

estimate. �

Remark 4.13. Before stating the general corollary with prescribed right-hand side 𝑓 ∈ 𝐻𝑠(Ω) we highlight
the improved convergence result. Consider 𝑓 ∈ 𝐿2(Ω) and let Assumption 3.1 be satisfied for some 𝑠 ≥ 0,
which is satisfied for example for a convex polygonal or polyhedral domain Ω or a smooth boundary Γ. For
the classical conforming finite element method one observes convergence 𝑂(ℎ2) due to the Aubin-Nitsche trick.
More precisely, for the classical FEM approximation 𝑢FEM

ℎ to the model problem there holds⃦⃦
𝑢− 𝑢FEM

ℎ

⃦⃦
𝐿2(Ω)

. ℎ2‖𝑢‖𝐻2(Ω) . ℎ
2‖𝑓‖𝐿2(Ω).

As elaborated in Section 1 this rate could not be obtained for the FOSLS method by previous results, since
further regularity of the vector variable 𝜙𝜙𝜙 would be necessary. Results like Lemma 3.4 of [4] and Theorem 4.1
of [15] are essentially a duality argument like Theorem 3.3 and the strategy of Lemma 4.1. Without further
analysis the estimate of Lemma 4.1, does not give any further powers of ℎ, since the 𝑏-norm is equivalent to the
𝐻𝐻𝐻(Ω,div)×𝐻1(Ω) norm. Theorem 4.12 ensures, at least if the space VVV0

𝑝𝑣
(𝒯ℎ) is not of lowest order, i.e. 𝑝𝑣 > 1,

that the FOSLS method converges also as 𝑂(ℎ2). More precisely, the estimate in Theorem 4.12 together with
the approximation properties of the employed finite element spaces and 𝑝𝑣 > 1 and 𝑝𝑠 ≥ 1 gives

‖𝑒𝑢‖𝐿2(Ω) . ℎ
2‖𝑢‖𝐻2(Ω) + ℎmin(𝑠+1,2)ℎ‖𝜙𝜙𝜙‖𝐻1(Ω) + ℎ2‖∇ ·𝜙𝜙𝜙‖𝐿2(Ω) . ℎ

2‖𝑓‖𝐿2(Ω).

So in fact the optimal rate in the sense of the beginning of Section 4 is achieved. If the lowest order case 𝑝𝑣 = 1 also
achieves optimal order is yet to be answered. Numerical experiments in Section 5, however, indicate it to be true.

We summarize the results for general right-hand side 𝑓 ∈ 𝐻𝑠(Ω). This summary is essentially the estimates
given by the Theorems 4.8, 4.10, and 4.12 together with the approximation properties of the employed finite
element spaces. For brevity and readability we only focus on the case of smooth boundary Γ, i.e., where
Assumption 3.1 is satisfied for any 𝑠 > 0.

Corollary 4.14. Let Γ be smooth and 𝑓 ∈ 𝐻𝑡(Ω) for some 𝑡 ≥ 0. Then the solution to (2.2) satisfies 𝑢 ∈
𝐻𝑡+2(Ω), 𝜙𝜙𝜙 ∈𝐻𝐻𝐻𝑡+1(Ω) and ∇·𝜙𝜙𝜙 ∈ 𝐻𝑡(Ω). Let (𝜙𝜙𝜙ℎ, 𝑢ℎ) be the least squares approximation of (𝜙𝜙𝜙, 𝑢). Furthermore,
let 𝑒𝑢 = 𝑢− 𝑢ℎ and 𝑒𝑒𝑒𝜙𝜙𝜙 = 𝜙𝜙𝜙−𝜙𝜙𝜙ℎ. Then, for the lowest order case 𝑝𝑣 = 1,

‖𝑒𝑢‖𝐿2(Ω) . ℎ
min(𝑡+1,2)‖𝑓‖𝐻𝑡(Ω).
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For 𝑝𝑣 > 1 there holds

‖𝑒𝑢‖𝐿2(Ω) .

(︂
ℎ

𝑝

)︂min(𝑡+1,𝑝𝑠,𝑝𝑣+1)+1

‖𝑓‖𝐻𝑡(Ω).

Furthermore, the estimate

‖∇𝑒𝑢‖𝐿2(Ω) .

(︂
ℎ

𝑝

)︂min(𝑡+1,𝑝𝑠,𝑝𝑣+1)

‖𝑓‖𝐻𝑡(Ω).

holds. Finally, we have

VVV0
𝑝𝑣

(𝒯ℎ) = RTRTRT0
𝑝𝑣−1(𝒯ℎ) VVV0

𝑝𝑣
(𝒯ℎ) = BDMBDMBDM0

𝑝𝑣
(𝒯ℎ)

‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) .
(︁
ℎ
𝑝

)︁min(𝑡+1,𝑝𝑠+1,𝑝𝑣)

‖𝑓‖𝐻𝑡(Ω) ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) .
(︁
ℎ
𝑝

)︁min(𝑡+1,𝑝𝑠+1,𝑝𝑣+1)

‖𝑓‖𝐻𝑡(Ω).

Proof. The regularity result follows immediately by the shift theorem discussed in Remark 3.2 and the method
of real interpolation, see e.g., [16, 24], together with the fact that 𝜙𝜙𝜙 = −∇𝑢. We now analyze the quantities in
the estimates of the Theorems 4.8, 4.10 and 4.12:

‖𝑢− �̃�ℎ‖𝐻1(Ω) . (ℎ/𝑝)min(𝑡+1,𝑝𝑠)‖𝑢‖𝐻𝑡+2(Ω) . (ℎ/𝑝)min(𝑡+1,𝑝𝑠)‖𝑓‖𝐻𝑡(Ω),

‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) .

{︃
(ℎ/𝑝)min(𝑡+1,𝑝𝑣)‖𝜙𝜙𝜙‖𝐻𝑡+1(Ω) . (ℎ/𝑝)min(𝑡+1,𝑝𝑣)‖𝑓‖𝐻𝑡(Ω) for RTRTRT0

𝑝𝑣−1(𝒯ℎ),

(ℎ/𝑝)min(𝑡+1,𝑝𝑣+1)‖𝜙𝜙𝜙‖𝐻𝑡+1(Ω) . (ℎ/𝑝)min(𝑡+1,𝑝𝑣+1)‖𝑓‖𝐻𝑡(Ω) for BDMBDMBDM0
𝑝𝑣

(𝒯ℎ),

‖∇ · (𝜙𝜙𝜙− �̃�𝜙𝜙ℎ)‖𝐿2(Ω) . (ℎ/𝑝)min(𝑡,𝑝𝑣)‖∇ ·𝜙𝜙𝜙‖𝐻𝑡(Ω) . (ℎ/𝑝)min(𝑡,𝑝𝑣)‖𝑓‖𝐻𝑡(Ω).

The estimates of the Theorems 4.8, 4.10, and 4.12 together with the above estimates give, after straightforward
calculations, the asserted rates. �

We close this section with some remarks concerning sharpness of the estimates of Corollary 4.14:

Remark 4.15. Let the assumptions of Corollary 4.14 be satisfied. From a best approximation point of view,
since 𝑢 ∈ 𝐻𝑠+2(Ω), we have

inf
�̃�ℎ∈𝑆𝑝𝑠 (𝒯ℎ)

‖𝑢− �̃�ℎ‖𝐿2(Ω) = 𝑂(ℎmin(𝑠+1,𝑝𝑠)+1)

inf
�̃�ℎ∈𝑆𝑝𝑠 (𝒯ℎ)

‖∇(𝑢− �̃�ℎ)‖𝐿2(Ω) = 𝑂(ℎmin(𝑠+1,𝑝𝑠))

inf
�̃�𝜙𝜙ℎ∈VVV0

𝑝𝑣
(𝒯ℎ)

‖𝜙𝜙𝜙− �̃�𝜙𝜙ℎ‖𝐿2(Ω) =

{︃
𝑂(ℎmin(𝑠+1,𝑝𝑣)) if VVV0

𝑝𝑣
(𝒯ℎ) = RTRTRT0

𝑝𝑣−1(𝒯ℎ),

𝑂(ℎmin(𝑠+1,𝑝𝑣+1)) if VVV0
𝑝𝑣

(𝒯ℎ) = BDMBDMBDM0
𝑝𝑣

(𝒯ℎ).

Excluding the lowest order case 𝑝𝑣 = 1 we have, choosing 𝑝𝑣 ≥ 𝑝𝑠−1, sharpness of the estimates for 𝑒𝑢 and∇𝑒𝑢. This
can be easily seen, since the rates guaranteed by Corollary 4.14 for ‖𝑒𝑢‖𝐿2(Ω) and ‖∇𝑒𝑢‖𝐿2(Ω) are the same as the
ones from a best approximation argument. The estimates are therefore sharp. The lowest order case 𝑝𝑣 = 1 seems
to be suboptimal, as the numerical examples in Section 5 suggest. In all other cases, i.e., 𝑝𝑣 > 1 and 𝑝𝑣 < 𝑝𝑠 − 1,
our numerical examples suggest sharpness of the estimates, in both the setting of a smooth solution as well as one
with finite Sobolev regularity, but not achieving the best approximation rate. Since in the least squares functional
the term ‖∇𝑢ℎ +𝜙𝜙𝜙ℎ‖𝐿2(Ω) enforces ∇𝑢ℎ and 𝜙𝜙𝜙ℎ to be close, it is to be expected that an insufficient choice of 𝑝𝑣
limits the convergence rate. A theoretical justification concerning the observed rates in the cases 𝑝𝑣 = 1 as well
as 𝑝𝑣 > 1 and 𝑝𝑣 < 𝑝𝑠 − 1 is yet to be provided. In conclusion, when the application in question is concerned
with approximation of 𝑢 or ∇𝑢 in the 𝐿2(Ω) norm, the best possible rate with the smallest number of degrees of
freedom is achieved with the choice 𝑝𝑣 = 𝑝𝑠−1 regardless of the choice of VVV0

𝑝𝑣
(𝒯ℎ). Therefore, it is computationally

favorable to choose Raviart–Thomas elements over Brezzi–Douglas–Marini elements. Turning now to ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω)
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similar arguments guarantee sharpness of the estimates. In this case when 𝑝𝑠 + 1 ≥ 𝑝𝑣 and 𝑝𝑠 + 1 ≥ 𝑝𝑣 + 1, for the
choice of Raviart–Thomas elements and Brezzi–Douglas–Marini elements respectively. Again the other cases are
open for theoretical justification. However, both theoretical as well as the numerical examples in Section 5 suggest
the choice of Brezzi–Douglas–Marini elements over Raviart–Thomas elements, when application is concerned with
approximation of𝜙𝜙𝜙 in the 𝐿2(Ω) norm.

5. Numerical examples

All our calculations are performed with the ℎ𝑝-FEM code NETGEN/NGSOLVE by J. Schöberl [22,23]. The
curved boundaries are implemented using second order rational splines.

In the following we will perform two different numerical experiments:
In Example 5.1 we consider the case 𝑓 ∈ 𝐶∞(Ω). The suboptimal estimate ‖𝑒𝑢‖𝐿2(Ω) . ℎ/𝑝‖(𝑒𝑒𝑒𝜙𝜙𝜙, 𝑒𝑢)‖𝑏 of

Lemma 4.1 suffices to deduce optimal rates. Hence we only highlight two aspects of the least squares approach:
On the one hand the optimal choice of the employed polynomial degrees 𝑝𝑠 and 𝑝𝑣. On the other hand the
superiority of Brezzi–Douglas–Marini elements over Raviart–Thomas elements when approximating the vector
valued variable.

In Example 5.2 we showcase our new convergence result by choosing 𝑓 ∈ ∩𝜀>0𝐻
1/2−𝜀(Ω), but 𝑓 /∈ 𝐻1/2(Ω)

with 𝑢 ∈ ∩𝜀>0𝐻
5/2−𝜀(Ω) and 𝜙𝜙𝜙 ∈ ∩𝜀>0𝐻𝐻𝐻

3/2−𝜀(Ω).
In all graphs, the actual numerical results are given by red dots. The rate that is guaranteed by Corollary 4.14

is plotted in black together with the number written out near the bottom right. Furthermore, in blue the reference
line for the best rate possible with the employed space 𝑆𝑝𝑠(𝒯ℎ) or VVV0

𝑝𝑣
(𝒯ℎ) is plotted, depending on the quantity

of interest, i.e., for ‖𝑒𝑢‖𝐿2(Ω) the blue reference line corresponds to ℎmin(𝑠+1,𝑝𝑠)+1, for ‖∇𝑒𝑢‖𝐿2(Ω) the blue
reference line corresponds to ℎmin(𝑠+1,𝑝𝑠) and for ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) the blue reference line corresponds to ℎmin(𝑠+1,𝑝𝑣)

for VVV0
𝑝𝑣

(𝒯ℎ) = RTRTRT0
𝑝𝑣−1(𝒯ℎ) and ℎmin(𝑠+1,𝑝𝑣+1) for VVV0

𝑝𝑣
(𝒯ℎ) = BDMBDMBDM0

𝑝𝑣
(𝒯ℎ).

Example 5.1. We consider as the domain Ω the unit sphere in R2. The exact solution is the smooth function
𝑢(𝑥, 𝑦) = cos(2𝜋(𝑥2 + 𝑦2)). The numerical results are plotted in Figures 1 and A.1 for ‖𝑒𝑢‖𝐿2(Ω), in Figures A.2
and A.3 for ‖∇𝑒𝑢‖𝐿2(Ω), and in Figures 2 and 3 for ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω). There are some remarks to be made:

– Consider Figure 1 depicting ‖𝑒𝑢‖𝐿2(Ω) using Raviart–Thomas elements. The rates guaranteed by Corol-
lary 4.14 are achieved in the numerical experiment. The important subfigures are the ones in the subdiagonal
of the discussed figure, i.e., corresponding to the choice 𝑝𝑣 = 𝑝𝑠− 1. Here, apart from the lowest order case,
the best possible rate with the smallest number of degrees of freedom is achieved. Above this subdiagonal,
i.e., 𝑝𝑣 ≥ 𝑝𝑠, additional degrees of freedom will not increase the rate of convergence, since by pure best
approximation arguments the rate of convergence is limited by the polynomial degree 𝑝𝑠 of the scalar vari-
able. Below this subdiagonal, i.e., 𝑝𝑣 < 𝑝𝑠 − 1, we notice that the rate of convergence is also limited by the
polynomial degree 𝑝𝑣 of the vector variable. Note that the results for ‖𝑒𝑢‖𝐿2(Ω) in Corollary 4.14 are inde-
pendent of the choice of the vector valued finite element space, which is also confirmed by our experiments.
Additional convergence plots can be found in Appendix A.

– Consider Figures 2 and 3 depicting ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω). Apart from similar observations as for the scalar variable, it
is notable that a difference in the approximation properties of the different spaces for the vector variable is
observed, as predicted by Corollary 4.14. Consider wanting to achieve a rate of 𝑂(ℎ5). The combination of
spaces with the smallest number of degrees of freedom corresponds to BDMBDMBDM0

4(𝒯ℎ) × 𝑆4(𝒯ℎ) and RTRTRT0
4(𝒯ℎ) ×

𝑆4(𝒯ℎ) respectively, highlighting the superiority of the Brezzi–Douglas–Marini elements when approximating
𝜙𝜙𝜙. For further discussion see again Remark 4.15. Finally, consider the subfigures above the diagonal in
Figures 2 and 3. Here, as discussed above for the scalar variable, the rate of convergence is also limited by
the polynomial degree 𝑝𝑠. As an example consider the case BDMBDMBDM0

5(𝒯ℎ)× 𝑆1(𝒯ℎ), i.e., the upper right corner
of Figure 3: The rate of convergence when approximating the vector valued variable (with 𝑝𝑣 = 5) is limited
by the insufficient choice of the polynomial degree in the scalar variable (𝑝𝑠 = 1).
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Figure 1. (cf. Example 5.1) Convergence of ‖𝑒𝑢‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing VVV0
𝑝𝑣

(𝒯ℎ) =
RTRTRT0

𝑝𝑣−1(𝒯ℎ).

Figure 2. (cf. Example 5.1) Convergence of ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing VVV0
𝑝𝑣

(𝒯ℎ) =
RTRTRT0

𝑝𝑣−1(𝒯ℎ).

– We close the discussion of Example 5.1 showcasing the separate error estimates for ‖∇𝑒𝑢‖𝐿2(Ω) and ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω)

derived in the Theorems 4.8 and 4.10. Consider the case 𝑝𝑠 = 1 and the use of Brezzi–Douglas–Marini
elements. Corollary 4.14 then predicts ℎmin(𝑝𝑠,𝑝𝑣+1) = ℎ as a rate of convergence for ‖∇𝑒𝑢‖𝐿2(Ω). For
‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) a rate of convergence as ℎmin(𝑝𝑠+1,𝑝𝑣+1) = ℎ2 is predicted. This effect can be seen in the first
rows of Figures 3 and A.3.

Example 5.2. For our second example we consider again the case of Ω being the unit sphere in R2. The
exact solution 𝑢(𝑥, 𝑦) is calculated corresponding to the right-hand side 𝑓(𝑥, 𝑦) = 1[0,1/2](

√︀
𝑥2 + 𝑦2). Therefore
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Figure 3. (cf. Example 5.1) Convergence of ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing VVV0
𝑝𝑣

(𝒯ℎ) =
BDMBDMBDM0

𝑝𝑣
(𝒯ℎ).

Figure 4. (cf. Example 5.2) Convergence of ‖𝑒𝑢‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing VVV0
𝑝𝑣

(𝒯ℎ) =
RTRTRT0

𝑝𝑣−1(𝒯ℎ).

𝑢 ∈ ∩𝜀>0𝐻
5/2−𝜀(Ω). The numerical results for the choice of Raviart–Thomas elements are plotted in Figure 4

for ‖𝑒𝑢‖𝐿2(Ω), in Figure 5 for ‖∇𝑒𝑢‖𝐿2(Ω) and in Figure 6 for ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω). Apart from the remarks already made
in Example 5.1 we note that we observe the improved convergence result when dealing with limited Sobolev
regularity of the data. Furthermore, in the lowest order case 𝑝𝑣 = 1 the guaranteed rate seems to be suboptimal.
The plots for the choice of Brezzi–Douglas–Marini elements are presented in Appendix A.
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Figure 5. (cf. Example 5.2) Convergence of ‖∇𝑒𝑢‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing VVV0
𝑝𝑣

(𝒯ℎ) =
RTRTRT0

𝑝𝑣−1(𝒯ℎ).

Figure 6. (cf. Example 5.2) Convergence of ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing VVV0
𝑝𝑣

(𝒯ℎ) =
RTRTRT0

𝑝𝑣−1(𝒯ℎ).

Appendix A.

For completeness we present additional convergence plots below. In Figure A.1 we plot ‖𝑒𝑢‖𝐿2(Ω) employing
Brezzi–Douglas–Marini elements for the problem considered in Example 5.1. The Figures A.2 and A.3 depicting
‖∇𝑒𝑢‖𝐿2(Ω) are essentially the same just one order less than ‖𝑒𝑢‖𝐿2(Ω). The numerical results for the finite reg-
ularity solution considered in Example 5.2 are plotted in Figure A.4 for ‖𝑒𝑢‖𝐿2(Ω), in Figure A.5 for ‖∇𝑒𝑢‖𝐿2(Ω)

and in Figure A.6 for ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω).
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Figure A.1. (cf. Example 5.1) Convergence of ‖𝑒𝑢‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing
VVV0
𝑝𝑣

(𝒯ℎ) = BDMBDMBDM0
𝑝𝑣

(𝒯ℎ).

Figure A.2. (cf. Example 5.1) Convergence of ‖∇𝑒𝑢‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing
VVV0
𝑝𝑣

(𝒯ℎ) = RTRTRT0
𝑝𝑣−1(𝒯ℎ).
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Figure A.3. (cf. Example 5.1) Convergence of ‖∇𝑒𝑢‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing
VVV0
𝑝𝑣

(𝒯ℎ) = BDMBDMBDM0
𝑝𝑣

(𝒯ℎ).

Figure A.4. (cf. Example 5.2) Convergence of ‖𝑒𝑢‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing
VVV0
𝑝𝑣

(𝒯ℎ) = BDMBDMBDM0
𝑝𝑣

(𝒯ℎ).
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Figure A.5. (cf. Example 5.2) Convergence of ‖∇𝑒𝑢‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing
VVV0
𝑝𝑣

(𝒯ℎ) = BDMBDMBDM0
𝑝𝑣

(𝒯ℎ).

Figure A.6. (cf. Example 5.2) Convergence of ‖𝑒𝑒𝑒𝜙𝜙𝜙‖𝐿2(Ω) vs.
√

DOF ∼ 1/ℎ employing
VVV0
𝑝𝑣

(𝒯ℎ) = BDMBDMBDM0
𝑝𝑣

(𝒯ℎ).
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group for their support in connection with the numerical experiments. The authors are grateful to the reviewers for
constructive comments.

References

[1] C. Bacuta, J.H. Bramble and J. Xu, Regularity estimates for elliptic boundary value problems in Besov spaces. Math. Comp.
72 (2003) 1577–1595 (electronic).

[2] M. Bernkopf and J.M. Melenk, Analysis of the ℎ𝑝-version of a first order system least squares method for the Helmholtz
equation, in Advanced Finite Element Methods with Applications: Selected Papers from the 30th Chemnitz Finite Element
Symposium 2017, edited by T. Apel, U. Langer, A. Meyer and O. Steinbach. Springer International Publishing, Cham (2019)
57–84.

[3] M. Bernkopf and J.M. Melenk. Optimal convergence rates in 𝐿2 for a first order system least squares finite element method.
Part I: homogeneous boundary conditions. Preprint arXiv:2012.12919 (2020).

[4] P. Bochev and M. Gunzburger, On least-squares finite element methods for the Poisson equation and their connection to the
Dirichlet and Kelvin principles. SIAM J. Numer. Anal. 43 (2005) 340–362.

[5] P.B. Bochev and M.D. Gunzburger, Least-Squares Finite Element Methods. Vol. 166 of Applied Mathematical Sciences.
Springer, New York (2009).

[6] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44 of Springer Series in Computational
Mathematics. Springer, Heidelberg (2013).

[7] Z. Cai, R. Lazarov, T.A. Manteuffel and S.F. McCormick, First-order system least squares for second-order partial differential
equations. I. SIAM J. Numer. Anal. 31 (1994) 1785–1799.

[8] Z. Cai, T.A. Manteuffel and S.F. McCormick, First-order system least squares for the Stokes equations, with application to
linear elasticity. SIAM J. Numer. Anal. 34 (1997) 1727–1741.

[9] Z. Cai, T.A. Manteuffel and S.F. McCormick, First-order system least squares for second-order partial differential equations.
II. SIAM J. Numer. Anal. 34 (1997) 425–454.

[10] H. Chen and W. Qiu, A first order system least squares method for the Helmholtz equation. J. Comput. Appl. Math. 309
(2017) 145–162.
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