
Circuit Minimization with QBF-Based Exact Synthesis

Franz-Xaver Reichl, Friedrich Slivovsky, Stefan Szeider
Algorithms and Complexity Group, TU Wien, Vienna, Austria

{freichl,fs,sz}@ac.tuwien.ac.at

Abstract

This paper presents a rewriting method for Boolean circuits
that minimizes small subcircuits with exact synthesis. Indi-
vidual synthesis tasks are encoded as Quantified Boolean For-
mulas (QBFs) that capture the full flexibility for implement-
ing multi-output subcircuits. This is in contrast to SAT-based
resynthesis, where “don’t cares” are computed for an individ-
ual gate, and replacements are confined to the circuitry used
exclusively by that gate. An implementation of our method
achieved substantial size reductions compared to state-of-the-
art methods across a wide range of benchmark circuits.

Introduction
Modern integrated circuits are so large and complex that
their design would be impossible without a significant de-
gree of automation. This includes the automated improve-
ment of circuits (logic optimization), and the automated cre-
ation of circuits from specifications (logic synthesis), which
jointly yield substantial reductions in the number of gates
and circuit depth (De Micheli 1994; Brayton, Hachtel, and
Sangiovanni-Vincentelli 1990).

Finding a small circuit implementing a given Boolean
function is computationally intractable,1 and exact synthe-
sis, which yields provably optimal results, currently does not
scale beyond circuits of about 10 gates (Kojevnikov, Ku-
likov, and Yaroslavtsev 2009; Haaswijk et al. 2020). Ex-
act methods can nevertheless be applied to large circuits
through so-called peephole optimization. This involves par-
titioning a circuit into small subcircuits amenable to ex-
act minimization and replacing each subcircuit with a size-
optimum implementation of its output function (Testa et al.
2020). Such an implementation can either be obtained from
a pre-computed database of optimal circuits for functions
with up to 5 input variables (Mishchenko, Chatterjee, and
Brayton 2006) or on-the-fly by exact synthesis for larger
subcircuits (Riener et al. 2019). Crucially, the new imple-
mentation need not be logically equivalent to the subcircuit
it replaces since its outputs may be irrelevant under certain

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Curiously, the minimum circuit size problem is not known to
be NP-hard. In fact, an NP-hardness proof by a “simple” reduction
would settle open problems in computational complexity (Murray
and Williams 2017).

assignments of inputs. This is either because a particular
combination of inputs can never arise in the context of the
larger circuit or because other signals mask the output. Ex-
ploiting such don’t cares can help to significantly reduce the
size of subcircuits (Savoj and Brayton 1990; Savoj 1992;
Mishchenko and Brayton 2005).

Don’t cares can be enumerated using a Boolean satisfia-
bility (SAT) solver (Mishchenko and Brayton 2005) or (for
circuits with few inputs) by simulation. In subsequent resyn-
thesis, the equivalence of the new implementation and the
original subcircuit is not required for don’t care assignments.
This approach is typically very efficient for single-output
subcircuits, and can be used to minimize multi-output sub-
circuits by considering one output gate and its exclusive cir-
cuitry at a time (Riener et al. 2022), but that does not exploit
the full implementation flexibility.

Contribution We introduce a new approach capable of
optimally resynthesizing multi-output subcircuits. Individ-
ual synthesis tasks are encoded as Quantified Boolean For-
mulas (QBFs) that fully capture implementational flexibility.
The encoding is succinct and handles don’t cares implicitly,
obviating the need for an explicit enumeration.

We use QBF-based resynthesis as a subroutine in an op-
timization algorithm that scales to circuits of up to several
thousand gates. A bespoke local selection strategy repeat-
edly identifies promising subcircuits for resynthesis. Each
synthesis task is encoded as a QBF and passed to an off-the-
shelf solver (Janota 2018). A time budget is allocated for
individual solver calls to keep overall running time within
reason. Since solving times increase with the size of the
overall circuit, this timeout is adjusted dynamically based
on previously observed running times. The entire circuit is
minimized at regular intervals by a sequence of fast logic
optimization techniques implemented in ABC (Brayton and
Mishchenko 2010). This not only further shrinks the circuit,
but also sets up new opportunities for exact resynthesis.

Results In an experimental evaluation, the minimization
strategy described above achieved substantial size reduc-
tions compared to state-of-the-art methods on the following
two sets of benchmarks:

• The EPFL combinational benchmark suite was designed
to test logic optimization and synthesis tools (Amarú,

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

4087



Gaillardon, and Micheli 2015). An online repository2

maintains the smallest implementations found so far.
Compared to the best circuits at the time of writing,
our approach achieved significant reductions for several
small and medium-size circuits (see Tbl. 3). For some of
the circuits in question, this was the first improvement
seen in years.

• The IWLS’22 programming contest3 asked participants
to synthesize small circuits for single and multi-output
Boolean functions given as truth tables. Here, an imple-
mentation of our method was able to find the smallest
And-Inverter Graph (AIG) for more functions than all
competing entries.

Our results demonstrate the potential of applying QBF
solvers to challenging design automation tasks. In this in-
stance, QBFs not only allow for a succinct and natural en-
coding, but unlock new optimization opportunities that help
tackle a challenging and practically relevant problem.

Related Work
Methods that fully capture the properties of Boolean func-
tions implemented by circuits (rather than viewing them as
polynomials, for instance) are considered the most effec-
tive in logic synthesis (Testa et al. 2020). At the same time,
they are the most computationally expensive and can only
be applied to large circuits as a means to resynthesize small
subcircuits (sometimes referred to as windows). In particu-
lar, that is the case for SAT-based exact synthesis (Haaswijk
et al. 2020; Kojevnikov, Kulikov, and Yaroslavtsev 2009) as
part of resynthesis workflows (Riener et al. 2019), and for
SAT-based resubstitution, which seeks to express the func-
tion implemented by a particular gate as a function of few
gates already present in the circuit (Mishchenko et al. 2011;
Riener, Mishchenko, and Soeken 2020). Since an exhaustive
treatment of the wealth of window-based approaches devel-
oped in logic synthesis is beyond the scope of this section,
we refer to the works cited above and the references therein.
Many of these techniques are implemented in the industrial-
strength tool ABC (Brayton and Mishchenko 2010).

Exact resynthesis of subcircuits has also been consid-
ered to find optimum circuits for symmetric functions stud-
ied in circuit complexity, albeit without incorporating don’t
cares (Kulikov, Pechenev, and Slezkin 2022). This is an in-
stance of SAT-based Local Improvement Method (SLIM), a
general optimization framework that has recently been ap-
plied to several problems in AI and involves repeatedly re-
placing parts of a structure with optimal solutions computed
by a SAT or MaxSAT solver (Fichte, Lodha, and Szeider
2017; Lodha, Ordyniak, and Szeider 2019; Ramaswamy and
Szeider 2021, 2022; Schidler and Szeider 2021). The main
difference to our local resynthesis approach is that consis-
tency of replacements in previous instantiations of SLIM is
ensured by purely local constraints. In contrast, our QBF en-
coding expresses correctness globally by requiring equiva-
lence of the functions computed by the entire circuit before
and after resynthesis.

2https://github.com/lsils/benchmarks
3https://github.com/alanminko/iwls2022-ls-contest

In the context of logic synthesis, QBFs have been used for
bi-decomposition (Chen, Janota, and Marques-Silva 2012),
synthesis of reversible quantum circuits (Wille et al. 2008),
and synthesis of lookup tables (LUTs) (Fujita et al. 2013;
Fujita 2015; Fujita et al. 2020). The latter two problems are
more constrained than the setting considered here, in that the
topology of the circuits is fixed, whereas the synthesis tasks
we encode as QBF also involve deriving a suitable topology.

Preliminaries
Boolean Chains To represent Boolean functions, we use
an extension of Boolean Chains where each step has exactly
k inputs, where k ≥ 2 is arbitrary but fixed (Knuth 2011;
Haaswijk et al. 2020). Let f : Bn → Bm be a Boolean
function. For k ≥ 2, a k-input Boolean chain of length ℓ
is a sequence x1, . . . , xn+ℓ, where the elements x1, . . . , xn

are the inputs of the chain and the remaining elements are
denoted as steps or gates. Whenever the number k is un-
derstood, we simply use the term Boolean chain. Each step
xn+i is a Boolean function that takes k inputs from the set
{x1, . . . , xn+i−1}. That is xn+i = gi(xj1 , . . . , xjk), where
1 ≤ j1, . . . , jk ≤ n + i − 1 and gi is a k-ary Boolean
function. The constant value false is represented by an ad-
ditional element of the chain x0. Moreover, for each output
index 1 ≤ i ≤ m there needs to be 0 ≤ j ≤ n + t such
that fi(x1, . . . , xn) = xj or fi(x1, . . . , xn) = ¬xj . We
write steps(C) for the set of steps in a Boolean chain C.
For x, y ∈ steps(C) we say that x depends on y if y is
an input of x or one of the inputs of x depends on y. For
a set S of steps in C the set of successors of S in C is
given by successors(C, S) = {x ∈ steps(C) | ∃y ∈
S. x depends on y}.

A Boolean chain is optimal if there is no shorter chain rep-
resenting the same function. A Boolean function is normal
if it yields false whenever all its inputs are false. A Boolean
chain is normal if all of its steps are normal functions. It can
be shown that if a normal Boolean function f can be repre-
sented by a chain of length ℓ then f can also be represented
by a normal chain of length ℓ.4

Quantified Boolean Formulas A quantified Boolean for-
mula (QBF) Φ = Q.φ consists of a (quantifier) prefix Q
and a propositional formula φ, called the matrix of Φ. The
quantifier prefix is a sequence Q = Q1X1 . . . QnXn where
the Qi ∈ {∃, ∀} are existential (∃) or universal (∀) quanti-
fiers and the Xi are (pairwise disjoint) sets of propositional
variables referred to as quantifier blocks. We assume that
formulas are closed, so that each variable of φ appears in
a quantifier block. The semantics of QBFs can be defined
in terms of an evaluation game played between an existen-
tial and a universal player. The players take turns choosing
variable assignments σi : Xi → {0, 1} for their quanti-
fier blocks, following the order of the prefix. The existential
player wins if the resulting variable assignment satisfies the
matrix, and the universal player wins if it falsifies the matrix.

4For single output functions we refer to Vol. 4 of The Art of
Computer Programming (Knuth 2011); the multi-output case is a
generalization of the single-output case.

4088



If the existential player has a winning strategy in this game,
the QBF is true (or satisfiable); otherwise it is false (or un-
satisfiable). The satisfiability problem of QBFs is PSPACE-
complete, and QBFs can succinctly encode problems arising
in many areas (Shukla et al. 2019). For an overview of QBF,
including solving techniques and proof complexity, see the
survey by Beyersdorff et al. (2021).

QBF-Based Exact Synthesis
In the following, we will present a QBF-based approach for
synthesizing optimal chains from given Boolean functions.

The core idea is to use a QBF encoding to check whether
it is possible to represent a Boolean function by a chain of
a given length ℓ. If a function can be represented by a chain
of length ℓ then the encoding is satisfiable. In this case a
realization of the chain can be read off from the model of
the encoding. To find an optimal chain we increment the
length ℓ until we find a length that allows representing the
given function.

Encoding
We will discuss a QBF encoding to check whether a Boolean
function can be represented by a k-input Boolean chain
of length ℓ. To simplify the presentation, we fix k = 2;
a generalization to k > 2 is straightforward. The en-
coding is adapted from the multi selection variable SAT-
encoding (Haaswijk et al. 2020) to exploit the succinctness
of QBFs. In particular, we make the following changes:
• By universally quantifying over the inputs, we can repre-

sent the values of the individual gates by single existen-
tially quantified variables (in the scope of the universal
quantifiers).

• Instead of a truth table, the specification is given as a cir-
cuit. In principle, this allows us to synthesize even func-
tions with prohibitively large truth tables. Moreover, this
makes it easier to iteratively select and replace subcir-
cuits.

To simplify the encoding, we only consider normal func-
tions. This means that it suffices to only consider normal
steps and unnegated outputs. This is without loss of general-
ity, since one can always first normalize a given function and
then negate the appropriate outputs in the synthesized chain
to obtain the original function.

First, we will introduce the variables used in the encoding.
For this purpose, let n be the number of inputs and m the
number of outputs of the Boolean function. Moreover, let
1 ≤ i ≤ ℓ and 1 ≤ j ≤ m.
Selection variables Si = {sit | 1 ≤ t < i + n}. These

variables determine the inputs of the ith step. If sit is true
and t ≤ n then step i depends on the tth input of the
chain. If t > n then step i depends on step t− n.

Gate definition variables Fi = {f i
a1,a2

| 0 ≤ a1 ≤ 1, 0 <
a1+a2 ≤ 2}. These variables describe the Boolean func-
tion at step i. If f i

a1,a2
is true then the function yields true

for the inputs a1, a2, and false otherwise. As we are only
considering normal chains we do not need to consider the
case a1 = 0 and a2 = 0.

Output variables Oj = {otj | 0 ≤ t ≤ n+ ℓ}. These vari-
ables determine the outputs of the chain. If the variable
o0j is true then output j is the constant value false. If otj
for 1 ≤ t ≤ n is true then the jth output is given by in-
put t. Finally, if n < t ≤ n + ℓ and otj is true then step
t− n represents the jth output.

Input variables I = {xt | 1 ≤ t ≤ n}. These variables
represent the inputs of the chain.

Gate value variables G = {gt | 1 ≤ t ≤ ℓ}. The variable
gt represent the value of step t under a given assignment
to the inputs and an assignment for the gate definition and
selection variables.

We define S =
⋃

1≤i≤ℓ Si. Similarly, we define the sets F
and O.

The matrix of the QBF expresses the subsequent con-
straints:
• Each step must have exactly k inputs, i.e. at each step ex-

actly k selection variables must be true. We denote the
constraint that asserts that λ variables out of a set Var ,
where λ ∈ N, are assigned to true by Count(Var , λ).
This constraint can be realized by using a sequential
counter (Sinz 2005). Thus, for each 1 ≤ i ≤ ℓ we re-
quire Count(Si, k).

• Each output must be uniquely defined, i.e., for each 1 ≤
j ≤ m there is exactly one i such that oij is true. Thus,
for each j we require Count(Oj , 1).

• The assignment of the gate value variables has to be com-
patible with the assignment for the gate definition vari-
ables. Let 1 ≤ i ≤ n, 1 ≤ u < v < n+ i, 0 ≤ a ≤ 1 and
0 < a+ b ≤ 2. To establish the compatibility we require
(siu ∧ siv ∧ gu = a ∧ gv = b) ⇒ (gi = f i

ab). If u ≤ n
(v ≤ n) we replace gu (gv) by the corresponding input
variable. We denote the conjunction over all u, v, a, b of
the above formula by Compi.

• Let fspec(x1, . . . , xn) denote the function that is to be
synthesized. We now require that the chain and the func-
tion are equivalent, i.e. they give the same outputs. For
this purpose, let 0 ≤ i ≤ n+ ℓ and 1 ≤ j ≤ m. We have
to differentiate between three cases: If i = 0 we require
oij ⇒ ¬f j

spec(x1, . . . , xn). If 1 ≤ i ≤ n we require
oij ⇒ (xi = f j

spec(x1, . . . , xn)). Finally, if n < i ≤
n+ ℓ we require oij ⇒ (gi−n = f j

spec(x1, . . . , xn)). We
denote the conjunction of the above formulas by Corr j .

The encoding is then given by:

∃S, F,O ∀I ∃G.
∧

1≤i≤ℓ

(Count(Si, k) ∧ Compi)∧∧
1≤j≤m

(Corr j ∧ Count(Oj , 1)).

Symmetry Breaking
For SAT-based exact synthesis, it was shown (Haaswijk
et al. 2020) that symmetry breaking has a significant im-
pact on performance. For this reason, we use a selection of
the symmetry-breaking constraints in our QBF encoding. In
the following, we provide a brief summary; for a detailed

4089



description, we refer to the original source (Haaswijk et al.
2020).

• Trivial steps in chains are not allowed. This means that
a gate must not be a projection of its inputs, and it must
not represent a constant value.

• A step is either an output or an input of another step.
• Operations used to represent a step must not be reused. If

gate x has inputs a and b and x is an input of gate y then
neither a nor b must be an input of y.

• The gates are required to be ordered colexicographically
according to their inputs.

Circuit Optimization with Resynthesis
In the following, we describe our new circuit minimization
procedure that uses the encoding from the previous section
to resynthesize small subcircuits. Because each subcircuit
interacts with the rest of the circuit only through a small
number of gates, its underlying function can often be sim-
plified without affecting the behavior of the larger circuit.
This is where QBFs offer a distinct advantage over proposi-
tional logic, since they allow us to fully capture this kind of
flexibility in a succinct way.

Starting from an initial circuit obtained by ABC, a local
selection heuristic repeatedly finds a subcircuit for resynthe-
sis. Each resynthesis problem is encoded as a QBF, which
requires additional constraints to ensure consistency with the
remaining circuit.

Adapting the Encoding
The QBF encoding used for resynthesis is obtained by ap-
plying two major adaptations to the previous encoding. First,
new equivalence constraints are used and second additional
constraints that rule out cycles are added.

Equivalence Constraints Unlike the encoding presented
before we now do not require that the replaced subcircuit and
the original subcircuit are equivalent. Instead, we ensure that
after replacing the subcircuit the whole circuit is equivalent
to the original one.

In the following, we will denote the Boolean chain repre-
senting the specification by f(i1, . . . , in) and the subcircuit
that shall be replaced by C. Moreover, c1, . . . , cp denote the
outputs of C, where p is the number of outputs of C. For the
sake of simplicity, we assume that no input of C depends
on an output of C in f . While such dependencies require
special attention for cycle prevention, the equivalence con-
straints can easily be generalized to this case.

To state the equivalence constraint, we introduce a new
chain f ′. The inputs of f ′ are given by i1, . . . , in, c1, . . . , cp.
The steps of f ′ are obtained by removing the steps of C
from f . We can see that f ′ is well-defined as for each output
c of C, f ′ has an input c. We let F denote the set of out-
puts of f and write Ω for the set successors(f, C) ∩ F . To
check if replacing C by a new realization preserves equiva-
lence we can now proceed as follows. We have to consider
each assignment σ of i1, . . . , in. Then we compute the as-
signment γ of the inputs of C in f under σ. Next we deter-
mine the assignment ρ of c1, . . . , cp of the new realization

of C under γ. We then require that fx(σ(i1), . . . , σ(in)) =
f ′
x(σ(i1), . . . , σ(in), ρ(c1), . . . , ρ(cp)) for each x ∈ Ω.

To obtain the assignment ρ in our encoding, we introduce
for each 1 ≤ i ≤ p a new variable ov i—which we call
output value variable. These variables give the value of the
synthesized subcircuit for the output ci under an assignment
to the inputs of the subcircuit. This means we add for each
output value variable ov i and for each variable oji ∈ Oi

the constraint: oji ⇒ (ov i = gj). For the output variables
that indicate that the output is an input, or a constant, the
constraint is adapted accordingly. We denote the set of all
output value variables by OV .

Finally, we add for each output x ∈ Ω the constraint
fx(i1, . . . , in) = f ′

x(i1, . . . , in, ov1, . . . , ovp). We denote
the conjunction over all x ∈ Ω of the above formula by
Corr . Note that in the actual encoding we reuse steps con-
tained in both f and f ′. Additionally, we can omit outputs
of the chains that do not have an effect on outputs in Ω.

Ensuring Acyclicity While the above adaptations to the
original encoding are straightforward, the usage of multi-
output subcircuits require a bit more subtle changes. As we
allow multi-output subcircuits, there may be a path of an
output of the subcircuit to an input of the subcircuit that is
not contained in the subcircuit. This is illustrated in Fig. 1a.
In the image, the outer box represents the whole circuit that
has six inputs and three outputs. The inner box represents
the selected subcircuit. We can see that there is a path from
an output to an input of the subcircuit that is not contained
in the subcircuit.

If we would replace such subcircuits naively cycles could
arise after replacing the subcircuit. Let us again consider the
example from above: If we replace the subcircuit we could
obtain a circuit where the output g1 depends on i—this is
illustrated in Fig. 1b.

This means that we have to adapt the encoding to rule
such cycles out. For this purpose, we compute the set P of all
pairs of inputs and outputs of the subcircuit (o, i), s.t. there
is a path from o to i that is not contained in the subcircuit. If
P is empty we do not have to add any further constraint to
rule out cycles. Otherwise, let I = {i | (o, i) ∈ P}, i.e. the
set of all inputs that occur in at least one pair. Next, we add
for each gate g in the synthesized subcircuit and each input
i in I a Connection variable cig . We denote the set of all
connection variables by C. We require that cig is assigned
to true if gate g depends on input i. Finally, let (o, i) ∈ P
and let out be the gate output variable that asserts that gate g
serves as output o. Then we require that out ⇒ ¬cig . Simi-
larly, we can restrict the gate output variables that assert that
an input serves as an output. We denote the cycle constraint
by Cyc.

The adapted encoding is then given by:
∃S, F,O ∀I ∃G,C,OV .Corr ∧ Cyc∧∧
1≤j≤m

Count(Oj , 1) ∧
∧

1≤i≤ℓ

(Count(Si, k) ∧ Compi).

Subcircuit Selection
The encoding presented above requires that a certain sub-
circuit is given. In order to obtain such a subcircuit we first

4090



g1

g2i

x

(a) Initial circuit

x

i

ĝ1

ĝ2

(b) Replaced subcircuit

Figure 1: Subcircuit where an input is connected to an output
by a path not contained in the subcircuit. Cycle obtained by
naively replacing the subcircuit.

select a gate in the circuit—denoted as root gate. The root
gate is the first gate in the subcircuit. To expand this subcir-
cuit we add inputs of already selected gates to the subcircuit
until the size of the subcircuit reaches a certain bound.

To obtain a root gate, we randomly select a gate from the
circuit. As the same root gate should not be used repeatedly,
we keep a taboo list that contains previously selected gates.
Gates in this list are not allowed to be selected. As it may be
of interest to analyze a gate again if the subcircuit could be
reduced, we do not add the gate in this case. If the length of
the list reaches a certain ratio of the total number of gates,
we remove elements from the list in a first-in-last-out order.

For the expansion of the subcircuit, we evaluated different
strategies, like breadth-first or depth-first search. The best
results were obtained with a strategy that aims at keeping
the number of outputs and, secondarily, the number of inputs
small. For this purpose, we select the gate from the available
inputs that adds the fewest outputs to the already selected
gates. If there are multiple gates that yield the same number
of outputs, we select the one that adds the fewest inputs to
the selected subcircuit.

Combining the Components

To select and replace subcircuits, a bound for the size of the
subcircuits is needed. The initial bound can be given as a
parameter to our procedure. This initial bound can then ei-
ther be increased if the resulting encodings, on average turn
out to be easy or decreased if they turn out to be hard. To
replace a selected subcircuit, we first check if the subcircuit
can be realized by a same-sized circuit. Solving the corre-
sponding resynthesis problem does not result in a smaller
subcircuit and serves different purposes. First, as we know
that the resulting QBF is true, the solver’s running time al-
lows us to adjust the size of subcircuits for resynthesis and
calibrate the timeout for subsequent solver calls. In partic-
ular, if the solver is unable to find a solution within a more
generous time limit, resynthesizing subcircuits of this size is
likely infeasible. Second, even if the newly computed imple-
mentation is not smaller, its substitution modifies the circuit
and can help escape local minima.

Experiments
The primary goal of the empirical evaluation is to assess the
effectiveness of the presented techniques for exact synthesis
and of circuit reduction. In particular, the evaluation aims to
answer the following research questions:
RQ1: What is the overhead caused by using QBF instead of

SAT for exact synthesis?
RQ2: How significant are the individual features of the base

configuration (non-equivalent subcircuits, multi-output
subcircuits, inprocessing by ABC, and replacements by
same-sized subcircuits)?

RQ3: Is the presented approach effective for circuits with
non-binary gates?

We implemented the presented synthesis method in
Python.5 Based on preliminary experiments, we selected
QFUN (Janota 2018) as the backend QBF solver. All exper-
iments were conducted on a cluster with Intel Xeon E5649
processors at 2.53 GHz running 64-bit Linux. Additionally,
we used a memory limit of 4 GB.

Experimental Comparison of SAT and QBF
Encoding
To assess the higher cost of using a QBF solver instead of a
SAT solver (RQ1), we compared the runtime of our QBF-
based approach with the SAT-based approach on selected
benchmarks. To get results for the SAT-based approach, we
applied the tool Percy (Soeken et al. 2022). For the com-
parison, we used the four and six-input functions that were
previously used for the experimental evaluation of the SAT-
based encoding (Haaswijk et al. 2020). As the five-input
functions of the aforementioned evaluation were not avail-
able to use, we used randomly generated five-input func-
tions instead. For each of the three benchmark families, we
applied Percy with the optimal configuration according
to (Haaswijk et al. 2020).

Tbl. 1 gives the results of the experiments. The first two
columns give the worst and the average runtime needed
to obtain the size-optimal circuit by using Percy, respec-
tively. The remaining two columns give the corresponding
information for the QBF-based approach. First, the results
for the four-input functions realized by circuits with two in-
put gates are given. Next, the table shows the results for five-
input functions using three-input gates and six-input func-
tions using four-input gates.

The table shows that in general the SAT-based approach
is up to ten times faster than the QBF-based approach. Nev-
ertheless, the table indicates that the SAT-based approach
is not always faster—for the five-input functions, the SAT-
based approach needs three times as long as the QBF-based
approach in the worst case. The QBF-based approach allows
us more flexibility to replace subcircuits, so the longer run-
ning time is well compensated.

Iterative Replacement
IWLS2022 To analyze the performance of the iterative re-
placement of subcircuits and the individual features of our

5https://github.com/fxreichl/ciops

4091



Best SAT QBF

Instances Max time Mean time Max time Mean time

4-input 6.1 0.5 41 5.3
5-input 548.3 7 168 21.7
6-input 1.3 0.5 10.2 3.5

Table 1: Comparison of the runtimes of the SAT-based and
the QBF-based approaches for exact synthesis.

approach, we considered the benchmarks for the IWLS2022
programming contest6. The benchmarks consist of 100 in-
stances representing Boolean functions with up to sixteen in-
puts and both single and multi-output functions. The goal is
to compute an And-Inverter Graph (AIG) with as few gates
as possible. As the instances are given as truth tables, and
our tool requires that specifications are given as circuits, we
have to preprocess the instances first. For this purpose, we
apply the tool ABC (Brayton and Mishchenko 2010) to gen-
erate specifications in the Berkeley Logic Interchange For-
mat (BLIF)7. Preliminary tests showed a naive transforma-
tion of truth tables to circuits by using ABC results in rela-
tively large circuits. Thus, we use ABC to simplify the gen-
erated circuit as far as possible. For this purpose, we apply
three combinations of ABC commands to the truth tables and
select the resulting circuit with the smallest number of gates.
As the result has to be an AIG, the encoding needs to be
adapted slightly. In order to obtain an AIG, we forbid gates
that are not valid AIG gates. As we are only using normal
gates, this means that we have to ensure that no gate is a pro-
jection to one of its inputs and that no gate is the exclusive or.
The non-trivial symmetry-breaking constraint already deals
with the first issue. To also deal with the second issue, we
add an additional constraint on the gate definition variables
for each gate.

In our evaluation setup, we run our reduction tool for one
hour, then we apply ABC as an inprocessing step using ABC-
commands that turned out useful in preliminary tests. When
we apply ABC, we repeat its application until no further im-
provements can be achieved. The combination of our tool
and ABC is applied 10 times. We compare 5 different con-
figurations of this approach:

Base As described above.
Equivalent Only replace by equivalent circuits.
1-output Only select subcircuits with a single output.
Reduce Only replace by smaller circuits.
No ABC Do not apply ABC between the individual runs.

Instances are grouped into four subsets of 25 based on the
initial number of gates. For each configuration and instance
group, we determine the mean size reduction (in %) for cir-
cuits in that group. We perform 5 independent runs of each
configuration and report averages (the standard deviation
across independent runs was no more than 0.35). Results are

6https://github.com/alanminko/iwls2022-ls-contest
7http://www.cs.columbia.edu/∼cs6861/sis/blif/index.html

#Gates Base Equivalent 1-output Reduce No ABC

10-58 13.4 4.9 9.7 5.7 12.7
59-182 29.6 11.8 22.4 14.5 25.9
185-777 34.1 9.8 24.6 16.8 24.5
784-7920 20.2 7.0 15.9 9.7 10.2
Overall 24.3 8.4 18.1 11.7 18.3

Table 2: Average reduction (%) of gates compared to the
preprocessed IWLS instances, by configuration and initial
size.

0 5000 10000 15000 20000 25000 30000 35000 40000

300

400

500

600

700

800

900

1000

Figure 2: Number of gates in a 48-hour run of our tool ap-
plied to the preprocessed IWLS ex07 instance.

shown in Tbl. 2. The base configuration yields the best re-
sults for each class. If the replaced subcircuits need to be
locally equivalent (Equivalent), the results are significantly
worse. Also, the requirement to only replace subcircuits with
smaller circuits (Reduce) has a significant negative impact
on overall performance. While the limitation on the selec-
tion does not have such a significant impact as the previous
restriction, we can still see a clear difference in the number
of reduced gates to the base configuration. Finally, not using
ABC for inprocessing (No ABC) leads to a deterioration of a
similar magnitude as the previous limitation. All in all, this
answers RQ2 and shows the viability of the base configura-
tion. Later we will illustrate the impact of using ABC in a bit
more detail.

To further illustrate the behavior of our tool, we selected
an instance from the IWLS benchmark set (ex07) and ana-
lyzed it in more detail. For this purpose, we applied our tool
for two hours with the base configuration. Then we applied
ABC in the same configuration as before. This combination
was then applied 24 times.

The results of these runs are depicted in Fig. 2. The x-axis
of the diagram shows the number of iterations. The y-axis
shows the number of gates at a given iteration. The vertical
lines indicate the applications of ABC.

We can see that the curve flattens with an increasing
number of iterations. This is expected, as with an increas-
ing number of iterations, the circuits get smaller, and thus

4092



Instance #Inputs 2016 2017 2018 2019 2020 2021 2022 Ours – 24h Ours – 48h

Int to float converter 11 34 28 26 26 24 24 24 20 19
Alu control unit 7 29 29 27 27 27 27 27 27 27
Lookahead XY router 60 53 52 50 50 50 50 50 49 49
Coding-cavlc 10 107 101 68 68 68 68 68 59 58
Priority encoder 128 118 110 102 102 102 100 100 98 97
Adder 256 192 192 192 192 192 191 185 183 182
I2c controller 147 230 227 200 200 200 200 200 192 189
Decoder 8 272 270 264 264 264 264 264 264 264
Round-robin arbiter 256 429 409 328 328 313 306 304 297 295
Barrel shifter 135 512 512 512 512 512 512 512 512 512
Max 512 532 523 522 522 522 522 522 522 522
Sine 24 1347 1229 1227 1227 1221 1205 1205 1205 1205
Voter 1001 1515 1301 1297 1297 1293 1281 1279 1279 1279
Memory controller 1204 2399 2354 2041 2041 2041 2019 2019 1995 1975

Table 3: Comparison of the number of gates of the best known implementation for EPFL circuits of the last six years with
results obtained from our iterative replacement approach.

it gets harder to reduce them further. Similarly, the reduc-
tions obtained by ABC tend to decrease. Moreover, we can
see that even if the iterative replacement could achieve little
improvements, ABC could still further improve the circuits.
This is most likely due to the replacement of subcircuits,
even if they are not smaller. We can also see that the distance
between the vertical lines varies substantially. This is mainly
due to the usage of different upper bounds on the size of the
selected subcircuits. The larger the subcircuits can be, the
harder the QBF calls get. This means that each individual it-
eration takes longer. While a larger bound on the size means
that fewer subcircuits can be checked, it often allows reduc-
ing the circuit, which was impossible with smaller sizes.

EPFL-instances To analyze the performance of the it-
erative replacement of subcircuits with non-binary gates,
we considered the EPFL Combinational Benchmark
Suite (Amarú, Gaillardon, and Micheli 2015). This bench-
mark set consists of twenty circuits. The goal is to represent
the specification with a circuit with six-input gates where
either the number of gates or the depth of the circuit is as
small as possible. We only consider the task of finding rep-
resentations with few gates. In the benchmark suite also the
best known realizations are given. We use the best known
realizations as initial specifications for our tool.

In our evaluation, we run our tool for 24 hours. After-
wards we apply our tool to the resulting circuits and let it
run for another 24 hours.

Tbl. 3 gives the best known results from the last years
and the results of our approach. Note that the table does not
list all the benchmarks from the benchmark suite. The six
benchmarks with more gates than the memory controller in-
stance are too large to be processed by our tool. For this
reason, we do not mention them in the table. Also note that
the best known results are continuously updated. We use the
best known results as of June 30th, 2022 (commit 141d000).

The results show that the QBF-based approach could fur-
ther reduce the size for several of the best known realiza-
tions. In particular, we want to highlight the results for the

Coding-cavlc and the I2c controller instances. While the last
time the two circuits could be improved was five years ago,
our approach could still further reduce these circuits.

Moreover, the table shows that even after long runs our
tool can achieve further reductions. Overall, Tbl. 3 gives a
positive answer to RQ3.

Conclusions

We presented a natural QBF encoding for synthesizing an
optimal implementation of small circuits. As this encoding
captures degrees of freedom not covered by existing meth-
ods, we could generalize it to locally improve larger circuits
by reducing the size of subcircuits. While this approach is no
longer guaranteed to yield optimal implementations, our ex-
periments show that the main features of our approach pro-
vide a significant improvement.

While the presented approach is expensive in terms of
running time, the running time is not necessarily of major
importance. This is illustrated by the IWLS 2022 program-
ming contest and the EPFL 6-LUT circuit collection—in
both cases, only the number of gates in the results and not
the time needed to compute them matters. Still, there is po-
tential to improve the runtime of the algorithm. First, the
algorithm is anytime and can be stopped when the desired
reduction in size has been achieved or the time budget is
exhausted. Second, there is potential for parallelization by
running multiple exact synthesis jobs simultaneously. Third,
adapting QBF solvers (e.g., better support for incremental
solving) could reduce the time spent by the solver. Finally,
local resynthesis can be detached from the larger circuit by
first computing a Boolean relation capturing the implemen-
tation flexibility of multi-output subcircuits (Savoj 1992).

We hope that these tools developed within the larger AI
community will lead to further applications and ultimately
result in a virtuous cycle as in SAT solving.

4093



Acknowledgements
Supported by the Vienna Science and Technology Fund
(WWTF) under the grants [10.47379/ICT19060] and
[10.47379/ICT19065], and the Austrian Science Fund
(FWF) under the grants W1255 and P32441.

References
Amarú, L.; Gaillardon, P.-E.; and Micheli, G. D. 2015. The
EPFL Combinational Benchmark Suite. In International
Workshop on Logic & Synthesis (IWLS).
Beyersdorff, O.; Janota, M.; Lonsing, F.; and Seidl, M. 2021.
Quantified Boolean Formulas. In Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Appli-
cations, 1177–1221. IOS Press.
Brayton, R. K.; Hachtel, G. D.; and Sangiovanni-Vincentelli,
A. L. 1990. Multilevel Logic Synthesis. Proc. IEEE, 78(2):
264–300.
Brayton, R. K.; and Mishchenko, A. 2010. ABC: An Aca-
demic Industrial-Strength Verification Tool. In CAV, volume
6174 of LNCS, 24–40. Springer.
Chen, H.; Janota, M.; and Marques-Silva, J. 2012. QBF-
Based Boolean Function Bi-Decomposition. In DATE, 816–
819. IEEE.
De Micheli, G. 1994. Synthesis and Optimization of Digital
Circuits. McGraw Hill.
Fichte, J. K.; Lodha, N.; and Szeider, S. 2017. SAT-Based Lo-
cal Improvement for Finding Tree Decompositions of Small
Width. In SAT, volume 10491 of LNCS, 401–411. Springer.
Fujita, M. 2015. Toward Unification of Synthesis and Ver-
ification in Topologically Constrained Logic Design. Proc.
IEEE, 103(11): 2052–2060.
Fujita, M.; Jo, S.; Ono, S.; and Matsumoto, T. 2013. Partial
synthesis through sampling with and without specification. In
ICCAD, 787–794. IEEE.
Fujita, M.; Kimura, Y.; Le, X.; Miyasaka, Y.; and Ghare-
hbaghi, A. M. 2020. Synthesis and Optimization of Multiple
Portions of Circuits for ECO based on Set-Covering and QBF
Formulations. In DATE, 744–749. IEEE.
Haaswijk, W.; Soeken, M.; Mishchenko, A.; and Micheli,
G. D. 2020. SAT-Based Exact Synthesis: Encodings, Topol-
ogy Families, and Parallelism. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., 39(4): 871–884.
Janota, M. 2018. Towards Generalization in QBF Solving via
Machine Learning. In AAAI, 6607–6614. AAAI Press.
Knuth, D. E. 2011. The Art of Computer Programming. Vol-
ume 4A, Combinatorial Algorithms, Part 1. Addison Wesley,
1st edition. edition.
Kojevnikov, A.; Kulikov, A. S.; and Yaroslavtsev, G. 2009.
Finding Efficient Circuits Using SAT-Solvers. In SAT, volume
5584 of LNCS, 32–44. Springer.
Kulikov, A. S.; Pechenev, D.; and Slezkin, N. 2022. SAT-
Based Circuit Local Improvement. In MFCS, volume 241 of
LIPIcs, 67:1–67:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik.
Lodha, N.; Ordyniak, S.; and Szeider, S. 2019. A SAT Ap-
proach to Branchwidth. ACM Trans. Comput. Log., 20(3):
15:1–15:24.

Mishchenko, A.; and Brayton, R. K. 2005. SAT-Based Com-
plete Don’t-Care Computation for Network Optimization. In
DATE, 412–417. IEEE Computer Society.
Mishchenko, A.; Brayton, R. K.; Jiang, J. R.; and Jang, S.
2011. Scalable Don’t-Care-Based Logic Optimization and
Resynthesis. ACM Trans. Reconfigurable Technol. Syst., 4(4):
34:1–34:23.
Mishchenko, A.; Chatterjee, S.; and Brayton, R. K. 2006.
DAG-Aware AIG Rewriting a Fresh Look at Combinational
Logic Synthesis. In DAC, 532–535. ACM.
Murray, C. D.; and Williams, R. R. 2017. On the (Non) NP-
Hardness of Computing Circuit Complexity. Theory Comput.,
13(1): 1–22.
Ramaswamy, V. P.; and Szeider, S. 2021. Turbocharging
Treewidth-Bounded Bayesian Network Structure Learning.
In AAAI, 3895–3903. AAAI Press.
Ramaswamy, V. P.; and Szeider, S. 2022. Learning Large
Bayesian Networks with Expert Constraints. In UAI, PMLR,
180:1592–1601.
Riener, H.; Haaswijk, W.; Mishchenko, A.; Micheli, G. D.;
and Soeken, M. 2019. On-the-fly and DAG-aware: Rewriting
Boolean Networks with Exact Synthesis. In DATE, 1649–
1654. IEEE.
Riener, H.; Lee, S.; Mishchenko, A.; and Micheli, G. D.
2022. Boolean Rewriting Strikes Back: Reconvergence-
Driven Windowing Meets Resynthesis. In ASP-DAC, 395–
402. IEEE.
Riener, H.; Mishchenko, A.; and Soeken, M. 2020. Exact
DAG-Aware Rewriting. In DATE, 732–737. IEEE.
Savoj, H. 1992. Don’t Cares in Multi-Level Network Opti-
mization. Ph.D. thesis, University of California, Berkeley.
Savoj, H.; and Brayton, R. K. 1990. The Use of Observabil-
ity and External Don’t Cares for the Simplification of Multi-
Level Networks. In DAC, 297–301. IEEE Computer Society
Press.
Schidler, A.; and Szeider, S. 2021. SAT-based Decision Tree
Learning for Large Data Sets. In AAAI, 3904–3912. AAAI
Press.
Shukla, A.; Biere, A.; Pulina, L.; and Seidl, M. 2019. A Sur-
vey on Applications of Quantified Boolean Formulas. In IC-
TAI, 78–84. IEEE.
Sinz, C. 2005. Towards an Optimal CNF Encoding of
Boolean Cardinality Constraints. In van Beek, P., ed., CP,
volume 3709 of LNCS, 827–831. Springer.
Soeken, M.; Riener, H.; Haaswijk, W.; Testa, E.; Schmitt,
B.; Meuli, G.; Mozafari, F.; Lee, S.-Y.; Calvino, A. T.;
Marakkalage, D. S.; and De Micheli, G. 2022. The EPFL
Logic Synthesis Libraries. CoRR, abs/1805.05121v3.
Testa, E.; Amarù, L. G.; Soeken, M.; Mishchenko, A.; Vuil-
lod, P.; Gaillardon, P.; and Micheli, G. D. 2020. Extending
Boolean Methods for Scalable Logic Synthesis. IEEE Access,
8: 226828–226844.
Wille, R.; Le, H. M.; Dueck, G. W.; and Große, D. 2008.
Quantified Synthesis of Reversible Logic. In DATE, 1015–
1020. ACM.

4094


