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Abstract
Process  validation,  characterization,  and  optimization  are  crucial  in  biopharmaceutical  manufac-
turing to ensure  the  quality  and  consistency  of  the  final  product.  However,  even  though  these  are
standard  practices  in  the  industry,  oftentimes  they  are  not  implemented  in  an  effective  manner
due  to a unit  operation  (UO)-centric  view  of  the  process  that  ignores  interdependencies,  resulting
in  unnecessary  experimental  effort.  Similarly,  recommendations  by  regulatory  authorities  like
the  ICH or  FDA,  e.g.,  incorporating all  sources  of  variation  or  providing a robust  design  space
are  in  many  cases  not  considered  due  to a lack  of  knowledge  or  tools.

This  rather  applied  dissertation  presents  a set  of  methods  to address  these  issues  and  thereby
contributes  to advancing biopharmaceutical  process  development  and  validation.  Furthermore,
the  work  provides  insights  to the  scientific  community  by  highlighting the  practical  application
and  effectiveness  of  statistical  methodologies,  as  well  as  introducing novel  solutions  to issues  

commonly  encountered  in  the  field.  Specifically,  it  is  comprised  of  the  following three  key  

subthemes:  (i)  incorporating random  effects  in  the  calculation  of  proven  acceptable  ranges  

(PAR)  for  biopharmaceutical  process  control  strategies,  (ii)  developing a novel  experimental  

design  approach  that  captures  the  interplay  of  multiple  unit  operations  to gain  insights  into 

final  product  quality,  and  (iii)  proposing a method  for  defining design  spaces  using linear
combinations  of  process  parameters.  The  methods  are  strongly  related  considering ICH and  FDA
recommendations  for  robust  biopharmaceutical  manufacturing:  By  incorporating random  effects
into the  calculation  of  PARs  and  utilizing a holistic  experimental  design  approach,  manufacturers
can  effectively  address  the  requirements  for  process  validation  and  control  strategy  development
as  emphasized  by  ICH Q8.  These  methodologies  enable  a more  comprehensive  understanding
of  process  variability,  identification  of  critical  process  parameters,  and  the  establishment  of
PARs  that  accurately  capture  the  impact  of  random  effects  on  critical  quality  attributes  (CQAs).
Furthermore,  the  proposed  method  for  defining design  spaces  aligns  with  the  flexibility  and
adaptability  emphasized  in  ICH Q8 as  well  as  lifecycle  change  management  plans  outlined  in  ICH
Q14 and  enables  manufacturers  to explore  and  define  design  spaces  in  a scientifically  rigorous
manner.

The  first  part  of  the  research  highlights  the  significance  of  considering random  effects  in  

a control  strategy  for  biopharmaceutical  processes.  Through  the  application  of  linear  mixed  

models,  the  impact  of  random  effects  on  CQAs  is  quantified,  demonstrating their  substantial
contribution  to process  variation.  The  study  reveals  that  neglecting random  effects  can  lead  to
overly  optimistic  proven  acceptable  ranges  and  potentially  misleading statements  about  the  CQA
distribution.

In  the  second  part,  a holistic  design  of  experiments  (hDoE)  methodology  is  introduced  to 

address  the  limitations  of  traditional  methods  that  focus  on  investigating one  process  step  at  

a time.  This  approach  leverages  an  integrated  process  model  comprised  of  regression  models
for  each  unit  operation,  interconnected  by  passing responses  to subsequent  unit  operations  as
process  parameters.  By  minimizing the  simulated  out-of-specification  rate  at  the  final  step  of  the
process,  the  proposed  approach  optimally  places  runs  at  the  appropriate  UO,  providing valuable
information  about  the  impact  of  individual  UOs  on  CQA variability  and  significantly  reducing
the  number  of  experiments  required.
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The  third  part  addresses  the  challenge  of  defining design  spaces  that  align  with  acceptance  

criteria for  process  parameter  deviations.  A novel  method  is  presented,  leveraging a numeric
optimizer  and  regression  models  to calculate  the  largest  design  space  within  the  parameter  space,
ensuring CQA boundaries  remain  within  acceptable  limits.  This  approach  offers  an  efficient
alternative  to discretization-based  methods,  enabling fast  evaluations  even  in  higher-dimensional
parameter  spaces.  Additionally,  a weighting scheme  is  proposed  to prioritize  certain  process
parameters,  facilitating a dynamic  approach  to design  space  definition  and  exploration.

This  dissertation  contributes  to advancing biopharmaceutical  process  development  and  valida-
tion  by  introducing random  effects,  holistic  experimental  design,  and  design  space  optimization
into the  original  concept  of  integrated  process  models.  The  methodologies  presented  offer  valuable
insights  and  practical  tools  for  biopharmaceutical  manufacturers  aiming to ensure  consistent
product  quality  throughout  the  manufacturing lifecycle.



Kurzfassung
Prozessvalidierung,  Charakterisierung und  Optimierung sind  entscheidend  für  die  biophar-  

mazeutische  Herstellung,  um  die  Qualität  und  Konsistenz  des  Endprodukts  sicherzustellen.  

Obwohl  dies  branchenübliche  Praktiken  sind,  werden  sie  oft  nicht  effektiv  umgesetzt,  da ein  

auf  einzelne  Unit  Operations  (UOs)  ausgerichteter  Ansatz  angewendet  wird,  der  die  Wechsel-
wirkungen  zwischen  den  Schritten  ignoriert  und  oft  mit  unnötigem  experimentellem  Aufwand
verbunden  ist.  Ähnlich  werden  Empfehlungen  von  Zulassungsbehörden  wie  der  ICH oder  FDA
oft  nicht  wahrgenommen,  wie  z.B.  die  die  Berücksichtigung aller  Quellen  der  Variation  oder  die
Bereitstellung eines  robusten  Design  Spaces  (DS).

Diese  anwendungsorientierte  Dissertation  präsentiert  eine  Reihe  von  Methoden,  die  sich  mit
der  Lösung solcher  Probleme  beschäftigen  und  so zur  Weiterentwicklung der  biopharmazeutischen  

Prozessentwicklung und  Validierung als  auch  des  wissenschaftlichen  Bereiches  der  CMC-Statistik
(Chemistry,  Manufacturing and  Controls)  beitragen.  Die  Arbeit  ist  in  drei  Hauptbereiche  

unterteilt:  (i)  Einbeziehung von  Random  Effects  in  die  Berechnung von  Proven  Acceptable  

Ranges  (PAR)  für  Kontrollstrategien  biopharmazeutischer  Prozesse,  (ii)  Entwicklung eines
neuartigen  experimentellen  Designansatzes,  der  das  Zusammenspiel  mehrerer  UOs  erfasst  indem
auf  die  Out-of-speficiation  Rate  des  Gesamtprozesses  optimiert  wird,  und  (iii)  eine  Methode  zur
Definition  eines  DS  unter  Verwendung linearer  Kombinationen  von  Prozessparametern.

Die  Methoden  stehen  in  enger  Verbindung zu  den  Empfehlungen  der  ICH und  FDA für  eine
robuste  biopharmazeutische  Herstellung.  Durch  die  Einbeziehung von  Random  Effects  in  die
Berechnung von  PARs  und  die  Verwendung eines  ganzheitlichen  experimentellen  Designansatzes
können  Hersteller  die  Anforderungen  an  die  Prozessvalidierung und  die  Entwicklung von  Kon-
trollstrategien  effektiv  erfüllen.  Diese  Methoden  ermöglichen  ein  umfassenderes  Verständnis  der
Prozessvariabilität,  die  Identifizierung kritischer  Prozessparameter  und  die  Festlegung von  PARs,  

die  den  Einfluss  von  Random  Effects  auf  Critical  Quality  Attributes  (CQAs)  genau  erfassen.  Des  

Weiteren  ermöglicht  die  vorgeschlagene  Methode  zur  multivariaten  Design  Space  Berechnung und
Untersuchung Herstellern  die  schnelle,  numerische  Definition  von  gültigen  Parameterbereichen
konform  zu  den  ICH Q8 und  Q14 Guidelines.

Der  erste  Teil  der  Dissertation  hebt  die  Bedeutung der  Berücksichtigung von  Random  Effects
in  der  Kontrollstrategie  für  biopharmazeutische  Prozesse  hervor.  Durch  die  Anwendung von
Linear  Mixed  Models  wird  der  Einfluss  von  Random  Effects  auf  CQAs  quantifiziert,  was  ihren
erheblichen  Beitrag zur  Prozessvariation  zeigt.  Eine  Fallstudie  belegt,  dass  die  Vernachlässigung
von  Random  Effects  zu  überoptimistischen  Kontrollstrategien  führen  kann  und  zu  potenziell
irreführende  Aussagen  über  die  Verteilung der  CQAs.

Im  zweiten  Teil  wird  holistic  Design-of-Experiments  (hDoE)  vorgestellt,  eine  Methode  zur  

optimierten  Errechnung von  experimentellem  Aufwand  zur  Charakterisierung von  Prozessen.
Im Gegensatz  zu traditionellen Methoden,  die  sich auf  die  auf  die  Untersuchung eines Prozesss-
chritts  nach  dem  anderen  konzentrieren,  nutzt  dieser  Ansatz  ein  integriertes  Prozessmodell.
Durch  Minimierung der  simulierten  Out-of-specification  Rate  dieses  holistischen  Modells  werden
experimentelle  Läufe  optimal  auf  die  einzelnen  UOs  verteilt.  Der  Vorgang liefert  wertvolle  

Informationen  über  den  Einfluss  einzelner  UOs  auf  die  Variabilität  von  CQAs  und  reduziert
signifikant  die  Anzahl  der  benötigten  Experimente.
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Der  dritte  Teil  befasst  sich  mit  der  numerischen  Berechnung von  multivariaten  Design  Spaces.
Ein  DS  im  Kontext  eines  biopharmazeutischen  Prozesses  ist  die  Definition  jener  Parameter-  

bereiche,  die  zu  CQAs  innerhalb  gewisser  Akzeptanzkriterien  führen.  Im  Gegensatz  zu  PARs
beinhaltet  diese  Definition  auch  alle  Kombinationen  von  Prozessparametern.  Es  wird  eine  neue
Methode  vorgestellt,  die  numerische  Optimierung und  Regressionsmodelle  nutzt,  um  den  größten
Designraum  im  Parameterbereich  zu  berechnen  und  sicherzustellen,  dass  die  Grenzen  der  CQAs
innerhalb  der  Akzeptanzkriterien  bleiben.  Dieser  Ansatz  bietet  eine  effiziente  Alternative  zu
diskretisierungsbasierten Methoden und ermöglicht  eine  schnelle  Berechnung auch in höherdi-
mensionalen  Parameterräumen.  Darüber  hinaus  wird  ein  Gewichtungsschema vorgeschlagen,  

um  bestimmte  Prozessparameter  priorisieren  zu  können.  Dies  verbessert  die  Flexibilität  der  

Methode  und  ermöglicht  das  dynamische  Untersuchen  des  DS,  basierend  auf  Anforderungen
unterschiedlicher  Anwendungsfälle.

Diese  Dissertation  trägt  zur  Weiterentwicklung der  biopharmazeutischen  Prozessentwicklung
und  Validierung bei,  indem  Kontrollstrategien  mit  Random  Effects,  ganzheitliche  experimentelle
Designs  und  die  Optimierung von  Design  Spaces  in  das  ursprüngliche  Konzept  des  IPMs  integriert
werden.  Die  vorgestellten  Methoden  bieten  wertvolle  Einblicke  und  praktische  Werkzeuge  für  

Hersteller,  die  konsistente  Produktqualität  über  den  gesamten  Prozess  Lifecycle  sicherstellen
möchten.
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1 Introduction

1.1 Data Science  in  Biopharmaceutical  Manufacturing
Automated  production  processes  based  on  realtime  data collection,  evaluation  and  control,  gener-
ally  referred to as Industry  4.0+,  represents the  current  state  of  the  art  in many  industries.  To
apply  these  practices  to the  biopharmaceutical  domain,  the  International  Society  for  Pharmaceu-  

tical  Engineering (ISPE)  established  the  Pharma 4.0 operating model  [1],  where  particularities  of  

biopharma production  are  taken  into account,  such  as  the  need  for  regulatory  approval  and  Good  

Manufacturing Practices  (GMPs)  [2, 3].  The  main  aspects  of  this  transformation  are  categorized
into resources,  information  systems,  organization  and  culture,  whereas  the  prerequisite  and
fundamental  component  connecting all  of  these  features  is  digitization.  In  the  context  of  Pharma
4.0,  digitization  is  often  associated  with  The  Internet  of  Things  (IoT),  realtime  data collection
and  interpretation  as  well  as  automated  control.  While  the  latter  is  not  yet  implemented  in  the
majority  of  biopharma production,  the  collection,  standardization  and  analysis  of  data is  well
established  and  required  for  regulatory  filings.  These  activities  fall  into the  broad  category  of
data science  or,  depending on  the  exact  use  case,  into the  domain  of  clinical  or  CMC  statistics
(Chemistry,  Manufacturing and  Controls).

Clinical  statistics  is  concerned  with  the  design  of  clinical  trials  and  the  analysis  of  results,  and
its  tasks  as  well  as  many  of  the  methods  involved  are  firmly  anchored  in  regulatory  guidelines
[4].  On  the  other  hand,  the  role  of  CMC  statistics  is  more  general,  spanning from  supporting 

the  development  of  new  drug products  and  processes  to process  optimization  and  validation
[5, 6].  Regulatory  guidelines  recommend  that  statistical  evidence  for  these  activities  should  be
provided,  but  do not  specify  the  exact  methods.  This  paves  the  way  for  the  utilization  of  a
comprehensive  array  of  data science  methods,  along with  techniques  employed  in  the  modeling
of  chemical  or  physical  systems,  such  as  mechanistic  models.  The  contributions  presented  in  this
cumulative  dissertation  find  their  place  within  the  realm  of  CMC  statistics.  They  have  been  

primarily  formulated  for  process  development,  i.e.,  the  initial  stage  in  the  process  validation
lifecycle  as  defined  by  the  FDA’s  process  validation  guideline  [7].  The  lifecycle  concept  as  well  as
other  regulatory  considerations  are  outlined  in  the  next  section.

Another  important  part  of  the  Pharma 4.0 digitalization  scheme  are  digital  twins.  While  

the  term  lacks  a precise  definition  and  its  interpretation  varies  across  domains  [8],  within  

biopharmaceutical  manufacturing,  it  commonly  refers  to a comprehensive  model  of  the  entire  

production  process  [9, 10].  Oftentimes  these  definitions  include  a realtime  component,  i.e.,  

Process  Analytical  Technology  (PAT)  and  automated  control,  which  is  not  considered  in  this  

dissertation  as  it  relates  to statistical  methods  alone.  Here,  the  digital  twin  is  realized  as  the
Integrated  Process  Model  (IPM),  an  ensemble  model  comprised  of  submodels  for  unit  operations
that  facilitates  process  validation  and  optimization  [11].  The  IPM  provides  the  context  and
framework  for  the  individual  parts  of  this  dissertation.

1.2 Regulatory Requirements
Biopharmaceutical  manufacturers  are  required  by  regulatory  authorities  such  as  the  International  

Council  for  Harmonisation  of  Technical  Requirements  for  Pharmaceuticals  for  Human  Use  (ICH),
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the  Food  and  Drug Administration  (FDA)  or  the  European  Medicines  Agency  (EMA)  to provide
descriptions  of  production  processes  and  substantiate  design  decisions  and  control  strategies
through  reports  rooted  in  sound  scientific  principles.

“The  aim  of  pharmaceutical  development  is  to design  a quality  product  and  its
manufacturing process  to consistently  deliver  the  intended  performance  of  the  product.”
[12]

These  organizations  supply  guideline  texts  that  offer  general  recommendations  on  how  to
provide  evidence  for  the  robustness  of  a process.  For  example,  they  describe  basic  principles  for
utilizing statistical  techniques  to quantify  the  relationship  between  Process  Parameters  (PPs)
and  Critical  Quality  Attributes  (CQAs).

“Design  of  Experiment  (DoE)  studies  can  help  develop  process  knowledge  by  revealing
relationships,  including multivariate  interactions,  between  the  variable  inputs  (e.g.,
component  characteristics  or  process  parameters)  and  the  resulting outputs  (e.g.,
in-process  material,  intermediates,  or  the  final  product).” [7]

Those  models  can  then  be  used  to define  valid  ranges  in  which  a parameter  can  deviate,  either
univariately  in  the  form  of  Proven  Acceptable  Range  (PAR)  (see  section 4.1.2)  or  multivariately
by  calculating a full  Design  Space  (DS)  (see  section 7.3),  while  CQA specifications  are  still  met.
This  is  one  way  of  providing a control  strategy  that  constitutes  evidence  of  a robust  process  and
the  first  step  in  the  process  validation  lifecycle  introduced  by  the  FDA in  its  2011 guideline  text,
illustrated  in  figure 1.1.

Stage 1 
Process Design

Stage 2 
Process

Qualification

Stage 3 
Continued Process

Verification

Fig.  1.1: The  process  validation  lifecycle  as  defined  by  the  FDA [7].

Process  design,  the  first  stage  in  this  lifecycle  is  the  most  expensive  for  manufacturers  and
arguably  the  one  that  can  derive  the  greatest  benefit  from  statistical  methods.  Generally,  the  need
for  providing quantitative  evidence  for  robustness  gives  rise  to the  scientific  field  of  Chemistry,
Manufacturing and  Controls  (CMC)  statistics,  the  application  of  statistical  methods  to problems
in  biopharmaceutical  manufacturing [5]  and  also the  particular  domain  this  dissertation  expands
upon.

While  CMC  statistics  is  a very  active  area of  research,  official  process  validation  guidelines  

evolve  quite  slowly  and  mention  only  elementary  statistical  concepts.  The  level  of  detail
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presented  in  the  above  quoted  example  is  never  exceeded.  Furthermore,  the  proposed  methods
are  recommendations  rather  than  hard  requirements.

“FDA’s  guidance  documents,  including this  guidance,  do not  establish  legally  enforce-
able  responsibilities.  Instead,  guidances  describe  the  Agency’s  current  thinking on  a
topic  and  should  be  viewed  only  as  recommendations,  unless  specific  regulatory  or
statutory  requirements  are  cited.” [7]

Thus,  manufacturers  might  be  tempted  to seek  the  path  of  least  resistance  when  providing
evidence  for  regulatory  filings.  For  example,  Intermediate  Acceptance  Criterias  (IACs)  or  Inter-
process  Controls  (IPC)  are  oftentimes  derived  from  historical  data of  an  Unit  Operation  (UO)
by  deviating two or  three  standard  deviations  from  the  mean,  an  approach  that  is  flawed  for
several  reasons  and  can  lead  to incorrect  control  strategies  [13].  While  guidelines  advocate  the
consideration  of  all  sources  of  variation,  oftentimes  only  PPs  are  included  in  the  analysis  [14].
UOs  tend  to be  investigated  separately  and  the  link  between  them  is  ignored,  which  can  result
in overly  optimistic  model  predictions on one  hand and unnecessary  experimental  effort  on the  

other  [15].  These  are  some  of  the  issues than can be  resolved by  the  application of  appropriate
statistical  methods  in  the  context  of  an  IPM.

1.3 Integrated  Process  Models
The  IPM  is  the  fundamental  framework  for  the  methods  introduced  in  this  dissertation.  It
encapsulates  either  a chain  of  UOs  or  an  entire  production  process.  The  data-driven  variant  used
here  was  originally  described  by  Zahel  et  al.  [11, 16].  By  concatenating UO  models,  the  impact
of  PP  changes  on  CQA distributions  can  be  simulated  not  only  within  the  corresponding UO,
but  also for  all  consecutive  UOs,  up  to drug substance/product  formulation,  where  predicted
distributions  can  be  compared  against  drug specifications.  This  is  illustrated  in  figure 1.2.

Fig.  1.2: An  illustration  of  how  PP  changes  affect  CQAs  and  how  the  their  distribution  shifted
along all  UOs  [11].

In recent  years the  value  of  holistic  and end-to-end process models is increasingly  recognized.
They  play  part  in  determining robustness,  optimization  and  control  and  represent  an  important
tool  for  manufacturers  to meet  required  Quality  by  Design  (QbD)  criteria [17].
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1.3.1 CQA  Simulation
After  fitting UO  models  on  representative  data,  CQA distributions  are  simulated  using Monte
Carlo sampling of  PPs  [18].  To this  end,  for  each  mean  predicted  by  the  model,  an  artificial  

data point  is  sampled  from  a normal  distribution  derived  from  a tolerance  interval  around  

that  prediction.  As  explained  in  section 1.5,  this  results  in  a data point  from  the  population  

distribution  to a nominal  level  of  confidence.  The  set  of  simulated  CQA data points  is  then
propagated  to the  next  UO  as  the  starting material,  also called  the load  parameter.  The  procedure  

is  repeated  for  each  UO  in  the  sequence  up  to the  final  step,  which  in  most  cases  represents  drug
formulation.  As  a tool  relevant  to patient  safety,  special  attention  is  given  to extrapolation  of
the  load  parameter,  described  in  the  next  section.

1.3.2 Extrapolation
As  this  is  relevant  for  CQA simulations  within  the  IPM  in  general,  and  for  the  proposed  Holistic  

Design  of  Experiments  (hDoE)  method  in  particular  (see  section 4.2),  the  extrapolation  scheme  of
load  parameters  is  briefly  explained.  In  the  context  of  biopharmaceutical  processes,  downstream
UOs  either  increase  the  purity  of  a product  or  decrease  the  impurity,  depending on  the  modelled  

CQA.  Based  on  this  physical  interpretation,  a conservative  extrapolation  scheme  of  the  simulated
load  parameter  is  implemented  as  follows.  The  domain  of  parameter  values  is  segmented  into
three  parts:  (i)  the  range  of  experimentally  investigated  load  parameters,  (ii)  the  range  between
those  load  boundaries  and  the  minimum/maximum  CQA value  observed  in  data and  (iii)  the
range  beyond  both  of  these  bounds.  Each  range  is  represented  by  a linear  relationship  between
load  and  CQA,  resulting in  a piecewise  linear  model  [19].  The  remaining steps  are  explained
for  purities,  i.e.,  CQAs  where  higher  values  represent  better  product  quality,  though  a similar
principle  applies  to impurities.  Within  the  boundaries  of  investigated  load  values,  a typical  

least-squares  procedure  is  used  to fit  a linear  relationship.  Between  these  boundaries  and  the  

maximum  value  of  the  CQA found  in  data (minimum  in  case  of  impurities),  impurity  is  not
improved  beyond  that,  i.e.,  even  when  the  linear  relationship  would  suggest  a more  pure  product,
the  model  predicts  the  maximum  value  in  the  training data.  Beyond  the  ranges  of  either  load  or
CQA data,  no purification takes place,  described in the  regression model  as a coefficient  of  one.
Figure 1.3 shows  the  piecewise  regression  for  purities  and  highlights  the  range  that  is  affected  by
hDoE.  For  further  details,  please  refer  to [16].



16 1 Introduction

1 2 3 4 5

1

2

3

4

5

Load paramter / simulated CQA from prev. UO

CQ
A

Observed load values

Max. observed CQA value

Extrapolation range

β=1

β=1

β=2

Fig.  1.3: The  piecewise  linear  regression  model  for  conservative  extrapolation  of  the  load
parameter.  Note  that  the  dotted  extrapolation  range  can  be  reduced  by  performing
spiking studies  as  described  in  section 4.2.

1.4 Regression  Models
Regression  models  are  used  to describe  the  relationship  between  PPs  and  CQAs  per  UO.  In
principle,  the  IPM  framework  is  agnostic  to the  specific  model  type,  which  is  also the  case  for
the  methods  proposed  in  this  dissertation.  Depending on  the  properties  of  the  data available,  the
particular  IPM  application  or  modelling preferences,  models  range  from  Ordinary  Least  Squares
(OLS),  Linear  Mixed  Models  (LMMs),  censored  data models  to time-dynamic  approaches  like
mechanistic  or  hybrid  models.  The  prerequisites  for  any  model  used  in  this  implementation  of
the  IPM  are  (i)  the  capacity  to predict  a single,  numeric  CQA value  for  a given  PP  configuration,
which  might  result  in  the  need  for  auto-integration  schemes  in  dynamic  models,  and  (ii)  the
support  for  uncertainty  intervals  around  the  prediction.  For  the  studies  conducted  in  this  work,
OLS  models  and  LMMs  were  employed.  Detailed  information  can  be  found  in  section 8.

1.5 Tolerance  Intervals
Uncertainty  quantification  is  of  particular  interest  in  the  biopharmaceutical  domain.  In  the  light
of  patient  safety,  conservative  estimates  of  the  predicted  CQA distribution  are  vital,  although
oftentimes  the  technical  details  of  such  intervals  are  poorly  understood.  For  example,  inferences
on  the  distribution  might  be  based  on Confidence Intervals  (CIs) which  indicate  the  range  of
an  estimator  given  a nominal  confidence  level.  However,  as  regression  models  generally  predict
a mean,  a CI  relates  directly  to the  distribution  of  the  mean,  not  to the  distribution  of  CQA
values. Prediction  Intervals  (PIs) are  an  improvement  on  the  CI  as  they  cover  the  distribution
of  a single,  predicted  CQA,  not  its  mean,  to a nominal  level  of  confidence.  In  the  context  of
simulating CQA distributions  in  the  IPM  though,  the  range  of  interest  should  cover  not  a single
value  but  a proportion  of  the  population.  This  is  where Tolerance Intervals  (TIs) come  into play.
TIs  cover  a given  proportion  of  the  population,  called  coverage,  to a nominal  level  of  confidence.
Detailed  information  about  different  types  of  intervals  be  found  in  section 8.



1.6 Optimization  17

TIs  are  comprised  of  different  sources  of  variation,  such  as  parameter  uncertainty  and  residual
model  error.  This  is  important  for  the  workflow  proposed  to incorporate  random  factors  into
control  strategies,  because  the  LMM-specific  implementation  of  TIs  additionally  contains  variation
introduced  by  random  effects,  which  tend  to broaden  the  interval  [20].

1.6 Optimization
Numeric  optimization,  or  the  minimization  of  an  objective  function  can  be  found  in  all  three  of
the  workflows  and  methods  introduced  in  this  dissertation.

The  OLS  model y = 𝑋  𝛽 + 𝜖 is  a special  case,  as  the  minimization  of  the  objective  function,
equivalent  to  estimating  the  vector  of  coefficients 𝛽,  can  be  calculated  by  the  closed-form  

expression �̂� =  (𝑋𝑇 𝑋)−1𝑋 ′y,  where 𝑋 is  the  design  matrix  of  observations, y the  modelled  

response  and 𝜖 the  model  error  [19].  This  is  no longer  the  case  for  the  Linear  Mixed  Models  

(LMMs)  used  to incorporate  random  effects  into control  strategies  (section 4.1).  The  model
equation y = 𝑋  𝛽 + 𝑍  𝛾 + 𝜖 includes  an  additional  design  matrix 𝑍 that  assigns  the  observations
in 𝑋 to random  effect  blocks  and  the  vector  of  random  effect  parameters 𝛾 [21].  The  parameters
𝛽, 𝛾,  as  well  as  variance  components  in 𝜖 need  to be  estimated  simultaneously,  which  involves
an  iterative  process  that  minimizes  either  Maximum  Likelihood  (ML)  or  Restricted  Maximum
Likelihood  (REML)  objective  functions.  As  a well-defined  optimization  problem,  a variety  of
optimization  algorithms  can  be  applied  [22–24].

The  optimization  of  Out-of-specification  (OOS)  rates  in  Holistic  Design  of  Experiments  (hDoE)
(section 4.2)  is  performed  on  a stochastic  Monte  Carlo simulation  and  can,  in  this  form,  not  

be  reduced  to a single  objective  function.  Instead,  different  types  of  experimental  runs  are  

simulated  in  each  UO  and  optimization  steps  are  reduced  to picking the  run  that  shows  the  

largest  improvement  to the  OOS  rate  from  a table  of  simulation  results.  However,  a problem  

related  to optimization  in  hDoE  is  that  of  exploration  vs.  exploitation.  As  a consequence  of
iteratively  improving UO  models  based  on  their  own  predictions,  the  process  is  biased  towards
effects  that  are  already  part  of  the  model.  In  this  instance,  DoE  runs  represent  the  exploration
aspect,  as  additional  runs  from  an  optimal  design  can  uncover  new  effects  and  interactions  [25],
while  spiking runs  exploit  the  existing model  structure.  To encourage  exploration,  a decision  

scheme  adapted  from  the  Metropolis-Hastings  algorithm  is  employed  [26],  which  drastically
improves  convergence  properties  of  the  optimization  (see  section 7.2 for  details).

The  most  obvious  application  of  numeric  optimization  is  found  in  the  Design  Space  (DS)
computation  described  in  section 7.3.  Here,  the  difficulty  lies  in  the  formulation  of  an  objective
function  and  a set  of  inequality  constraints  that  can  be  minimized  to find  the  largest  possible  DS
spanned  by  linear  combinations  of  parameter  ranges,  i.e.,  the  largest  possible  hyper-rectangle  

within  the  parameter  space.  For  a conservative  evaluation  of  points  in  this  space,  tolerance
interval  boundaries  around  predictions  from  a regression  model  are  compared  against  acceptance
limits.  As  this  can  be  a computational  bottleneck,  a polynomial  approximation  of  the  interval  is
computed  beforehand.  This  speeds  up  the  optimization  procedure  significantly,  which  in  this  case
is  performed  by  the  Constrained  Optimization  by  Linear  Approximation  (COBYLA)  algorithm.
As a simplex-based  method,  COBYLA is  gradient-free  and  shows  reasonable  robustness  against
falling into local  minima,  while  its  support  for  inequality  constraints  facilitate  the  formulation  of  

the  requirements  for  a valid  DS  [27].  Results  can  be  further  improved  with  a second  optimization
pass  that  uses  the  actual  TI  instead  of  an  approximation,  for  which  a gradient-based  Sequential
Least  Squares  Programming Algorithm  (SLSQP)  algorithm  [28]  is  recommended.



18 1 Introduction

1.7 Design  of  Experiments
Design of  Experiments (DoE)  is a standard procedure  to conduct  experiments in many  applied
sciences.  While  there  are  various  DoE  variants,  all  of  them  aim  to maximize  the  information  gained  

about  a system  by  systematically  deviating its  parameters.  This  can  be  achieved  combinatorially,
in  the  form  of  factorial  or  fractional  factorial  designs  [25],  or  by  maximizing different  kinds  of
information  in  optimal  designs,  e.g.  A-optimal,  D-optimal,  I-optimal,  etc.  [29].  While  factorial
or  fractional  factorial  designs  are  considered  the  ideal  approach  for  many  experimental  setups,
specifically  in  situations  with  no constraints  on  the  number  of  runs,  the  design  region  or  the
model,  optimal  designs offer  a level  of  flexibility  that  renders them the  tool  of  choice  in many
more  constrained  applications.  This  especially  true  in  the  biopharmaceutical  domain  where  data
is  scarce  and  experimental  effort  associated  with  time  and  cost.  The  case  study  conducted  for  the
investigation  of  the  impact  of  random  effects  on  control  strategies  was  done  mostly  on  DoE  data
from  D-optimal  designs,  supplemented  with  some  historical  process  data.  hDoE  uses  D-optimal
designs  to augment  the  existing experimental  effort  performed  on  a UO,  which  is  only  possible  in
design  approaches  that  do not  require  a fixed  number  of  runs,  such  as  optimal  designs.  Finally,
the  DS  optimization  procedure  uses  a rotatable  central  composite  design  [30]  in  the  polynomial
approximation  of  the  tolerance  interval,  as  this  is  the  most  efficient  to characterize  the  quadratic
form  of  the  interval  function  and  scales  reasonably  well  over  the  number  of  parameters.

1.8 Implementation  in  Software
The  applied  nature  of  this  dissertation  is  underlined  by  the  fact  that  the  presented  methods
are  not  only  disseminated  as  articles  in  scientific  journals  but  also as  part  of  a Python  software
package.  This  code  library  is  used  by  the  Körber  Pharma Austria GmbH data science  consulting 

department  as  well  as  by  their  proprietary  software  PAS-X Savvy  [31].  The  Python  package  was  

developed  as  part  of  the  research  project  that  funded  this  dissertation  and  over  the  course  of  the
PhD  programme,  the  IPM  as  well  as  hDoE  and  other  IPM  applications  were  integrated  into the
software.

Fig.  1.4: Software  implementation  of  the  IPM  in  PAS-X Savvy  2023.06.
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This  empowers  end-users,  such  as  process  engineers,  to harness  the  complete  capabilities  of
holistic  ensemble  models.  As  of  version  2023.06,  they  can  investigate  the  effects  of  PP  changes
over  several  UOs,  conduct  sensitivity  analyses,  and  calculate  the  IACs  based  on  OOS  rates.



2 Dissertation  Objectives
A reason  for  the  lack  of  progress  in  the  implementation  of  the  lifecycle  approach  by  manufacturers  

might  be  inadequate  understanding of  technology  and  science  to mitigate  risks  [32].  The  methods  

introduced  in  this  thesis  aim  to provide  manufacturers  concrete  solutions  for  problems  encountered
in  the  real  world  and  their  effectiveness  is  demonstrated  in  case  and  simulation  studies.  They
supply  scientific  evidence  for  the  robustness  of  a process  in  compliance  with  ICH and  FDA 

recommendations.  Furthermore,  insights  gained  from  these  studies  and  the  novel  approaches
proposed  contribute  to the  field  CMC  statistics.  Specifically,  three  contributions  are  proposed:

(a) A workflow  for  incorporating random  effects  into biopharmaceutical  control  strategies.

(b) A holistic  Design  of  Experiments  procedure  to efficiently  allocate  experimental  runs.

(c) A design  space  optimization  scheme  that  works  in  high-dimensional  parameter  spaces,  such
as  the  one  representing an  entire  manufacturing process.

In  recent  years,  advantages  of  holistic  process  models,  i.e.,  ensemble  models  comprised  of  unit
operation  sub-models  that  represent  the  entire  production  chain  of  a drug substance/product,
are  acknowledged  and  encouraged  by  regulatory  authorities  [17, 33].  In  the  context  of  such
end-to-end  modelling approaches,  the  proposed  methods  can  be  seen  as  components  as  well  as
extended  use  cases  of  the  IPM  originally  proposed  by  Zahel  et  at.  [11].  Note  that  the  method  for  

incorporating random  effects  into process  characterization  as  well  as  the  design  space  optimization
procedure  can  be  used  outside  the  context  of  an  IPM.  However,  their  full  utility  for  regulatory
filings  is  exploited  as  part  of  a holistic  process  model.

As  the  guidelines  texts  from  regulatory  authorities  like  the  ICH,  FDA or  EMA are  the  common
thread  uniting the  individual  contributions  of  this  cumulative  dissertation,  their  connection  to
specific  recommendations  as  well  as  the  to stakeholders  involved,  that  is,  manufacturers  and
regulators,  is  illustrated  in  figure 2.1.
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Fig.  2.1: Proposed  methods  in  the  context  of  regulatory  authorities  and  manufacturers.

The  consideration  of  different  sources  of  variation  is  stressed  in  the  ICH Q8 and  FDA guidelines
[7, 12].  However,  the  most  explicit  reference  that  motivates  the  inclusion  of  statistical  random
effects  is  given  in  a relatively  recent  text  -  the  ICH guideline  Q14 on  analytical  procedure  

development.  It  recommends  that "...  robustness  should  be built  into  the model  by  including 

relevant  sources  of  variability  related  to  materials,  process,  environment,  instrumentation  or  

other  factors." [34].  These  are  classic  examples  of  random  effects.  How  to model  these  effects  

and  how  they  can  be  incorporated  into a control  strategy  is  described  in  the  the  publication
Incorporating random  effects  in  biopharmaceutical  control  strategies.  The  full  article  is  attached
in  section 7.1 and  the  results  summarized  in  section 4.1.

Recommendations  relevant  to proposed,  holistic  experimental  design  approach  (hDoE)  can  be
found  in  ICH Q8 as  well  as  the  FDA guideline,  where  DoE  is  referenced  as  a standard  method
for  formal  experimental  design  [7, 12].  However,  hDoE  also includes  a type  of  experiment  not
directly  related  to DoE:  spiking runs.  These  types  of  experiments  are  suggested  by  the  EMA to
challenge  downstream  unit  operations  to determine  purification  capacities  [35].  As  described
in  the  article Holistic Design  of  Experiments  Using an  Integrated  Process  Model,  this  is  highly
relevant  for  the  optimization  of  experimental  effort.  Section 7.2 contains  the  full  article  and 4.2
a summary  of  result.

The  utility  of  a Design  Space  (DS)  or  Method  Operational  Design  Regions  (MODR)  is  described
in  the  ICH Q8 and  Q14 guideline  texts.  A DS  constitutes  evidence  that  combinations  of  PPs
result  in  CQAs  that  lie  within  acceptance  limits,  not  to be  confused  with  PARs  that  only  consider  

the  deviation  of  a single  PP  while  others  are  kept  at  setpoint.  For  manufacturers  this  introduces
as  level  of  flexibility,  as  deviations  within  this  space  are  not  considered  changes  and  do not  need
to be  re-approved.  State  of  the  art  implementations  of  DS  calculators  are  generally  based  on
grid-based  algorithms  and  do not  scale  to higher  dimensional  problems.  This  is  the  incentive  for
the  novel  method  for  DS  computation  introduced  in  the  revised  manuscript Identifying Design
Spaces  as  Linear  Combinations  of  Parameter  Ranges  for  Biopharmaceutical  Control  Strategies,
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which  can  be  found  in  section 7.3.  The  method  and  evaluation  results  are  summarized  in  section
4.3.



3 Thesis  Structure
This  cumulative  dissertation  is  comprised  of  three  first-authored  contributions.  Two of  them  are
published  as  articles  in  scientific  journals  while  the  third  is,  at  the  time  of  writing,  a revised
manuscript  under  review.  The  texts  can  be  found  in  their  entirety  in  section 7.  Figure 3.1 presents
an  overview  of  the  contents  and  corresponding publications.  Section 7.1 introduces  a workflow
for  incorporating random  effects  into control  strategies  and  investigates  the  consequences  in  a
case  study  conducted  at  a biopharmaceutical  manufacturer  (Boehringer  Ingelheim).  Section
7.2 introduces  a method  that  leverages  a holistic  process  model  to optimize  the  allocation  of
experimental  effort,  called  Holistic  Design  of  Experiments  (hDoE).  The  manuscript  attached  in
section 7.3 describes  a numeric  optimization  method  to find  a design  space  comprised  of  linear
combinations  of  process  parameter  ranges  that  is  compliant  with  ICH Q8 recommendations.

Part I
Random effects in
control strategies

How do random effects influence a control
strategy?

Scientific publication 1 
Incorporating Random Effects in 

Biopharmaceutical Control Strategies

How can an integrated process model be
leveraged to optimize experimental design?

Scientific publication 2 
Holistic Design of Experiments Using an

Integrated Process Model 

Part II 
Holistic Design of

Experiments

Scientific manuscript 
Identifying Design Spaces as

Linear Combinations of Parameter Ranges
for Biopharmaceutical Control Strategies 

How can an ICH Q8 compliant design space
comprised of linear combinations of process

parameter ranges be computed for complex UO
or process models?

Part III 
Design space as

linear PP
combination

Fig.  3.1: Thesis  structure  with  research  questions  and  corresponding publications.

As  regression  models  and  statistical  intervals  are  an  integral  part  of  all  three  parts,  an  overview
of  the  exact  mathematical  formulations  used  and  appropriate  references  are  provided  in  section
8.  This  overview  is  published  as  supplementary  information  to the  article Incorporating Random
Effects  in  Biopharmaceutical  Control  Strategies [14].



4 Results

4.1 Incorporating Random  Effects  in  Biopharmaceutical  Control  

Strategies
4.1.1 Research  Question
“How  do random  effects  influence  a control  strategy?”

4.1.2 Problem  Statement
Biopharmaceutical  manufacturers  are  required  to accurately  describe  the  robustness  of  a new
production  process  based  on  sound,  scientific  principles.  An  important  part  of  a regulatory  filing
is  the  control  strategy.  The  ICH describes  the  control  strategy  as  the  “...planned  set  of  controls,
derived from current  product  and process understanding that  ensures process performance  and
product  quality” and  should  contain  “...at  a minimum,  control  of  the  critical  process  parameters
and  material  attributes” [12].  One  way  to define  these  controls  is  the  proven  acceptable  range
(PAR),  where  a single  parameter  is  deviated  while  all  others  are  kept  at  setpoint.  A comprehensive
control  strategy  should  also consider  sources  of  variability  that  are  not  immediately  obvious:  

“Sources  of  variability  that  can  impact  product  quality  should  be  identified,  appropriately  

understood,  and  subsequently  controlled.” [12].  These  two requirements  and  the  connected
statistical  concepts  are  illustrated  in  the  example  for  deriving a PAR  in  figure 4.1.  The  regression
model’s  mean  prediction  is  shown  as  an  orange  line  and  the  associated  uncertainty  interval  as
dashed  lines  around  it.  A PAR  can  be  derived  by  finding the  intersection  points  between  the
interval  boundaries  and  the  UO  acceptance  criteria or  inter-process  controls.

Fig.  4.1: An  example  for  how  the  PAR  of  a process  parameter  can  be  calculated.  The  intersection
points  of  a statistical  interval  and  the  CQA acceptance  criteria define  the  lower  and
upper  boundary.  Note  that  the  PAR  that  ignores  the  random  effect  is  larger  than  the
one  that  incorporates  the  random  nature  of  the  effect  [14].
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Uncertainty  intervals  are  well  defined  for  most  regression  models  and  include  different  sources
of  variation.  For  OLS  models,  the  width  of  the  interval  comprises  parameter  as  well  as  residual
variability,  i.e.,  the  model  error.  However,  considering the  ICH recommendations,  another  source
of  variability  should  be  considered:  random  effects.  Random  effects  are  well  known  in  many
domains  of  applied  statistics  and  represent  uncontrollable  parameters  that  are  not  expected  to
take  on  a specific  value  when  sampled  repeatedly.  In  a biopharmaceutical  context,  such  effects
could  be  different  raw  materials,  seed  trains  or  variability  introduced  by  different  operators.  

For  the  case  study  presented  here,  several  random  effects  are  grouped  into blocks  labelled  

as  week-to-week  variability  and  modelled  using linear  mixed  models  (LMM).  LMM-specific
tolerance  intervals  proposed  by  Franzq  et  al.  were  implemented  to quantify  uncertainty  around
the  prediction  [20].  Aside  from  parameter  uncertainty  and  model  error,  these  intervals  contain
variability  introduced  by  the  random  effect.  The  control  strategy  resulting from  this  approach  is
compared  to one  that  ignores  the  random  effect.

4.1.3 Results
To investigate  the  effect  of  incorporating random  effects  into the  formulation  of  PARs,  a Process
Characterization  Study  (PCS)  was  conducted  at  a biopharmaceutical  manufacturer  (Boehringer
Ingelheim).  The  production process contained eight  typical  up- and downstream UOs.  Up to 22
different  responses,  i.e.,  CQAs,  were  modelled  per  UO  with  up  to 26 effects  found  significant  in
model  selection.  Data was  acquired  from  D-optimal  DoE  as  well  as  One-factor-at-a-time  (OFAT)
experiments.  The  number  of  runs  was  chosen  to provide  adequate  power  to resolve  interactions
and  detect  effects  within  two or  three  standard  deviations  from  its  setpoint  based  on  a full  model,
i.e.,  a model  containing all  two-level  parameter  interactions.  The  case  study  parameters  are
summarized  in  table 4.1.

Tab.  4.1: Parameters  for  process  characterization  study  conducted  at  Boehringer  Ingelheim  [14].

UO  

Power  

for  2 SD  

Power  

for  3 SD  

Runs  

DoE/OFAT 

RE  Levels  

Significant  

Effects  

Responses

UO  1 0.91 0.99 24/6 3 16 22
UO  2 1.00 1.00 27/24 4-5 30 20
UO  3 0.95 1.00 17/5 5 10 14
UO  4 0.71 0.93 18/3 6 10 11
UO  5 0.94 1.00 21/3 5 15 17
UO  6 0.99 1.00 42/11 3 36 13
UO  7 0.82 0.96 0/6 5 3 11
UO  8 0.89 0.98 0/13 5 8 15

Note  that,  at  the  time  the  experiments  for  this  PCS  were  designed,  the  a-priori  power  to
detect  random  effects  was  not  considered.  This  was  only  verified  when  the  data was  analyzed
and  a variance  ratio test  was  applied  [36].  The  test  showed  that  the  random  effect  was  not
significant  in  18 out  of  the  123 models  fit  in  the  study.  However,  this  did  not  change  the  fixed
effects  of  the  models,  as  p-values  were  checked  and  other  good  modelling practices  were  applied
to ensure  model  integrity  [37].  For  the  13 models  that  failed  the  random  effect  significance  test,
a  random  effect  size  of  zero  was  recorded  in  the  results.  Ideally,  power  to  detect  random  effects
should  already  be  considered  in  the  experimental  design  phase.  Generally,  methods  to do so are
simulation-based  and  available  in  several  software  packages  [38, 39].  However,  applicability  in
practice  might  be  limited  in  biopharmaceutical  development,  as  this  type  of  power  is  mainly  

improved  by  increasing the  number  of  blocks  within  the  random  effect,  which  can  drastically
increase  experimental  effort.
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Based  on  data that  allows  for  the  identification  of  main  effects  and  their  interactions,  i.e.,  to
fit  a second-order  response  surface  model  [40],  a data-science-centric  workflow  is  developed  to
arrive  at  a control  strategy.  The  main  purpose  of  this  study  was  to determine  the  impact  of  

including a random  effect  correctly,  which  is  why  two of  those  workflows  are  presented:  one  

that  includes  the  random  effect  as  a fixed  effect  using OLS  models,  which  can  be  considered  

the  state-of-the-art  in  the  industry  (workflow  A),  and  another  workflow  that  uses  LMMs  to
model  the  random  component  explicitly  (workflow  B).  While  both  workflows  are  based  on  solid
data-science  practices,  only  the  latter  includes  a  proper  estimate  for  the  variance  introduced  by
the  random  effect  [41].

Of  course,  both  workflows  start  by  acquiring data,  where  a random  effect  is  included  as  a
categorical  variable.  For  the  LMM-based  workflow  a more  detailed  investigation  is  recommended  

at  this  stage,  as  multiple  random  effects  can  exert  an  effect  on  variation  and  they  can  be  crossed  

or  nested,  which  also changes  the  contribution  to variance.  For  the  OLS-based  workflow,  random
effect  blocks  should  be  deviation-encoded  to ensure  that  the  effect’s  mean  is  at  zero,  i.e.,  that  it
does  not  bias  the  OLS  prediction  [42].  This  is  not  necessary  for  LMM  models  as  random  effect
blocks  are  handled  separately  from  fixed  effects.  Correlation  analysis  should  be  performed  in
both  cases  without  the  block  factor.  As  LMMs  are  fit  by  an  optimization  procedure  as  opposed
to a closed-form  expression  in  OLS,  convergence  criteria should  be  checked  at  this  stage,  such  as
the  appropriate  number  of  blocks  and  levels  [43].  At  this  point,  one  can  either  choose  to use
the  full  model  including all  fixed  effect  interactions  or  to compute  a more  parsimonious  model
by  employing variable  selection  [44–46].  While  arguments  can  be  made  that  variable  selection
should  be  applied  cautiously  [47],  a smaller  model  is  usually  preferred  due  to its  improved
interpretability  and  expressiveness  [48].  Efficient  variable  selection  algorithms  specific  to LMMs
are  scarce  at  the  time  of  writing and  not  commonly  available  in  software  packages,  which  is
why  a sensible  workaround  is  to deviation-encode  the  random  effect  blocks  and  perform  variable
selection  using OLS-models  instead.  The  resulting model  can  then  be  transformed  back  into an
LMM  model.  Finally,  the  full  or  parsimonious  model  is  used  to form  tolerance  intervals  around
the  predicted  CQAs  based  on  the  training data to capture  the  population  distribution.  For
LMMs,  this  interval  is  formed  using the  approach  recommended  by  Francq  et  al.  and  includes  the  

variance  introduced  by  random  effects  [20].  Figure 4.1 contains  the  parameter  range  indicated  by
the  intersection  points  between  interval  and  acceptance  limits  that  represents  the  PAR  and  the
control  strategy  for  the  analyzed  process.  The  illustration  suggests  that  acceptance  limits  are
the  other  limiting factor  when  formulating control  strategies  in  this  way.  Their  exact  impact  on
the  process  and  how  to use  process  understanding to optimize  them  is  discussed  in  the  next  part
of  this  dissertation  that  introduces  Holistic  Design  of  Experiments  (hDoE).  The  two workflows
described  are  summarized  in  figure 4.2.
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Fig.  4.2: Workflows  for  creating control  strategies  based  on  regression  models.  The  left  column
describes  an  approach  that  uses  OLS  models  for  the  estimation  of  PARs.  A mixed-
model-based  workflow  is  summarized  on  the  right.  The  differences  in  the  steps  involved
are  subtle  but  generally  result  in  a more  realistic  estimation  of  variance  and  therefore
a more  robust  control  strategy  [14].

Workflows  A and  B  were  applied  to each  unit  operation  in  the  case  study  and  their  results
compared  to highlight  the  effect  of  correctly  including random  effects  in  the  analysis.  Table 4.2
shows  the  ratio between  LMM  and  OLS  tolerance  interval  widths,  i.e.,  the  results  from  applying
either  workflow  B  vs.  A for  six  CQAs  common  to all  UOs.

Tab.  4.2: Ratio TI-width  LMM/TI-width  OLS  for  six  CQAs  common  to all  UOs.  [14].

UO  1 UO  2 UO  3 UO  4 UO  5 UO  6 UO  7 UO  8
CQA  1 1.85 3.80 2.67 3.18 3.01 1.57 1.17 1.08
CQA  2 1.62 1.65 6.15 3.36 4.59 3.37 2.38 5.15
CQA  3 1.70 4.99 3.43 4.06 2.43 2.34 1.41
CQA  4 1.85 1.64 1.77 1.12 4.38 8.95 2.84
CQA  5 1.80 4.58 1.37 8.34 2.92 3.10
CQA  6 1.67 1.25 9.02 3.46 2.98

Clearly,  the  intervals  resulting from  the  LMM  approach  are  much  wider  than  those  of  the
OLS-based  workflow,  in  many  cases  resulting in  a more  conservative  control  strategy.  To further
illustrate  this  point,  a PP  was  chosen  randomly  from  the  results  and  the  PAR  formulation
illustrated  in  figure 4.3.
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Fig.  4.3: PAR  for  a randomly  picked  parameter  calculated  from  case  study  data.  Due  to the
contribution  of  the  random  effect,  the  interval  based  on  LMM  variance  components
(right)  is  wider  than  its  OLS  counterpart  (left).  This  results  in  smaller  PAR  (grey
area)  and  a more  conservative  control  strategy.  In  this  example  from  the  case  study,
the  OLS  PAR  is  72%  larger  than  the  more  conservative  LMM  PAR  [14].

To highlight  the  magnitude  of  the  random  effect,  normalized  effect  sizes  were  investigated  in
the  models  resulting from  workflow  B.  Figure 4.4 provides  an  overview  of  the  results.  In  half  of
the  UOs,  the  median  random  effect  was  larger  than  the  median  fixed  effect,  resulting in  a larger
contribution  to variance  and  wider  tolerance  intervals.

Fig.  4.4: Standardized  fixed  and  random  effect  sizes  are  contrasted  for  each  unit  operation.  

A unit  operation  contains  models  for  11 – 22 CQAs  and  their  respective  fixed  and
random  effect  distributions  are  shown  as  box  plots.  To create  comparable  measures  of
effect  size,  normalized  data were  used  to fit  the  models  and  the  effects  were  divided  by
the  RMSE.  [14].

4.1.4 Conclusion
Random  effects  are  oftentimes  ignored  in  biopharmaceutical  development  when  defining a control  

strategy.  The  results  from  the  presented  case  study  show  that  such  effects  can  influence  the  PAR  

significantly  and  should  be  considered  in  any  investigation  of  critical  process  parameters.  To this
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end,  a workflow  based  on  sound  statistical  methods  is  proposed.  The  workflow  contains  a set
of  tools  for  analysing and  interpreting experimental  data that  is  more  compliant  with  the  ICH
and  FDA recommendations  than  currently  employed  methods  for  process  characterization  and
results  in  more  robust  processes,  fewer  out-of-specification  events,  and  reduced  patient  risk.

4.1.5 Publication
T.  Oberleitner  et  al.  “Incorporating random  effects  in  biopharmaceutical  control  strategies”.  In:
AAPS  Open 9.1 (2023),  pp.  1–13

4.1.6 Contribution
TO  was  the  main  contributor  to the  manuscript,  implemented  tolerance  intervals  for  linear  

mixed  models  in  Python  (based  on  the  method  proposed  by  Franzq  et  al.),  performed  data
analysis  and  the  subsequent  modeling.  TZ  contributed  to the  manuscript  and  was  the  primary
advisor  for  statistics  and  data analysis  methods.  MK  validated  the  manuscript  and  data and  

provided  input  from  a manufacturing perspective.  JT  supervised  the  experiments  during the
process  characterization  study  at  Boehringer  Ingelheim.  CH provided  guidance  in  writing of  the
manuscript  as  the  PhD  supervisor  to TO.
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4.2 Holistic  Design  of  Experiments  Using an  Integrated  Process  

Model
4.2.1 Research  Question
“How  can  an  integrated  process  model  be  leveraged  to optimize  experimental  design?”

4.2.2 Problem  Statement
Design  of  Experiments  (DoE)  methods  like  factorial  [25],  optimal  [29]  or  definitive  screening 

designs  [49]  are  commonly  used  in  process  characterization  and  an  integral  part  of  the  QbD
approach  [12, 50, 51].  The  FDA guideline  for  process  validation  recommends  to investigate  the
relationship  between  PPs  and  CQAs  per  unit  operation,  employing DoE  combined  with  regression
analysis  to arrive  at  a control  strategy  for  the  process,  i.e.,  the  first  stage  in  the  validation
lifecycle  [7].  Integrated  in  an  IPM,  such  models  can  be  used  to simulate  the  propagation  of  CQA
distributions  over  the  entire  sequence  of  UOs,  from  fermentation  to drug substance  formulation.
The  IPM  can  not  only  be  used  to compare  drug substance  CQA distributions  to specification
limits,  thus  validating process  robustness,  but  also to derive  Intermediate  Acceptance  Criteria
(IAC)  or  Inter-process  Controls  (IPC)  [13].  The  two steps  involved  in  IPM  setup  and  simulation,
that  is,  (i)  creating  models  based  on  DoE  data  and  (ii)  IPM  integration,  do  not  necessarily  need
to be  performed  independently.  Instead,  short,  iterative  cycles  of  experimentation  and  regression
analysis  over  different  unit  operations  can  open  up  opportunities  to radically  increase  efficiency
while  satisfying robustness  requirements.  This  work  introduces  holistic  Design  of  Experiments
(hDoE),  a method  for  systematically  allocating experimental  effort  to unit  operations.

4.2.3 Results/Method
As  hDoE  is  mainly  a tool  for  process  design  and  the  goal  of  this  stage  is  to derive  a robust  control
strategy,  the  method  for  deriving a PAR  from  section 4.1.2 is  reiterated  to stress  the  quantities
and  experimental  runs  involved.  The  elements  affecting the  definition  of  the  PAR  are  the  width
of  the  tolerance  interval  and  the  acceptance  limits,  as  illustrated  in  figure 4.5.  Of  course,  effect
sizes  are  another  important  factor,  i.e.,  the  slope  of  the  line  shown  in  the  plot.  However,  this  is  a
consequence  of  the  experimental  data rather  than  an  aspect  that  can  be  controlled  purely  by
the  number  and  type  of  runs,  which  is  why  it  is  not  directly  considered  in  hDoE.  In  general,  to
increase  the  PAR,  interval  widths  must  be  reduced  or  acceptance  limits  widened.  The  former  can
be  achieved  by  reducing model  uncertainty  through  simply  fitting models  on  more  data,  ideally
from  DoE  studies.  The  latter  is  more  specific  to the  biopharmaceutical  domain  and  involves
spiking studies  that  challenge  UOs  with  different  quantities  of  the  starting material  [52, 53].  For
example,  in downstream UOs this typically  means gaining knowledge  about  impurity  clearance
capabilities.  This  knowledge  can  then  be  used  to update  acceptance  limits  [13].
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Fig.  4.5: Elements  of  the  PAR  definition  affecting the  control  strategy  and  the  type  of  experi-
mental  runs  from  which  they  are  generally  derived.  Adapted  from  [15].

DoE  and  spiking experiments  are  the  two run  types  recommended  by  hDoE  to arrive  at  a
robust  control  strategy  in  an  efficient  way.  This  is  done  as  follows:  the  procedure  starts  out  by
fitting rough  UO  models  to data from  minimal,  D-optimal  designs.  These  models  are  integrated
into an  IPM  and  used  to simulate  CQA distributions  by  randomly  sampling PP  values  [18]  

and  deriving OOS  rates  in  the  final  UO.  Then,  a set  of  experimental  runs  is  recommended  to
minimize  this  OOS  rate.  Each  proposed  run  is  allocated  to the  specific  UO  that  shows  the  largest
reduction  in  the  OOS  rate.  The  experiments  can  be  either  DoE  runs  to reduce  the  width  of  the
tolerance  interval  around  the  model  prediction  or  spiking runs  to widen  acceptance  limits,  as  

previously  described.  For  DoE  runs,  the  next  optimal  run  per  UO  is  recommended  based  on
standard  augmentation  algorithms  used  in  optimal  designs  [54].  Recommendations  for  spiking
runs  are  computed  by  deviating from  the  mean  of  the  training data for  the  load  parameter  (the
starting material)  by  different  standard  deviations.  In  practice,  the  starting material  cannot  be
spiked  indefinitely  and  limits  have  to be  provided  by  a process  expert.  The  set  of  recommended
experiments  are  then  conducted  and  the  resulting data is  fed  back  to the  IPM  models.  This
cycle  is  executed  until  the  simulated  OOS  rate  falls  below  the  desired  threshold  and  therefore
satisfies  the  criteria for  robustness,  based  on  statistical  evidence  provided  by  regression  models
and conservative  estimators for  the  CQA distribution in the  form of  tolerance  intervals.  Figure
4.6 provides  a graphical  overview  of  the  steps  involved  in  hDoE.
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Fig.  4.6: The  iterative  hDoE  recommender  system  for  experimental  runs  [15].

As  seen  in  the  diagram,  when  new  data is  acquired  it  is  used  to set  up  the  next  iteration  of
the  IPM.  Part  of  this  step  is  a variable  selection  procedure  that  finds  the  most  suitable  model
based  on  the  augmented  data for  the  corresponding UO.  DoE  data,  per  definition,  facilitates  the
detection  of  new  effects  and  therefore  variable  selection  could  result  in  a new  model.  Spiking
runs  on  the  other  hand  focus  on  improving the  load  parameter  estimator  alone,  which  generally
does  not  change  the  model  structure.  Recall  that  the  recommender  step  picks  the  run  that  

shows  the  largest  improvement  in  the  simulated  OOS  rate,  whether  it  is  a DoE  or  spiking 

study.  Treating those  types  of  experiment  equally  can  be  a problem,  especially  in  later  hDoE  

cycles  where  OOS-improvements  might  be  the  result  of  residual  error  or  in  situations  where  

the  OOS-simulation  is  stuck  in  local  minima that  could  be  overcome  by  exploring new  factor  

interactions.  Furthermore,  run  recommendations  are  based  on  the  existing model  structure  

of  the  IPM  and  therefore  biased  toward  known  effects.  This  can  be  seen  as  an  exploration  

vs.  exploitation  problem,  a concept  generally  known  from  reinforcement  learning [55]:  the  

recommender  step  can  either  exploit  the  current  structure  of  the  model  to gain  knowledge
about  load  parameters  or  explore  incorporating different  factors  and  interactions  into models  and  

therefore  gaining more  general  knowledge  about  the  process.  A similar  problem  is  solved  elegantly
in  the  Metropolis–Hastings  algorithm  [26].  Essentially,  the  proposed  decision  scheme  draws  a
random  number  from  the  interval [0, 1] and  only  exploits  the  existing structure  when  this  number  

exceeds  the  ratio impr  ov  𝑒m𝑒nt𝑒xpl  or  𝑒/impr  ov  𝑒m𝑒nt𝑒xpl  oit,  thereby  promoting exploration.  hDoE
uses  this  method  to overcome  the  problems  described  above  and  its  effectiveness  is  shown  in  the
simulation  study  results.

To validate  the  method  and  highlight  applicability  to a wide  range  of  scenarios,  simulation
studies  were  conducted  where  hDoE  was  applied  to different  processes  set  up  in-silico.  For  these
processes,  relations  between  PPs  and  CQAs  are  predefined  and  distorted  by  added  noise.  The
effects  serve  as  the  ground  truth  for  the  characterization  procedure  performed  with  experiments
recommended  by  hDoE.  To compare  results  with  the  state-of-the-art,  the  simulation  studies



4.2 Holistic  Design  of  Experiments  Using an  Integrated  Process  Model  33

were  also performed  with  three  predefined  sets  of  D-optimal  runs  containing 24,  48,  and  92 total
experiments  over  all  UOs.  The  simulated  biopharmaceutical  processes  satisfy  the  conditions
for  the  employed  implementation  of  the  IPM,  i.e.,  (i)  linear  relationships  between  the  the  load
parameter  and  the  model  response  and  (ii)  effect  heredity,  i.e.,  the  main  factor  of  an  interaction
effect  is  always  part  of  the  model  [56].  Other  shared  parameters  of  the  studies  are  summarized
in  table 4.3.

Tab.  4.3: Shared  parameters  for  simulation  studies  [15].

Parameter  Value
Number  of  UOs  4 

Parameters  per  UO  5 

CQA type  Impurity  

hDoE  start  runs  6 

Noise/std  ratio for  residual  error  0.5 (0.9 in  study  D)  

Number  of  runs  recommended  per  cycle  1 

Variable  selection  method  Bi-directional  stepwise  

p-value  threshold  for  including effect  0.25 

p-values  threshold  for  excluding effect  0.05

These  are  the  specific  scenarios  and  associated  ground  truth  effects  simulated:

(a) A typical  biopharmaceutical  process  with  common  effect  sizes  and  interactions  as  well  as
balanced  load  relationships.

y𝑈  𝑂1 =  8.0 + 0.7x1 + 0.6x2 + 0.5x3 − 0.4x4 + 0.9x2  

2 + 0.8x2  

3
y𝑈  𝑂2 =  3.4 + 0.5y𝑈  𝑂1 + 0.5x2 + 0.3x3 + 0.5x5 + 0.7x2x3 + 0.4x2x5

y𝑈  𝑂3 =  3.0 + 0.3y𝑈  𝑂2 + 0.4x1 − 0.3x2 + 0.2x4 − 0.2x5 + 0.3x2  

1 − 0.7x2  

5
y𝑈  𝑂4 =  2.8 + 0.2y𝑈  𝑂3 + 0.1x1 + 0.2x3 + 0.2x5 + 0.3x1x3

(4.1)

(b) The  same  process  as  in  (a),  but  with  the  load  coefficient  in  UO3 set  to one.  This  means
that  the  UO  does  not  affect  the  loaded  material.  It  represents  an  unlikely  scenario of  a 

completely  ineffective  step  in  the  process  where  additional  information  about  the  load
parameter  does  not  improve  process  knowledge,  i.e.,  there  is  no point  in  performing spiking
studies  and  hDoE  is  limited  to allocating DoE  runs.  The  same  effect  sizes  were  used  as  in
(a)  with  the  exception  of  UO3.

y𝑈  𝑂3 =  3.0 + 1.0y𝑈  𝑂2 + 0.4x1 − 0.3x2 + 0.2x4 − 0.2x5 + 0.3x2  

1 − 0.7x2  

5 (4.2)

(c) The  load  coefficients  of  all  UOs  are  set  to one  in  this  process  (for  the  sake  of  brevity,
formulas  are  omitted).  It  is  an  even  more  extreme  example  of  the  effect  described  in  (b)  and
is  included  in  the  study  to demonstrate  the  worst  case  scenario for  hDoE.  Here,  the  entire
process  is  ineffective  regarding the  start  material  and  only  DoE  runs  are  allocated  to the
UOs.  The  purpose  is  to show  that,  at  worst,  the  method  is  equivalent  to the  state-of-the-art
in  terms  of  experimental  effort.

(d) To highlight  the  effectiveness  of  the  Probability-Ratio-Threshold  (PRT)  method  from  

the  Metropolis-Hastings  algorithm  described  above,  it  is  left  out  in  this  scenario.  The
recommender  step  simply  selects  the  run  with  the  largest  improvement  in  the  OOS  rate.
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Each  simulation  was  repeated  100 times  and  the  results  are  presented  in  terms  of  summary
statistics.  Figure 4.7 illustrates  the  mean  improvement  of  the  OOS  rate  over  the  number  of
experimental  runs  invested.  It  demonstrates  how  the  experimental  effort  can  be  radically  reduced
when  compared  to SOTA methods  for  process  characterization.  As  expected,  scenario (c)  is  the
only  one  where  this  does  not  hold  true,  as  no information  can  be  gained  by  investing spiking 

studies.  Scenario (d)  highlights  the  effectiveness  of  PRT,  as  omission  leads  to much  higher
variance  in  the  results.
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Fig.  4.7: The  decrease  in  OOS  probability  over  30 hDoE  steps,  repeated  100 times.  The  solid  line  

indicates  the  mean  OOS  probability  while  the  dotted  lines  show  the  standard  deviation
in  the  100 repetitions  of  that  step.  For  the  reference  method,  OOS  probabilities  are
plotted  as  dashed  lines  and  were  calculated  at  24,  48 and  92 total  runs  [15].

4.2.4 Conclusion
The  IPM  enables  the  simulation  of  CQA distributions  based  on  conservative  estimators  such  

as  tolerance  intervals.  These  intervals  adequately  describe  the  uncertainty  attributed  to the  

model  due  to a lack  of  data.  In  hDoE  iterations,  this  means  that  the  interval  starts  out  large
in  each  UO  and  gets  smaller  as  more  data is  added  to the  model.  Combined  with  conservative
extrapolation  of  the  starting material  described  in  the  method  section,  this  establishes  evidence
of  a robust  process,  as  described  in  the  FDA guideline  for  process  validation  [7]  while  giving 

biopharmaceutical  manufacturers  an  incentive  to leverage  holistic  process  models  to reduce
experimental  effort  and  thus  development  cost  and  time-to-market.
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hDoE  can  also be  integrated  easily  into existing workflows  for  process  characterization  for  easier
adoption  [57–59].  Figure 4.8 illustrates  such  a workflow  and  the  specific  activities  affected  by
hDoE  cycles.  This  suggests  that  hDoE  transforms  process  characterization  into a procedure  that  

involves  iterations  between  experimental  design  and  evaluation,  which  is  naturally  associated  with
organisational  overhead.  However,  the  increased  efficiency  demonstrated  should  be  a compelling
reason  for  the  adoption  of  such  an  approach.

Fig.  4.8: The  left  column  represents  common  steps  involved  in  process  characterization  while  the
right  column  contains  possible  courses  of  action  when  no appropriate  control  strategy
can  be  found.  Green  boxes  are  actions  recommended  by  hDoE  and  steps  affected  by
hDoE  are  colored  blue.  *Changing PP  setpoints  could  be  a viable  option  for  process
optimization  in  the  future  [15].
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4.3 Identifying Design  Spaces  as  Linear  Combinations  of  Parameter  

Ranges  for  Biopharmaceutical  Control  Strategies
4.3.1 Research  Question
“How  can  an  ICH Q8 compliant  design  space  comprised  of  linear  combinations  of  process
parameter  ranges  be  computed  for  complex  UO  models  or  process  models?”

4.3.2 Problem  Statement
The  ICH defines  a design  space  (DS)  as  “the  multidimensional  combination  and  interaction  of
input  variables  (e.g.,  material  attributes)  and  process  parameters  that  have  been  demonstrated  to 

provide  assurance  of  quality.” [12].  Submitting a DS  as  part  of  regulatory  filings  can  be  a valuable
asset  for  biopharmaceutical  manufacturers,  as  deviations  within  this  space  are  not  considered
changes  to the  process  and  do not  trigger  a post-approval  procedure.  Note  that  a DS  is  not  the  

same  as  a PAR  (see  section  I),  in  that  it  considers  simultaneous,  multivariate  deviations  of  PPs
rather  than  changing a single  PP  while  keeping all  others  at  setpoint.  Therefore,  finding a DS  is
a considerably  harder  computational  problem that  suffers from the  curse  of  dimensionality  [60].
Furthermore,  independent  PP  ranges  are  desired  for  operational  simplicity  in  biopharmaceutical
manufacturing.  Mathematically  they  can  be  described  as  linear  combinations  of  PP  ranges  that  

satisfy  certain  acceptance  criteria,  or  as  hyper-rectangles  when  considered  geometrically.  Figure
4.9 highlights  the  difference  between  a linear  and  non-linear  DS  description.

Fig.  4.9: The  design  space  for  the  function 𝑓(x1,  x2)  = x2
1 + x2,  where 𝑓(x1,  x2) ≤ 0,  shown  in

the  contour  plot  as  a non-linear  (a)  and  linear  (b)  combination  of  input  parameters x1
and x2 [61].

This  problem  combines  two subproblems:  (i)  finding the  DS  by  evaluating points  within  the
parameter  space  and  (ii)  fitting the  largest  possible,  axis-aligned  hyper-rectangle  within  that
space  [62].  The  third  part  of  this  dissertation  introduces  a method  that  incorporates  both  into
an  optimization  problem  that  can  be  solved  efficiently,  even  for  a large  number  of  PPs.

4.3.3 Results/Method
The  initial  part  of  this  contribution  concerns  the  formulation  of  the  tasks  described  above  as  an
optimization  problem  subject  to inequality  constraints.  With  the  formulation  in  place,  one  can
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choose  from  a selection  of  well-studied  algorithms  to perform  the  actual  optimization  procedure.
Here,  the  objective  function  to be  maximized  is  simply  the  hyper-rectangle  volume:  

maximize
p∏︁

i=1
(xp+i − xi)wi,  x ∈ ℝ2p

subject  to 𝑐1(x),  ...,  𝑐m(x) ≥ 0
(4.3)

In  this  optimization  problem, x is  the  vector  containing the  lower  DS  range  per  parameter  in
its  first p elements  and  the  upper  DS  range  in  the  second  half.  Thus,  the  range  of  the  parameter  

at  index i can  be  extracted  from  the  elements xi and xp+i.  The  volume  also contains  a weighting 

term wi to stress  the  importance  of  certain  parameters  over  others.  This  adds  to the  flexibility  of  

the  tool  and  gives  users  some  control  over  how  the  result  is  calculated.  The  inequality  constraints
𝑐j contain  most  of  complexity  involved  in  finding an  appropriate  DS,  such  as  ensuring that
the  setpoint  is  included  in  the  result  and  that  optimization  is  performed  within  the  parameter
space,  as  not  all  optimization  algorithms  support  bounded  minimization.  Most  importantly,  

the  inequality  constraints  evaluate  the  corner  points  of  the  hypercube.  This  is  done  by  using 

the  underlying regression  model  to predict  a CQA and  check  whether  the  tolerance  interval
boundaries  around  this  prediction  lie  within  acceptance  limits.

𝑐i(x)  = tîl(x�̂�) − 𝑎l,  i =  1, 2,  ..., 2p

𝑐i(x)  = 𝑎u − tîu(x�̂�),  i =  1, 2,  ..., 2p
(4.4)

Here, x�̂� is  the  regression  model  prediction, tîl(x) and tîu(x) the  functions  returning the  

lower  and  upper  tolerance  interval  boundary  respectively,  and 𝑎l and 𝑎u the  corresponding
acceptance  limits.  Note  that,  depending on  the  model  used,  calculating a tolerance  interval  can
be  a computationally  expensive  process  that  is  performed  on  a large  number  of  points  in  each
iteration  of  the  optimizer.  To resolve  this  bottleneck,  a second-order  polynomial  approximation
of  the  interval  is  calculated  beforehand  and  boundary  checks  can  be  performed  with  simple  vector
multiplication.

tî(ŷ)  = �̂�0 + �̂�1ŷ  + �̂�2ŷ2

tîl(ŷ)  = ŷ − tî(ŷ)
tîu(ŷ)  = ŷ  + tî(ŷ)

(4.5)

Another  issue  related  to regression  models  are  categorical  factors.  They  are  commonly  used
in  UO  models  to include  non-continuous  factors  such  as  discrete  machine  settings  or  scale.  

Their  presence  in  a model  generally  limits  the  choice  of  optimizer  to a more  complex  class  of  

algorithms,  such  as  mixed-integer  programming,  branch-and-bound,  genetic  algorithms,  etc.
[63–66].  However,  given  the  potential  involvement  of  a considerable  number  of  factors  in  these
models  and  the  priority  placed  on  computational  efficiency,  an  alternative  method  is  suggested.
This  approach  involves  treating categorical  factors  as  if  they  were  continuous  variables,  and  is
illustrated  in  figure 4.10.  Individual  levels  of  a deviation-encoded,  categorical  factor  are  simply
offsets  from  the  mean  prediction  of  a regression  model.  This  suggests  that  there  is  a range r𝑐

between  the  minimum  and  maximum  offset  in  which  the  factor  can  be  treated  as  continuous  for
the  purpose  of  optimization.  After  a valid  range  within r𝑐 is  found,  the  result  is  transformed
back  into a valid  subset  of  categorical  levels  by  "dropping"  to the  next  valid  level.  For  example,
if  the  upper  boundary  of  the  valid  range  in  figure 4.10 is  found  somewhere  between  the  green
and  red  dashed  line,  the  level  suggested  by  the  red  line  is  included  in  the  results  while  the  level
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indicated  by  the  green  line  is  not.  This  treatment  of  categorical  factors  facilitates  the  use  of  the
simple  and  efficient  optimization  algorithms  used  here.

Fig.  4.10: The  offset  to the  mean  prediction  of  a regression  model  introduced  by  a deviation-
encoded,  categorical  factor  [61].

COBYLA is  chosen  as  the  main  optimizer  for  the  problem  for  its  support  of  inequality
constraints  and  resilience  against  local  minima [27].  A second,  gradient  based  SLSQP  optimizer
can  be  used  to fine  tune  the  results  from  the  first  pass  [28].  The  actual  implementation  of  

tolerance  intervals  can  be  used  in  this  step  instead  of  the  approximation  to further  increase
accuracy.

The  described  optimization  procedure,  including the  tolerance  interval  approximation  and
categorical  factor  handling,  is  summarized  in  figure 4.11.

Fig.  4.11: Overview  of  the  steps  involved  in  the  proposed  design  space  calculation  scheme  [61].

The  design  space  optimization  method  was  validated  in  terms  of  effectiveness,  measured  as  the
maximum  DS  volume  of  the  result,  as  well  es  efficiency,  represented  as  the  computing time.  For
a bivariate  DS,  effectiveness  is  shown  by  comparing the  result  from  the  optimization  algorithm
to a mathematically  derived  ground  truth.  The  largest  possible  rectangle  is  inscribed  in  a unit
circle,  thus  its  area is  known  to be  2.  Due  to the  long computation  time  involved  in  its  derivation,
no ground  truth  could  be  set  up  mathematically  for  high-dimensional  problems.  Instead,  the  

DS  volume  and  computation  time  of  the  optimizer-based  method  was  only  compared  to the
grid-based  brute-force  algorithm.
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As  shown  in  figure 4.12,  effectiveness  is  generally  improved  in  comparison  to grid-based
approaches  that  discretize  the  parameter  space,  as  the  resulting design  space  is  not  constrained
to the  finite  set  of  points  in  the  grid.  Results  for  the  higher  dimensional  DS  in  figure 4.12
(b)  highlight  the  flexibility  introduced  by  the  weighting vector.  The  original  DS  returned  by  

the  optimizer  (orange  line)  had  exhibits  a relatively  small  range  for  factor x6.  By  increasing
the  weights  for  this  factor  and  rerunning the  optimizer,  a more  balanced,  albeit  smaller  DS  is
returned  (orange,  dotted  line),  which  might  be  desirable  for  operational  flexibility.  This  example
also illustrates  the  effect  of  the  second  optimization  pass  that  slightly  increases  the  DS  (green
line).
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Fig.  4.12: (a)  Bivariate  parameter  space  with  an  upper  tolerance  interval  boundary  shown  as
the  contour.  The  design  spaces  found  by  the  optimizer  and  the  grid  method  are
marked  as  rectangles.  (b)  A multivariate  parameter  space  illustrated  as  a spider  plot
with  ranges  per  parameter  shown  in  the  axes  and  DS  plotted  as  polygons  [61].

Arguably  the  biggest  advantage  of  the  proposed,  optimizer-based  method  is  how  computation
time  scales  over  the  number  of  investigated  factors.  As  the  optimizer  is  able  to pass  over  large
parts  of  the  parameter  space,  as  opposed  to performing a full  scan  of  a discretized  version  of  

it,  computing time  for  10 factors+  is  improved  by  several  orders  of  magnitude,  as  indicated  

by  the  log-scaled  figure 4.13.  As  the  parameter  space  to be  scanned  grows  exponentially  over
the  number  of  parameters,  so does  runtime  for  grid-based  methods  (blue  line).  Note  that  these
results  were  extrapolated  from  seven  factors  onwards,  as  it  was  no longer  feasible  to calculate
them  on  a standard  computer  (blue,  dotted  line).  This  is  very  different  from  the  optimizer  results  

that  show  much  better  scaling (orange  line).  Note  that  performing a second  optimization  pass  or
using the  actual  tolerance  interval  calculation  instead  of  the  approximation  only  adds  a fixed
offset  to computation  time  (green  line).
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Fig.  4.13: Performance  comparison  of  optimizer  and  grid-based  DS  optimization.  [61].

4.3.4 Conclusion
Including a DS  in  regulatory  filings  aids  to operational  flexibility  for  biopharmaceutical  manu-
facturers,  as  deviations  within  this  space  are  not  considered  changes.  Appendix  2 of  the  ICH 

Q8 guideline  contains  examples  for  how  to define  and  represent  a DS  graphically  [12].  While  

this  is  achieved  easily  in  a bivariate  parameter  space,  the  problem  of  representation  as  well  

as  computation  grows  exponentially  with  the  number  of  parameters  involved.  Thus,  numeric
methods are  required to solve  this problem.  Here,  a novel  method for  finding and exploring a
DS  in  higher  dimensions  is  introduced  that  satisfies  the  requirements  in  the  biopharmaceutical
domain,  i.e.,  independent  parameter  ranges  and  conservative  evaluation  of  the  PP  space  using
tolerance  intervals.  Improved  computing time  compared  to SOTA grid-based  approaches  as  well
as  the  PP  weighting further  add  to the  utility  by  facilitating efficient  DS  exploration.

4.3.5 Manuscript
T.  Oberleitner  et  al.  “Identifying Design  Spaces  as  Linear  Combinations  of  Parameter  Ranges
for  Biopharmaceutical  Control  Strategies  (under  review)”.  In: arXiv preprint  arXiv:2304.14666
(2023)

4.3.6 Contribution
TO  was  the  main  contributor  to the  manuscript  and  responsible  for  the  methodology,  imple-
mentation,  validation,  data analysis,  curation  and  visualization.  TO  and  TZ  were  responsible
for  conceptualization.  TZ  contributed  to the  manuscript  and  to implementation.  CH provided
guidance  in  writing of  the  manuscript  as  the  PhD  supervisor  to TO.
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This  cumulative  dissertation  contributes  to the  field  of  CMC  statistics  by  introducing tools  that
facilitate  the  provision  of  statistical  evidence  for  robustness,  aligning with  recommendations  for
biopharmaceutical  process  validation  by  regulatory  agencies.  The  rough  descriptions  of  statistical  

approaches  provided  by  such  agencies  are  supplemented  by  concrete  methods,  which  are  validated
and  evaluated  in  case  and  simulation  studies.

The  first  publication  presents  a workflow  to incorporate  random  effects  into biopharmaceutical
process  control  strategies.  While  model  predictions  might  not  be  affected  by  these  effects,
statistical  intervals  that  consider  the  random  variance  components  can  increase  drastically.  This
changes  PARs  derived  from  the  interval  boundaries  and,  in  turn,  the  control  strategy.  A case  

study  was  conducted  that  highlights  this  effect.  Results  show  that  the  investigated  random  

effect  was  not  only  significant  but  in  many  cases  stronger  than  the  average  fixed  effect.  For
manufacturers,  this  implies  that  more  sources  of  variation  need  to be  considered  when  gathering
and  evaluating data,  even  if  those  sources  cannot  be  controlled.  The  presented  workflow  for  data
gathering and  analysis  offers  manufacturers  recommendations  on  how  to effectively  accomplish
this  using statistically  sound  methods.

The  second  contribution  introduces  a recommender  system  for  experimental  runs,  called
Holistic  Design  of  Experiments  (hDoE).  Based  on  minimal,  initial  data and  an  IPM,  either  DoE
or  spiking runs  are  recommended  for  specific  UOs  to minimize  the  Out-of-specification  (OOS)  rate
in  the  drug substance  formulation  step.  This  emphasises  process  robustness,  represented  by  the
OOS  rate,  early  on  in  development.  Compared  to state-of-the-art  approaches  that  characterize
UOs  individually  using designs  with  a fixed  number  of  runs,  robustness  can  be  proven  more
efficiently  with  reduced  experimental  effort.  Furthermore,  due  to conservative  statistical  methods
such  as  the  sampling from  tolerance  intervals  and  load  extrapolation  described  in  section 1.3.2,
this  does  not  compromise  patient  safety  and  complies  with  recommendations  of  ICH,  FDA and
EMA.

An  efficient  method  for  the  computation  of  Design  Spaces  (DSs)  is  described  in  the  third  part
of  this dissertation.  A DS defines how much PPs can deviate  multivariately  while  certain CQA
criteria are  still  met.  Manufacturers  can  provide  a DS  defintion  as  part  of  regulatory  filings,
whereupon  changes  of  PPs  within  this  space  do not  trigger  a post-approval  procedure.  Here,  this  

is  defined  as  the  range  of  a regression  model  parameter  that  results  in  predicted  CQA values  with
tolerance  interval  boundaries  that  lie  within  acceptance  limits.  The  multivariate  space  spanned
by  those  ranges,  or  rather  its  volume,  is  maximized  and  yields  the  DS.  An  additional  requirement
for  operational  simplicity  in  biopharmaceutical  manufacturing is,  that  PP  ranges  should  not  be  

conditioned  on  each  other,  i.e.,  they  should  be  linearly  independent  or  a hyper-rectangle  within
the  parameter  space.  The  proposed  method  finds  a DS  that  satisfies  those  criteria by  formulating
a minimization  problem  subject  to inequality  constraints,  which  is  then  solved  by  a COBYLA
optimizer.  This  procedure  finds  a DS  in  a much  more  computationally  efficient  way  compared  to
grid-based  methods  currently  found  in  statistical  software,  and  thus  enables  manufacturers  to
define  and  explore  a DS  efficiently  in  higher  dimensions.

Results  from  this  applied  dissertation  might  serve  as  an  incentive  for  biopharmaceutical  

manufacturers  to leverage  a wider  range  of  statistical  methods  in  process  development  and
validation.  As  illustrated  by  the  results,  providing statistical  evidence  for  process  robustness  in
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light  of  patient  safety  and  reducing experimental  effort,  development  cost  and  time-to-market
need  not  be  opposing goals.
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in biopharmaceutical control strategies
Thomas Oberleitner1  , Thomas Zahel2, Marco Kunzelmann3, Judith Thoma3 and Christoph Herwig4*   

Abstract 

Objective Random effects are often neglected when defining the control strategy for a biopharmaceutical process. 
In this article, we present a case study that highlights the importance of considering the variance introduced by ran-
dom effects in the calculation of proven acceptable ranges (PAR), which form the basis of the control strategy.

Methods Linear mixed models were used to model relations between process parameters and critical quality 
attributes in a set of unit operations that comprises a typical biopharmaceutical manufacturing process. Fitting such 
models yields estimates of fixed and random effect sizes as well as random and residual variance components. To 
form PARs, tolerance intervals specific to mixed models were applied that incorporate the random effect contribution 
to variance.

Results We compared standardized fixed and random effect sizes for each unit operation and CQA. The results show 
that the investigated random effect is not only significant but in some unit operations even larger than the average 
fixed effect. A comparison between ordinary least squares and mixed models tolerance intervals shows that neglect-
ing the contribution of the random effect can result in PARs that are too optimistic.

Conclusions Uncontrollable effects such as week-to-week variability play a major role in process variability and can 
be modelled as a random effect. Following a workflow such as the one suggested in this article, random effects can 
be incorporated into a statistically sound control strategy, leading to lowered out of specification results and reduced 
patient risk.

Keywords Biopharmaceutical manufacturing, Process validation, Process characterization study, Random effects, 
Mixed-effects model, Likelihood model

Introduction
Biopharmaceutical manufacturers have a regulatory 
need to accurately describe production processes and 
to underpin design choices and control strategies with 
reports based on sound science. The registration appli-
cation for new drug substances and their corresponding 

products includes a detailed description of the manufac-
turing process and a justification for the proposed con-
trol strategy (ICH, 2011; ICH, 2008). The ICH defines a 
control strategy as follows:

A planned set of controls, derived from current prod-
uct and process understanding, that assures process 
performance and product quality. The controls can 
include parameters and attributes related to drug 
substance and drug product materials and compo-
nents, facility and equipment operating conditions, 
in-process controls, finished product specifications, 
and the associated methods and frequency of moni-
toring and control.
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The development of this control strategy, or pro-
cess characterization, constitutes a major part in the 
first stage of the FDAs process validation guideline 
(FDA, 2011) and is often the most elaborate and criti-
cal phase of development for a new drug product. Ide-
ally, this process should yield detailed knowledge about 
the individual parts of the process, i.e., critical quality 
attributes (CQA), impact of process parameters (PP), 
and sources of variability. The level of understanding of 
the product and its production process also affects the 
regulatory process, as stated in the ICH Q8 guideline 
(ICH, 2017):

A greater understanding of the product and its 
manufacturing process can create a basis for more 
flexible regulatory approaches. The degree of regu-
latory flexibility is predicated on the level of rel-
evant scientific knowledge provided in the registra-
tion application.

The FDA’s 2011 guide defines process validation as “the 
collection and evaluation of data” over the life cycle of the 
product, from product development to commercial pro-
duction, in order to establish scientific evidence that “a 
process is capable of consistently delivering quality prod-
uct.” Part of this is detecting and understanding differ-
ent sources of variation affecting the production process 
(FDA, 2011). This is especially important in stage 1 of 
the process validation activities, i.e., in the design phase 
where the effects of process parameters (PPs)/material 
attributes (MAs) and their impact on product quality are 
quantified. Design of experiments is recommended as an 
effective tool to achieve the following:

Design of Experiment (DOE) studies can help 
develop process knowledge by revealing relation-
ships, including multivariate interactions, between 
the variable inputs (e.g., component characteristics 
or process parameters) and the resulting outputs 
(e.g., in-process material, intermediates, or the 
final product).

DOE followed by linear regression for modelling rela-
tionships between PPs, MAs, and CQAs are common 
tools employed in biopharmaceutical development 
(ICH, 2017). The assumption of linear relationships, i.e., 
models being linear in their parameters and not nec-
essarily linear in their prediction of a factor, is gener-
ally valid for sufficiently small regions around a known 
working point (Montgomery, 2017). However, this 
should be carefully evaluated, e.g., by performing resid-
ual analysis of the derived models.

Process parameters are generally modelled as fixed 
effects that are assumed to be distributed around the 
true parameter value, i.e., E β̂j = βj . Typically, any-

thing actively controlled by an operator might be con-
sidered a fixed effect, e.g., the temperature within a 
reactor, pH values, and feeding rates.

Random effects, in contrast, are parameters that are 
not controllable in such a way. Their future setting in 
an experiment or run cannot be predicted beforehand. 
However, they can still impact product quality and 
should therefore be considered when identifying possible 
sources of variability. MAs can fall within this category. 
Examples for random effects are changing raw material 
attributes, transition conditions, or biological variability 
in seed trains or even variability introduced by different 
operators.

The FDA guide (FDA, 2011) states the following:

The functionality and limitations of commercial 
manufacturing equipment should be considered in 
the process design, as well as predicted contributions 
to variability posed by different component lots, pro-
duction operators, environmental conditions, and 
measurement systems in the production setting.

In most cases, a random effect affects a group of runs, 
which is called a block and the random effect a “block 
factor” (Montgomery, 2017). A typical example could be 
an experimental setup using a specific raw material lot for 
a set of runs. Statistical analysis is used to investigate the 
impact of those blocking effects. The resulting measure 
of variance is sometimes called inter-block variability, as 
opposed to intra-block variability, which constitutes the 
residual error term of the individual observations.

When processes are modelled in silico as regression 
models, block factors are usually incorporated as devi-
ation-encoded fixed effects. In its most common form, 
deviation encoding describes individual blocking effects 
by their distance from the overall mean of the response 
(Alkharusi, 2012). When no block information is pro-
vided for a prediction, its numeric value is set to zero, 
and the mean response for the “average” block is com-
puted, which is often the desired behavior. This, however, 
does not account for inter-block variability, and thus, the 
overall variability of the model is underestimated. As esti-
mators of variability are used to compute proven accept-
able ranges (PARs), this underestimation can have a large 
effect on the accuracy of such measures.

To illustrate this point, consider the method for calcu-
lating the PAR shown in Fig. 1. The plot shows CQA val-
ues as function of the process parameter screening range. 
The slope of the line in the center indicates the effect of 
the parameter on the CQA value. A measure of variability 
around the predicted mean is given by a statistical inter-
val (confidence, prediction, or tolerance interval) shown 
as dashed lines. The range of the PAR (gray area) can be 
calculated by finding intersection points between the 
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acceptance limits and the statistical interval. When taking 
into account the additional variance introduced by random 
effects, the interval gets wider, and consequently, the PAR 
gets smaller. To find PARs for each critical process param-
eter in relation to the CQA acceptance criteria in drug 
substance, either each unit operation can be analyzed indi-
vidually or integrated process modelling, enabling a holis-
tic control strategy (Zahel et al., 2017), can be employed.

To accurately describe the random nature of those 
blocks, linear mixed models (LMM) can be employed to 
incorporate multiple sources of variation. In particular, 
the variation of random blocks can be computed sepa-
rately and added to the overall variation of the model’s 
prediction. Burdick et al. briefly illustrated the statistical 
methods behind LMMs and how they could be applied 
in process validation stage 1 (process design) in general 
(Burdick et al., 2017).

Goos et al. contrasted the conclusions drawn from 
OLS and LMM models in industrial split-plot designs 
and provides some guidance on analyzing experiments 
that involve random effects. The paper gives a motivat-
ing example and highlights some technical details of the 
method, like the proper choice of degrees of freedom 
(Goos et al., 2006). While pitfalls in improper experimen-
tal design and analysis are explained in a general man-
ner, our work puts, for the first time, the problem in the 

context of biopharmaceutical process development and 
provides a detailed workflow that considers characteris-
tics specific to the domain.

Usually, the potential impact of fixed effects such as 
pH, temperature, or oxygen concentration is assessed in 
risk assessment such as failure mode and effects analysis 
(FMEA) and then investigated experimentally. The main 
contribution of this article is to illustrate in a case study 
how strong random effects can be in comparison with 
these fixed effects. Moreover, we introduce a workflow to 
incorporate random effects into process characterization 
in a statistically sound manner.

Following a workflow such as the one proposed is impor-
tant in order to increase knowledge for the next round of 
risk assessment and experimental planning. Therefore, we 
aim to investigate the relative importance of random effects 
using a real-world data example of a full process charac-
terization data set generated at Boehringer-Ingelheim over 
multiple unit operations of a drug substance production 
process including upstream and downstream.

Materials and methods
Models
To contrast ordinary least squares (OLS) and linear 
mixed model (LMM)-based approaches for creating a 
control strategy, both model types were fit to the process 

Fig. 1 An example for how the PAR of a process parameter can be calculated. The intersection points of a statistical interval and the CQA 
acceptance criteria define the lower and upper boundary. Note that the PAR that ignores the random effect is larger than the one that incorporates 
the random nature of the effect
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characterization study (PCS) data. For OLS models, the 
random effect was treated as categorical fixed effect. 
While mean predictions are equivalent in this applica-
tion, only LMMs decompose variance into a random and 
residual part, enabling the calculation of more accurate 
statistical intervals. This is especially important in the 
context of control strategies where patient safety could be 
at risk as a consequence of intervals that are too narrow, 
i.e., optimistic. A detailed description of OLS models and 
LMMs can be found in (Montgomery et al., 2021) and 
(SAS Institute Inc., 2010), and key differences and formu-
las  are summarized in Additional file 4.

Statistical intervals
Statistical intervals represent an important and widely 
used tool to calculate and visualize uncertainty in data, 
estimators, or predictions in regression models. The 
most well-known type of interval is the confidence inter-
val, which expresses uncertainty around the models’ 
response, i.e., a confidence boundary around the pre-
dicted mean that contains the true population mean to a 
nominal level of confidence. Prediction intervals expand 
on this idea and add a standard deviation to the interval 
to define the region where a single, new observation is 
expected to fall within. To cover a nominal percentile of 
the actual distribution rather than a single observation, 
a third type of interval is used: the tolerance interval. 
Tolerance intervals cover the area that contains a prede-
fined proportion of the true distribution of a response, 
often called coverage, to a nominal level of confidence. 
As we are interested in this true distribution of a mod-
elled response, here in the form of critical quality attrib-
utes, tolerance intervals are used for the definition of the 
control strategy. Different techniques can be found in 

literature to account for variance components in the cal-
culation of intervals. Here, we use the method proposed 
by Franzq et al. (Francq et al., 2019) to include the ran-
dom contribution to variance estimated by linear mixed 
models. See Additional file 4 for a more detailed descrip-
tion of intervals and formulas used in the evaluation of 
the case study data.

Note that a tolerance interval converges to a prediction 
interval as the degrees of freedom increase. Figure 2 illus-
trates this effect while comparing the widths of the differ-
ent types of intervals on simulated data. For this example, 
OLS-based intervals were computed. However, the rela-
tive widths and the effect of the degrees of freedom are 
the same when using LMM-based intervals.

Manufacturing process
The case study was performed at Boehringer-Ingelheim 
as a PCS of a monoclonal antibody process. The process 
consists of typical steps such as fermentation of a cell 
culture, harvesting, protein A column, intermediate and 
polishing column, and an UFDF step. Generally, the pool 
(output) of a unit operation is used as the load (input) of 
the next unit operation, so that the overall production 
process can be seen a sequential chain of operations. The 
result of this chain is the actual drug substance, i.e., the 
product whose critical quality attributes are expected to 
fall within a predefined range, the so-called drug sub-
stance specifications.

Case study and data analysis
In a PCS conducted at Boehringer-Ingelheim, we investi-
gated the impact of process parameters on 11–22 CQAs 
in each of the eight unit operations (UO). Models were 
created that regress a CQA in a unit operation onto 

Fig. 2 Comparison of different statistical intervals and sample sizes. For conceptual and mathematical reasons, prediction intervals are always wider 
than confidence intervals when the same confidence level is assumed. Note that the tolerance interval converges to a prediction interval as the 
degrees of freedom are increased
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factors found significant in the model selection process. 
The models were fit using data acquired in one-factor-
at-a-time (OFAT) and design of experiments (DOE) runs 
using bench-scale experiments that are representative for 
the manufacturing process (see Additional file 1). Rep-
resentativeness has been achieved via a pre-conducted 
small-scale qualification. During these activities, scale 
independent geometrical and engineering principles 
have been ensured as well as the absence of major perfor-
mance differences between the scales.

The designs for DoE runs were planned in a way that 
minimizes aliasing and correlation between parameters 
(D-optimal), and that makes sure that effects can be 
detected with adequate statistical power. The DoE design 
and power analysis were conducted for fixed effects using 
the statistical software JMP (version 14.0.0). For the a 
priori power analysis, all runs (DoE + OFAT) were used. 
Moreover, a full model that includes all interaction and 
quadratic effects was assumed, which represents the 
worst possible case in terms of power. By convention, a 
power value of at least 0.8 is recommended. The power 
values for finding significant effects within two or three 
standard deviations of the residual error around the set-
point are reported in Table 1. A common critical value 
of α = 0.05 was used as the significance threshold. Note 
that at the time the PCS was conducted, the power analy-
sis was not explicitly conducted to incorporate random 
effects; see “Random effects in power analysis” section 
for an explanation of our approach. We performed vari-
able selection (best subset selection or stepwise bidi-
rectional) to eliminate nonsignificant effects and create 
more parsimonious models. Data for each unit operation 
consisted of one random effect describing the week-to-
week variability across the experiments.

Good modelling practice was employed to check for 
model quality after variable selection. This was done 
by residual analysis to check for normality of residuals, 
inspecting model parameter p-values to determine if they 

exceed a threshold of 0.1, checking whether the RMSE 
is within expected reproduction variability and thereby 
mitigating the risk of overlooking effects as well as overfit-
ting, leave-one-out cross-validation to exclude biasing the 
model via single runs. These measures increase the con-
fidence that neither a substantial type 1 error (including 
effects that are not significantly different from 0) nor type 
2 error (overlooking effects) has been made. The latter also 
implies that no aliasing is expected, which may bias a fixed/
random effect. In general, we followed the approach to data 
analysis and model creation outlined as “workflow B” in the 
“Workflow B: modelling random effects using linear mixed 
models” section. The evaluation of effects in “Effect sizes 
and variances” section is summarized as a series of box 
plots that show the fixed and random effect sizes as well as 
variance ratios for each model (Figs. 3 and 4). To create a 
comparable measure of effect size, the original data used 
to fit the model were min-max normalized based on the 
parameter screening ranges. This means that all the input 
parameter values lie within the interval [−1, 1], and their 
effects after fitting are comparable within the model.

As the response values in the training data were not nor-
malized and used in their original scales, the effects were 
additionally divided by the root-mean-square error (RMSE) 
to make them comparable between models. For each 
model, an average measure of fixed and random effects was 
computed using their absolute values.

(1)x∗
= 2

x − min(x)

max(x) − min(x)
− 1

(2)βCQA =
1

p − 1

p−1�
i=1

�����
β̂i

σ̂ǫ

�����

(3)γ CQA =
1

m

m�
i=1

����
γ̂i

σ̂ǫ
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Table 1 Average statistical power over all effects to detect an effect within 2 or 3 standard deviations from the set point. Note that 
those values represent the worst case that assumes a full model, i.e., a model that includes all quadratic and interaction effects

UO Power for 2 SD Power for 3 SD Runs DoE/OFAT RE levels Significant effects Responses

UO 1 0.91 0.99 24/6 3 16 22

UO 2 1.00 1.00 27/24 4-5 30 20

UO 3 0.95 1.00 17/5 5 10 14

UO 4 0.71 0.93 18/3 6 10 11

UO 5 0.94 1.00 21/3 5 15 17

UO 6 0.99 1.00 42/11 3 36 13

UO 7 0.82 0.96 0/6 5 3 11

UO 8 0.89 0.98 0/13 5 8 15
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where p − 1 is the number of parameters minus the 
intercept, m the number of levels of the random effect 
investigated, and σ̂ǫ represents the estimator of the resid-
ual variance, i.e., the RMSE. The intercept is excluded in 
the calculation of βCQA as only the effect of actual model 
parameters should be measured. A distribution of those 
values per unit operation is illustrated as box plots in 
Fig. 3. The figure highlights the random effects contribu-
tion to overall variance and compares it to the fixed effect 
contribution.

A similar approach was taken with the variance ratios 
in Fig. 4. Per CQA model, the ratio σ̂γ /σ̂ǫ was calculated, 
and the distribution of values is shown as box plots per 
unit operation.

Results
In the analysis of the case study data of real industrial 
data from a PCS, we contrast the OLS and LMM-based 
method to forming statistical intervals. As a random 
effects contribution to observed variance is proportional 
to its effect size, we first compare normalized estima-
tors of fixed and random effects. This helps us to iden-
tify how strong random effects are in comparison with 
well-known fixed effects, such as pH and temperature. 
We then show how this random contribution increases 
the tolerance intervals and, in turn, reduces the PAR in 
an example picked from the case study.

Effect sizes and variances
The random effect investigated in the analysis of the case 
study data was week-to-week variability. To show effect 
sizes of the random effect predictors relative to fixed 
effects and their contribution to variability, LMMs were 
fit to the data. Figures 3 and 4 show the effects and vari-
ances per unit operation. It can be seen that the random 
effect is even greater than the fixed effect in some of the 
unit operations. Ignoring the random effects’ impact on 
variability would underestimate the size of statistical 
intervals and result in an inappropriate control strategy. 
In four of the eight unit operations (UO3, UO5, UO7, 
and UO8), the median standardized random effect size 
was larger than the median standardized fixed effect size 
(see Fig. 3). In the other UOs, the random effect size is 
approximately the same as the fixed effect. Moreover, for 
six out of eight UOs (UO2, UO3, UO4, UO5, UO7, UO8), 
the median variance ratio of random versus residual vari-
ance is equal or larger to one (see Fig. 4). Effect sizes are 
of course dependent on the experimental design the data 
is based on. However, while variation of random effect 
estimates might be larger than those of fixed effects, a 
general trend is clearly discernible in our results (see 
Fig. 3), and significance of both random and fixed effects 
was checked in the model selection process.

LMM random effect predictors are often described as 
the empirical best linear unbiased predictors (EBLUP) 

Fig. 3 Standardized fixed and random effect sizes are contrasted for each unit operation. A unit operation contains models for 11–22 CQAs, and 
their respective fixed and random effect distributions are shown as box plots. To create comparable measures of effect size, normalized data were 
used to fit the models, and the effects were divided by the RMSE. Note that for several unit operations, the median random effect is even larger 
than the median fixed effect
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in literature and yield more accurate effect sizes when 
compared to those obtained by modelling them as fixed 
effects using OLS (Govaerts et al., 2020). Due to the 
way they are calculated in mixed models (see Additional 
file 4), they tend to be closer to zero. This should be con-
sidered when comparing random and fixed effect sizes in 
Fig. 3. The amount by which their effect size is “shrunk” 
is inversely proportional to the associated variance com-
ponent, i.e., the smaller the random effects variance, the 
larger the amount of shrinkage and vice versa. Figure 4 
shows that in our case study, random effect variance is 
quite large relative to that of fixed effects, indicating that 
effect sizes based on EBLUPs should not differ substan-
tially from those of obtained from modelling random 
effects as fixed effects using OLS. Moreover, our overall 
message that random effects are equally or more influen-
tial in a representative process characterization would be 
even more pronounced calculating out the shrinkage.

Tolerance intervals
Modeling a random effect as a categorical, fixed effect 
using OLS models is an often-employed practice in biop-
harmaceutical manufacturing. Here, we show the impli-
cations of this approach in a representative example 
picked from a real-world case study. Assuming a normal 
distribution of residuals, the chosen tolerance interval 

should contain at least 90% of observations in 50% of 
repeated samplings. However, this was not the case. As 
illustrated in Fig. 5, in extreme cases, the OLS tolerance 
interval almost never included the value observed in the 
runs. This was due to variability introduced by different 
blocking factors in the production process. The larger 
the blocking effect, the larger its influence on variability 
— a quantity that is ignored in the OLS case. Incorporat-
ing random effect variability by employing LMM models 
and appropriate interval calculation methods solves this 
problem, which can be seen in the outer interval in Fig. 5.

Further analysis revealed that this observation was 
not an exception, but that the data for most CQAs 
included significant blocking effects that would result in 
a tolerance interval too narrow when ignored. Table 2 
gives an overview of interval width ratios r = (TILMM, 
upper − TILMM, lower)/(TIOLS, upper − TIOLS, lower) for the most 
common CQAs at setpoint conditions. Depending on 
the random effect size, the LMM intervals can be several 
multiples as wide as their OLS counterparts, when ignor-
ing the random effect.

PAR and control strategy
The general increase in tolerance interval width when 
incorporating random effects and LMMs reported in 
the previous section can have a considerable impact on 

Fig. 4 Variance ratios (random variance/residual variance) are shown per unit operation on a logarithmic scale. For each model in a unit operation, 
the ratio between random and residual variance is calculated and the resulting distribution illustrated as a box plot. As random effect size increases, 
so does its contribution to variance — in some cases, the random contribution to variance is many times as large as the residual variance
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the control strategy. Again, a representative example 
is selected from the case study in the form of a pro-
cess parameter. For the chosen parameter, both an OLS 
model and LMM was fit, and tolerance intervals were 
calculated using the corresponding methods (for mod-
els and data, see Additional file 3). As can be seen in 
Fig. 6, when using the intersection points of the inter-
val with the upper acceptance limit, the resulting PAR 
for OLS is indeed wider than the one based on the 
LMM.

Depending on the size of the fixed effect and the cho-
sen acceptance limits, the reduction of the PAR might 
be more or less severe. Generally, for PARs formed with 

the method illustrated, its size can only decrease with the 
increase of the interval width as indicated in Fig. 6.

Discussion
Workflows to establish a control strategy
As shown in the case studies presented in the “Results” 
section, random effects can have a large effect on statisti-
cal intervals, the PAR, and consequently the control strat-
egy. Here, we propose a workflow for establishing a control 
strategy that incorporates random effects at various stages. 
We first suggest an OLS-based workflow typically used in 
the industry and then contrast this strategy with one that 
incorporates random effects using linear mixed models.

Fig. 5 A 90%/50% tolerance interval is created around the mean. By definition, it should include 90% of the data in 50% of cases, which is obviously 
not the case when using an OLS model. However, the interval computed using variance information from the LMM model does indeed cover at 
least 90% of observations

Table 2 LMM/OLS tolerance interval width ratios for 6 of the most common CQAs per unit operation. Due to the strong random 
effect, the LMM interval is generally much wider than the OLS interval

UO 1 UO 2 UO 3 UO 4 UO 5 UO 6 UO 7 UO 8

CQA 1 1.85 3.80 2.67 3.18 3.01 1.57 1.17 1.08

CQA 2 1.62 1.65 6.15 3.36 4.59 3.37 2.38 5.15

CQA 3 1.70 4.99 3.43 4.06 2.43 2.34 1.41

CQA 4 1.85 1.64 1.77 1.12 4.38 8.95 2.84

CQA 5 1.80 4.58 1.37 8.34 2.92 3.10

CQA 6 1.67 1.25 9.02 3.46 2.98
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Workflow A: modelling random effects as fixed effects 
using OLS
In the first step, the data that constitutes the basis for the 
regression model is acquired. We assume that data origi-
nates from a design that ensures desired properties for 
analysis, such as minimal correlation, minimal aliasing, 
and maximal power. In this phase, random blocking fac-
tors are identified alongside all other factors that might 
influence the response of the process, and their values 
are aggregated into a single data source that enables 
convenient analysis. This is followed by a preprocessing 
step where those data are cleaned up and response data 
possibly transformed to a form that satisfies OLS model 
assumptions (normality of residuals). Random effects are 
treated as categorical fixed effects and deviation-encoded 
so that the reference for the individual block coefficients 
is the grand mean of the response. This enables to set the 
blocks to zero for predictions, which results in a “mean 
block” prediction of the response. At this stage, a “full 
model” can be created by adding quadratic and inter-
action effects for each main effect. Given the available 
number of observations, use case, or preference, this 
full model can be used directly. Alternatively, the list of 
effects can be used as the input for a variable selection 
procedure to find a parsimonious model that explains 
the response while eliminating insignificant parameters. 
Such procedures are commonly based on estimators of 
prediction error, for example, the Akaike information 
criterion (AIC), or on p-values of model parameters. 
The implementation of such estimators depends on the 
type of model used, as they are different for OLS and 
LMM. Blocking factors might be found insignificant 
in the variable selection process and removed from the 
model. In the last step, either the full or optimal model 

is used to compute the predicted values for the training 
data, whereby the predictor variables for the block are 
set to zero. Around those predictions, a tolerance inter-
val is formed that contains a proportion of the population 
(coverage) with a certain probability (confidence). This 
should be reflected by the observed values of the train-
ing data contained in the interval. The PAR of the param-
eter is formed by the intersections of the interval with the 
acceptance criteria (see Fig. 1). However, such a toler-
ance interval based on OLS models does not incorporate 
the variance introduced by random effects correctly and 
might lead to control strategy that is too optimistic.

Workflow B: modelling random effects using linear mixed 
models
As it was the case in the first workflow, the LMM-based 
procedure starts by identifying both fixed and uncontrol-
lable, random effects. Special attention is given to the lat-
ter as often multiple random factors are involved, which 
can be nested or crossed, both of which influences vari-
ance calculations in different ways. In addition to corre-
lation analysis of fixed effects, some data prerequisites 
specific to LMMs should be checked to make sure the 
likelihood optimization converges, though this depends 
on the statistical software or library employed. Statistical 
significance of individual blocks potentially affects con-
vergence and can be examined beforehand by deviation 
encoding them as described in in workflow A and investi-
gating their effects using p-values obtained from an OLS 
fit. The levels of the random block variable as well as the 
number of intra-block observations are also factors in 
the optimization algorithm as highly imbalanced blocks 
can be the source of convergence problems. After mak-
ing sure that the data meets all the criteria for applying a 

Fig. 6 PAR for a randomly picked parameter calculated from case study data. Due to the contribution of the random effect, the interval based on 
LMM variance components (right) is wider than its OLS counterpart (left). This results in smaller PAR (gray area) and a more conservative control 
strategy. In this example from the case study, the OLS PAR is 72% larger than the more conservative LMM PAR
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LMM, a full model that includes quadratic and interac-
tion effects can be created. Again, this full model can be 
used directly or as the input for variable selection where 
insignificant model parameters are eliminated in each 
step of the algorithm until the optimal model is found. 
In this workflow, variable selection can be performed 
in two different ways: one option is to deviation-encode 
random blocks and fit OLS models which are then used 
for evaluation in each step — essentially the same process 
as in the first workflow. The fixed effects from the final 
model are then used to transform the OLS model into an 
LMM. This can be a sensible workaround in situations 
where one is constrained by software lacking variable 
selection procedures that incorporate random effects. 
However, note that this approach might not be possible 
in some experimental designs. The second option is to 
use LMM-specific evaluation criteria in each step of the 
variable selection process. While this might be the most 
obvious approach, it is also not universally applicable, 
depending on the algorithm, criteria, or performance 
constraints. After a satisfactory model is found, predic-
tions can be computed. For LMM, this means that only 
the matrix of fixed effects needs to be provided for the 
prediction as the model automatically assumes the “mean 
block” for the results. This is different from OLS models 
where blocks need to be set to zero explicitly for the pre-
diction. The notable difference between the models is in 

how model variance is computed and partitioned, which 
is important in the next step: the calculation of statistical 
intervals. Here, mixed models include a measure of vari-
ance of both fixed and random effects which, depending 
on the magnitude of the random effect, can widen the 
interval and therefore reduces the acceptable range of the 
process parameter.

Figure 7 summarizes the OLS- and LMM-based 
approaches to establishing a control strategy and pro-
vides an overview of their main differences.

The workflows outlined here represent two methods for 
computing PARs using common data-science techniques. 
Workflow A shows a common approach employed in 
biopharmaceutical manufacturing, while workflow B 
represents our proposal for an extended version that 
incorporates random variance correctly into statistical 
intervals. Given the unlikely scenario of a process being 
not affected by random effects at all, workflows A and B 
would result in the same control strategy.

Modelling scale impact
For the process characterization study described in 
this article, only data from bench-scale DoE and OFAT 
experiments were used, as no large-scale data was avail-
able at that point in time. Typically, manufacturing data 
is supplemented in the analysis to investigate the effects 
of scale. In regression models, this can be done by simply 

Fig. 7 Workflows for creating control strategies based on regression models. The left column describes an approach that uses OLS models for the 
estimation of PARs. A mixed-model-based workflow is summarized on the right. The differences in the steps involved are subtle but generally result 
in a more realistic estimation of variance and therefore a more robust control strategy
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adding a categorical factor to the model with one level 
per data source (e.g., “large scale” and “DoE”). As a regu-
lar, fixed effect, such a factor can be subject to variable 
selection and might be removed from the model when 
deemed insignificant. Relationships between scale and 
other effects in the model can be explored by creating 
scale-interaction effects prior to variable selection, pro-
vided enough degrees of freedom are available to detect 
them. Admittedly, this requires off-setpoint runs at large 
scale which are unlikely to be available in a data set.

Random effects in power analysis
At the time the experimental runs for the PCS were 
planned and the power values in Table 1 were calculated, 
the importance of random effects was not known to its 
full extend. Therefore, a priori power analysis that con-
siders the random variance component explicitly was not 
performed. Simulation-based power calculation meth-
ods that incorporate a random variance contribution are 
available in some software packages. This might be con-
sidered in future experimental planning. However, how 
does this affect our claim that random effects are strong 
throughout most UOs?. When considering the random 
effect levels in Table 1, one could argue that the num-
ber of levels might not be sufficient in terms of statisti-
cal power to detect all active random effects. However, 
it should be noted that the effect sizes shown in Fig. 3 
have been obtained using the variable selection method 
described in workflow B (“Workflow B: modelling ran-
dom effects using linear mixed models” section), which 
controls via a p-value threshold for the false-positive 
rate/type 1 error, even though actual effect sizes might 
be smaller due to the shrinkage effect described in “Effect 
sizes and variances” section. The random effect was then 
checked for significance in the resulting models using 
variance ratio tests (Nakagawa & Schielzeth, 2013). In 
only 18 of the 123 models, the random effect was found 
to be not significant, in which case a value of zero was 
used for the data points shown in Fig. 3. Moreover, aver-
ages of random effect predictor sizes found by LMM over 
all models are strong throughout all unit operations. This 
supports our finding that, overall, the random effect is 
oftentimes larger than the fixed effects. While the lack of 
statistical power might lead to overly conservative toler-
ance intervals, the PARs of this study have been found to 
be practically acceptable for manufacturing.

Implications for the biopharmaceutical industry
Workflow B proposed in the “Workflow B: modelling 
random effects using linear mixed models” section puts 
the method for considering random effects in process 
design (stage 1) proposed by Burdick et al. (Burdick 
et al., 2017) into the context of a workflow that includes 

variable selection. This aligns with the ICH8 recommen-
dations for including all potential sources of variation 
into the computation of the control strategy (ICH, 2017).

Ignoring a random effect or modelling it as a fixed 
effect can change effect and variance estimates notably. 
Goos et al. (Goos et al., 2006) demonstrated in a simu-
lation study that this is the case for improperly analyzed 
split-plot designs, and our results show that it holds true 
for the analysis of a process characterization data in biop-
harmaceutical manufacturing. The statistical implica-
tions of inappropriately choosing an OLS model over an 
LMM for the calculation of intervals is shown in “Toler-
ance intervals” section.

Large tolerance intervals and pronounced random 
effect sizes indicate that an effect affecting the process 
is poorly understood, and its true root cause should be 
investigated. By identifying the source of random varia-
tion and controlling it, it can essentially be resolved into 
a fixed effect.

For example, vendor-to-vendor variability of a raw 
material might lead to a large random effect, i.e., an unex-
pected random source of variation. Consequently, a set 
of experiments can be conducted to identify the true 
root cause of this variation, e.g., a supplement of the raw 
material. Provided the manufacturer is able to control 
this supplement, it can be incorporated into a model as 
a fixed effect. If this is not feasible or planned for a later 
point in time, LMM tolerance intervals can be used to 
estimate the distribution of critical quality attributes 
more accurately and to find a conservative control strat-
egy for the fixed effects, thus reducing out-of-specifica-
tion events.

In general, we recommend the following:

• Investigate the practical significance of the random 
effect (e.g., does its variance take up a large fraction 
of the CQA acceptance limits/drug substance specifi-
cation and hence is a risk to the patient?).

• If feasible, conduct experiments to identify causes of 
random variation and re-evaluate experimental data.

• If it turns out that the effect can be modelled and 
controlled as a fixed effect, implement changes in the 
process to control the root cause.

• Uncontrollable effects can still be modelled as ran-
dom effects in LMMs for conservative tolerance 
intervals.

Note that process validation is a risk-based approach 
starting with risk assessment conducted to identify 
potentially impacting factors (fixed and random effects). 
Of course, if this initial step overlooks one of the impor-
tant factors, they will not be assessed experimentally. In 
case those underrated factors from the risk assessment 
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are not controlled well in manufacturing, the control 
strategy established through a PCS might be insufficient. 
In that case, stage 3 of process validation (continued pro-
cess verification — CPV) steps in and aims at identifica-
tion of special cause variation possibly raised from one 
of the underrated factors. When special cause variation 
can be detected, it may trigger a new round of risk assess-
ment and experimental planning and analysis, bringing 
birth to a true life cycle, which FDA proposes in its 2011 
PV guideline.

Conclusion
In this article, the role and impact of random effects on 
setting the control strategy of a biopharmaceutical pro-
cess were investigated in a real-world case study con-
ducted at Boehringer Ingelheim. Data from a production 
process comprised of eight up- and downstream unit 
operations were analyzed in a case study. Although this 
contribution is based on an extensive process characteri-
zation of a monoclonal antibody process and the results 
are believed to be representative for similar processes, 
we encourage researchers to conduct similar case studies 
with other processes and random variables. Here, inter-
week batch variability was chosen as the random effect. 
Such an effect, if not ignored entirely, is commonly incor-
porated in an OLS model as a categorical fixed effect. For 
the case study, however, the factor was modelled as a ran-
dom effect using linear mixed models where the segmen-
tation of variance components into random and fixed 
components enables a more accurate calculation of sta-
tistical intervals. The results show that the random effect 
not only increases the width of the statistical intervals 
used to compute PARs, but also exceeds even in several 
unit operations the average size of the fixed effect. Those 
findings are confirmed by the number of observations 
contained within the tolerance interval, which agrees 
with the nominal coverage level for LMMs but not for 
OLS models. As random effects might have such a strong 
impact and even stronger impact than fixed effects, 
they should be incorporated into risk assessments and 
included into experimental studies. If tolerance intervals 
derived from LMM models are too large, further inves-
tigations should be performed to resolve random effects 
into fixed effects, e.g., by identifying the underlying root 
cause of the variation and controlling it. However, until 
this state is reached, the random variance should at least 
be accounted for in the model prediction uncertainty as 
described in this contribution.

Furthermore, we presented a workflow commonly 
used for creating a control strategy using OLS models. 
In this workflow, one of the standard implementations 
of tolerance intervals in a multiple regression setting 
is utilized, and the intersection points with acceptance 

criteria are computed to arrive at the acceptable range 
for each process parameter. This constitutes the con-
trol strategy for the process. As an alternative, we pro-
posed an LMM-based workflow that performs similar 
actions but touches upon certain characteristics of 
random effects and mixed models. This mainly mani-
fests in the variable selection process and in the com-
putation of statistical intervals where the variance 
introduced by fixed and random effects is incorporated 
appropriately. We suggest the use of tolerance intervals 
based on the sum of expected mean squares proposed 
by Franzq et al. (Francq et al., 2019). Depending on the 
group structure and the available degrees of freedom, 
the interval produced by this method tends to be wider 
than its OLS counterpart.

Identifying and incorporating random effects are 
vitally important when defining the control strategy of 
a process and adjacent tasks like experimental planning 
and risk assessment. Employing methods described in 
the proposed workflow, e.g., linear mixed models and 
corresponding tolerance intervals, leads to a more con-
servative and appropriate control strategy, which ulti-
mately facilitates more robust processes, patient safety, 
and fewer out-of-specification events.
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Abstract: Statistical experimental designs such as factorial, optimal, or definitive screening designs
represent the state of the art in biopharmaceutical process characterization. However, such methods
alone do not leverage the fact that processes operate as a mutual interplay of multiple steps. Instead,
they aim to investigate only one process step at a time. Here, we want to develop a new experimental
design method that seeks to gain information about final product quality, placing the right type
of run at the right unit operation. This is done by minimizing the simulated out-of-specification
rate of an integrated process model comprised of a chain of regression models that map process
parameters to critical quality attributes for each unit operation. Unit operation models are connected
by passing their response to the next unit operation model as a load parameter, as is done in real-
world manufacturing processes. The proposed holistic DoE (hDoE) method is benchmarked against
standard process characterization approaches in a set of in silico simulation studies where data are
generated by different ground truth processes to illustrate the validity over a range of scenarios.
Results show that the hDoE approach leads to a >50% decrease in experiments, even for simple cases,
and, at the same time, achieves the main goal of process development, validation, and manufacturing
to consistently deliver product quality.

Keywords: design of experiments; holistic experimental design; integrated process model; optimal
designs; process characterization; biopharmaceutical process validation

1. Introduction

The goal of process characterization in biopharmaceutical development is to establish
scientific evidence that a process is able to consistently deliver quality products. An impor-
tant part of this procedure is to determine the effect of process parameters (PP) on critical
quality attributes (CQA [1,2]). Design of experiments (DoE) is a well-established tool to
design experimental runs that yield such information and is oftentimes followed by data
analysis and inference based on regression models [3,4]. DoE variants such as factorial or
optimal designs facilitate the detection of effects by minimizing or eliminating correlation,
and they are comprised of all possible combinations of effect levels or a subset thereof [5].
These experiments are then conducted in small-scale models for each unit operation (UO),
and results can be used to create mathematical models that quantify the impact of effects.

Of particular interest when defining a control strategy is the range in which PPs can
safely operate while keeping CQA concentrations within acceptable boundaries. Those
proven acceptable ranges (PAR) are part of the control strategy a manufacturer might
submit to a regulatory authority [6]. One way of defining a parameter’s PAR is illustrated
in Figure 1. Using this approach, the PAR is affected by two components: first, the
model prediction, including the statistical intervals and second, the acceptance limits, as
the intersection between the two defines the PAR’s range. Another option could be to
alter the setpoint condition of other PPs (see Section 4.2). This leads to a change in the
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univariate prediction plot by shifting the prediction vertically (orange line in Figure 1).
However, optimization by changing setpoint conditions is usually not the focus of process
characterization. The PAR is required to allow for sufficient process and operator variability
while being conservative enough to keep CQAs within acceptance limits. If the PAR is
too narrow for adequate operability, one can either try to reduce model uncertainty by
investing DoE runs or change acceptance limits by performing spiking runs.

Bioengineering 2022, 9, x FOR PEER REVIEW 2 of 16 
 

in Figure 1. Using this approach, the PAR is affected by two components: first, the model 
prediction, including the statistical intervals and second, the acceptance limits, as the in-
tersection between the two defines the PAR’s range. Another option could be to alter the 
setpoint condition of other PPs (see Section 4.2). This leads to a change in the univariate 
prediction plot by shifting the prediction vertically (orange line in Figure 1). However, 
optimization by changing setpoint conditions is usually not the focus of process charac-
terization. The PAR is required to allow for sufficient process and operator variability 
while being conservative enough to keep CQAs within acceptance limits. If the PAR is too 
narrow for adequate operability, one can either try to reduce model uncertainty by invest-
ing DoE runs or change acceptance limits by performing spiking runs. 

 
Figure 1. An example for how the PAR of a process parameter can be calculated. The predicted 
mean of the CQA as a function of the PP is shown in orange and the statistical interval around these 
predictions is illustrated as dashed lines. Lower and upper PAR boundaries can be defined by the 
intersection points of a statistical interval and the CQA acceptance criteria, marked as x. 

1.1. Option A: Improving Model Estimates via DoE 
To illustrate the effect of DoE runs on model uncertainty, consider the formula for 

calculating tolerance intervals for a normally distributed population [7]: 

�̂� ± 𝑧1+𝜓2 √𝜈 (1 + (1𝑁))𝜒𝛼,𝜈2 𝜎 (1)

�̂� is the mean prediction of the model, 1 − 𝜓 the nominal proportion of the popula-
tion covered by the interval, and 𝛼 the confidence level. Disregarding the critical value for 
the normal distribution 𝑧1+𝜓2  and the standard deviation 𝜎, the dominant factor in this for-

mula is the square root term, which includes the lower 𝛼 quantile of the 𝜒2 distribution in 
its denominator and converges toward one as 𝑁 increases. The residual degrees of free-
dom in a regression model are calculated as 𝜈 = 𝑁 − 𝑝, where 𝑝 is the number of model 
parameters. Note that this is a simplified version of the tolerance interval, and other meth-
ods might be used in a regression setting [8–10]. The graph of the square root term is 
shown in Figure 2 over a range of possible values of 𝑁. 

Figure 1. An example for how the PAR of a process parameter can be calculated. The predicted
mean of the CQA as a function of the PP is shown in orange and the statistical interval around these
predictions is illustrated as dashed lines. Lower and upper PAR boundaries can be defined by the
intersection points of a statistical interval and the CQA acceptance criteria, marked as x.

1.1. Option A: Improving Model Estimates via DoE

To illustrate the effect of DoE runs on model uncertainty, consider the formula for
calculating tolerance intervals for a normally distributed population [7]:

ŷ ± z 1+ψ
2

����ν
�

1 +
�

1
N

��
χ2

α,ν
σ (1)

ŷ is the mean prediction of the model, 1 − ψ the nominal proportion of the population
covered by the interval, and α the confidence level. Disregarding the critical value for the
normal distribution z 1+ψ

2
and the standard deviation σ, the dominant factor in this formula

is the square root term, which includes the lower α quantile of the χ2 distribution in its
denominator and converges toward one as N increases. The residual degrees of freedom in
a regression model are calculated as ν = N − p, where p is the number of model parameters.
Note that this is a simplified version of the tolerance interval, and other methods might be
used in a regression setting [8–10]. The graph of the square root term is shown in Figure 2
over a range of possible values of N.

The figure illustrates the strong decrease in this factor for the first values of N before
the curve starts to flatten. While other measures of model quality, e.g., the standard
deviation or parameter covariance are contributing factors in a regression setting, this effect
is representative of the behavior of an interval as the number of observations increases. For
the experimental effort invested in improving parameter estimates and model quality this
means that at some point no large improvements can be achieved in the interval width and,
in turn, the PAR. Then, tackling the second decisive element, the intermediate acceptance
criteria, might be more rewarding.
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1.2. Option B: Improving Acceptance Limits via Spiking Studies

In typical biopharmaceutical process development and characterization, unit oper-
ations are studied individually, and acceptance criteria need to be defined for each UO.
Those intermediate acceptance criteria (iAC) are the second component affecting the PAR
calculation, as shown in Figure 1. A frequently followed but flawed approach to setting
iACs is to calculate this range using three standard deviations (SD) of manufacturing scale
runs [11–13]. A much more scientifically sound method has recently been published where
the only requirement is to have drug substance/product specification. In this approach,
an IPM is used, and iACs for all UOs can be calculated inversely, starting from the specifica-
tions [11]. The same approach is shown here in an illustrative manner: one can correlate the
inputs/loads and outputs/pools of each unit operation, as shown in Figure 3. If the slope
of this correlation equals one, all of the load will be found in the pool, which is not desirable
in a downstream UO. If the slope equals zero, the same (low) pool value will be achieved
regardless of the load values, which is an ideal and robust scenario of a downstream UO.
We can now calculate the iAC by backpropagating the iAC of the next UO (starting with
the DS specifications) through those models. By iteratively applying this technique, the
iACs for the entire process can be calculated. As all models are data-based, conservative
extrapolation needs to be taken into account when making predictions outside the observed
training space of the explanatory variables (here, the input material of each model). As dis-
cussed in [14], for impurities, we assume that every additional amount of loaded impurity
beyond the observed range will be directly propagated into the output/pool of the UO,
which can be mathematically seen as a piecewise regression model with a slope of one (see
Figure 3).
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Figure 4 illustrates the effect of adding a spiking run that shows successful clearance.
The data point is added at UO 3 and the observed trend will be extrapolated, leading to
an increase in iAC in UO 2. Since the iAC of UO 2 is used to calculate the iAC of UO 1,
its iAC will be increased as well, etc. Hence, introducing a spiking run at one UO will
potentially lead to increase in iACs of all previous UOs. Of course, the addition of spiking
runs at extreme levels will be limited by the clearance capacity of the downstream UO.
Note that Figures 3 and 4 show a simplified version for calculating iACs and that the actual
method can involve more advanced statistical methods such as tolerance intervals and
Monte Carlo sampling (for details, see [11]). Furthermore, while a linear correlation is
assumed here, any mathematical model can be used to describe the dependency between
input and output of individual UOs.
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Using spiking runs is not a novelty and commonly used in the industry [15,16].
However, results are usually only reported in documents and in our experience do not
find entrance into mathematical modeling that also accounts for the uncertainty around
individual experiments. Marschall et al. describes how any manufacturing or small-scale
data can be used to calculate iACs and how spiking runs are included in that procedure [11].

At this point, we have demonstrated that both the addition of DoE runs to decrease
model uncertainty as well as the addition of spiking runs to increase iACs can help to gain
process understanding, which helps to increase PARs and facilitates a more flexible control
strategy. However, it remains unclear which combination of DoE or spiking runs would
give the maximum gain in PAR. Therefore, we want to:

• Develop a recommender system, called the holistic design of experiments (hDoE),
that suggests the optimal runs (DoE or spiking) at specific UOs that lead to the fastest
increase in process understanding. Here we define process understanding as the
accuracy and precision of the (unknown) true relation between all PPs and CQAs,
as well as the input/output relation of individual UOs. We describe this method in
Section 3.1;

• Demonstrate that using such a recommender system can lead to a significant reduction
in the required number of total runs of a process characterization study (PCS) using
state-of-the-art workflows. We verify this in a set of simulation studies presented in
Section 3.2;

• Identify an accelerated workflow for PCS using hDoE that can be applied in practice;
see Section 4.1.

2. Materials and Methods
2.1. Optimal Designs

Factorial or fractional factorial designs are generally considered the ideal approach
to creating experimental designs that yield the most information about how process pa-
rameters affect the response. An exhaustive account of such designs can be found in [5].
In practice, however, they are not universally applicable as they often require many runs
and cannot incorporate existing data. Optimal designs constitute a more flexible alter-
native [17–20]. The number of runs required is not a consequence of the chosen type of
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design, e.g., 2k, for a factorial design with two levels and k parameters but can be chosen
more flexibly. Furthermore, optimal designs can be used to augment an existing set of
runs. Both of those properties are important for their application in hDoE, as the procedure
starts off with a minimal set of experiments far smaller than a full factorial design, which
gets augmented in each experiment/evaluation cycle. Based on the working set of already
performed experiments, new runs based on optimal designs are recommended. Optimal
designs optimize specific properties of the design matrix X. For example, D-optimal de-
signs minimize the variance of parameter estimates in a model. As Var

�
β̂
�
= σ2�XTX

�−1,
this is equivalent to maximizing

		XTX
		, the determinant of the squared design matrix and

one can see that this is maximized when the columns of X are orthogonal. However, in
contrast to factorial designs, strict orthogonality is not required and one consequence of
that is that the number of runs in X can be set freely depending on the use case. The rows
in X are then chosen by exchange algorithms from a candidate set of runs, which generally
consists of all possible level combinations for the main effects defined in the model. We
used augmented D-optimal designs to generate the experiments recommended by hDoE.

2.2. Integrated Process Model

An integrated or holistic process model is an in-silico representation of a manufac-
turing process comprised of multiple steps or unit operations. While there are many
approaches to constructing process models (see [21] for an overview), here we consider
the IPM as an empirical ensemble model implemented as a sequence of UO models that
enable predictions of different CQAs as a function of process parameters. To simulate CQA
concentrations, the predicted values are passed on to the next UO as a process parameter
in a Monte Carlo simulation that randomly draws parameter values [22]. This is done over
the entire chain of UOs in the process, from upstream operations to the final drug substance.
For a comprehensive description of the method, please consult [14].

An important aspect of this approach is extrapolation. Because parameter values
are drawn randomly from their corresponding distribution, CQA predictions of one UO
regularly exceed the range of values observed in the training data of the predecessor
UO. This is a problem for the conservative prediction of CQA concentrations, as UOs are
modeled as data-driven regression models. Such models are generally only valid within
the range of the training data and extrapolation can lead to highly biased results [23].

2.3. Simulation Study

We investigated the performance of hDoE in a set of simulation studies illustrating
different situations and processes. Results are compared to a state-of-the-art (SOTA) pro-
cess characterization workflow that consists of conducting experiments based on optimal
designs to investigate the impact of PPs on CQAs per UO. For the reference method, a D-
optimal design was chosen with 6, 12, and 23 runs per UO, which leads to 24, 48, or 92 runs
overall in 4 UOs.

Each process in this simulation study consists of a sequence of unit operations repre-
sented by ground truth equations that map PPs to a CQA. The first UO can be interpreted
as the fermentation step, followed by three downstream UOs. The equations that describe
these UOs satisfy IPM conditions by adhering to the heredity principle [24] and having
linear load dependencies. We then try to find effect coefficients in the presence of added
noise, employing both hDoE and the SOTA method that uses a predefined number of
runs per UO, as described above. For hDoE, we start with a minimal design of 6 runs per
UO (total 24 runs for 4 UOs) and add an additional 30 runs, chosen by the recommender
system. Note that for the simulation study results reported here, only a single run was
recommended per cycle, though results are similar for larger sets of run recommendations.
To calculate OOS rates, an upper drug substance specification for the output/pool of UO 4
was set as three standard deviations above the mean of the ground truth process. Hence,
when adding an infinite number of runs, a minimum OOS rate of 0.00135 ([1–0.9973]/2)
can be achieved. As the OOS rate simulated by the IPM is based on drawing random
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values from a PP distribution, mean and variance must be specified. In this normalized
setting, each PP’s setpoint, i.e., the mean of the distribution, was chosen to be zero and
the variance was set to be the same as that of the observed ground truth data that were
used to derive specification limits. This was kept constant over all simulated hDoE steps to
avoid a misleading optimization trajectory that improves OOS rates by simply reducing PP
variances without increasing process knowledge. Each simulation scenario was repeated
100 times with different random seeds. A summary of simulation parameters is provided
in Table 1.

Table 1. Parameters for the simulation study.

Parameter Value

Number of UOs 4
Parameters per UO 5
CQA type Impurity
hDoE start runs 6
Noise/std ratio for residual error 0.5 (0.9 in study D)
Number of runs recommended per cycle 1
Variable selection method Bi-directional stepwise
p-value threshold for including effect 0.25
p-values threshold for excluding effect 0.05

The number of hDoE steps, repetitions of the simulation studies and the bi-directional
stepwise variable selection method [25] for (re)fitting IPM models were chosen as a com-
promise between accuracy of results and simulation runtime.

For demonstration purposes but without loss of generality, we employ all simulation
studies only for one CQA of the product. However, the methodology is not limited to the
number of investigated CQAs. In practice, one would focus on the CQA, which shows the
highest OOS rate.

2.3.1. Study A: Baseline

This simulation study represents a typical biopharmaceutical process with some
quadratic and interaction effects and coefficients commonly found in characterization
studies. In our experience, approximately 20–40% of all possible effects are practically
significant in a model. A total of 5 factors lead to 20 effects (main, 2-factor interaction, and
quadratic). In the ground truth, we have chosen 4–6 active effects, which equals 20–30%
of all possible effects and is, therefore, within the expectation of a representative biophar-
maceutical process. Moreover, we assume linear load dependencies and heredity between
main and higher-order effects, which is also representative of the authors’ experience. The
ground truth equations for this scenario are as follows:

yUO1 = 8.0 + 0.7 x1 + 0.6 x2 + 0.5 x3 − 0.4 x4 + 0.9 x2
2 + 0.8 x2

3 (2)

yUO2 = 3.4 + 0.5 yUO1 + 0.5 x2 + 0.3 x3 + 0.5 x5 + 0.7 x2x3 + 0.4 x2x5 (3)

yUO3 = 3.0 + 0.3 yUO2 + 0.4 x1 − 0.3 x2 + 0.2 x4 − 0.2 x5 + 0.3 x2
1 − 0.7 x2

5 (4)

yUO4 = 2.8 + 0.2 yUO3 + 0.1 x1 + 0.2 x3 + 0.2 x5 + 0.3 x1x3 (5)

2.3.2. Study B: Load Effect Set to One

As hDoE leverages the UOs dependency on the load, we investigated its behavior
when the load coefficient is set to one, and its values are passed directly to the output of UO
3, provided other PPs are at setpoint. This mimics the situation where a full propagation of
the CQA through this UO is expected, and no clearance takes place. This is, of course, not
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the desired behavior of a downstream unit operation. In this setting, the load coefficient in
UO 3 was set to one:

yUO3 = 3.0 + 1.0 yUO2 + 0.4 x1 − 0.3 x2 + 0.2 x4 − 0.2 x5 + 0.3 x2
1 − 0.7 x2

5 (6)

2.3.3. Study C: All Load Effects Set to One

Here we set the load effects of all UOs to one. Every UOs output is directly propagated
to the next UO, which means that there is no information about the load that could be
detected by spiking runs. This a very untypical scenario as usually, we expect some
clearance activity of the downstream UOs (UO 2–4). The purpose of this simulation is
to show that, in the worst case, hDoE performs similarly to standard approaches using
a predefined set of runs.

yUO2 = 3.4 + 1.0 yUO1 + 0.5 x2 + 0.3 x3 + 0.5 x5 + 0.7 x2x3 + 0.4 x2x5 (7)

yUO3 = 3.0 + 1.0 yUO2 + 0.4 x1 − 0.3 x2 + 0.2 x4 − 0.2 x5 + 0.3 x2
1 − 0.7 x2

5 (8)

yUO4 = 2.8 + 1.0 yUO3 + 0.1 x1 + 0.2 x3 + 0.2 x5 + 0.3 x1x3 (9)

2.3.4. Study D: Disabled Probability-Ratio-Threshold

To highlight the importance of the probability-ratio-threshold (PRT) decision scheme,
a method borrowed from the Metropolis–Hastings algorithm that encourages the detection
of new effects (described in Section 3.1), we repeat the baseline study without PRT. Here,
the decision logic simply recommends the type of run that leads to the largest reduction in
OOS. As PRT is most effective in situations where no clear decision can be made due to
high residual error, the error/standard deviation ratio in the ground truth was increased
from 0.5 to 0.9.

3. Results
3.1. Holistic Design of Experiments

In this contribution, we propose a new tool for process development and characteriza-
tion: holistic design of experiments (hDoE), an iterative approach to experimental design
and evaluation that minimizes the number of runs invested while maximizing the overall
process understanding, as defined in the introduction. As all UOs of the process contribute
to the generation of DS material, we can boil down process understanding to how well the
true distribution of DS product quality is known. To express this in a single measure that
can be used for optimization, we chose the out-of-specification (OOS) rate based on known
DS specifications.

As described in Section 2.2, the IPM connects UOs by passing the output of a UO to the
next one as a load parameter. While the output might be affected by different parameters
and interactions, the univariate relationship between load and output is assumed to be
linear inside the range of observed load values in the training data. However, in the Monte
Carlo simulation of a CQA distribution, simulated load values might exceed this observed
range, in which case the CQA value is handled conservatively to avoid predictions that
are too optimistic (see piecewise load model in Taylor et al. [14]). This means that the
simulated CQA distribution in drug substances is highly dependent on the range of load
parameter values in the training data. Small variations in the training data will lead
to a broadened CQA distribution, accounting for the uncertainty due to extrapolation.
However, in many cases, missing information about load parameters can be supplemented
by performing spiking studies where PPs are kept at setpoint, and only the load is varied.
This is in contrast to classic DoE studies, which examine specific combinations of factors
and disregard the load.

Spiking and DoE runs are the two different types of the experiment proposed by hDoE
in this contribution. Assuming model parameters do not change from one iteration to
the next, DoE runs are expected to improve general process parameter estimates, while
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spiking studies improve estimates of the model’s load coefficient and reduce extrapolation
in the IPM simulation. However, the assumption of unchanging model parameters is
regularly violated when variable selection on newly acquired data results in a new model.
As a consequence, the simulated OOS probability is not guaranteed to be improved in
every iteration.

hDoE starts out by roughly characterizing the process with a minimal D-optimal
design per UO that facilitates fitting the initial regression models. Based on the information
acquired in this first step, a set of runs is proposed. This set consists of DoE and spiking
runs and includes the target UOs in which to perform them. The runs are chosen by how
much they would reduce the OOS probability calculated by the IPM. After conducting
the proposed experiments, the IPM data are supplemented with new information, and
a variable selection step updates models where appropriate.

As OOS predictions and therefore run suggestions are based on models found in
previous steps, the process is biased toward already detected effects. Additionally, the
decision rule is susceptible to noise, especially in early steps, and might consider the value
of adding spiking or DoE runs equivalent. Of course, this is generally not true, as only
DoE experiments enable the detection of new or interaction effects. To mitigate this bias
and encourage the detection of new effects, we employ a technique based on a decision
scheme used in the Metropolis–Hastings algorithm [26]. Let X be the design matrix of the
data already incorporated into the IPM and xDOE and xspiking be new DoE and spiking
samples, respectively, chosen from a set of sample candidates that result in the lowest OOS
probability. We then calculate the ratio of those probabilities α = P(xDOE|X)/P(xspiking

			X) ,
draw a number from a uniform distribution, u ∈ [0, 1], and only suggest a spiking run when
u ≥ α. This means that DoE runs are always recommended if P(xDOE|X) ≥ P(xspiking

			X) .
Spiking runs, however, are only suggested when the improvement in OOS probability
considerably exceeds that of a DoE run. In the following, we term this the probability-ratio-
threshold (PRT) approach. In our evaluation of the algorithm, PRT generally circumvents
the problem of selecting spiking runs unnecessarily or overlooking effects (see Section 3.2).
Figure 5 illustrates the individual steps and decision processes involved in hDoE.

3.2. Simulation Results
3.2.1. Out-of-Specification Rates

Figure 6 shows that in most scenarios, a high process understanding (quantified as
a low OOS rate) can be achieved with a much smaller number of experiments compared
to the SOTA method that uses a fixed number of DoE runs (in this case, 24, 48 and 92).
This effect is most pronounced in study A, where the mean OOS rate drops to ~2.5% after
only six additional runs recommended by hDoE (30 total), whereas 92 D-optimal runs
calculated beforehand result in an OOS rate of ~7.5% due to the lack of exploration of
load-to-pool dependencies. At first glance, this might appear as an unfair comparison, but
workflows applied in the industry generally do not incorporate spiking runs in a math-
ematical framework to achieve a specific goal, e.g., establishing a control strategy. The
effect of an UOs dependency on the load can also be seen in the results of study B, where
variation around the OOS rate is larger due to setting the load coefficient to one in UO 3 in
the ground truth. This means that no additional information about the load can be acquired
in this UO, and the advantage of systematically recommending spiking studies at this UO
is softened. Study C represents the worst case for hDoE, where the load has no effect in
any unit operation, resulting in OOS rates close to that of the reference method. The larger
variation shown in study D is due to increased noise in the ground truth. This, of course,
affects hDoE as well as the reference method. However, note that variation is drastically
increased when PRT is disabled (purple, dotted lines) compared to the recommended
procedure that uses it when deciding on runs (blue, dotted lines).
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method, OOS probabilities are plotted as dashed lines and were calculated at 24, 48, and 92 total runs.
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3.2.2. Run Allocation

The drastic decrease in OOS probability over the number of experimental runs in-
vested, shown in Figure 6, is achieved by performing spiking studies at the right UO.
Generally, spiking runs are favored in the early steps of the procedure, as they eliminate
extrapolation in the IPM (see Section 2.2) and therefore lead to the largest reduction in OOS
early on. After this initial phase, larger OOS improvements can be achieved by improving
parameter estimates, prompting hDoE to suggest more DoE runs. Figure 7 illustrates the
allocation of different run types to the four unit operations of the simulation study. In
the y-axis, the plots show the cumulative number of allocated runs over 100 repetitions of
a simulation study, while the corresponding hDoE step can be seen in the x-axis. As the
first UO (e.g., fermentation) is not affected by a load parameter, no spiking runs (dotted
lines) are allocated. In the three simulation studies where the load influences a UO, spiking
runs at UO 4 are recommended in the early steps and, in many of the 100 iterations, also
in UO 3. This makes sense, as the OOS probability in drug substance, i.e., the last UO,
is the main driver of the recommender system and its load coefficient directly affects the
CQA distribution. In the absence of load effects, DoE runs are distributed approximately
equally, while some spiking runs are accumulated due to noise (orange lines). The effect
of increased noise and the absence of PRT are illustrated by the purple line. Much more
spiking runs are invested, as the OOS simulation for the two types of experiment yields
similar results, and choices are made more randomly.
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Figure 7. The cumulative allocation of either spiking or DoE runs in 100 repetitions of the simulation
is shown over each step taken by the hDoE procedure (after the initial 24 runs). In total, each study
distributes 100 × 30 = 3000 runs of any type to the four unit operations.

3.2.3. Parameter Estimates

A low OOS rate alone does not indicate correct models, as it does not account for
aliasing effects in the parameters. Figure 8 shows the distributions of effects identified in
the variable selection procedure at the last hDoE step (54 total runs invested). Each data
point represents the effect size in a particular iteration of the simulation. We added an
estimator of the residual variance in the form of the root mean squared error (RMSE). The
mean estimated value (blue dashed line of each boxplot) converges to the ground truth
(red solid line of each boxplot) for most parameters. Higher-order effect estimates in unit
operations two and three are biased toward zero, i.e., they were not detected in variable
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selection. Note that stepwise variable selection was used for performance reasons in this
simulation, which is known to eliminate effects prematurely [27], and that some of this
bias could be mitigated by using more modern approaches such as leaps and bounds or
other exhaustive algorithms. However, as tolerance intervals are used in the estimation of
model uncertainty [14], overlooking individual effects, which results in larger estimates of
the RMSE, is accounted for correctly in the uncertainty interval. Of course, the quality of
parameter estimates is a direct consequence of the number of DoE runs invested, which in
turn is dependent on when the hDoE procedure is terminated.
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Parameter estimates, especially for higher-order effects, are naturally not on par with
those from a full D-optimal design with 23 runs per unit operation, see Figures 8 and 9.
However, due to spiking studies invested in the characterization of the process, hDoE
results in the improved estimation of load and intercept effects.
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4. Discussion
4.1. hDoE in Process Characterization

Figure 10 shows how hDoE affects common steps in process characterization. The
result of this procedure is a control strategy, of which PARs are an essential component. We
describe in Section 1 the different courses of action when a PAR is too narrow to be part
of an appropriate control strategy, steps that are also reflected by the hDoE recommender
system. A third option that is currently not incorporated into the recommender system
is to change the setpoint of other PPs that are active in the UO model. We present this
approach as an outlook in Section 4.2. Finally, PAR ranges can be increased by reducing
confidence/coverage levels of the statistical interval, although in most cases, this is not
recommended and only mentioned here for the sake of completeness. We consider the
workflow shown in Figure 10 as an extended version of the state-of-the-art workflow for
process characterization (left column) that incorporates hDoE (right column, green boxes).
This aligns with both the FDA and EMA guidelines for process characterization, as the
former recommends DoE to increase process knowledge [3] and the latter impurity spiking
challenges for downstream operations [28]. hDoE employed in the context of this extended
workflow integrates both types of experiments and provides a systematic method for when
and where to perform them.

4.2. Outlook: Changing PP Setpoints to Increase the PAR

An important aspect of the PAR calculation illustrated in Figure 4 is the univariate
nature of this method. Only the screening range of the current PP is considered, while all
other PPs are kept at their setpoint. As the UO model output, i.e., the CQA, is in most
cases affected by multiple PPs, their setpoint can influence the offset of the univariate mean
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prediction of the target PP (orange line in the figure) significantly. Consequently, a change
in the setpoint of another PP can push the predicted CQA distribution inside/outside the
acceptance limits and change the OOS rate. Similarly, interaction effects with other PPs can
also influence the target PPs effect.

The optimization of PP setpoints is already available in some statistical software [29],
and hDoE could be easily extended to include such recommendations based on their
effect on the OOS rate of the process. While this is generally not the focus of process
characterization studies, the FDA recommends optimization based on setpoint shifts in
the continuous verification phase [3]. This would advance the applicability of the hDoE
recommender system into the domain of process optimization.
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5. Conclusions

In this article, we introduced hDoE, an iterative tool for process development and
characterization that facilitates a more effective way of gaining process understanding
related to final product quality. This is essential, as it reduces experimental effort and
time to market. To demonstrate the benefits of this approach quantitatively, we presented
results from simulation studies where we chose the OOS rate as a measure of process
understanding, which should be close to the OOS rate of the true (usually unknown)
process. The benefit of this measure is that it includes both the mean and variability of the
final product quality distribution as well as practically relevant limits (drug specifications).
Other measures, such as the Kullback–Leibler divergence [30], also could have been used.
However, we believe the OOS rate represents a more practically relevant measure and
might be more tangible for process experts. We have demonstrated that hDoE leads to
better overall process understanding with more than a 50% reduction in the number of
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experiments performed for simple scenarios. The reduction of experimental costs can even
be increased for specific cases. hDoE starts out with an initial, minimal set of D-optimal runs
on which the first set of unit operation regression models is fitted. Used as a recommender
tool, either DoE or spiking runs are added in an iterative fashion guided by improvements
in the predicted OOS rate. As the process is biased toward effects already found, we are
using a recommender scheme akin to the one used in the Metropolis–Hastings algorithm to
promote the detection of unknown effects and to improve parameter estimates. Of course,
the overall quality of effect estimates is influenced by the number of runs available to
the algorithm. However, our simulation studies show that a compromise between effects
detected and runs invested can be found using a relatively low number of hDoE runs.

hDoE leverages the link between UOs as modeled by the IPM and thereby improves
OOS rates by strategically recommending spiking studies at specific process steps. It
provides valuable information to biopharmaceutical manufacturers about which type of ex-
periment to perform next, and in which UO, and can decrease the time and money invested
in experimental design. Potentially increased parameter uncertainty due to a lower number
of samples is accounted for in the IPM’s OOS prediction using conservative sampling
and estimation methods such as tolerance intervals. We believe that hDoE is a viable
option for experimental design that yields robust estimates of process properties while
providing better control of the resources invested. This will lead to a substantial reduction
of development costs and time to market, ultimately leading to more affordable drugs.
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Abstract 
According to ICH Q8 guidelines, the biopharmaceutical manufacturer submits a design space (DS) 
definition as part of the regulatory approval application, in which case process parameter (PP) 
deviations within this space are not considered changes and do not trigger a regulatory post approval 
procedure. A DS can be described by non-linear PP ranges, i.e., the range of one PP conditioned on 
specific values of another. However, independent PP ranges (linear combinations) are often 
preferred in biopharmaceutical manufacturing due to their operation simplicity, as mentioned in the 
guideline. While statistical software such as Modde supports the calculation of a DS comprised of 
linear combinations, their algorithms are generally based on discretizing the parameter space - an 
approach that suffers from the curse of dimensionality as the number of PPs increases. Here, we 
introduce a novel method for finding linear PP combinations using a numeric optimizer to calculate 
the largest design space within the parameter space that results in critical quality attribute (CQA) 
boundaries within acceptance criteria, predicted by a regression model. A precomputed 
approximation of tolerance intervals is used in inequality constraints to facilitate fast evaluations of 
this boundary using a single matrix multiplication. The correctness of the method was validated by 
comparing results to that of a grid-based approach and, in a simple case, to an analytically defined 
ground truth. In the examples investigated, the volume of the resulting DS was significantly larger 
than that of the grid method, with the improvement being proportional to the granularity of the grid 
and the number of parameters involved. Furthermore, computational time for the optimization-
based approach is several orders of magnitude faster in higher dimensions. In addition, a proposed 
weighting scheme can be used to favor certain PPs over others and therefore enabling a more 
dynamic approach to DS definition and exploration. The increased PP ranges of the larger DS provide 
greater operational flexibility for biopharmaceutical manufacturers. 

Keywords: design space; linear combination of process parameters; biopharmaceutical development; 
ICH Q8; numeric optimization; parameter space 

1. Introduction 
The ICH Q8 guideline for pharmaceutical development defines the design space (DS) as “the 
multidimensional combination and interaction of input variables (e.g., material attributes) and 
process parameters that have been demonstrated to provide assurance of quality” [1]. The process 
parameters (PP) described here are generally identified in the risk assessment or process 
development phases and are considered critical when sufficient evidence was found that they affect 
the output of a unit operation, i.e., a critical quality attribute (CQA). A design space is comprised of 
the ranges of these process parameters that result in CQA values within acceptable limits. For the 
biopharmaceutical manufacturer a DS definition can be submitted as part of the regulatory approval 
application, in which case PP deviations within this space are not considered a change and therefore 
do not trigger a regulatory post approval procedure. For operators, the DS constitutes a valuable 
guideline document for controlling a process. While ICH Q8 does not recommend a specific form or 
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method for calculating a DS, it provides examples for how to present the DS as non-linear and linear 
combinations of parameter ranges in the form of contour plots (appendix 2c in guide). Non-linear 
combinations describe the DS as a set of rules, or parameter ranges conditioned on other 
parameters, e.g., “PP1 is allowed to move between -1 and 1 if PP2 is lower than 0.5”. Linear 
combinations of parameter ranges on the other hand are independent of each other. While the 
former description generally represents a larger space to operate in and methods for computing it 
can be found several publications [2, 3], the latter might be preferred due to its operational simplicity 
and is the subject of this contribution [1]. Figure 1 shows the different types of design space 
graphically. 

 

 
Figure 1: The design space for the function 𝑓(𝑥ଵ, 𝑥ଶ) = 𝑥ଵଶ + 𝑥ଶ, where 𝑓(𝑥ଵ, 𝑥ଶ) ≤ 0, shown in the contour plot as a non-
linear (a) and linear (b) combination of input parameters 𝑥ଵ and 𝑥ଶ, as defined in [1]. 

In these examples, the definition of a design space does not incorporate any measure of statistical 
uncertainty, i.e., the contour shown in Figure 1 directly represents the predicted mean CQA values 
from the model. In the context of biopharmaceutical process validation, we suggest a more 
conservative approach. To accurately quantify uncertainty inherent in the regression model due to 
analytical and process variability, we replace predicted CQA values with the upper and lower 
boundary of a tolerance interval (TI) that incorporates nominal levels of both confidence and 
coverage. The statistical relevance of tolerance intervals in biopharmaceutical control strategies has 
been discussed earlier [4]. These boundaries are then used to validate acceptance limits in a 
conservative manner. 

As the visual definition of a DS is only feasible in a low-dimensional parameter space, e.g., the 
bivariate contour plots in Figure 1, computational methods are required to find the exact parameter 
ranges for typical biopharmaceutical models containing 10 parameters or more. To the knowledge of 
the authors, this is currently not possible in state-of-the-art statistical software used in process 
development, such as Modde, because the common approach is to discretize the parameter space 
and to evaluate points on the resulting grid [5]. This method suffers from the curse of dimensionality 
as the parameter space grows exponentially over the number of parameters in the model [6]. 
Segmenting the range of 10 parameters into 10 parts would result in a parameter space of 10ଵ଴ 
points, for which all possible combinations would need to be evaluated to find the largest possible DS 
– an exceptionally computationally expensive task. As a result, it is practically impossible to calculate 
design spaces for a larger number of PPs, even though this is commonly required for process 
development and characterization (see case study in [4]). Furthermore, the design space found by 
grid-based methods is generally not the one with the largest possible multidimensional volume, or 
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“hypervolume”, because the solution space is limited to discrete points that are distributed over the 
parameter range. We illustrate these drawbacks in section 4. The consequence of these problems is 
that no valid DS can be computed in many Quality by Design (QbD) projects and the manufacturer 
goes back to univariate individual controls, which leads to a loss of flexibility and prohibits process 
optimization. 

There is extensive research on the identification of a DS that incorporates uncertainty. Employing the 
categorization from Kusumo et al., approaches generally differ in terms of how model uncertainty is 
derived as well as how the resulting DS should be represented [3]. Uncertainty can be expressed (i) 
by confidence levels from frequentist estimators of parameters [7, 8, 9] or (ii) as distributions derived 
from sampling methods or Bayesian posteriors [10, 3, 11, 12]. On the other hand, complex DS 
contours can be described by a set of points that satisfy acceptance criteria [3, 13] or as simple 
shapes, such as rectangles  [1, 9]. Depending on the use case, any combination of these options can 
be viable and informs the choice of choice of approach to identifying the DS. Arguably the simplest 
algorithms discretize the parameter space and evaluate an underlying model at each point [14]. Even 
though such schemes are computationally expensive, they are employed in software due to their 
simplicity [5].  Bayesian methods use more refined sampling methods such as Markov Chain Monte 
Carlo to update their estimators for the posterior distribution of the CQA [3, 12, 15]. Finally, 
optimization-based methods formulate the problem of finding a DS in way that facilitates the use of 
standard optimization algorithms [9, 16].  

The methods referenced here are generally based on the idea of a probabilistic design space, defined 
by Peterson as the set {𝑥: Pr[𝑦 ∈ 𝐴|𝑥, 𝑑𝑎𝑡𝑎] ≥ 𝑅}, where 𝑥 is the vector of PPs, 𝑦 the modelled 
response, 𝐴 the acceptance region and 𝑅 the probability threshold to be cleared [11]. This is not the 
type of probability employed by the method introduced in this article. Instead, regression model 
tolerance intervals are used, which explicitly to quantify model uncertainty as well as the population 
distribution of the predicted response. Consequently, uncertainty quantification is decoupled from 
the optimization procedure, facilitating the use of any model, provided a TI can be defined, and a 
wide range of optimization algorithms. Furthermore, TIs include a nominal threshold for population 
coverage in addition to a confidence level that encapsulates model uncertainty, adding a further 
option for estimating CQA distributions conservatively, as desired when defining biopharmaceutical 
control strategies. Another distinguishing feature is that the objective function for the optimization 
procedure is directly based on the linear combination of PP ranges, i.e., no post-processing of 
sampled points [17], nested optimization [9] or visual inspection of the results [1] is necessary. This 
effectively combines the problems of identifying the DS and inscribing the largest possible 
hyperrectangle into a single optimization problem. 

In this contribution, we present a novel method for finding a design space comprised of linearly 
independent parameter ranges while treating CQA predictions conservatively by evaluating the 
tolerance interval boundaries around them, i.e., checking whether those boundaries fall within 
acceptance criteria. We propose a method based on numeric optimization rather than the screening 
of a grid, which results in improved computational times and, in many cases, a larger volume of the 
DS. An approximation for tolerance intervals is presented as well as a method for incorporating 
categorical model factors in a computationally efficient manner. Finally, a weighting scheme to favor 
certain PPs over others facilitates increased flexibility in the calculation of the results. This facilitates 
a method for DS computation and exploration that is computationally more efficient and provides 
greater flexibility than the state-of-the-art, both in terms of controlling the DS computation as well as 
greater flexibility for operators due to increased PP ranges. 
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2.  Methodology 
2.1. Regression Models in Biopharmaceutical Development and Manufacturing 
Due to their simplicity and optimal statistical properties, regression models are a popular choice in 
biopharmaceutical development and manufacturing, where they are used to express the relationship 
between PPs and CQAs. One of its more basic representatives is the ordinary least-squares (OLS) 
model, which assumes a polynomial relationship between parameters and response and normally 
distributed residuals [18]. The model equation takes the form: 𝑦 = 𝑋𝛽 + 𝜖 (1) 

Where 𝑦 is the model output (here, the CQA), 𝑋 an 𝑛 ∗ 𝑝 matrix of 𝑛 observations comprised of 𝑝 
parameter settings (PPs). The formula also includes the vector of model coefficients 𝛽 that assigns 
each parameter a numeric value (a parameter’s effect) and the residual error 𝜖~𝑁(0, 𝜎ଶ). The least-
squares fit is obtained by finding an estimator for the model coefficients. In the case of OLS, can be 
calculated in the following way: 𝛽መ = (𝑋்𝑋)ିଵ𝑋்𝑦 (2) 

Under the assumption that 𝜖~𝑁(0, 𝜎ଶ), this definition yields the best linear unbiased estimator 
(BLUE) for 𝛽. Note that in practice, the assumption of normally distributed residuals might not be 
satisfied, in which case other types of regression models might be employed where 𝛽መ  is acquired 
using numerical optimization rather than a closed-form expression [19] [20] [21]. The method for DS 
calculation proposed in this article is generally agnostic about the type of model used for 
representing the relationship between PP and CQA as long as tolerance intervals can be defined for 
its predictions. For the sake of simplicity and their frequent application in biopharmaceutical process 
development, we chose OLS models for the simulation studies in 4. 

2.2. Tolerance Intervals 
Tolerance intervals (TI) are used to quantify uncertainty of the predicted mean of a model. Its 
purpose is to estimate the population distribution of the model’s predicted response, given the 
uncertainty associated with the modelling and sampling process. Using such conservative estimators 
is especially important in the biopharmaceutical domain where a majority of the future population of 
runs needs to be within process or specification limits - hence the usage of confidence or prediction 
intervals is not recommended [4]. As defined in [8], tolerance intervals estimate the following 
probability: Pr[Pr[𝑦|𝑥௡ାଵ ∈ 𝐼்(𝑥௡ାଵ)] ≥ 1 − 𝜓] = 1 − 𝛼 (3) 

The inner probability expresses whether the model’s response 𝑦 for a new observation 𝑥௡ାଵ is 
contained within the true population distribution 𝐼்(𝑥௡ାଵ) in a least 100(1 − 𝜓)% of repeated 
samplings from the reference distribution, whereas the outer probability represents the confidence 
level of 100(1 − 𝛼)%. Consequently, tolerance intervals contain nominal parameters for both the 
level of coverage (𝜓) as well as confidence (𝛼). 

Depending on the underlying model, the computation of tolerance intervals can be quite complex 
and might involve numeric optimization, bootstrapping or other computationally expensive methods 
(for a comprehensive overview, see [22]). This is not the case for OLS models, where tolerance 
intervals can be calculated using a ratio of critical values of the 𝜒ଶdistribution [23]: 
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𝑦ො ± 𝜎ඩ(𝑛 − 𝑝)𝜒ଵ;టଶ ൬ 1𝑛௜∗൰𝜒௡ି௣;ఈଶ  
(4) 

The term 𝜒ଵ;టଶ  in the numerator is the critical value of the 𝜒ଶ distribution at probability 𝜓, 1 degree 
of freedom and the noncentrality parameter set to 1/𝑛௜∗ where 𝑛௜∗ is the vector of “effective number 

of observations” 𝑛௜∗ = ఙෝమ௦௘(௬ො೔)మ. The distribution in the denominator is evaluated at probability 𝛼 and 

uses 𝑛 − 𝑝 degrees of freedom. While not strictly necessary in the case of OLS, we use this definition 
for illustrating the approximation of intervals in section3.3. 

2.3. Optimization Algorithms 
The approach to DS computation presented here is based on finding the largest possible set of 
linearly independent PP ranges that satisfy acceptance criteria. In other words, it maximizes the 
volume of a hypercube within the parameter space. Here, this is formulated as a continuous 
optimization problem. Such problems find specific values of the parameter vector 𝑥 that minimizes a 
function 𝑓(𝑥) subject to a set of inequality constraints 𝑔௜(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚 where 𝑚 is the 
number of constraints. The DS volume problem can be formulated as an optimization objective 
function without equality constraints, only using inequality constraints (see section 3 for details). 
Those relatively minor requirements enable us to choose from a multitude of well researched and 
widely available optimization algorithms (for benchmarks and an overview see [24]). 

COBYLA (Constrained Optimization BY Linear Approximation) was chosen as the main optimization 
algorithm to maximize the DS volume, as it meets the requirement for inequality constraints and, as 
a gradient-free method, shows reasonable robustness against converging in local minima [25]. The 
algorithm repeatedly evaluates the objective function at the corners of a “simplex”, i.e., at 𝑝 + 1 
points, 𝑝 being the number of variables in 𝑥. One of the most widely used variants of simplex-based 
optimization algorithms is the one proposed by Nelder and Mead [26]. The Nelder-Mead algorithm, 
however, can run into situations where an incorrect minimum of the objective function is found, as 
shown by MacKinnon [27]. COBYLA expands upon Nelder-Mead by interpolating the vertices of the 
simplex using linear polynomials and introducing a trust region, which in turn are used to find the 
next vertex candidate. This new vertex is different from all current vertices in the simplex, thus 
circumventing the problem of incorrect convergence. The trust region radius Δ > 0 represents the 
boundary for finding a new vertex, i.e., an improved point 𝑥ො in the vicinity of the current point 𝑥଴ is 

found by minimizing the objective function 𝑓൫𝑥ො൯ subject to ቛ𝑥ො − 𝑥଴ቛ ≤ Δ. The trust region radius is 
adjusted automatically and associated with a lower boundary 𝜌. This boundary starts with a 
predefined value 𝜌௦௧௔௥௧ and gets smaller in later iterations to avoid local minima. The optimization 
parameter 𝜌௦௧௔௥௧ can be set by the user and is relevant for the method proposed in the following 
sections, as it controls the granularity of the optimization process. 

An intermediate step in our proposed approach concerns the search for minima and maxima of the 
objective function 𝑓(𝑥) within the boundaries of a hyperrectangle, i.e., a nested optimization 
problem with boundaries and no constraints. The L-BFGS-B algorithm was chosen due do its support 
for simple bounds and performance properties, especially in higher dimensions [24, 28]. This quasi-
Newton method uses a limited-memory version of the approximation of the Hessian proposed in the 
original BFGS algorithm to guide optimization. Of course, any optimization algorithm that supports 
box constraints can be used for this step, such as Nelder-Mead [26], TNC [29] or SLSQP [30]. 

We propose an optional, second optimization pass for finetuning results, which can be executed 
using a COBYLA optimizer with a smaller value of 𝜌௦௧௔௥௧ or SLSQP (sequential least squares 
programming), a quasi-Newton optimization algorithm [30]. This step uses the same constraints as in 
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the main optimization step, except that the true TI calculation is used as opposed to an 
approximation. The rationale behind this multi-step approach is that the first pass is expected to 
converge within the vicinity of the global optimum, while the second pass refines results and 
eliminates potential errors introduced by the TI approximation. 

3. Finding a Design Space Comprised of Linear Combinations of 
Parameter Ranges 
3.1. Overview 
The method proposed in this contribution aims to solve the accuracy and computational time 
problem outlined in the introduction. This is achieved by employing numerical optimizers instead of 
grid screening methods commonly found in state-of-the-art software. Section 3.2 describes the 
objective function and inequality constraints used by those optimizers. As the minimization of 
computational time is of paramount importance, we furthermore introduce a quadratic 
approximation of tolerance intervals in section 3.3 as well as a fast method for incorporating 
categorical effects in section 3.4. These steps, as well as the use of an optimization algorithm, require 
some pre- and post-processing procedures, shown in Figure 2. 

 
Figure 2: Overview of the steps involved in the DS calculation using an optimizer. 

In the preprocessing step, each dimension of the parameter space is normalized to the range [−1, 1] 
to improve speed and accuracy of the optimization algorithms [31]. Categorical factor ranges are 
determined, and the tolerance interval approximation is set up. This information and appropriate 
inequality constraints are then used in the optimization step. The primary optimization phase tries to 
find the region of the global optimum using COBYLA and large, initial step sizes expressed by the 
parameter 𝜌௦௧௔௥௧. Optionally, the results from the first phase can be improved in a second phase 
using either COBYLA with a reduced step size 𝜌௦௧௔௥௧ or, depending on the underlying model and 
dimensionality, a gradient-based SLSQP optimizer. After a satisfactory DS is found, the results are 
transformed into their original scale and the continuous boundaries for categorical effects are 
mapped to valid levels (for details, see next sections). 

3.2. Optimization Problem and Constraints 
We define the search for a rectangular design space with the maximum volume as a continuous 
optimization problem with an objective function that represents the hyperrectangles volume: 

maximize 𝑓(𝑥) = ෑ൫𝑥௣ା௜ − 𝑥௜൯𝑤௜௣
௜ୀଵ , 𝑥 ∈ ℝଶ௣ (5)

subject to 𝑐ଵ(𝑥), … , 𝑐ଶ೛శభାହ௣ାଶ(𝑥) ≥ 0 (6)
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Where 𝑥 is the vector of parameter values that is varied in the optimization process, comprised of 
the lower parameter boundaries in the first 𝑝 elements and the upper boundaries in the next 𝑝 
elements, with 𝑝 being the number of factors in the model. One can see that (5) simply maximizes 
the volume of the hypercube spanned by lower and upper parameter ranges. The vector 𝑤 contains 
predefined weights per parameter which can be used to favour one parameter range over. By 
default, this a vector of ones. The effects of weighting are illustrated in the example in section 4.2.1. 

To meet all requirements for a valid design space, a total of 2௣ାଵ + 5𝑝 + 2 inequality constraints is 
defined. First, the parameter space to be searched is constrained by ensuring that a parameter’s 
lower range boundary is smaller than its upper boundary. 𝑐௜(𝑥) = 𝑥௣ା௜ − 𝑥௜, 𝑖 = 1, 2, … , 𝑝 (7)

Oftentimes the design space is required to contain each parameter’s setpoint, so that 𝑥௜ ≤  𝑠௜ ≤𝑥௣ାଵ. This is expressed as the inequality constraint: 𝑐௜(𝑥) = 𝑠௜ − 𝑥௜, 𝑖 = 1, 2, … , 𝑝 (8)𝑐௜(𝑥) = 𝑥௜ − 𝑠௜, 𝑖 = 𝑝 + 1, … , 2𝑝 (9)

Similarly, optimization of the parameter space should only be performed within the screening range 
boundaries 𝑏௟ and 𝑏௨. As our main optimization algorithm does not support natural boundaries, this 
is implemented as inequality constraints: 𝑐௜(𝑥) = 𝑥௜ − 𝑏௟,௜, 𝑖 = 1, 2, … , 𝑝 (10)𝑐௜(𝑥) = 𝑏௨,௜ − 𝑥௜, 𝑖 = 𝑝 + 1, … , 2𝑝 (11)

The remaining constraints address the evaluation of the TI. To that end, the approximation 
generated in the pre-optimization step is used to calculate boundaries around CQA predictions that 
capture model uncertainty. These boundaries are then compared against the lower and upper 
acceptance limits 𝑎௟  and 𝑎௨ in each of the 2௣ corner points of the hyperrectangle: 𝑐௜(𝑥) = 𝑡𝚤ෝ ௟(𝑥𝛽መ) − 𝑎௟ , 𝑖 = 1, 2, … , 2௣ (12)𝑐௜(𝑥) = 𝑎௨ − 𝑡𝚤ෝ௨(𝑥𝛽መ), 𝑖 = 1, 2, … , 2௣ (13)

Here, 𝑥 denotes a point that is taken from all corners of the current DS candidate and 𝑥𝛽መ  yields the 
predicted mean that is passed to the TI approximation. The tolerance interval approximation 
functions 𝑡𝚤ෝ ௟(𝑥) and 𝑡𝚤ෝ௨(𝑥) are described in section 3.3. 

Evaluating the TI at corners alone does not guarantee a valid design space, as curvature in the 
response surface might lead to parameter ranges between corner points that exceed acceptance 
limits. To resolve this problem, a final inequality constraint uses a nested optimization step to find 
minima and maxima of the TI boundaries inside the hypercube: 𝑐௜(𝑥) = min௫∈஽ௌ 𝑡𝚤ෝ ௟(𝑥𝛽መ) − 𝑎௟  (14)𝑐௜(𝑥) = 𝑎௨ − max௫∈஽ௌ 𝑡𝚤ෝ௨(𝑥𝛽መ) (15)

As described in section 2.3, the L-BFGS-B optimization algorithm is used to solve this nested problem 
[28]. While these constraints might seem to make equations (12) and (13) redundant, having both TI 
checks in place can improve convergence of the optimizer in certain scenarios. Furthermore, one or 
the other can be deactivated in practice, depending on the type of optimization problem. 
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3.3. Tolerance Interval Approximation 
As mentioned in section 2.2, the calculation of tolerance intervals can be computationally expensive, 
depending on the type of model used for prediction. Furthermore, the inequality constraints 
described in section 3.2 evaluate intervals at several points in each iteration of the optimization 
algorithm, turning them into a potential bottleneck. Therefore, we present an approximation method 
that turns the calculation of a tolerance interval into a simple vector multiplication that can be 
carried out in a computationally efficient manner using standard linear algebra libraries. Although 
not necessarily required in the case of OLS, we use the tolerance interval definition in (4) as an 
illustrative example. To derive a parsimonious approximation, we exploit a property common to 
regression models, that is, that the least-squares projection 𝑦ො = 𝑋𝛽መ  always goes through the 
multivariate mean of 𝑋 and therefore parameter uncertainty associated with predictions around this 
point is smaller than at the boundaries of the parameter space. As tolerance intervals incorporate 
parameter uncertainty, this means that the interval is smaller in the center. This is true for the 
factors in 𝑋 as well as the mean prediction 𝑦ො, as illustrated in Figure 3. Here, observations in 𝑋 as 
well as a vector of coefficients 𝛽 were randomly generated to create the response 𝑦 with some 
added noise. After fitting an OLS model to the data, tolerance intervals were calculated for the 
predicted values 𝑦ො and their widths plotted on the y-axis. Note that this kind of curvature can be 
observed independently of parameter ranges or effect sizes.  

 
Figure 3: Tolerance interval (TI) widths over ordered (a) factor values and (b) mean predictions. 

While the shape can be affected by strong quadratic and interaction effects, the relationship 
between 𝑦ො and the tolerance interval width can be roughly approximated as a quadratic polynomial – 
a fact that is utilized in the proposed approximation. In a preprocessing step performed before DS 
optimization, the original CQA model is used to predict means and TI ranges for a design matrix 𝑋 
specifically designed to detect quadratic trends in data – a central composite design (CCD) [32]. The 
design is composed of 2௣ + 2𝑝 + 5 rows in 𝑋, giving it reasonable scalability over the number of 
factors typically used in biopharmaceutical models. The data is then used to regress the predicted 
means 𝑦ො onto the TI widths assuming a second order polynomial: 𝑡𝚤ෝ(𝑦ො) = 𝛽መ଴ + 𝛽መଵ𝑦ො + 𝛽መଶ𝑦ොଶ (16)

This regression model of TI widths is subsequently used in the optimization process. Furthermore, 
lower and upper boundaries are defined around the predicted mean: 



9 
 𝑡𝚤ෝ ௟(𝑦ො) = 𝑦ො − 𝑡𝚤ෝ(𝑦ො) (17)𝑡𝚤ෝ௨(𝑦ො) = 𝑦ො + 𝑡𝚤ෝ(𝑦ො) (18)

To evaluate the accuracy of the approximation, it was compared to the actual tolerance interval over 
a range of randomly generated values for 𝑝, 𝜎ଶ, 𝛼 and 𝜓 as well as different interaction and 
quadratic effects. A measure of relative error was calculated by dividing the difference between real 
and approximated TI boundaries by the range of the model response. For OLS models, the mean 
error over 1000 iterations was 1.49%, normalized over the model response range. To highlight that 
the approximation method is largely model agnostic, the simulation was repeated with linear mixed 
models (LMM) and data containing a single random effect. In each iteration the random effect 
variance and BLUP values were varied while the data was evenly split into four random blocks. For 
calculating tolerance intervals, we used the method proposed by Franzq et al. [7]. Here, the relative 
approximation error is even smaller at 0.70%, as the range of the model response used for 
normalization is inflated due to additional random effect variance. Figure 4 contains histograms of 
the error distribution for both the OLS and the LMM simulation. 

 
Figure 4: Relative error of the TI approximation for (a) OLS and (B) LMM, calculated as 𝑒𝑟𝑟 = (𝑇𝐼௔௣௣௥௢௫ − 𝑇𝐼௧௥௨௘)/(𝑦௠௔௫ −𝑦௠௜௡). The relative error for LMMs is even smaller due to inflated variance introduced by the random effect. 

While this level of accuracy cannot be expected for more complex model types, we believe that it 
yields a reasonable estimate of the TI to guide the optimization process. Furthermore, inaccuracies 
due to the approximation are mitigated by the second pass of the optimizer that uses the actual TI 
calculation method, as described in the following sections. 

3.4. Categorical Factors 
Many different approaches to optimization problems involving categorical factors can be found 
literature, e.g., mixed-integer programming [33], branch-and-bound tree searching [34], genetic 
algorithms [35], Bayesian methods [36], etc.  

Here we describe how to include categorical variables as continuous parameters of an optimization 
problem by exploiting how they are represented in a regression model. Specifically, we assume that 
such factors enter the model as sum-coded columns of the design matrix 𝑋 [37]. A categorical factor 
with 𝑘 levels is encoded into 𝑘 − 1 columns and their values indicate that the level corresponding to 
the observation is active (“1”), inactive (“0”) or that the last level, which is not encoded as a separate 
column, should be applied (“-1”). An example for this schema is given in Table 1 and Table 2.  
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Table 1: Original levels of the categorical factor. 

Category 

A 

A 

B 

B 

C 

C 
 

 Table 2: Columns representing individual levels 
of the original column as a result of sum-
encoding. 

Category | A Category | B 

1 0 

1 0 

0 1 

0 1 

-1 -1 

-1 -1 
 

 
When representing the training data for the model in this way, the least-squares solution yields 
coefficients for the first 𝑘 − 1 levels of the categorical factor, hereafter denoted as the vector 𝛽መ௖ ∈ℝ୩ିଵ. The coefficient for the last level, not represented as a column in the training data, can be 
calculated by − ∑ 𝛽መ௖,௝௞ିଵ௝ୀଵ . Consequently, the coefficients sum to zero and their values correspond to 
offsets from the mean of level means, or the intercept in the case of OLS models. In other words, the 
effect of a particular level in a categorical factor is simply added to the model response 𝑦ො = 𝑋𝛽መ . 
Figure 5 shows the vertical shift of the regression line caused by three categorical levels “a”, “b” and 
“c”, whereas “c” is encoded as the negative sum of all other level effects. 

 
Figure 5: The effect of different levels of a sum-coded, categorical factor. The original mean prediction without the 
categorical factor is shown as the orange line, while the effects of the different levels are shown as dashed lines. We use the 
range 𝑟௖ indicated by the black line for optimization. 

This description of a categorical factor allows us to incorporate it into the optimization problem as a 
continuous factor bounded by [min൫𝛽መ௖൯ , max (𝛽መ௖)]. The range that should be considered by the 
optimizer is denoted as 𝑟௖ = max൫𝛽መ௖൯ − min (𝛽መ௖), shown in Figure 5. As the optimizer operates in a 
normalized space, i.e., parameters are deviated within [−1, 1], a mean-normalization rescaling 
scheme is incorporated into the evaluation of 𝑦ො within the optimization procedure. To that end the 
mean prediction is expanded to 𝑦ො = 𝑋𝛽መ + 𝑥௖𝑟௖ + 𝑟௖ഥ  or, equivalently, by simply adding the terms 
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model data and parameters 𝑦ො = ൣ𝑥ଵ, … , 𝑥௣, 𝑥௖ , 1௡൧்ൣ𝛽መଵ, … , 𝛽መ௣, 𝑟௖ഥ൧. After optimization, a lower and 
upper range is returned that encloses all valid levels. These levels are added to the design space as 
possible values for the categorical factor. 

While this approach is specific to polynomial regression models and sum-coded categorical factors, it 
is performant and poses fewer restrictions on the choice of optimization algorithm when compared 
to other methods. 

4. Simulation Study 
4.1. Setup and Investigated Cases 
Accuracy and efficiency of the proposed method were evaluated in a set of simulation studies. The 
former was investigated in two studies with the purpose of showing (i) the general validity of the 
approach and to highlight differences in the resulting DS compared to a grid-based method and (ii) 
the applicability to a realistic scenario in the biopharmaceutical domain. Efficiency was evaluated by 
randomly creating regression models with different model sizes and measuring the computational 
time to compute a DS based on them. The results of both accuracy and efficiency are compared to a 
grid-based approach that performs a full scan of the parameter space by dividing it into a grid of 
equidistant points and evaluating all possible point combinations to find the largest hyperrectangle 
that contains only points satisfying the acceptance criteria. Note that due to the difference between 
the definition of a probabilistic design space used by other methods referenced in the introduction 
and the definition used here, i.e., a regression tolerance interval that includes model uncertainty and 
population coverage, results from these methods are not directly comparable and therefore not 
included in this evaluation. 

The investigated cases are described in the following subsections. All studies were conducted on a 
workstation notebook with an Intel Core i7-8565U CPU, integrated graphics and 16 GB of DDR4 
memory, in a Python 3.9 environment using the packages numpy 1.23.5 for algebra, scipy 1.8.0 for 
optimization and statsmodels 0.13.2 for modelling. 

4.1.1. Case A: 2-Dimensional Parameter Space 
To demonstrate that the method is capable of finding a ground truth in principle and to illustrate the 
difference to sampling from a predefined grid of 16x16 points graphically, the first simulation study 
identifies the DS in a 2-dimensional parameter space and inscribes the largest possible rectangle into 
a unit circle with the radius 𝑟 = 1. The sides of this rectangle are of length 𝑟√2, thus its area is ൫𝑟√2൯ଶ

 or, for the unit circle, simply 2. Centered at the point (0, 0), the acceptable parameter range 

for 𝑥ଵ and 𝑥ଶ is ቂ− √ଶଶ , √ଶଶ ቃ. The form of the regression model used for the optimization-based as well 
as the grid-based method is a consequence of the unit circle problem: 𝑦 = 𝑥ଵଶ + 𝑥ଶଶ (19) 
Model uncertainty was not considered for the sake of results being comparable to the ground truth, 
i.e., model predictions were compared directly to acceptance limits and neither tolerance interval 
nor its approximation were applied. A single pass of the COBYLA optimization procedure was 
performed with a trust region boundary of 𝜌௦௧௔௥௧ = 0.01. 

4.1.2. Case B: 6-Dimensional Parameter Space 
A second simulation study serves as an example that is more representative of models used in the 
biopharmaceutical domain. The regression model used here contains 6 main factors as well as 
interactions and quadratic effects: 
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 𝑦 = −0.45 + 2.1𝑥ଵ − 0.93𝑥ଶ + 0.63𝑥ଷ + 0.42𝑥ସ − 0.32𝑥ହ + 0.28𝑥଺ + 0.76𝑥ଶଶ − 0.21𝑥ଵ𝑥ଶ− 0.34𝑥ଵ𝑥ହ + 0.22𝑥ଵ𝑥଺ + 0.27𝑥ଶ𝑥ଷ + 0.24𝑥ଶ𝑥ସ − 0.25𝑥ଶ𝑥ହ − 0.19𝑥ଷ𝑥଺− 0.32𝑥ସ𝑥଺ 

(20) 

Effect sizes are fairly balanced and common in models used to represent downstream unit 
operations [4]. Model uncertainty as well as population coverage is considered by a tolerance 
interval with the parameters 𝛼 = 0.05 and 𝜓 = 0.05, i.e., the interval covers 95% of the population 
values with a confidence level of 95%. As it is not possible to define a ground truth for this example 
analytically given the model and the interval included in checking acceptance criteria, results are only 
compared to those of the grid-based method. The parameter space for the grid was discretized over 
9 equidistant points per parameter, resulting in 9଺ evaluations overall. After the initial run of the 
optimization algorithm with a trust region boundary 𝜌௦௧௔௥௧ = 0.01, a second pass is performed with 𝜌௦௧௔௥௧ = 0.001 for finetuning and its effect is illustrated in the results. Finally, to showcase the utility 
of the weighting scheme, the results include a run in which the parameter 𝑥଺ is weighted up to 
identify a more balanced DS.  

4.1.3. Case C: Performance Evaluation 
Computational time of the optimization-based method was evaluated for up to 10 parameters. For 
each model size 𝑝, 100 regression models were generated by sampling parameter values and effects 
uniformly from the interval [−1, 1], randomly adding interactions and adding residual error 𝜎~𝑁(0, 𝑠), where 𝑠 was uniformly drawn from [0.1, 1]. In each interaction, tolerance intervals 
around the fitted values of the training data were calculated and the 80% quantile of the upper 
boundaries was used as a reasonable upper acceptance limit for calculating the design space. The TI 
approximation procedure described in section 3.3 was used and the study was performed with and 
without a second optimization pass. Mean and standard deviation of the computational time for 
computing the DS in the 100 iterations per model size were recorded. Due to performance 
limitations, this approach was not possible for the grid-based method and only a single model was 
used to compute the DS on a grid of 8௣ points per model size. For the same reason, the DS was 
computed only for up to 6 parameters and a projection is used for the rest. As the parameter space 
grows exponentially, this projection fits an exponential function to the observed data and 
extrapolates for a higher number of parameters. 

4.2. Results 
4.2.1. Accuracy 
Figure 6a illustrates the results of case study A in a contour plot. The optimization-based method 
successfully identifies the true rectangle, with an area of 2, inside the unit circle, exhibiting negligible 
error. As the grid-based method can only evaluate points on the 16x16 grid, the resulting DS volume 
is smaller than that found by the optimizer, which is not subject to that limitation. Of course, the 
accuracy of the grid method can be improved by increasing the resolution. This, however, can 
drastically increase the computational time for higher dimensional spaces and it is not clear which 
grid resolution yields a DS with reasonable accuracy. The numeric results are summarized in Table 3. 

Table 3: Results for simulation study A. The optimizer results match the ground truth with negligible 
error. 

 x1 x1 x2 x2 volume 

 from to from to  
ground truth -0.70710678 0.70710678 -0.70710678 0.70710678 2.0 

optimizer -0.70710642 0.70710642 -0.70710642 0.70710642 2.0+9.53-13 

grid -0.6 0.6 -0.73333334 0.73333334 1.76 
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Figure 6b shows the results for a case study B, comprised of six main factors and several interaction 
and quadratic effects. In this representation of the DS, valid parameter ranges are indicated by the 
axes of the spider plot. As in the previous example, the volume of the DS based on the 9଺ grid is 
much smaller than that of the optimizer (orange solid line in Figure 6b). It is, however, more 
balanced, giving each parameter a similar range. This is an effect that might be observed in 
optimization-based results for higher-dimensional parameter spaces, as the optimization objective 
only considers DS volume. Here, the range of 𝑥଺ is quite small compared to the grid method. In case 
such a result is not desired, the weight for 𝑥଺ in objective (5) can be increased to yield a more 
balanced parameter range while sacrificing some volume, indicated by the dashed orange line in 
Figure 6b. Both DS plotted in orange were calculated using the first phase of the proposed scheme 
only, i.e., with an approximated TI and 𝜌௦௧௔௥௧ = 0.01. The unweighted DS was then passed to the 
second phase for further refinement using the true TIs and 𝜌௦௧௔௥௧ = 0.001, which results in the 
largest volume. The parameter ranges of the DS are shown in green and numeric results are 
summarized in Table 4. 

Table 4: Results from simulation study B, highlighting increased DS volume of the optimization-based 
method and the flexibility added by the weighting scheme. 
 

x1 
 

x2 
 

x3 
 

x4 
 

x5 
 

x6 
 

volume 
 

from to from to from to from to from to from to 
 

grid -1.00 0.00 0.00 1.00 -1.00 0.25 -0.75 0.50 -0.25 1.00 -0.25 1.00 2.44 

optimizer -1.00 -0.51 -0.63 0.97 -1.00 0.64 -1.00 0.73 -0.91 1.00 -1.00 1.00 8.55 

opt., weighted -1.00 -0.51 -0.69 0.98 -1.00 0.66 -1.00 0.76 -0.95 1.00 -1.00 1.00 8.42 

opt., second pass -1.00 -0.25 -0.43 1.00 -1.00 0.31 -1.00 0.50 -1.00 1.00 -1.00 1.00 9.27 

 

 
Figure 6: (a) Bivariate parameter space with an upper tolerance interval boundary shown as the contour. The design spaces 
found by the optimizer and the grid method are marked as rectangles. (b) A multivariate parameter space illustrated as a 
spider plot with ranges per parameter shown in the axes and DS plotted as polygons. 

 

4.2.2. Computational Time 
A major problem of grid-based approaches is poor scaling to higher dimensions of the parameter 
space. As the space to be searched grows exponentially with the number of parameters, so does 
computational time required to find the DS [6]. This renders the method infeasible for many use 
cases in the biopharmaceutical domain where ten main factors or more are not uncommon for unit 
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operation models (see case study in [4]). For example, the screening algorithm would need to 
evaluate 8ଵ଴ points for parameter ranges segmented into eight parts and ten parameters while also 
computing all possible hyperrectangles within this space. Although optimization-based methods are 
not guaranteed to find the global maximum, the parameter space is screened in a more systematic 
way, ideally eliminating large parts of it in a few iterations. This is shown by the results of simulation 
study C illustrated in Figure 7, where the time for computing a DS is plotted against the number of 
model parameters of randomly generated models. As described in section 4.1.3, grid-based results 
are projected from 7 factors onwards, as it was not feasible to compute results. This is indicated by 
the dashed line in the plot.  

 
Figure 7: Performance evaluation results of the proposed method compared to the grid-based approach. The orange and 
green line indicate optimization-based results, where the latter results in a fixed offset in computational time. The blue line 
shows the grid-based results, which could only be calculated for up to 6 factors and exponential extrapolation was used to 
project results for a larger number of factors, indicated by the dashed line. Note that for a low number of factors, the grid-
based method can be subject to random differences in initialization, which is why the computational time for 2 factors is 
shown to be lower than that of 3. 

The number of iterations for the second optimization pass was capped at 100 and the computational 
time added to the calculation scales linearly with the number of parameters, shown as the green line 
in the plot. Overall, the optimization-based computation for 10 factors is six to seven orders of 
magnitude faster than the grid method, effectively enabling the exact computation of a DS in higher 
dimensions. 

5. Discussion 
We believe that the optimization-based approach to calculating a DS circumvents the problems 
associated with grid-based methods, i.e., poor scaling over the number of parameters and a lack of 
accuracy due to the limitation to grid points in the solution space. In contrast to existing Bayesian 
methods [10, 3, 11, 12] the resulting DS is deterministic, contains model uncertainty and consists of a 
linear combination of parameter ranges, facilitating operational simplicity for biopharmaceutical 
control strategies. However, as is the case for many optimization problems - especially in high-
dimensional parameter spaces – there is a possibility of converging to local minima and not finding 
the largest possible DS. This problem can be mitigated by using different random seeds [38], different 
starting points for the algorithm [39] or different factor weights (section 4.1.2). Results from different 
starting conditions could be compared to see if they agree and thus gain confidence in the result or 
only the maximum DS from the set of candidates could be returned. 

The weighting scheme in combination with fast computational times also facilitates the iterative 
exploration of the DS in higher dimensions, as shown in the results in Figure 6. One can investigate 
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the effect of weighing a parameter on the possible ranges of other parameters and thereby gain 
understanding about DS-related dependencies that cannot be directly derived from the model. 

As mentioned in section 2.1 and 3.3, the optimization-based approach is largely model-agnostic, 
given that a tolerance interval can be defined and approximated, though the latter is only required 
for performance reasons. We have shown in section 3.3 that the quadratic approximation works well 
for LMMs. Future work could incorporate a wider range of models, such as GLS, GLM, censored data 
or mechanistic models.  

6. Conclusion 
In this contribution, we outlined a novel method for finding an ICH Q8 compliant design space 
comprised of linear combinations of PP ranges. The relationship between CQA and PPs is represented 
as a polynomial regression model and its prediction is used to evaluate whether CQAs meet 
acceptance criteria.  

Conservative estimation methods are vital in the biopharmaceutical domain, which is why the 
boundaries of tolerance intervals are used for evaluation of ACs instead of the predicted mean CQA. 
As the TI calculation can be complex, an approximation is generated in a pre-optimization step that 
can be used to calculate the TI by performing a single matrix multiplication. COBYLA is used for the 
minimization of the main objective, and we suggest refining results with SLSQP or COBYLA with 
smaller 𝜌௦௧௔௥௧ and using the true TI instead of an approximation.  

Performance evaluations show that the proposed method results in design spaces with a larger 
volume when compared to PP space discretization methods, and that they can be calculated in a 
fraction of the time. This, for the first time, enables the calculation of design spaces for more than 10 
process parameters of one model. We believe that this approach will facilitate a robust definition of 
the design space for biopharmaceutical development that reduces patient risk by employing 
conservative estimators while allowing manufacturers to maximize control ranges and operational 
flexibility. Furthermore, this increased flexibility, gained solely by an improved evaluation of existing 
data and models is a chance for manufacturers to optimize a process within the DS. 
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8 Appendix B:  Models  and  Intervals

8.1 Models
8.1.1 Ordinary Least  Squares  Models
One  of  the  simplest  and  widely  used  regression  models  is  the  ordinary  least  squares  (OLS)  model.
It  is  composed  of  a response  vector y,  a n * p design  matrix  of  observations 𝑋 that  contains
different  factors  in  its  columns  and  a set  of  observations  in  its  rows,  a vector  of  coefficients 𝛽 and
a residual  error  vector 𝜖:

y = 𝑋  𝛽 + 𝜖 (8.1)  

Fitting the  model  is  synonymous  with  finding an  estimate  of  the  coefficient  vector 𝛽.  Due  to
the  simplicity  of  OLS,  a unique  solution  exists  for  this,  and  it  can  be  obtained  with  a closed  form
expression,  provided 𝑋 is  non-singular  and  therefore 𝑋𝑇 𝑋 positive  definite:

�̂� =  (𝑋𝑇 𝑋)−1𝑋𝑇 y (8.2)

Under  the  assumption  that 𝜖 ∼ 𝑁(0,  𝜎2I), �̂� is  the  best  linear  unbiased  estimator  (BLUE)  

for 𝛽,  where 𝜎2 is  the  measure  of  variance  of  residuals.  The  optimal  properties  of  estimators
and  wide  availability  in  statistical  software  make  OLS  models  a popular  tool  in  many  applied
sciences.

8.1.2 Linear  Mixed  Models
The  mathematical  formulation  for  linear  mixed  models  (LMM)  adds  the  Boolean  design  matrix
𝑍 that  assigns  each  observation  to a group.  The  general  form  of 𝑍 allows  for  the  inclusion  of
multiple,  random  effects  and  more  complex  group  structures  like  nested  and  crossed  designs.  An
introduction  to mixed  models  can  be  found  in  [1]  and  [2].  The  mathematical  notation  for  the
model,  variance  components,  estimators  and  likelihood  function  used  here  is  taken  from  [3].

y = 𝑋  𝛽 + 𝑍  𝛾 + 𝜖 (8.3)

In  addition  to the  design  matrices 𝑋 and 𝑍,  the  model  contains  the  vector  of  fixed  effect  

coefficients 𝛽 and  random  effect  coefficients 𝛾 ∼ 𝑁(0,  𝜎2
𝛾I).  The  residual  error  is  assumed  to

be  normally  distributed  with 𝜖 ∼ 𝑁(0,  𝜎2
𝜖 I),  as  in  the  OLS  model.  Note  that  the  mixed  model

splits  up  variance  into a random  component 𝜎2
𝛾 and  a residual  component 𝜎2

𝜖 .  This  enables  a
more  detailed  explanation  of  the  variance  observed  in  the  data,  i.e.,  how  much  of  it  is  the  result
from  fixed  effects  and  how  was  introduced  by  random  blocks.  Using those  different  variance  

components,  the  overall  variance  in y can  be  expressed  as 𝑉  𝑎r(y)  = 𝑉 = 𝑍  𝐺𝑍𝑇 + 𝑅,  with
random  effect  variances  in  the  diagonal  elements  of 𝐺 and 𝑅 = 𝜎2

𝜖 I.
Assuming both  random  blocks  and  residuals  are  normally  distributed,  the  feasible  general

least-squares  (FGLS)  estimates  of  the  coefficient  vectors 𝛽 and 𝛾 can  be  obtained  by:

�̂� =  (𝑋𝑇 𝑉
−1

𝑋)−1𝑋𝑇 𝑉
−1

y (8.4)
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𝛾  = �̂�𝑍𝑇 𝑉
−1(y − 𝑋  �̂�) (8.5)

However,  this  requires  the  random  and  residual  variances  in 𝑉 to be  already  known,  which  is
usually  not  the  case.  A common  approach  to calculate  unbiased  estimates  of  variance  components
and  the  estimator  for  the  variance  matrix 𝑉 based  on  the  data is  restricted  maximum  likelihood
(REML).  In  this  method  the  matrices 𝐺 and 𝑅 are  computed  numerically  by  minimizing the
likelihood  function,

𝐿𝑅  𝐸  𝑀  𝐿(𝐺,  𝑅)  = −1
2 l  o𝑔|𝑉 |  − 1

2 l  o𝑔|𝑋𝑇 𝑉 −1𝑋|  − 1
2r𝑇 𝑉 −1r − n − p

2 l  o𝑔(2𝜋) (8.6)

with r being the  vector  of  residuals r = y − 𝑋(𝑋𝑇 𝑉 −1𝑋)−𝑋𝑇 𝑉 −1y.  Generally,  statistical  

software  uses  some  variant  of  the  Newton-Raphson  algorithm  for  optimization  [3].  Of  course,
REML optimization  followed  by  computing FGLS  estimates  for  fixed  and  random  effects  is  more
expensive  computationally  than  fitting an  OLS  model.  Nevertheless,  the  difference  is  negligible
in  modern  computing environments  and  the  more  accurate  prediction  of  statistical  intervals
outweigh  any  concerns  regarding performance  in  most  use  cases.

8.2 Statistical  Intervals
Statistical  intervals  represent  and  important  and  widely  used  tool  to calculate  and  visualize
uncertainty  and  data,  estimators,  or  predictions.  The  most  widely  used  type  of  interval  is  the
confidence  interval.  Other  types  like  prediction  or  tolerance  intervals  are  applied  less  frequently,
though  they  might  be  more  appropriate  in  use  cases  where  uncertainty  about  the  true  distribution  

of  drawn  samples  is  expressed.  The  following sections  describe  intervals  in  the  context  of  regression
models.

8.2.1 Confidence  Intervals
Confidence  intervals  in  regression  models  are  used  to express  uncertainty  about  the  predicted
mean  of  a  model,  or  in  other  words,  about  the  expected  value  of  the  response.  Because  this
property  of  the  population  can  only  be  estimated  imperfectly  with  a limited  set  of  observations,
confidence  intervals  define  a region  that  contain  the  true  value  with  a predefined  level  of  confidence
100(1−𝛼)%.  Borrowing notation  from  [4],  the  probability  that  the  predicted  mean  of  the  response
is  contained  within  the  "true"  interval 𝐼𝑐,  based  on  the  multivariate  predictor x(n + 1) is

𝑃 r[𝜇(y|xn+1) ∈ 𝐼𝑐(xn+1]  =  1 − 𝛼 (8.7)

This  leads  to the  common  form  for  two-sided,  multivariate  confidence  intervals  in  both  OLS
models  and  LMM:

ŷ ± t(n − p,  𝛼  /2)
√︁

𝜎2x𝑇
n+1(𝑋𝑇 𝑋)−1xn+1 (8.8)

Where t is  the  probability  density  function  of  the  T-distribution  with n − p degrees  of  freedom
and  the  critical  value 𝛼  /2.  The  square  root  term  is  called  the  standard  error  of  the  fit,  resulting
from  the  covariance  matrix (𝑋𝑇 𝑋)−1 [1, 5].
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8.2.2 Prediction  Intervals
Oftentimes,  when  regression  models  are  applied,  we  are  not  interested  in  the  uncertainty  of  the
predicted  mean  but  in  the  distribution  of  actual  values.  The  probability  that  a new  observation
y|xn+1 is  contained  within  the  true  interval 𝐼p is

𝑃 r[y|xn+1 ∈ 𝐼p(xn+1]  =  1 − 𝛼 (8.9)

The  difference  between  confidence  and  prediction  intervals  is  subtle  and  sometimes  not  well
understood,  which  can  lead  to problematic  outcomes  when  conservative  model  results  are  favorable,  

e.g.,  in  biopharmaceutical  manufacturing.  Prediction  intervals  are  wider  than  confidence  intervals,
as  the  residual  model  error  is  added  to the  standard  error.  An  OLS  prediction  interval  can  be
computed  by

ŷ ± t(n − p,  𝛼  /2)
√︁

𝜎2(1 + x𝑇
n+1(𝑋𝑇 𝑋)−1xn+1) (8.10)

A similar  formula can  be  applied  when  using LMMs,  where  the  covariance  matrix  for  the  OLS
fixed  effect  estimator 𝜎2(𝑋𝑇 𝑋)−1 is  replaced  with  its  GLS  counterpart (𝑋𝑇 𝑉

−1
𝑋)−1 and  the

degrees  of  freedom  for  the  t-distribution n − p are  replaced  with  the  generalized  Satterthwaite
approximation  proposed  in  [6].

8.2.3 Tolerance  Intervals
Note  that  prediction  intervals  define  a region  into which  a single,  new  prediction  might  fall  with
a predefined  level  of  confidence.  Using prediction  intervals  alone,  one  cannot  express  whether  a
certain  proportion  of  responses  will  fall  withing a range.  The  appropriate  tool  to incorporate
both,  confidence  in  and  coverage  of  the  true  population  in  a region  around  the  prediction,  is  the
tolerance  interval.  It  illustrates  the  probability  that  the  new  prediction  is  contained  within  the
true  interval 𝐼𝑇 in  at  least (100𝑃 )% of  repeated  samplings  to a nominal  confidence  of 100(1−𝛼)%.

𝑃 r[𝑃 r[y|xn+1 ∈ 𝐼𝑇 (xn+1)] ≥ 𝑃 ]  =  1 − 𝛼 (8.11)

Several  approximations  for  tolerance  intervals  in  OLS  models  can  be  found  in  literature  [7–9].
Here,  we  highlight  the  method  employed  by  the  R  package  "tolerance"  [8, 10]:

ŷ ± 𝜎

⎯⎸⎸⎷(n − p)𝜒2  

1;𝑃 ( 1
n*

i
)

𝜒2
n−p;𝛼

(8.12)

where n*
i = �̂�2

s𝑒(ŷi)2 are  the effective number  of  observations [11], 𝑃 the  coverage, 𝛼 the  confidence
level  and 𝜒2

𝑑;𝑎(𝛿) the  probability  density  function  with  degrees  of  freedom 𝑑,  confidence  level 𝛼
and  an  optional  non-centrality  parameter 𝛿.

An  approximation  for  tolerance  intervals  that  includes  random  effects  is  proposed  by  Franzq
et  al.  [6].  It  is  similar  to the  prediction  interval,  except  that  the  standard  deviation  added  

to the  fixed  effect  variance  is  replaced  by  the  upper 100(1 − 𝛼)% confidence  bound,  which  in  

turn  is  computed  by  a sum  of  expected  mean  squares  (EMS).  EMS  are  used  instead  of  the
actual  variances  to allow  for  crossed  and  nested  scenarios,  where  variance  components  are  not
independent  and  cannot  be  simply  summed  up  to calculate  the  total  variance.

ŷ ± z(𝜓  /2)
√︁

x𝑇
n+1(𝑋𝑇 𝑉 −1𝑋)−1xn+1 + 𝜎2

𝑇

⎯⎸⎸⎸⎷1 +
(︃

1
𝜎2

�̂�

)︃  

⎯⎸⎸⎷ q∑︁
j=1

𝐻2
j k2

j 𝐸  𝑀  𝑆2
j (8.13)
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The  total  variance, 𝜎2
𝑇 ,  is  calculated  as  the  sum  of  EMS, 𝐻1

j = rj

𝜒2
𝛼,rj

− 1 with rj being the  

number  of  replicates  in  a random  block  and k2
j 𝐸  𝑀  𝑆2

j linear  combinations  of  expected  mean  

squares.  The  tolerance  intervals  for  LMMs  used  to incorporate  random  effects  into control
strategies  were  calculated  using this  formula.
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