Mid-IR photothermal spectroscopy (PTS) for the detection of caffeine in commercial drinks

Giovanna Ricchiuti giovanna.ricchiuti@tuwien.ac.at

Lisa Riedlsperger lisa.riedlsperger@tuwien.ac.at Erwin Rosenberg erwin.rosenberg@tuwien.ac.at Bernhard Lendl bernhard.lendl@tuwien.ac.at

Introduction

molecules present in gases, liquids and solids. [1] Classical absorption scale with laser power it does not fully benefit from quantum cascade we validate and calibrate our method using gas chromatography (GC)

Direct vs. Indirect Spectroscopy

Intensity (Absorption) via Lambert-Beer's law:

$$A = \mathbf{L} \cdot c \cdot \varepsilon = \log \left(\frac{I_0}{I} \right)$$

L ... Optical pathlength A ...Absorbance

ε ... Molar absorption coefficient

. Concentration

Optical phase

. Refractive index Wavelength

Temperature and refractive index (Photothermal Spectroscopy (PTS)):

$$\Delta T = \mathbf{P} \cdot \frac{c \cdot \varepsilon}{f_{mod} \cdot A \cdot c_P \cdot \rho}$$

... Optical power

Amplitude of thermal wave A... Beam cross section area f_{mod} Modulation Frequency

Heat Capacity

Sample preparation & Reference **Analysis**

C-18 SPE columns were set up in a manifold and conditioned by passing CHCl₃ (5 mL) and H2O (5 mL). The aqueous samples (coffee, tea and energy drink, 4 mL and 8 mL samples) were loaded onto the sorbent material. After passing through the columns with a flow of 0.2 0.5 mL min $^{\text{-}1}$, the sorbent was rinsed with $\rm H_2O$ (1 mL) and dried with a stream of nitrogen. Subsequently, the analyte was eluted with CHCl₃ (4 mL). mg/mL of caffeine in CHCl₃) were measured using GC with ionisation detector. The isolated peak areas were integrated and used as a reference value for calibration and validation. The eluted samples were measured both via the developed PTS FTIR spectrometer qualitative comparison of the obtained IR spectra

Experimental Setup

- Photothermal Interferometry highly sensitive phase sensitive detection technique;
- Dual-beam collinear configuration permits to achieve better absolute sensitivity because a longer interaction length between the beams is provided;
- Active locking-scheme a piezo electric actuator is directly glued on a mirror in one arm of the interferometer to compensate optical-pathlength differences between the two arms via a PID servo-controlled loop;
- Temperature Stabilization allows to reduce thermal drifts and fluctuations;
- Flushing with dry air allows to remove water vapor contribution as a main source of noise;

Results

Limit of Detection (LOD) and Limit of Quantification (LOQ) - FTIR vs PTS spectrometer

Method	S	σ	LOD [mg/mL]	LOQ [mg/mL]
FTIR (Vertex)	0.3017 [A.U./ mg/ mL]	0.0027 [A.U.·mg/ mL]	0.027	0.089
PTS	0.7165 [V/ mg/ mL]	0.0064 [V·mg/ mL]	0.027	0.089

2.0379

1.4397

Conclusions

- Photothermal Spectroscopy (PTS) allows for fast, sensitive analysis of liquid samples
- The generated signal in PTS scales direct proportional with the excitation laser power Mid-IR PTS allows for direct reagent-free analysis through the measurement of rotationalvibrational transitions in the target analytes
- Quantitative determination of caffeine in coffee/tea/soft drinks has been demonstrated Mid-IR PTS allows additionally to retrieve qualitative information. Absorption peaks' positions and band-shape are in very good agreement with records from high-end FTIR spectrometers

CHASE

0.6682

1.2795

Infrared Spectrometry; John Wiley & Sons, Inc. Hoboken, NJ, 2007

Quantum Cas-cade Lasers (QCLs) in Biomedical

https://doi.org/10.1039/C7CS00403F. [3] Bialkowski, S. E. Photothermal Spectros Methods for Chemical Analysis; John Wiley & Sons