

Long-wavelength Distributed **Feedback Tapered QCLs**

Davide Pinto^{1,2}

Kumar Kinjalk², Ariane Meguekam², Michael Bahriz², Daniel Andrés Diaz Thomas², Zayneb Loghmari², Bernhard Lendl¹ and Alexei N. Baranov²

1. Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164, 1060 Vienna, Austria 2. Institute of Electronics and Systems, UMR 5214 CNRS – Université de Montpellier, 34095 Montpellier, France

3-8 September 2023

UNIVERSITÉ

DE MONTPELLIER

C-Pass: Conference on Photonics for Advanced Spectroscopy and Sensing

WIEN WIEN

TECHNISCHE

UNIVERSITÄT

Yao, Y., Hoffman, A.J., Gmachl, C.F., 2012. Nature Photonics 6, 432-439.

QCL'S MAIN CHARACTERISTICS

- "Artificial semiconductor" obtained as a repetition of quantum wells and barriers
- Photon are emitted by intersubband transition in a multistage-cascaded geometry
- Emission in the Mid-Infrared region: $\lambda = 2 \ \mu m 24 \ \mu m$

QCLs applications: spectroscopy

CHEMICAL SENSING (ENVIRONMENTAL MONITORING, HEALTH & LIFE SCIENCE)

The Long-wavelength Challenge – InAs material system

Transparency

region in InAs

FACING THE LIMITATIONS:

- 1. Smaller upper lifetimes (energy close to LO-phonon energy)
- 2. Free carrier scattering losses $\propto \lambda^2$
- 3. Material absorption (proximity to Reststrahlen band)

E. Benveniste et al., Appl. Phys. Lett. 93, 131108 (2008) - MPQ

THE SOLUTION: HIGH GAIN MATERIAL

$$g = \frac{e\hbar}{\varepsilon_0 cm_0} \frac{1}{2\gamma_{32}nL_p} f_{32}\tau_3 \left(1 - \frac{\tau_2}{\tau_{32}}\right) \sim \frac{1}{(m^*)^{3/2}}$$

- At larger wavelengths the non-parabolicity of the bands can be neglected
- Lower m^{*} in InAs than in other materials
- First long-wavelength QCLs demonstrated at Université de Montpellier, since 2013

for Advanced Spectroscopy and Sensin

Slide 3

APHI has received funding from the European Union Horizon 2020 research and innovation programme under the 1arie Skłodowska-Curie grant agreement No. 86080

C-Pass 2023

3-8 September 2023 WWW.OPTAPHI.EU

The strive toward higher optical power

Quantum Cascade Lasers: 20 years of challenges, Opt. Exp. 2015

- Thermally activated processes (such as backfilling) reduce the laser performance at higher λ;
- The material system and heat extraction technology also play a fundamental role for CWoperation;
- Reduced optical power:

$$P_{opt} = F_{ph}\hbar\omega \propto \frac{1}{\lambda}$$

NEED OF A STRATEGY TO IMPROVE AVAILABLE POWER!

The strive toward higher optical power

MOPAs & Tapered lasers

ADVANTAGES OF TAPERED WAVEGUIDE:

- 1. Larger active zone
- 2. Good Beam quality
- 3. Reduced in-plane divergence

MASTER OSCILLATOR **Power Amplifier:**

- PA is driven below self-lasing current density
- Individual components • optimization
- Adds complexity

TAPERED LASER:

- the tapered ٠ waveguide acts as a (unstable) laser cavity
- Monolithic device

Politecnico

di Bari

MASTER OSCILLATOR POWER AMPLIFIER

Slide 6

C-Pass 2023

WIEN WIEN

Fabrication of LW-Tapered QCLs

Taner angle

Laser

TAPERED GEOMETRY:

- 3.6 mm long laser bars
- Taper (full-)angles
 between 0° 3°
- Linear taper geometry
- ½ Taper section
 ½ Ridge section

	А	0°
R30-B		
	В	1°
R30-C		
	С	2°
R30-D		
	D	3°

Fabrication of LW-Tapered QCLs

Deep wet MESA etching 1.

Insulation via resist hard-bake 2.

3. Top contact metalization

C-Pass 2023

Fabrication of LW-Tapered QCLs

FABRICATION PROCESS:

0. Grating fabrication via electron-beam lithography

1. Deep wet MESA etching

2. Insulation via resist hard-bake

3. Top contact metalization

Slide 9

Politecnico

di Bari

Optical Power enhancement

PULSED OPERATION (PRR = 12 KHz, dt = 330 ns) ROOM TEMPERATURE

The observed total output is a **combination** of:

- 1. larger active area
- 2. higher collection efficiency

*Ridge width= 14 um, Laser Length 3.6mm, Taper section 50%

Taper angle	Active volume enhancement*	Collection efficiency*	Estimated power enhancement*
0°	1	1	1
1°	1.56	1.48	2.3
2°	2.12	1.51	3.2
3°	2.68	1.52	4.1

Slide 10

OPTAPHI has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 860808

ALDO MORO

WWW.OPTAPHI.EU

Anti- & High-reflection Coatings

AR-coating

2. SiO₂ sputtering

3. Resist lift-off

4. Resist Protection

5. SiO₂/Au sputtering

6. Resist lift-off

TAPERED LASERS PROVIDED HIGHER OPTICAL POWER OUTPUT THAN RIDGE LASERS

C-Pass 2023

Slide 11

WIEN WIEN

Divergence angle and beam quality estimation

MEASUREMENT SETUP

DIVERGENCE ANGLE RESULTS

FEATURES

- Narrower slow-axis divergence for tapered devices
- Single lobe distributions
- Absence of higherorder modes also along fast-axis

Slide 12

OPTAPHI has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 860808

C-Pass 2023

WWW.OPTAPHI.EU

Divergence angle and beam quality estimation

OPTAPHI has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 860808

MODE ANALYSIS

Divergence angle and beam quality estimation

Taper 3°

0

Angle (°)

 $--- | = 1.5 |_{th}$

 $-1 = 1.8I_{th}$

1.25

0.25

0.00

-40

DIFFRACTION LIMITED BEAM QUALITY, ASIDE FROM 3° TAPERS

C-Pass 2023

Slide 14

-20

20

40

Distributed Feedback Tapered QCLs

Slide 15

CONCLUSIONS

- First demonstration of DFB tapered lasers in the long-wavelength infrared region
- **Diffraction-limited beam quality** was achieved, together ۲ with single-longitudinal mode operation

R30-A
 R38-B
R30-C
R30-D

OUTLOOKS

- Optimize taper geometry to achieve higher performances, especially for CW-operation
- Employment of the DFB-tapered lasers for spectroscopy of BTEX compounds

Slide 16

OPTAPHI has received funding from the European Union's

Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 860808

C-Pass 2023

3-8 September 2023

Slide 17

OPTAPHI has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 860808

Politecnico

di Bari

C-Pass 2023

3-8 September 2023

WWW.OPTAPHI.EU