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1. Introduction

Within the last decade the rapidly developing technologies such as laser scanning, so called Light 

Detection and Ranging (LiDAR), remote sensing, and machine learning  have tremendously changed 

the face of forest ecology. Laser scanning provides the spatial overview and the precise three-

dimensional object description (Wehr et al., 1999), while remote sensing collects large volumes of 

environmental data, including those from the inaccessible habitats (Pajares et al., 2015). Finally, 

machine learning allows the data to be processed at a deeper level (Jordan et al., 2015).  

The recognition and monitoring of small- and medium-size tree-related microhabitats (TrMs) 

inhabited by fungi, mosses, ivies, mistletoes, etc. (Frey et al., 2020) are important, since they are well-

recognized indicators of tree and whole-forest health. Moreover, TrMs supports the diversity of insects, 

birds, animals and plants, including mistletoes, in forest ecosystems. Mistletoes are taxonomically 

diverse group of aerial hemiparasitic plants from the Loranthaceae, Viscaceae, Santalaceae, 

Amphorogynaceae, and Misodendraceae families (order Santalales), attaching to their hosts by root-like 

structure called the haustorium and being largely dependent on water and nutrient supply from the hosts 

(Nickrent et al., 2010). There are two main mistletoe species in the Czech Republic – deciduous yellow-

berried mistletoe (Loranthus europaeus Jacq.; Loranthaceae) parasitizing mostly European oak 

(Quercus robur L.) hosts and rarely other trees (Danihelka et al., 2012; Krasylenko et al., 2019), and the 

ever-green European mistletoe (Viscum album L.; Santalaceae) with three subspecies – V. album sbsp. 

album with the broad host preferences, V. album sbsp. austriacum specialized on Pinus, and V. album 

sbsp. abietis parazitizing Abies (Wild et al., 2019). 

The early forest remote studies were based on the terrestrial lidar scanning (TLS)-produced data, 

which are presented as dense and precise point clouds with the mm accuracy (Rehush et al., 2018). On 

the other hand, TLS requires a labor-intensive data acquisition and could be used only on the relatively 

small areas. The accuracy and density of TLS data decrease from bottom to the top (Dassot et al., 2011). 

Other approach, an unmanned laser scanning (ULS), as compared to TLS, is significantly more sparse 

and less accurate, but the maximum density and accuracy ULS achieves at the canopy level. The biggest 

advantage, however, is that ULS can provide the data sufficient for the detailed observations from the 

larger territory (Kellner at al., 2019; Krůček et al., 2020). In our studies we focus on misteltoe 

recognition.The population structure and spatial distribution of mistletoes on the host trees make them 

suitable objects for ULS. Furthermore, these parasitic plants are perennial, slowly growing and long-

living (some Viscum specimens can exist for more than 30 years), being clearly visible by the naked 

year in all seasons, and especially well-resolved in fall, winter and early spring. 
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2. Materials and Methods

2.1 Data collection and study sites 

The data was collected using RiCOPTER, a remotely piloted airborne laser scanning system equipped 

with Riegel VUX1 UAV scanner (RIEGL, USA) at the altitude about 60 m above the ground. In March 

2019 two flights with criss-cross flight directions were performed. The remote scanning covered the 

area of circa 20 ha located in the floodplain of the Morava and the Dyje Rivers. In its subsoil are the 

sediments of the Vienna Basin; above them are deposited fluvial gravels, on which sandy flood clays 

lie. The bottomland hardwood forest covers the largest area of the protected area. Dominant species are 

narrow-leaved ash (Fraxinus angustifolia Vahl.), field maple (Acer campestre L.), hornbeam (Carpinus 

betulus L), small-leaved linden (Tilia cordata Mill.), and European oak (Q. robur) (Janik et al., 2008).  

More than twenty Viscum and Loranthus-colonized trees of different species were recorded 

during a field survey on the well-studied and documented part of Ranšpurk National Nature Reserve in 

South Moravian Region characterized by the predominance of T.cordata with a few Q. robur and C. 

betulus individuals. The precise GPS coordinates of each tree in the forest plots parasitized by mistletoes 

were juxtaposed with the point cloud.  

2.2 Data processing 

In the machine learning terms, the mistletoe detection belongs to the object classification issue. The 

whole plot space were divided by the big voxels (2 m*2 m*2 m) using the CloudCompare software 

(https://www.danielgm.net/cc/). Each voxel was classified as “with mistletoe” or “without mistletoe”. 

A key limitation for the machine learning methods efficiency is the  training dataset range, since a larger 

dataset obviously means the higher accuracy of the prediction. To make is large enough, the  data 

augmentation technique was used by adding the slightly modified copies of already existing data or 

newly created synthetic data based  on the primary sample (Bohak et al., 2020). Point cloud segments 

with the mistletoes were cut into numerous voxels of the required sizes at various angles allowing them 

to intercept. The mistletoe-containing areas were cut in the way that the different training voxels had 

different spatial distribution of mistletoe inside different voxels. Moreover, noise, artificial branches and 

twigs were added to increase the training sample range to several hundreds items.  

A few machine and deep learning models will be tested and compared basing on the mistletoe as 

the key organism in these studies. The conventional machine and deep learning approaches require 

different algorithms of the data pre-processing. The deep learning effectively uses the raw data, though 

Random Forest (RF) and Support Vector Machine (SVM)  methods need more compact feature vectors 

(Breiman 2001). The large voxels will be divided into 125 smaller voxels, and for each of the sub-voxels 

the point density will be computed. Altogether, 125 values will form the feature vector. As part of the 

deep learning approach, two extra approaches will be tested: 2D- and 3D-trained convolutional neural 

networks (CNNs). For the volumetric pre-trained networks, the whole point cloud inscribed in the big 

voxel (Maturana et al., 2015) will be used, while for the flat pre-trained networks  the  rasterized 

multiview orthographic projections (MVOPs) (Carlbom et al., 1978) are suitable. 

3. Results and Discussion

Based on general information, we expect that the deep learning approach will be more efficient. 

All methods have hypothetical pros and cons, but the experiment will show the most effective solution 

for a recent case. It is reasonable to assume that the deep learning approach will be the most beneficial 

for the recognition of mistletoes in our experimental plot. However, it is significantly more 

computationally intense (Le Cun et al., 2015). In case the results of classical machine learning models 

will show relatively similar accuracy of prediction, it is worth preferring it for further practical 

applications. The obvious advantage of three-dimensional meshes is that we are exploring 3D objects. 

However, the development of 3D networks lags far behind the development of two-dimensional ones. 

This means that the pre-trained 2D networks were trained on significantly larger sample, which makes 

them more accurate “on average“ (Le Cun et al., 2015). 
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4. Conclusions

The proposed method can be employed both in the forest management by arborists and dendrologists as 

well and in the forest ecology research. For example, the accurate spatial distribution maps of mistletoes 

are very helpful for the evaluation of the degree of the mistletoe infection rate as well as for the host tree 

health and performance. Also, this methodology can be extended to the task of the detection of other 

types of TrMs, such as hollows or bird nests. 
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