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1. Introduction

McArthur and McArthur’s (1961) foliage height diversity (FHD) is widely used for determining 

structural complexity, from LiDAR vertical height (𝐻) profiles (Lefsky et al. 2002, Vierling et al. 2008, 

Simonson et al. 2014). FHD has however largely failed to disentangle the relationships between the 

ecosystem structural diversity and biodiversity, with early reports such as those from Thomas Lovejoy 

(1972) in the Amazon not finding evidences in the light of FHD. It remains unclear whether FHD is the 

most suitable means to determine the structural complexity of ecosystems. 

The calculation of FHD involves layering the vertical profile, which is essentially unnatural to 

describe a continuous variable (𝑋) such as height, and involve subjective steps such as the determination 

of the size of these layers, from which the value of FHD obtained is ultimately dependent upon. This is 

because FHD is based on Shannon’s (1948) entropy index, which was not originally designed to describe 

continuous variables, but meant for abundance data for categorical variables. In Adnan et al. (2021) we 

provided a mathematical framework for determining maximum entropy in 3D remote sensing datasets 

based on Lorenz curves and Gini (1921) coefficients (𝐺𝐶) determined from theoretical continuous 

distributions, intended to replace FHD as entropy measure in vertical profiles of LiDAR heights. This 

framework was developed for 1-dimensional variables (1D; 𝑋) such as tree heights, and 2-dimensional 

variables (2D; 𝑍 ∝ 𝑋2) such as basal areas, and hereby we extend it to 3-dimensional variables (3D,

𝑍 ∝ 𝑋3) such as volumes.

Structural complexity is an essential morphological trait of forest ecosystems, complementary to 

others like vegetation height or cover (Schneider et al. 2017, Fahey et al. 2019, Valbuena et al. 2020). 

But the means to measure the structural complexity of forests lacks consensus (Neumann and Starlinger 

2001, Lexerød and Eid 2006, Valbuena et al. 2012). Two types of approaches, those measuring entropy 

(McArthur and McArthur 1961) versus those measuring variability (Weiner 1990), have effectively been 

merged in the framework presented in Adnan et al. (2021), by by showing how maximum entropy can 

be flagged up from values of a variability measure such as the Gini coefficient. Formal deductive proofs 

for maximum entropy at 𝐺𝐶 = 0.33 for 1-dimensional variables (Adnan et al. 2021), and 𝐺𝐶 = 0.50 

for 2-dimensional variables (Valbuena et al. 2012, 2107), have been presented, which hereby are 

extended toward the value of 𝐺𝐶 = 0.60 for 3-dimensional variables. 

2. Methods

Let E[𝑋] be the expectation a random variable 𝑋 with probability density function (p.d.f.) 𝑓𝑋(𝑥),

cumulative distribution function (c.d.f.) 𝐹𝑋(𝑥), quantile function (inverse of the c.d.f.) 𝐹𝑋
−1(𝑝). The

Lorenz curve 𝐿𝑋(𝑝) specifies the accumulated proportion of the total of X that is attributed to a given

accumulated share of the population ordered by increasing 𝑋:  

𝐿𝑋(𝑝)   =
∫ 𝐹−1(𝑡)

𝑝

0
𝑑𝑡

E[𝑋]
, for  0 ≤ 𝑝 ≤ 1 (1) 
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The Gini coefficient is the twice area between the Lorenz curve and the diagonal line 𝐿𝑋(𝑝) =
𝑝, which is thus assessed with the integral: 

𝐺𝐶𝑋 = 1 − 2 ∫ 𝐿𝑋(𝑝)
1

0
𝑑𝑝 (2)

When considering the distribution LiDAR heights 𝑋 = 𝐻, the Lorenz curve 𝐿𝐻(𝑝) specifies the

proportion of total accumulated ranked heights (usually in decreasing order, but it can be either). If 

considering 2-dimensional variables, such as basal area 𝑋 = 𝐵𝐴 = 𝐷2, then it gives the proportion of

basal area for ranked trees (best in increasing order, to express competitive dominance, following 

Valbuena et al. 2013). We can also be interested in 3-dimensional variables, such as volume 𝑋 = 𝑉 =
𝐻𝐷2. The methods consist in mathematical proofs demonstrating values of Lorenz curves (1) Gini

Coefficient (2) that can be used to characterize maximum entropy from theoretical distributions of 3-

dimensional variables, which can be employed to substitute the use of FHD and avoid its unnatural 

partitioning of continuous variables into layers. 

3. Results

3.1 Maximum Entropy in 3-dimensional variables: volume 

Tree volumes are also calculated from a transformation of other dimensions 𝑉 = 𝑎𝐻𝐷2. Again,

given the scale-invariability property of Lorenz curves, and thus we can consider the Lorenz curve and 

Gini coefficient of transformation 𝑍 = 𝑋3 when 𝑋~𝑈(0, 𝜃).

The c.d.f. and p.d.f of the transformed variable are: 

𝐹𝑋3(𝑧; 𝜃) = {

0, for  𝑧 ≤ 0

√𝑧
3

𝜃
⁄ , for  0 ≤ 𝑧 ≤ 𝜃3

1, for  𝑧 ≥ 𝜃3

(3) 

𝑓𝑋3(𝑧; 𝜃) = {

1

3𝜃 √𝑧
3 , for  0 ≤ 𝑧 ≤ 𝜃3

0, otherwise
(4) 

Thus, the quantile function and expected value of 𝑍 are: 

𝐹𝑋3
−1(𝑝) = 𝜃3𝑝3 (5) 

𝐸[𝑋3] =
𝜃3

4
(6) 

Substituting these in Equation (1), the Lorenz curve becomes (Figure 1): 

𝐿𝑋2(𝑝) =
∫ 𝜃3𝑡3 𝑑𝑡

𝑝

0

𝜃3 4⁄
=

𝜃3𝑝4 4⁄

𝜃3 4⁄
= 𝑝4 (7) 

And thus, substituting in Equation (2), the Gini coefficient of a uniform distribution becomes: 

𝐺𝐶 = 1 − 2 ∫ 𝑝41

0
𝑑𝑝 = 1 −

2

5
=

3

5
(8) 

Hence, for any variable 𝑍 ∝ 𝑋3 that is proportional to the third power of 𝑋, such as of 𝑉, the

𝐺𝐶𝑋3 = 0.60 corresponds to the maximum entropy of 𝑋.

Figure 1: Lorenz curves for 1, 2 and 3-dimensional variables. 
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4. Discussion

In previous contributions we have showed a threshold of interest which flags up maximum 

entropy in forest ecosystems at the Gini Coefficient value of 𝐺𝐶𝑋2 = 0.50 (Valbuena et al. 2012, 2017).

In Adnan et al. (2021) we further deducted that the value 𝐺𝐶𝐻 = 0.33 can be used when interested in

the study of LiDAR height profiles. In this contribution we show how higher order extensions can be 

further deducted, and show the formal proof for the maximum entropy value of 𝐺𝐶𝑋3 = 0.60  applicable

to 3-dimensional variables. In order to achieve these generalized conclusions, we use theoretical 

distribution functions and show how their parameters propagate into Lorenz curves and values of the 

Gini Coefficient directly dependent on those parameters. Further extensions can be similarly deducted 

based on ecological assumptions on ecosystem distributions. 

These threshold allows to compare the entropy of the ecosystem using a statistic of dispersion, 

arguing that for continuous variables it is more correct to use the Gini Coefficient because it avoids the 

factitious binning step required when computing FHD (McArthur and McArthur, 1961). Gini coefficient 

is less computationally demanding than FHD, but in Valbuena et al. (2012) we also showed that it is 

conceptually better.  
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