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Phase vortex lattices in neutron interferometry
Niels Geerits 1✉, Hartmut Lemmel 1,2, Anna-Sophie Berger1 & Stephan Sponar 1✉

Neutron Orbital Angular Momentum (OAM) is an additional quantum mechanical degree of

freedom, useful in quantum information, and may provide more complete information on the

neutron scattering amplitude of nuclei. Various methods for producing OAM in neutrons

have been discussed. In this work we generalize magnetic methods which employ coherent

averaging and apply this to neutron interferometry. Two aluminium prisms are inserted into a

nested loop interferometer to generate a phase vortex lattice with significant extrinsic OAM,

〈Lz〉≈ 0.35, on a length scale of≈ 220 μm, transverse to the propagation direction. Our

generalized method exploits the strong nuclear interaction, enabling a tighter lattice. Com-

bined with recent advances in neutron compound optics and split crystal interferometry our

method may be applied to generate intrinsic neutron OAM states. Finally, we assert that, in

its current state, our setup is directly applicable to anisotropic ultra small angle neutron

scattering.
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F irst observed in optics1–3, Orbital Angular Momentum
(OAM) of photons has become ubiquitous in physics. Seeing
applications in quantum communications4, astronomy5, and

many other areas6, OAM has also been observed in massive free
particles, such as electrons7,8, atoms9, and neutrons10,11.

It is expected that neutron OAM will open up new avenues in
scattering, allowing one to directly access the complex phase of
the scattering amplitude12,13. In addition, neutron OAM marks
an additional degree of freedom, applicable to quantum infor-
mation and contextuality14,15. Coupling OAM to the other
degrees of freedom in a neutron has been discussed in other
papers16,17. While not a topic of this paper, in combination with
the path, spin and energy of the neutron, the additional degree of
freedom, provided by OAM, would enable the first quadruply
entangled matter wave beam to our knowledge. Quantum
mechanical OAM is a type of azimuthal phase structure on the
wavefunction of the form eiℓϕ, with ϕ the azimuthal coordinate.
Due to continuity conditions ℓ can only take on integer values.
Therefore OAM, unlike spin angular momentum, is not an
intrinsic property of the neutron, but a property arising from the
spatial structure of the wavefunction. Hence, OAM states are
some times also referred to as spatial helicity states18.

The first experiment claiming neutron OAM10, is controversial
due to ambiguity on whether any of the observed OAM is intrinsic
to the neutrons or whether it is simply an extrinsic beam
property19, since the dimensions of the phase vortex, henceforth
referred to as the vortex diameter, observed from the spiral phase
plate10 were much larger than the neutron transverse coherence
length (order 100 nm). Furthermore, if the neutrons possessed
intrinsic OAM the beam could likely only be represented by a
mixed state. To address these concerns a method using magnetic
prisms was developed to generate a lattice of vortices, with smaller
vortex diameters20. In addition, the use of static electric fields has
been explored21. However, realistically achievable electric and
magnetic potentials are too small to generate vortex diameters on
the order of the neutron transverse coherence length. Recently a
large lattice of microscopic fork gratings was produced with the goal
of producing intrinsic OAM states in a collimated cold neutron
beam11. It is likely that significant intrinsic OAM was produced.
Though important challenges remain such as the production of
significant intrinsic OAM in thermal neutron beams or a definitive
method of distinguishing intrinsic and extrinsic OAM.

In this paper, we address the challenge of generating OAM in
thermal neutrons by generalizing the magnetic coherent averaging
method20, such that the strong nuclear potential can be exploited,
enabling production of smaller vortex diameters at thermal ener-
gies. We demonstrate the generation of a vortex lattice using
strongly interacting aluminium prisms in a nested loop neutron
interferometer. Previously prisms have been employed in neutron
interferometry for holography22. In an interferometer, a single input
wavefunction can be split into multiple partial wavefunctions each
of which can undergo a simple and independent transformation in
each path of the interferometer. When the modified partial wave-
functions of each path are recombined more complicated structures
may arise. In a two path, singe loop, interferometer the combination
of a phase shifter and a pair orthogonal prisms enables us to gen-
erate a composite wavefunction exhibiting azimuthal structure
where the ℓ= ± 1 mode amplitude is significant. To extract the
phase structure of the composite wavefunction an additional
reference beam is needed. For this purpose, a three path nested loop
intereferometer was used.

Results
Experimental setup. The experiment was carried out at a
wavelength of 1.92 Å on the thermal neutron interferometry

station, S18, at the high-flux reactor of the Institute Laue Lan-
gevin (ILL) in Grenoble, France23. Our setup is shown in Fig. 1.
This interferometer generates three nested loops24–27, two small
loops between the first and third plate and the second and fourth
plate, respectively, and a large loop between the first and fourth
plate. Our prisms each have a 5 degree slope and are made from
aluminium. To control the phase difference of each loop a
minimum of two phase shifters are required. These phase shifters
consist of flat silicon and sapphire slabs.

Theoretical model. In the case of thermal neutrons where the
nuclear potential is low compared to the kinetic energy, the action
of a prism can be approximated by a translation of the reciprocal
wavefunction (i.e., by convolving with a delta function)
ψ0ðkÞ ¼ ψ0ðkÞ � δðk � k0Þ, while phase shifters imprint a global
phase on the wavefunction ψ0ðkÞ ¼ eiαψ0ðkÞ. In principle prisms
also apply a global phase to the wavefunction, however, in this
paper, we choose to account for this phase in the action of the
phase shifter. The input wavefunction (in k-space) is assumed to
be Gaussian

ψ0ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffi
1

2πζ2

s
e
� k2xþk2yð Þ

4ζ2 ΦðkzÞ ð1Þ

with kx and ky denoting the transverse wavenumbers and ζ the
transverse momentum spread, related to the average divergence
of individual neutrons, θ, by ζ ≈ kzθ, for small θ. Φ(kz) refers to
the longitudinal part of the reciprocal wavefunction that is vir-
tually unaffected by the action of the prisms. The composite
wavefunction projected from the last interferometer plate to the
detector can then be written as

ψ1ðkÞ ¼
1ffiffiffi
3

p ½ψ0ðkÞ þ eiα1ψ0ðk � k?ŷÞ þ eiα2ψ0ðk � k?x̂Þ� ð2Þ

where the transverse momentum shift, k⊥, is related to the angle
of refraction, γ, induced by the prisms k⊥= kzγ. It is instructive to
look at Eq. (2) in real space cylindrical coordinates, (ρ, ϕ, z), since
the real space equation allows us to more easily deduce the

Fig. 1 Setup schematic. Sketch of the 4 plate interferometer (145mm long),
containing two (red) orthogonal prisms (blown up on the top portion) and
two phase shifters (blue). The neutron beam, coming from the right, forms
three loops, two small ones between the first and third and second and
fourth plate respectively and a large loop between the first and last plate.
The phase shifters can be rotated around the vertical to induce phase shifts
between the paths in their respective loops. A position sensitive detector is
shown in black. Additionally, in black the coordinate convention used in this
paper is shown.
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angular momentum properties of this wavefunction.

ψ1ðrÞ ¼
1ffiffiffi
3

p ψ0ðrÞ½1þ eiα1eik?ρ sinðϕÞ þ eiα2eik?ρ cosðϕÞ� ð3Þ

The expression ψ0ðrÞ ¼
ffiffiffiffiffiffi
2

πσ2

q
e�

ρ2

σ2ΦðzÞ is the Fourier transform of

(1). σ ¼ 1
ζ denotes the real space coherence length and Φ(z) is the

real space component of the wavefunction along the z direction.
We require that Φ(z) is normalized (i.e., ∫ dz∣Φ(z)∣2= 1). From
here on out it is important to distinguish between the constant
reference wavefunction, ψ0(r), and the test wavefunction ψt(r),
which is postulated to carry OAM.

ψtðrÞ ¼
1ffiffiffi
2

p ψ0ðrÞðeik?ρ sinðϕÞ þ eiΔαeik?ρ cosðϕÞÞ

ψ1ðrÞ ¼
1ffiffiffi
3

p ½ψ0ðrÞ þ
ffiffiffi
2

p
eiα1ψtðrÞ�

ð4Þ

with Δα= α2− α1. We note that the above wavefunctions are not
properly normalized, since they do not represent the total neu-
tron wavefunction emerging from the interferometer, but only the
part of the wavefunction projected towards the detector.

Treatment of OAM. To calculate the total OAM of a wave-
function around the z-axis (propagation direction), we introduce
the OAM operator

Lz ¼ �i x
∂

∂y
� y

∂

∂x

� �
¼ �i

∂

∂ϕ
ð5Þ

and its expectation value

<Lz> ¼ �i

R
drψ�ðrÞ ∂

∂ϕ ψðrÞR
drjψðrÞj2

ð6Þ

Applying this calculation to the test wave function described in
Eq. (4), we can determine the expected average OAM for various
combinations of transverse coherence lengths and refraction
angles. It can be shown (see Supplementary Note 1) that inte-
grating Eq. (6) over ϕ for ψt(r) leads to the following expression
for the total OAM

<Lz> ¼
ffiffiffi
2

p
π sinðΔαÞ

R
dρk?ρ

2jψ0j2J1ð
ffiffiffi
2

p
k?ρÞR

drjψðrÞj2 ð7Þ

In the case of our Gaussian ψ0(r) this is a standard Hankel
transform with the result

<Lz> ¼ sinðΔαÞ k
2
?σ

2

4N
e�

k2?σ2

4 ð8Þ

with the normalization parameter N ¼ R
drjψðrÞj2 ¼ 1þ

cosðΔαÞe�
k2?σ2

4 . For large k⊥, the normalization parameter goes to
unity. We can easily see in this limit that the OAM is maximal/
minimal for Δα= ± π/2. In addition using N ≈ 1 and the deri-
vative of Eq. (8) we find the approximate value of k⊥ for which
the OAM is maximized/minimized: k? ¼ ± 2

σ ¼ ± 2ζ . That is to
say that the refraction angle must be about the order of magni-
tude of the average momentum spread of an individual neutron
for maximal OAM. Another interesting region of Eq. (8), is found
for small k⊥ in the vicinity of Δα ≈ π. Here, around Δα= π, the
OAM may vary rapidly and even attain a significant value for a
relatively small value of k⊥.

The form of Eq. (5) seems to imply that the total OAM
depends on the choice of the location of the z-axis in the x-y
plane. However, for some wavefunctions < Lz > is translation
invariant. In these cases, the OAM is intrinsic28,29. For particles,
it can be shown that under a translation (with x0 ¼ x � x0 and

y0 ¼ y � y0) the OAM changes by

<ΔLz> ¼ �i
Z

drψ�ðrÞ x0
∂

∂y
� y0

∂

∂x

� �
ψðrÞ ð9Þ

Thus it follows that OAM is intrinsic if the expectation values of
both transverse momentum components are zero.

<kx> ¼ <ky> ¼ 0 ð10Þ
Since for our setup < kx >= < ky >= k⊥ and k⊥σ is at most 0.01,
we can consider the OAM to be quasi intrinsic, since k⊥r0 ≈ 0. As
the interaction range of the neutron is proportional to its’
coherence length it does not make sense to look at r0 > > σ when
examining the OAM of single neutrons. In addition to the
expectation value it is instructive to look at the OAM spread,
defined as a standard deviation:

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<L2z>� <Lz>2

q
ð11Þ

with the second moment given by (see Supplementary Note 1 for
a complete derivation)

<L2z> ¼ k2?σ
2

4N
� cosðΔαÞ k

4
?σ

4

16N
e�

σ2k2?
4 ð12Þ

It can be seen that the OAM bandwidth is maximal for a phase
shift Δα= ± π. Both the OAM bandwidth and the expectation
value are shown for a variety of Δα and k⊥ (in units of ζ) in Fig. 2.
At this point it should be pointed out that in the case of perfect
crystal neutron interferometry, the momentum spread ζ is
direction dependent, such that the input wavefunction should
be written as

ψ0ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2πζxζy

s
e
� ζ2y k

2
xþζ2xk

2
yð Þ

4ζ2x ζ
2
y ΦðkzÞ ð13Þ

where ζx and ζy differ by three orders of magnitude. Nonetheless,
the above theory for isotropic momentum spread (ζx= ζy= ζ) is
still valid if the transverse momentum shifts induced by the
prisms are adapted to the momentum spread in the respective
direction. However, the experiment described in this paper
employed identical prisms, hence it is possible that Fig. 2 does not
give an accurate representation of the quasi-intrinsic OAM of our
wavefunction. Nonetheless, when we calculate Eq. (6) analytically
(the step-by-step calculation is shown in Supplementary Note 1),
using the ψ0(r) implied by Eq. (13), it can be shown that

<Lz> ¼ sinðΔαÞ
k2? σ2x þ σ2y

� �
8N

e�
k2? σ2xþσ2yð Þ

8
ð14Þ

which in form is identical to Eq. (8). This expression becomes
completely identical to Eq. (8), if we define an effective transverse
coherence σ2 ¼ ðσ2x þ σ2yÞ=2, the normalization parameter N is
then unchanged. So Fig. 2 can also be considered for anisotropic
momentum spreads and the maximal amount of OAM generated
by this type of setup is not affected by an anisotropic momentum
distribution. It follows that in the experiment described here the
effective k⊥σ is on the order of 0.015

Given this effective k⊥σ, we may regard the OAM as quasi
intrinsic. However, as can be seen in Fig. 2, the OAM production
is small for this configuration. Nonetheless, it is instructive to
look at the amplitudes of the wavefunctions first OAM modes for
small k⊥σ. To this end, we introduce the azimuthal Fourier
transform (AFT)

ψ‘ðρ; zÞ ¼ 1ffiffiffiffiffi
2π

p
Z 2π

0
ψðrÞei‘ϕdϕ ð15Þ
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and its inverse

ψðrÞ ¼ 1ffiffiffiffiffi
2π

p ∑
‘
ψ‘ðρ; zÞe�i‘ϕ ð16Þ

where the probability amplitude of the ℓth OAMmode is given by

A‘ ¼
R
dρdzρjψ‘ðρ; zÞj2

∑‘

R
dρdzρjψ‘ðρ; zÞj2 ð17Þ

Hence by applying the AFT to a wavefunction, we can determine
the amplitude of each OAM mode individually. The AFT of the
test wavefunction (Eq. (4)) is given by the Jacobi-Anger
expansion30

ψ‘
t ðρÞ ¼ ð�1Þ‘ 2

σ
e�

ρ2

σ2 J‘ðk?ρÞ 1þ i�‘eiΔα
� � ð18Þ

Note that we have dropped the longitudinal part of the
wavefunction, Φ(z) for this analysis. Realistically the refraction
angle induced by a neutron optical prism is much smaller than
the beam divergence. Therefore, the width of the Gaussian
envelope in Eq. (18) is much smaller than the period of the Bessel
functions, Jℓ(k⊥ρ). This implies that linearizing the Bessel
functions will yield a good approximation of the OAM
amplitudes. We note that in the linear limit only Bessel functions
of modes ℓ=− 1, ℓ= 0 and ℓ= 1 are non zero, therefore, only
these OAM modes play a non-vanishing role in our wavefunc-
tion. The approximation yields

ψ‘¼0
t ðρÞ � 2

σ
e�

ρ2

σ2 ð1þ eiΔαÞ

ψ‘¼± 1
t ðρÞ � � k?ρ

σ
e�

ρ2

σ2 ð1� ieiΔαÞ
ð19Þ

As previously shown, the average OAM 〈Lz〉 is zero for Δα= ± π.

However, this new analysis shows that, despite this, the intrinsic
neutron OAM is dominated by an equal superposition of ℓ= ± 1
modes, while the ℓ= 0 mode is totally suppressed. We may
calculate the probability amplitudes of the ℓ= 0 and ℓ ± 1 modes,
according to Eq. (17), using our approximate expressions in Eq.
(19). Figure 3 shows these probability amplitudes for various k⊥
around Δα= π. It can be seen that for increasing k⊥ the ℓ= 1 and
ℓ=− 1 probabilities widen and begin to separate from one
another. It can also be seen that the ℓ= 1 and ℓ=− 1 amplitudes
are asymmetric around Δα= π, having a steeper slope to one side
of the peak compared to the other side. This results in the OAM
becoming net positive for Δα < π and negative for phase shifts
above π.

Macroscopic treatment. Until now, we have considered a
microscopic treatment where a single wavefunction is centered on
the optical axis. Now we turn to the macroscopic treatment where
we consider an ensemble of quasi-paraxial wavefunctions which
make up a beam. This is also the scale at which vortex lattices can
appear, which carry macroscopic beam OAM. Since the indivi-
dual neutrons that make up the beam can be far off-axis, com-
pared to their coherence length, Eq. (9) predicts that most
neutrons will have extrinsic OAM with respect to the axis around
which (beam) OAM is defined. In our and most other neutron
experiments with OAM the main qualitative difference between
extrinsic and intrinsic OAM, that can be observed, is the vortex
diameter as can be grasped by looking at Eq. (9). As the vortex
diameter grows the more variability is introduced to the observed
OAM of an individual neutron some distance from the vortex
center (assuming < kx > ≠ 0 and/or < ky > ≠ 0). As a rough defini-
tion we may say in the case of (quasi) intrinsic OAM the vortex

Fig. 2 OAM expectation value and bandwidth. a Expectation value of the OAM for the test wavefunction (Eq. (4)) as given by the analytical expression in
Eq. (8) for various transverse momentum shifts k⊥ and phase shifts Δα. Around Δα= ± α/2 and k⊥= 4π the OAM attains a maximal/minimal value
of ± 0.4 b The OAM bandwidth defined by Eq. (11) for ψt as a function of transverse momentum shift k⊥ and phase shift Δα. Inserts (c) and (d) show the
behavior of < Lz > and χ, respectively, for small k⊥ in the vicinity of Δα= π. In all figures k⊥ is in units of ζ. In the case of the described experiment the
normalized k⊥ ranges from 10−5 (vertical refraction) to 0.02 (horizontal refraction).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01318-6

4 COMMUNICATIONS PHYSICS |           (2023) 6:209 | https://doi.org/10.1038/s42005-023-01318-6 | www.nature.com/commsphys

www.nature.com/commsphys


should manifest on a length scale comparable to the transverse
coherence length, while in the case of extrinsic OAM the vortex
may exceed this length by many orders of magnitude. It has been
predicted that neutrons carrying intrinsic OAM may interact
differently with matter, such as in scattering from microsopic
targets12,13 or polarized nuclear targets31. Hence some neutron
scattering and transmission measurements may be able to dis-
tinguish between intrinsic and extrinsic OAM.

It is well known that a prism inserted into a single loop
interferometer generates a Moire fringe pattern along the
refraction direction32. In our nested loop interferometer, the
Moire patterns generated by each loop are overlaid, thereby
creating a lattice like structure. The spatial intensity profile can be
calculated using the wavefunction projected to the detector (Eq.
(3)). The wave function impinging on the detector at position r0 is
simply Eq. (3) with the input wavefunction ψ0(r) translated by r0

ψ1ðr� r0Þ ¼ 1ffiffiffi
3

p ψ0ðr� r0Þ½1þ eiα1eik?y þ eiα2eik?x� ð20Þ

The intensity profile which is measured can be calculated by
taking the absolute value squared of Eq. (20):

Iðr0Þ ¼
Z

P
drjψ1ðr� r0Þj2 ð21Þ

with P a domain given by the pixel size of the detector, which is
quasi infinite in size compared to the wavefunction. Assuming r0

falls within the domain P, we may approximate this integral by

Iðr0Þ ¼ 1
3

Z
P
drδðr� r0Þ 3þ 2 cosðk?y þ α1Þ

	
þ 2 cosðk?x þ α2Þ þ 2 cosðk?ðx � yÞ þ ΔαÞ


ð22Þ

where we used that jψ0ðr� r0Þj2 may be approximated by a delta
function since the coherence length is very small compared to the
period of the cosines. Hence it follows

Iðr0Þ ¼ 1
3

3þ 2 cosðk?y þ α1Þ
	

þ 2 cosðk?x þ α2Þ þ 2 cosðk?ðx � yÞ þ ΔαÞ
 ð23Þ

For the prisms used in this experiment, we expect a value of k⊥
which corresponds to a lattice period of 1.75 mm.

Measurements. The vortex lattice generated by our setup is
shown in Fig. 4a. In addition, the figure contains a fit (Fig. 4b)
based on Eq. (23). The discrepancies between the fit and the data
could be explained by different amplitudes of the three Cosine

terms in Eq. (23). These amplitudes can differ depending on the
amount of material each partial wavefunction in the inter-
ferometer goes through. If two paths “see” a similar amount of
material, the amplitude of the Moire fringes from that loop will be
large, while if there is a discrepancy in the amount of material,
dephasing may occur, thereby lowering the amplitude of the
respective loop.

Since the model used for our fit assumes that the intensity is
given by ∣ψ1(r)∣2, we may extract a part of the test wavefunction,
ψt(r)/ψ0(r), from the data, using our model, yielding the phase
data needed to compute the amplitude of each OAM mode and
the average OAM normal to any domain. Note that since the
reconstructed test wavefunction is given by ψt(r)/ψ0(r), we do not
observe any coherence effects, as these are all contained within
ψ0(r). Figure 5a, shows the real part of the reconstructed test
wavefunction zoomed in on a single vortex. To calculate the
amplitude of each OAM mode, we introduce a spatially averaged
AFT

�ψ‘
t ¼

Z
D
ei‘ϕðx;yÞψtðx; yÞ d2x ð24Þ

with ϕ(x, y) defined by the argument between the x and y
coordinate (i.e., ϕ= Arg(x+ iy)) and D an arbitrary two
dimensional domain, over which the average mode amplitude is
to be determined. From the amplitudes calculated in Eq. (24) the
expectation value of the OAM orthogonal to the domain surface
can be determined

hLzi ¼
∑‘‘j�ψ‘

t j2
∑‘j�ψ‘

t j2
ð25Þ

To closely approximate Eq. (15) a circular domain is chosen to
calculate the amplitudes, �ψ‘

t , given by Eq. (24). To first order, it
was shown that the ℓ= ± 1 amplitudes increase linearly with ρ
(Eq. (19)), hence a larger domain will see a larger maximal value
of the OAM. We will, therefore, choose the maximal domain size
on which the first order approximations of the test wavefunction
are valid. The first order approximation can be used up to
k⊥ρ= 0.75 with a maximal relative error of less than 0.1. In our
setup, this corresponds to a domain size of 0.22 mm. Being much
larger than the effective transverse coherence of the beam
(roughly 5 μm) it follows that the OAM must be considered to
be extrinsic. The domain on which the spatially averaged AFT is
calculated is indicated in Fig. 5a. It can be scanned across the
reconstructed test wavefunction, ψt(r)/ψ0(r), to calculate 〈Lz〉 in
each section of the image. This OAM expectation value is shown

Fig. 3 Probability amplitudes of the first and zeroth order OAM modes. The first order mode probabilities ℓ= 1 (blue), ℓ=− 1 (red dashed) and the
zeroth order mode probability ℓ= 0 (black) are plotted against the phase shift Δα (centered on Δα= π) for various transverse momentum shifts, (a) equal
to the experimental case k⊥σ= 0.015, (b) ten times larger and (c) thirty times larger than in the experimental case. In (a) the ℓ= 0 amplitude is not plotted
for improved visibility. It can be clearly discerned that ℓ= ± 1 probabilities widen for increasing refraction, k⊥. In addition, the ℓ= 1 and ℓ=− 1 probabilities
appear to be mirror images of one another (mirrored around Δα= π).
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in Fig. 5b. Note the diagonal (45 degree) “lines” of constant OAM
in Fig. 5b, confirming the prediction made by Eq. (9).

Discussion
We see that our method using only two prisms generates extrinsic
vortices with a significant ℓ= ± 1 component, such that the
average beam OAM can reach up to ∣〈Lz〉∣ ≈ 0.35. While the vortex
diameter is still much larger than the calculated coherence length
and therefore cannot be applied to experiments requiring intrinsic
OAM12,13,31, spatially modulated beams like the one generated in
our setup can be applied to ultra small angle scattering. In
numerous configurations it has been shown that one dimensional
intensity modulation (such as Moire patterns) can be applied to
ultra small angle scattering, for example, in neutron dark field
imaging/Talbot-Lau interferometry33,34 and spin echo modulated
small angle neutron scattering35–37. With the exception of a recent
development in Talbot-Lau interferometry38 the latter methods
can only measure the elastic scattering function S(q) in one
dimension. Two dimensional intensity modulation, as generated
by our setup, could be used to measure two dimensional elastic
scattering functions, allowing analysis of anisotropic samples in a
single measurement. Such a measurement would employ the same
instrument as described in this paper. A sample could be placed
between the interferometer and position sensitive detector. Small
angle scattering from the sample would wash out the intensity

modulation leading to contrast reduction. This contrast reduction
is proportional to the Fourier transform of S(q) analogous to spin-
echo modulated small angle neutron scattering methods35,36. By
Fourier transforming the modulated intensity pattern it is possible
to separate the contrasts of the vertical and horizontal modulation.
This allows the instrument to distinguish between vertical and
horizontal scattering. Hence, the instrument could simultaneously
measure S(qx) and S(qy). This scheme could also be applied to the
magnetic method for generating vortex lattices20. Both the latter
method and our approach still lack the focusing prisms used for
first order corrections to the divergence/coherence, which prevent
dephasing and are available in the one dimensional method35–37.
Though a recent analysis39 has demonstrated how to implement
first order divergence corrections in a setup analogous to the
magnetic coherent averaging method20 and the setup described in
this paper. Focusing elements increase the modulation contrast
and allow for larger beam sizes/divergences, thereby increasing the
available intensity. These focusing prisms become a requirement
when one looks towards generating intrinsic OAM using our
method. Equation (8), shows that the refraction angle of the
prisms or k⊥ must be on the same order of magnitude as the beam
divergence or ζ, such that the amplitude of the ∣ℓ∣= 1 mode
becomes significant. This may be achievable in the near future
with recent developments in compound neutron optics40 and
micromachining41. In addition, steeper prisms made from more
dense optical material can be employed in compound devices.

Fig. 4 Measurement results and fit. a The processed, normalized and filtered image of the neutron vortex lattice, recorded using the position sensitive
detector seen in Fig. 1. The contrast, according to the fit (b) based on Eq. (23), is 0.53. The lattice period is 1.83 mm.

Fig. 5 Reconstructed wavefunction and OAM expectation value. a Image of the real part of the test wavefunction of a single vortex carrying extrinsic
OAM. This test wavefunction is reconstructed using the fit parameters generated by the model shown in Fig. 4. A circle is drawn in the center of the image
indicating the domain on which the spatially averaged AFTs are applied and the first order approximations used throughout the paper are valid. The axis
around which the OAM is defined is centered on and normal to this ciruclar domain. b The average extrinsic OAM 〈Lz〉 over the image is shown. This is
calculated using the spatially averaged AFT (Eq. (24)) and Eq. (25).
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The additional space required by obligatory focusing prisms call
for larger perfect crystal interferometers. Ongoing developments
in neutron interferometry with split crystals may make this pos-
sible in the near future42. However a fundamental limit is reached
as k⊥ approaches the beam divergence ζ along the diffraction
direction, as in this case, beams are only poorly diffracted by
interferometer plates. For diffraction to efficiently occur the
momentum shifted wavefunction ψ0ðk � k? ĵÞ must have sig-
nificant overlap with the input wavefunction ψ0(k), which is
defined by the angular acceptance of the interferometer. ĵ here
refers to the direction normal to the crystal planes. As a result, we
can estimate that k⊥ can be on the order of ζ. Using Eq. (8) it can
be shown that the OAM expectation value cannot exceed 0.1, due
to the diffraction limit. Nonetheless, the diffraction limit can be
avoided if one uses real space coherent averaging instead of
momentum space coherent averaging as was done in this work.
That is to say instead of using a composite wavefunction like Eq.
(2) where the partial wavefunctions are shifted in momentum
space with respect to one another, one could use a composite
wavefunction where the partial wavefunctions are shifted in real
space relative to each other.

ψðrÞ ¼ 1ffiffiffi
2

p ½ψ0ðr� δŷÞ þ eiΔαψ0ðr� δx̂Þ� ð26Þ

Where real space separations, δ, can be achieved using prism pairs.
The Fourier transform of this wavefunction is

ψðkÞ ¼ 1ffiffiffi
2

p ψ0ðkÞðeiδkρ sinðθÞ þ eiΔαeiδkρ cosðθÞÞ ð27Þ

with kρ denotes the transverse wavenumber, while θ is the azi-
muthal angle in momentum space. One can see that this wave-
function is identical in form to the test wavefunction, ψt (see Eq.
(4)) used throughout this manuscript. Since the OAM operator
does not change form under a Fourier transform

�i x ∂
∂y � y ∂

∂x

h i
F, �i kx

∂
∂ky

� ky
∂
∂kx

h i

�i ∂
∂ϕ F, �i ∂

∂θ

ð28Þ

it follows that the OAM of Eq. (27) can be derived identically to that
of Eq. (4), detailed in the Treatment of OAM section. Therefore the
form of the OAM expectation value is identical to that which is
described in Eq. (8). Contrary to what one may intuitively think the
wavefunction in Eq. (27) does not obey < kx >= < ky >= 0 it follows
that, the OAM is therefore not invariant under translation (see Eq.
(9)) and is therefore also not truly intrinsic. Though once again in
some cases for translations within the coherence length, the OAM
may be considered quasi-intrinsic. Moving forward in the pursuit of

neutron OAM real space coherent averaging methods should be
applied since it is technically simpler to generate large real space
displacements, δ of the wavefunction, on the order of the neutron
coherence σ, compared to generating large k⊥ on the order of the
wavefunctions momentum spread ζ. In summary, we argue that this
work denotes an important step towards high yield OAM gen-
erating optical devices for thermal neutrons. Such devices will
enable new scattering experiments which can access phase infor-
mation of the scattering cross section12,13. Furthermore, the addi-
tional degree of freedom provided by the OAM quantum number
would allow quadruple state entanglement in neutrons (energy,
position, spin, and OAM), opening up new possibilities in the realm
of quantum information and contextuality14,15. In addition, our
theoretical analysis, which gives a condition for intrinsic particle
OAM (adapted from optics29), provides a method for determining
the probability amplitudes of each OAM mode and examines two
special cases of coherent averaging in real and reciprocal space, may
be useful in the design of future OAM generating neutron optical
instrumentation. Especially the final analysis described in Eqs.
(27)–(28) could greatly simplify intrinsic neutron OAM production
by coherent averaging methods. Finally, we argued that the
instrumentation in its current state could be applied to anisotropic
ultra small angle neutron scattering, by observing the change in
modulation contrast when a sample is placed between inter-
ferometer and detector.

Methods
Interferometry setup. The four plate interferometer24–27 is part of the S18
beamline situated at the high flux reactor of the Institute Laue Langevin (ILL) in
Grenoble France23. Both the interferometer and the monochromator are cut from a
perfect silicon crystal. Both utilize the 220 plane. For this experiment, a Bragg angle
of 30∘ was used resulting in a wavelength of 1.92 Å and a bandwidth of Δλ/λ ≈ 0.02.
Our 5∘ prisms were milled out of aluminium (type: EN AW-6060). We estimate a
refraction angle of 1.1 ⋅ 10−7 rad or 0.022 arcseconds. The phase shifters consisted
out of a polished 3 mm thick sapphire slab and a 3 mm thick silicon slab. A
2 × 2 mm2 collimator was placed just downstream from the monochromator,
roughly 3 m from the detector. The beam expanded to 10 × 10 mm2 over this
distance, indicating a maximal divergence of ~2 mrad. This is used to calculated the
vertical coherence. The rocking full width half maximum is around half a second of
arc, which is used for calculating the horizontal coherence. A position sensitive
detector, using a scintillator, a 45∘ mirror and a CCD camera was employed to
record the Moire patterns. The resolution of the CCD camera was determined
experimentally to be around 22 μm, however, the scintillator limits the maximally
achievable resolution to 40 μm.

Data processing. The images shown in this paper were generated using two
recorded datasets, the first with prisms inserted in the interferometer and the
second without prisms. Each dataset consists of 14 recordings 30 min a piece. The
raw images shown in Fig. 6 show the summed averages over all 14 images. To
obtain the image shown in Fig. 4 both raw images (Fig. 6) are binned by a factor of
10 × 10 squared pixels to increase statistics. Next, the binned “prisms-in” image is

Fig. 6 Raw datasets. Sum over the raw datasets used to generate the figures shown in this paper. a Image with the prisms inserted. b Image of the intensity
distribution without prisms in the interferometer.
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divided by the binned “prisms-out” image to remove artifacts induced by uneven
illumination of the detector and spatial phase drifts inherent to the interferometer.
After this initial normalization the resulting image still has a slight intensity drift
over the vertical (y) direction. This is removed by fitting a quadratic polynomial to
the average intensity along the vertical direction and dividing the image by this
polynomial. After this step, the image is normalized by dividing it by the mean
intensity and subtracting one Inorm ¼ I

<I> � 1. Finally a noise reduction scheme is
applied to improve the overall signal quality. This is achieved by Fourier trans-
forming the image, removing all content from the FT below a certain noise floor
and transforming the modified FT back to real space. Figure 7 shows the image at
each point of the data reduction.

Fitting procedure. The fit shown in Fig. 4 is based on Eq. (23), with a few
modifications to take into account perturbations not considered in our simplified
theory. By normalizing the data as described above, we forfeit the need for a
constant offset in the fit function. In addition to account for the dephasing which
reduces the contrast towards the edges of the image since the neutrons have to pass
through more material, we multiply Eq. (23) by a Gaussian envelope. Finally, we
note that the interference pattern in the images indicate that the prisms were not
totally orthogonal, as a result, the fit function takes on the form

f ¼ e
ð x!� μ!Þ

2

s2 a1 cosð η!1 � x!þ α01Þ þ a2 cosð η!2 � x!þ α02Þ
	

þ a3 cosð½ η!1 � η!2� � x!þ α01 � α02Þ

 ð29Þ

Here initial guesses for η!1; η
!

2; α
0
1; α

0
2 a1; a2 and a3 are extracted from the Fourier

transform of the processed data. An initial guess for μ! is found by determining the

expectation value of the squared processed data < x!> ¼
R

dxdy x!I2R
dxdyI2

. Finally the

parameter s2 is guessed by calculating the variance of the squared processed dataR
dxdyj x!j2 I2R

dxdyI2
� < x!>2:

Data availability
The data that support the findings of this study are available online23.
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