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1. Introduction
The USDA Forest Service Forest Inventory and Analysis (FIA) program is mandated by US 

Congress to implement a forest inventory and monitoring system in the boreal forests of interior Alaska, 
and extending the FIA inventory into this region has been identified as a strategic priority for the national 
program. Given the extreme logistical challenges and high costs associated with implementing a field 
inventory in this remote region – where there is virtually no transportation infrastructure and almost 
every plot requires a helicopter to access – there is a strong interest in leveraging state-of-the-art remote 
sensing technology to support the FIA inventory in interior Alaska. For this reason, FIA has partnered 
with NASA-Goddard to implement an innovative, multi-level sampling design in this region, where a 
sparse grid of field plots is supplemented with high-resolution airborne remote sensing data collected 
with the multi-sensor G-LiHT (Goddard Lidar-Hyperspectral-Thermal) system. Initial results from the 
first inventory unit (Tanana Valley) indicate that use of model-assisted estimation in a 2-stage design 
can increase the precision of estimates for key inventory attributes (biomass, carbon).   

2. Data

2.1 Forest inventory data 
The FIA program established 690 field inventory plots on forested conditions in the Tanana inventory 
unit during the period 2014-2018. Field plots were established on a regular hexagonal grid, with a 
spacing between plots of approximately 11 km, resulting in a field sampling intensity of 1 plot per 12000 
ha. The standard FIA plot design was used, where each plot consists of a cluster of four 1/60th ha fixed- 
A large number of forest attributes were measured at each plot, including measurements of tree size, 
species and condition (live/dead), downed woody materials, lichens/moss, and soil properties (bulk 
density, carbon, etc.) (Cahoon et al., in prep), as well as condition-level attributes such as forest type, 
stand size, etc. In addition, high-precision GNSS receivers were used to obtain high-quality spatial 
coordinates for each FIA subplot (Andersen et al., in prep). Total aboveground biomass for individual 
trees (live and dead) was calculated using published biomass equations (Cahoon et al., in prep) and total 
biomass, by forest type, was calculated for each plot.  
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2.1 G-LiHT airborne remote sensing data 
High-resolution airborne remote sensing data was collected with the Goddard Lidar-Hyperspectral-
Thermal (G-LiHT) system in a strip sampling mode over the entire Tanana unit in 2014 and 2018 (fig. 
1). This multi-sensor instrument provides 1) detailed forest structure and terrain morphology using lidar 
scanning, 2) forest composition and health measurements using imaging spectrometry, and 3) surface 
temperature measurements using thermal scanning (Cook et al., 2013). G-LiHT data were acquired in 
nominal 350 meter side swaths along flight lines (spaced approx. 9,200 meters apart, oriented in a NE-
SW direction) that were planned to cover every potentially-forested FIA field plot. In the end, G-liHT 
measurements were acquired over 906 out of 1,091 total FIA plots in the Tanana Unit (most of the plots 
missed by G-LiHT were in clearly unvegetated rock/ice areas of the Alaska Mountain Range, etc.).  

3. Methods

3.1 Post-stratified, 2-stage model-assisted estimation framework 
The standard estimation approach in the FIA program uses post-stratification (Bechtold and 

Patterson, 2005), where the stratification is usually based on a combination of spatial layers including 
satellite-derived land cover classification (e.g. National Land Cover Dataset (NLCD), Dewitz, 2019), 
and other environmental gradients such as precipitation, elevation, etc. In order to incorporate the 
additional information provided by the G-LiHT strip sample in interior Alaska, we utilize a post-
stratified ratio estimator under a two-stage design, where the FIA plots and G-LiHT acquisition can be 
seen as a two-stage (cluster) sampling design, with the G-LiHT swaths (strips) treated as clusters (1st 
stage) and the FIA plots represent a subsample within the clusters (2nd stage). The efficiency of the 
estimation from this two-stage design can be further improved through post-stratification and by 
accounting for the length of the strips (via ratio estimation). The resulting estimator is a post-stratified, 
ratio estimator for model-assisted estimation in a two-stage design (Andersen et al., 2011; Ringvall et 
al., 2016; Strunk et al., 2014). Following Ringvall et al. (2016), the response variable is a forest inventory 
attribute (possibly for a specific domain, such as forest type) summarized at the FIA plot-level, and the 
predictor variables are G-liHT derived metrics extracted from the footprint of the FIA plot (average 
lidar-derived canopy height, hyperspectral-based forest type classification), and a linear regression 
model is developed relating the inventory attribute to lidar metrics.  

FIA plots are distributed about 9 km apart along each G-LiHT strip (1,091 total FIA plots), and 
remote sensing (RS) plots (with the same spatial configuration and size as a FIA plot) were distributed 
at 200 meter intervals along the center of each G-LiHT strip (fig 3; 73,509 total RS plots). At each of 
these RS plots, the regression model is used to predict the inventory parameter. In addition, if the 
population is post-stratified, where the number of remote sensing plots  within each stratum is assumed 
to be known without error, the model-assisted regression estimate for the specified inventory attribute 
in a given strip and stratum can be calculated. In cases where a RS plot is missing (mountainous areas, 
low clouds, etc.), the value for the RS plot measurement (lidar and/or forest type classification) was 
imputed as the mean lidar height or most commonly occurring forest type class within the stratum. A 
ratio-to-size estimator at the stratum level and the post-stratified ratio estimator can be calculated. The 
variance estimator of the post-stratified ratio estimator takes into account 1) the variance of the model-
assisted estimator within strips, 2) variance between strips, and 3) the dependency between stratum-
level estimates within strips.  A variance estimator can be applied in cases where only a small portion 
of the strips may cover individual strata (Ringvall et al., 2016). However, with very small strip- and 
stratum-level plot sample sizes the variance estimator is likely highly variable or even impossible to 
calculate. Therefore the variance estimator is modified to replace stratum- and strip-level residual 
variance with the stratum-level residual variance calculated across all strips, which we assume will be 
more stable and, if anything, will be a conservative estimate because residuals within strips are likely to 
be spatially-autocorrelated). It should be noted that this variance estimator assumes that the G-LiHT 
strips, RS, and FIA plot subsamples are collected as a simple random sample in both stages. In reality, 
both the FIA data (regular hexagonal grid) and the G-LiHT strips (evenly-spaced strip sample) represent 
a systematic sample, not a simple random sample. This likely leads to an overestimation of variance, 
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although it should be noted that small samples at the strip level can also lead to unreliable variance 
estimators (Ringvall et al., 2016). Further research on optimal field sampling intensity, stratification, 
and use of hyperspectral-based forest type classification within this 2-stage design and model-assisted 
inferential framework is needed and ongoing.  

Figure 1: Alaska, USA (right), Tanana inventory unit (center) with FIA plots (green dots), G-LiHT 
flight lines (black) and post-strata (various colors). Left inset image shows G-liHT swath covering RS 
plots and FIA plot (dark outline), colored by lidar canopy height.  

4. Results
A comparison of the tabular estimates for aboveground tree biomass, by forest type, provided by the 
standard post-stratified and post-stratified ratio estimator is shown in Table 1. These results indicate that 
incorporating the G-LiHT lidar height measurements in the estimator through a ratio estimator can 
significantly improve the precision of the inventory estimates. The standard errors (SE) of the post-
stratified ratio estimators are generally lower than the post-stratified estimator, with the most significant 
reduction in the more aggregated estimators (i.e. total biomass, all softwood, all hardwood) and less 
improvement in the precision of biomass estimates for specific domains (i.e. forest types).  

Table 1 - Comparison of standard FIA post-stratified and post-stratified ratio estimates under a 
two-stage design of aboveground biomass by forest type, Tanana Unit, Alaska, 2018  

Forest type 
Post-stratified 

Post-stratified 
Ratio 

Total SE Total SE 
Softwoods thousand tons 

White Spruce 71,113 9,151 68,807 7,767 
Black Spruce 101,820 6,368 99,948 5,761 
Tamarack 527 309 522 399 
Total Softwoods 173,460 9,811 169,277 7,654 

Hardwoods 
Paper Birch 74,553 8,370 70,140 5,667 
Aspen 22,114 4,631 20,375 4,711 
Balsam Poplar 5,118 2,323 4,850 1,503 
Total Hardwoods 101,786 9,244 95,390 6,769 

Nonstocked 
< 10% live trees 25 16 25 360 
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Total 275,271 12,008 264,667 7,407 

5. Discussion and conclusions
The results of this study indicate that incorporating airborne lidar sampling in the FIA sampling design 
in interior Alaska – through model-assisted estimation – can improve the precision of key inventory 
estimates, such as aboveground biomass and carbon. The gains are precision are most pronounced for 
aggregate estimates, such as total biomass or total biomass for hardwoods/softwoods. The gains in 
precision for more specific domains (forest type) are much less pronounced, indicating that more 
informative predictor variables, or perhaps more sophisticated modelling approach, should be used to 
leverage the information provided by G-LiHT measurements to improve domain-level estimation. 
Going forward,  FIA and NASA are proceeding with data collection in other regions of interior Alaska 
and it is expected that FIA will continue to leverage the detailed information provided by this airborne 
data to increase the reliability and value of the scientific products from this inventory and monitoring 
program.  
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