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Simplicial complexes are a convenient semantic primitive to reason about processes (agents) com-

municating with each other in synchronous and asynchronous computation. Impure simplicial com-

plexes distinguish active processes from crashed ones, in other words, agents that are alive from

agents that are dead. In order to rule out that dead agents reason about themselves and about other

agents, three-valued epistemic semantics have been proposed where, in addition to the usual values

true and false, the third value stands for undefined: the knowledge of dead agents is undefined and

so are the propositional variables describing their local state. Other semantics for impure complexes

are two-valued where a dead agent knows everything. Different choices in designing a semantics

produce different three-valued semantics, and also different two-valued semantics. In this work, we

categorize the available choices by discounting the bad ones, identifying the equivalent ones, and

connecting the non-equivalent ones via a translation. The main result of the paper is identifying the

main relevant distinction to be the number of truth values and bridging this difference by means of a

novel embedding from three- into two-valued semantics. This translation also enables us to highlight

quite fundamental modeling differences underpinning various two- and three-valued approaches in

this area of combinatorial topology. In particular, pure complexes can be defined as those invariant

under the translation.

1 Introduction

This contribution is on a topic where combinatorial topology and epistemic logic meet, using a categori-

cally motivated duality between simplicial complexes, a structural primitive of a topological nature, and

Kripke models, a structural primitive omnipresent in epistemic logic, and modal logics in general. Such

simplicial complexes are used to describe synchronous and asynchronous computation, and the focus of

our interest is simplicial complexes representing that some processes are alive (active), whereas other

processes are dead (have crashed). Such simplicial complexes are called impure. As we will see, their

properties can be described in a two-valued epistemic semantics, but also in a three-valued epistemic

semantics where the third value means undefined. That represents that formulas cannot be evaluated, as

far as the knowledge or other features of a dead agent are concerned. However, there are also ways to

represent dead agents in a standard truth-valued (two-valued) semantics: namely, by a dead agent know-

ing the false proposition (and, therefore, everything — in Kripke semantics it is common to say that such

agents are mad, or crazy).

In this contribution we compare two-valued and three-valued epistemic semantics for impure com-

plexes, by way of translations capturing the three-valued meaning in a two-valued way while using the

same logical language. We also discuss at length the consequences for truth and validity. These novel

translations allow to highlight the respective advantages of such two- and three-valued approaches.
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In the remainder of this introduction we survey the research area, give detailed informal examples,

and summarize the results that we will achieve.

Survey of the literature Combinatorial topology has been used in distributed computing to model

concurrency and asynchrony since [5, 16, 27], with higher-dimensional topological properties considered

in [24, 23]. The basic structure in combinatorial topology is the simplicial complex, a downward closed

collection of subsets, called simplices, of a set of vertices. Geometric manipulations such as subdivision

have natural combinatorial counterparts.

Epistemic logic investigates knowledge and belief, and change of knowledge and belief, in multi-

agent systems [25]. Knowledge change was extensively modeled in temporal epistemic logics [1, 22,

30, 13] and more recently in dynamic epistemic logics [3, 11, 28], including synchronous [4] and asyn-

chronous [6, 2] interpretations of dynamics. The basic structure in epistemic semantics is the Kripke

model, defined by a set of states (or worlds), a collection of binary indistinguishability relations between

those states, used to interpret knowledge, and a collection of subsets of states, called properties, for

where propositional variables are true.

Fairly recently, an epistemic logic interpreted on simplicial complexes was proposed in [26, 20, 8],

including exact correspondence between simplicial complexes and Kripke models. Also, in those and

other works [29, 33, 9], the action models of [3] are used to model distributed computing tasks and

algorithms, with asynchrony treated as in [6]. Action models, which are like Kripke models, also have

counterparts that are like simplicial complexes [26, 9].

Even more recently, epistemic semantics for impure complexes have been proposed. In impure com-

plexes some processes have crashed, i.e., are dead. This typically represents synchronous computation

(with timeouts), as in asynchronous computation inactive processes can in principle become active again

later [23]. Dead agents — and live agents’ uncertainty about whether those are dead — need some rep-

resentation in a modal logical semantics. Choices occurring in the literature are to consider knowledge

of dead agents either undefined [12] or trivial [21]. When such knowledge is undefined, it is not allowed

to interpret Kaϕ if a is dead. This results in a three-valued semantics [12] and an accompanying S5-like

modal logic [31]. When such knowledge is trivial, we mean that Ka⊥ is true (agents going mad, or crazy;

in epistemic logic, a standard trick coming with an empty accessibility relation [3, 18]), from which we

derive that Kaϕ is true for all formulas ϕ . This remains a two-valued semantics [21], and the accompa-

nying logic is KB4-like. An agent who is dead is not so unlike an agent who is incorrect, as in [17, 7].

The approach of [21] was generalized from individual knowledge to distributed knowledge, and from

simplicial complexes to (semi-)simplicial sets [19].

Informal examples Figure 1 displays some simplicial complexes and, for the benefit of the reader more

familiar with that representation, corresponding Kripke models. In the depictions of Kripke models we

assume reflexivity and symmetry of accessibility relations. The depicted simplicial complexes are for

three agents. The vertices of a simplex are required to be labeled with different agents. A maximum

size simplex, called facet, therefore, consists of three vertices. This is called dimension 2. These are the

triangles in the figure. For two agents we get lines/edges, for four agents we get tetrahedra, etc. A facet

corresponds to a state in a Kripke model. A label like 0a on a vertex represents that it is a vertex for

agent a and that agent a’s local state has value 0, etc. We can see this as the boolean value of a local

proposition where 0 means false and 1 means true. Together these labels determine the valuation in

a corresponding Kripke model, for example in states labeled 0a1b1c agent a’s value is 0, b’s is 1, and

c’s is 1. The single triangle in Fig. 1.iii corresponds to the singleton S5 model below it, in Fig. 1.vi.
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With two triangles, if they only intersect in a, as in Fig. 1.i, it means that agent a cannot distinguish

these states, as in Fig. 1.iv, so that a is uncertain about the value of b; whereas if the triangles intersect

in a and c, as in Fig. 1.ii, both a and c are uncertain about the value of b, so in corresponding Fig. 1.v the

two states are indistinguishable for the two agents a and c.
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Figure 1: Examples of pure and impure simplicial complexes and corresponding Kripke models

The current state of the distributed system is represented by a distinguished facet of the simplicial

complex, just as we need a distinguished (actual) state in a Kripke model in order to evaluate propositions.

For example, in the leftmost triangle of Fig. 1.i, as well as in the leftmost state/world of Fig. 1.iv, a is

uncertain whether the value of b is 0 or 1, whereas b knows that its value is 1, and all three agents know

that the value of c is 1. However, any face that is not a facet may just as well be taken as the distinguished

point of evaluation. For example, in the 0a vertex of Fig. 1.i it also holds that a is uncertain about the

value of c, but b’s knowledge is undefined in that vertex. The Kripke model representation in Fig. 1.iv

does not allow us such flexibility.

A complex is impure if the maximal faces do not all have the same maximum dimension. Let us

now consider some impure complexes. Fig. 1.vii consists of two maximal facets, an edge of dimension 1

and a triangle of dimension 2. Therefore, it is impure. Fig. 1.vii represents that agent a is uncertain

whether agent c is alive, and also that agent a is uncertain about the value of agent b. The latter is as in

Fig. 1.i. However, one might say that a is uncertain whether Fig. 1.vii was “originally” Fig. 1.i or 1.viii,

where c’s value is 0 on the left. Another impure complex is Fig. 1.ix, wherein a is uncertain whether b is

dead or whether c is dead. Although all maximal faces of this complex have the same dimension, this

dimension 1 is smaller than 2, the maximum possible for three agents, and that is why this complex is

impure. Below these figures we again have shown their corresponding Kripke models, of which we wish

to highlight two features. The suffixes with the states indicate which agents are alive. This depiction
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induces a set of indistinguishability relations: for each agent, the restriction of the domain to the states

where the agent is alive is an equivalence relation. This is known as a partial equivalence relation. These

are symmetric and transitive relations. The other feature is that, for example, value 0 for c in Fig. 1.x

does not correspond to a value for c in edge X in Fig. 1.vii. It is a bogus value. But it does not occur in

Fig. 1.vii, which is therefore a more economical representation of the same information. Similarly, for

Fig. 1.xii versus Fig. 1.ix. Kripke models only play a minor role in this work. Their relation to complexes

is explained in depth in [12].

Finally, we wish to point out a difference, or rather the lack thereof, between Figs. 1.iii and 1.vii.

In the only facet Y ′ of the former, agent a knows that c is alive. In the latter, by contrast, a is uncertain

whether c is alive. In the simplicial semantics of [12] this cannot be expressed in the language, which is a

feature, not a problem: these facets Y and Y ′ contain the same information, they make the same formulas

true, and the same formulas are defined there. In this work, we will also present a richer semantics that

is novel, wherein matters of life and death can be expressed in the language. This is relevant, as these

semantics affect translations to two-valued semantics, and thus relate in different ways to works like [21].

Our results We propose two different logical languages and three-valued epistemic semantics for im-

pure simplicial complexes. The primitive modalities are distributed knowledge modalities, of which in-

dividual knowledge is a special case. The languages extend each other. The extension consists of propo-

sitional variables expressing whether an agent is alive or dead. This cannot be expressed (or defined) in

the more restricted language. The extended semantics is novel. For the semantics, it may a priori seem

to make a difference whether the point of evaluation is a facet (a maximal face) or an arbitrary face. We

show that the validities are the same either way, meaning that the logic is insensitive to this choice, and

that this is the case for both languages. We then define novel translations relating the three-valued seman-

tics to a two-valued semantics for impure complexes. The crucial aspect is that we can translate ‘a for-

mula is defined’ into a much larger formula in the same language but interpreted in a two-valued way,

where ‘a formula is true’ and ‘a formula is false’ more obviously translate to (somewhat shorter) two-

valued correspondents. We finally discuss how our results relate to the literature and to further questions.

Overview Section 2 defines the various logical languages and three-valued semantics, for which we

then show some properties and give examples. Section 3 defines the two-valued semantics, and shows

why similar properties now fail. Section 4 provides translations and proves their adequacy. Examples

are also given. Section 5 reviews our results and compares them to the literature.

2 Three-valued epistemic semantics for impure complexes

We consider a finite set A of agents (or processes) a,b, . . . with |A| > 1 and a set P =
⋃

a∈A Pa of local

propositional variables (or local atoms) where Pa are countable and mutually disjoint sets of local vari-

ables for agent a, denoted pa,qa, p′a,q
′
a, . . . We also view the agent’s name a as a global propositional

variable (or global atom) stating that agent a is alive.

We successively define the logical languages, simplicial complexes, and related structural notions,

and then give the semantics.

Definition 1 (Languages). Language L
gloc

D for distributed knowledge with glocal1 atoms is defined by

ϕ ::= a | pa | ¬ϕ | (ϕ ∧ϕ) | D̂Bϕ (1)

1Glocal is a portmanteau word formed from global+local.
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where a ∈ A, B ⊆ A, and pa ∈ Pa. Apart from other propositional connectives expressed via the standard

notational abbreviations, we use DBϕ := ¬D̂B¬ϕ , K̂aϕ := D̂{a}ϕ , and Kaϕ := ¬K̂a¬ϕ . The last two

abbreviations mean that individual knowledge Ka of agent a is naturally expressed in this language as

distributed knowledge D{a} of the singleton group {a}. Language L loc
D for distributed knowledge with

local atoms is obtained from grammar (1) by dropping global atoms a. Language L
gloc

K for individ-

ual knowledge with glocal atoms is the language where sets B ⊆ A are restricted to singleton sets and

Ka and K̂a are used instead of D{a} and D̂{a} respectively. Language L loc
K for individual knowledge with

local atoms is both restricted to individual knowledge and without global atoms.

For DBϕ we read ‘group B of agents have distributed knowledge of ϕ ,’ and for Kaϕ we read ‘agent a

knows ϕ .’

Next, we define our structural primitive, the simplicial model. Other than in the introduction, Kripke

models play no part in this work and will not be defined.

Definition 2 (Simplicial model). A simplicial model C is a triple (C,χ , ℓ) where C is a simplicial com-

plex, χ is a chromatic map, and ℓ is a valuation. Here:

• A (simplicial) complex C 6= ∅ is a collection of simplices that are non-empty finite subsets of a

given set V of vertices such that C is downward closed (i.e., X ∈C and ∅ 6= Y ⊆ X imply Y ∈C).

Simplices represent partial global states of a distributed system. It is required that every vertex

form a simplex by itself, i.e.,
{
{v} | v ∈ V

}
⊆C.

• Vertices represent local states of agents, with a chromatic map χ : V → A assigning each vertex to

one of the agents in such a way that each agent has at most one vertex per simplex, i.e., χ(v)= χ(u)
for some v,u ∈ X ∈ C implies that v = u. For X ∈C, we define χ(X) := {χ(v) | v ∈ X} to be the

set of agents in simplex X .

• A valuation ℓ : V → 2P assigns to each vertex which local variables of the vertex’s owner are true

in it, i.e., ℓ(v) ⊆ Pa whenever χ(v) = a. Variables from Pa \ ℓ(v) are false in vertex v, whereas

variables from P\Pa do not belong to agent a and cannot be evaluated in a’s vertex v. The set of

variables that are true in simplex X ∈C is given by ℓ(X) :=
⋃

v∈X ℓ(v).

If Y ⊆ X for X ,Y ∈C, we say that Y is a face of X . Since each simplex is a face of itself, we use ‘simplex’

and ‘face’ interchangeably. A face X is a facet iff it is a maximal simplex in C, i.e., Y ∈C and Y ⊇ X

imply Y = X . Facets represent global states of the distributed system, and their set is denoted F (C). The

dimension of simplex X is |X |− 1, e.g., vertices are of dimension 0, edges are of dimension 1, etc. The

dimension of a simplicial complex (model) is the largest dimension of its facets. A simplicial complex

(model) is pure iff all facets have dimension n where |A| = n+ 1, i.e., contain vertices for all agents.

Otherwise it is impure. A pointed simplicial model is a pair (C ,X) where X ∈C.

Having defined the logical language and the structures, we now present the three-valued semantics.

We distinguish face-semantics that are interpreted on arbitrary faces of simplicial models from facet-

semantics that are only interpreted on facets (maximal faces). We will later prove that the three-valued

face- and facet-semantics determine the same validities, so that the difference does not matter. However,

subsequently we show that for the two-valued semantics the difference matters a great deal.

Definition 3 (Three-valued definability and satisfaction relations). The definability relation ⊲⊳ and sat-

isfaction relation � are defined by induction on ϕ ∈ L
gloc

D . Let C = (C,χ , ℓ) be a simplicial model and
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X ∈C a face.

C ,X ⊲⊳ a iff X ∈ F (C);
C ,X ⊲⊳ pa iff a ∈ χ(X);
C ,X ⊲⊳ ¬ϕ iff C ,X ⊲⊳ ϕ ;

C ,X ⊲⊳ ϕ ∧ψ iff C ,X ⊲⊳ ϕ and C ,X ⊲⊳ ψ ;

C ,X ⊲⊳ D̂Bϕ iff C ,Y ⊲⊳ ϕ for some Y ∈C with B ⊆ χ(X ∩Y ).

C ,X � a iff C ,X ⊲⊳ a and a ∈ χ(X);
C ,X � pa iff pa ∈ ℓ(X);
C ,X � ¬ϕ iff C ,X ⊲⊳ ¬ϕ and C ,X �� ϕ ;

C ,X � ϕ ∧ψ iff C ,X � ϕ and C ,X � ψ ;

C ,X � D̂Bϕ iff C ,Y � ϕ for some Y ∈C with B ⊆ χ(X ∩Y ).

A formula ϕ ∈ L
gloc

D is valid (and we write � ϕ) iff for any simplicial model C = (C,χ , ℓ) and

face X ∈C, we have that C ,X ⊲⊳ ϕ implies C ,X � ϕ .

The face-semantics for the other three languages can be derived from Definition 3 by restricting the

formulas interpreted correspondingly (see Definition 1).2

The semantics for the dual, box-like modality DB can be derived from the above and is slightly more

complex and less intuitive in this three-valued setting. This is why we use the diamond-like D̂B as a

primitive. Note that, as any ϕ is definable iff ¬ϕ is definable, C ,Y ⊲⊳ DBϕ iff C ,Y ⊲⊳ D̂Bϕ .

C ,X � DBϕ iff C ,Y ⊲⊳ D̂Bϕ and (C ,Y ⊲⊳ ϕ ⇒ C ,Y � ϕ) for all Y ∈C with B ⊆ χ(X ∩Y ).

The facet-semantics can be derived from Definition 3 by evaluating formulas on facets only. We

denote such three-valued facet-semantics by writing ⊲⊳F and �
F instead of ⊲⊳ and �. All clauses are

the same, except for X ∈ F (C),

C ,X ⊲⊳F D̂Bϕ iff C ,Y ⊲⊳F
ϕ for some Y ∈ F (C) with B ⊆ χ(X ∩Y ); (2)

C ,X �
F D̂Bϕ iff C ,Y�

F
ϕ for some Y ∈ F (C) with B ⊆ χ(X ∩Y). (3)

Validity in the facet-semantics is defined as follows: formula ϕ ∈ L
gloc

D is valid, written �
F ϕ , iff for

any simplicial model C = (C,χ , ℓ) and facet X ∈ F (C), we have C ,X ⊲⊳F ϕ implies C ,X �
F ϕ .

Various results for language L loc
K reported in [12] directly generalize to L loc

D , L
gloc

D , and L
gloc

K .

We, therefore, give those without proof: the semantics of →, ↔, and ∨ are not standardly boolean but

require that both arguments be defined; truth implies definability; and duality is valid:

Lemma 4 ([12]). 1. C ,X � ϕ ∨ψ iff C ,X ⊲⊳ ϕ and C ,X ⊲⊳ ψ and (C ,X � ϕ or C ,X � ψ);

2. C ,X � ϕ → ψ iff C ,X ⊲⊳ ϕ and C ,X ⊲⊳ ψ and (C ,X � ϕ ⇒ C ,X � ψ);

3. C ,X � ϕ ↔ ψ iff C ,X ⊲⊳ ϕ and C ,X ⊲⊳ ψ and (C ,X � ϕ iff C ,X � ψ);

4. C ,X � ϕ ⇒ C ,X ⊲⊳ ϕ;

5. � DBϕ ↔¬D̂B¬ϕ .

The same properties hold for ⊲⊳F and �
F .

2Alternatively to declaring global atoms a definable in facets only, we could have made a definable in facets and in any face

where a is alive. This would not have affected any results we report. We, therefore, chose the conceptually “cleaner” option of

global variables defined only in global states.
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Example 5. Consider the following simplicial models C , C ′, and C ′′ for three agents a, b, and c with

their values represented by local variables pa, pb, and pc respectively.

C : 1b 0b

1c

0a

Y
X

C ′ : 0b 0b

1c

0a

Y ′

X ′

C ′′ : 0b

1c

0a

Y ′′

• Atoms and knowledge of dead agents: Illustrating the novel aspects of the semantics, we have that

C ,X 6⊲⊳ pc since c /∈ χ(X). Consequently, C ,X 6⊲⊳ ¬pc, C ,X �� pc, and C ,X �� ¬pc. Besides,

again because c /∈ χ(X), we have that C ,X 6⊲⊳ K̂c¬pa. Therefore, C ,X 6⊲⊳ ¬K̂c¬pa, C ,X �� K̂c¬pa,

and C ,X �� ¬K̂c¬pa.

• Knowledge of a live agent concerning dead agents: Although C ,X 6⊲⊳ pc, after all C ,X � K̂a pc

because a ∈ χ(X ∩Y ) and C ,Y � pc: agent a considers it possible that agent c is alive. More

surprisingly, also C ,X �Ka pc because given the two facets X and Y that agent a considers possible

(and all of their faces), as far as a knows, pc is true. This knowledge is defeasible because a may

learn that the actual facet is X and not Y , which she also considers possible.

We further have that C ,X �� Kapc → pc because C ,X 6⊲⊳ pc implies C ,X 6⊲⊳ Kapc → pc. However,

� Kapc → pc because whenever Ka pc → pc is defined, the truth of Kapc implies the truth of pc.

• Individual and distributed knowledge: As expected, we have C ,X � pb ∧¬pa, where the con-

junct C ,X � ¬pa is justified by C ,X ⊲⊳ pa and C ,X �� pa. We also have C ,Y � K̂a pb because

a ∈ χ(X ∩Y ) and C ,X � pb. At the same time, C ,Y � D{a,b}¬pb because all faces Z such that

{a,b} ⊆ χ(Z∩Y ) share the 0a–0b edge with Y and, hence, have C ,Z � ¬pb.

Considering the global atom c, we have that C ,X �� Ka¬c because a ∈ χ(X ∩Y ) and C ,Y �� ¬c.

However, C ,X � D{a,b}¬c. In fact, C ,X � ϕ iff C ,X � D{a,b}ϕ : a and b have distributed omni-

science on edge X .

• Local and glocal languages: All formulas of language L loc
D are undefined/true/false in (C ′,Y ′) iff

they are undefined/true/false in (C ′′,Y ′′) [12]. In other words, it is impossible to express in L loc
D

that a considers it possible that c is dead. By contrast, in language L
gloc

D we have C ′,Y ′
� K̂a¬c

whereas C ′′,Y ′′
�� K̂a¬c. Hence, global atoms make the language more expressive.

Upwards and downwards monotonicity for the face-semantics requires certain care and is, therefore,

given in some detail for the extended languages.

Lemma 6 (Monotonicity). For a simplicial model C = (C,χ , ℓ), faces X ,Y ∈ C with X ⊆ Y , and for-

mula ϕ ∈ L
gloc

D ,

1. C ,X ⊲⊳ ϕ implies C ,Y ⊲⊳ ϕ; (upwards monotonicity of definability)

2. C ,X � ϕ implies C ,Y � ϕ; (upwards monotonicity of truth)

3. C ,Y � ϕ and C ,X ⊲⊳ ϕ imply C ,X � ϕ . (downwards monotonicity of truth modulo definability)

Proof. The proof is by induction on ϕ ∈ L
gloc

D . All cases are as in [12] except the new cases for global

atoms and (dual) distributed knowledge that are shown below:

Case a Whether C ,X ⊲⊳ a or C ,X � a is assumed, X must be a facet, so Y = X is the same facet.

Consequently, C ,X ⊲⊳ ϕ implies C ,Y ⊲⊳ ϕ , C ,X � ϕ implies C ,Y � ϕ , and C ,Y � ϕ and C ,X ⊲⊳
ϕ imply C ,X � ϕ .
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Case D̂Bϕ 1. Assume that C ,X ⊲⊳ D̂Bϕ . Then C ,Z ⊲⊳ ϕ for some Z ∈C with B ⊆ χ(X ∩Z). Since

X ⊆ Y , we have X ∩Z ⊆ Y ∩Z and, therefore, B ⊆ χ(Y ∩Z). It follows that C ,Y ⊲⊳ D̂Bϕ .

2. Assume that C ,X � D̂Bϕ . Then C ,Z � ϕ for some Z ∈C with B ⊆ χ(X ∩Z). Since X ⊆Y ,

we have X ∩Z ⊆Y ∩Z and, therefore, B ⊆ χ(Y ∩Z). It follows that C ,Y � D̂Bϕ .

3. Assume that C ,Y � D̂Bϕ and C ,X ⊲⊳ D̂Bϕ . Then C ,Z �ϕ for some Z ∈C with B ⊆ χ(Y ∩Z).
Additionally, B ⊆ χ(X) because C ,X ⊲⊳ D̂Bϕ . Due to χ being chromatic, any vertex v

with χ(v) ∈ B that belongs to Y must belong to X . Hence, B ⊆ χ(X ∩ Z) and, therefore,

C ,X � D̂Bϕ .

Remark 7. Note that this lemma becomes trivial for ⊲⊳F and �
F since X ⊆ Y for facets implies X =Y .

An axiomatization of validities in L loc
K is reported in [31], but none so far for L

gloc
K , which is novel in

this contribution. Axiomatizations of the distributed knowledge versions L loc
D and L

gloc
D should extend

the axiomatizations of distributed knowledge [15, 32, 10] and will likely be related to [19].

Comparing the three-valued face- to facet-semantics We continue by showing that the set of va-

lidities is the same for the three-valued face- and facet-semantics. This (novel) result did not initially

seem obvious to us, and it plays an important role when embedding the three-valued into two-valued

semantics, as the face-semantics is infelicitous in the latter. We show the results for L
gloc

D . The results

for sublanguages L loc
D , L

gloc
K , and L loc

K follow directly.

Lemma 8. C ,X ⊲⊳F ϕ ⇔ C ,X ⊲⊳ ϕ for any C = (C,χ , ℓ), X ∈ F (C), and ϕ ∈ L
gloc

D .

Proof. The proof is by induction on ϕ ∈ L
gloc

D . The two semantics coincide for variables and proposi-

tional connectives (in particular, global variables are defined on all facets and only on them according

to both). The only non-trivial case to consider is D̂Bϕ .

⇐ Assume that C ,X ⊲⊳ D̂Bϕ . Then C ,Y ⊲⊳ ϕ for some face Y ∈ C with B ⊆ χ(X ∩Y ). But Y ⊆ Z

for some facet Z ∈ F (C) and we have X ∩Y ⊆ X ∩ Z. Hence, B ⊆ χ(X ∩ Z) and C ,Z ⊲⊳ ϕ by

Lemma 6.1. It follows from IH that C ,Z ⊲⊳F ϕ . Thus, C ,X ⊲⊳F D̂Bϕ .

⇒ Assume C ,X ⊲⊳F D̂Bϕ . This direction is even simpler as here facet Y ∈ F (C) is itself a face.

Lemma 9. C ,X �
F ϕ ⇔ C ,X � ϕ for any C = (C,χ , ℓ), X ∈ F (C), and ϕ ∈ L

gloc
D .

Proof. The proof is by induction on ϕ ∈ L loc
D . Again the two semantics coincide except for D̂Bϕ .

⇐ Assume that C ,X � D̂Bϕ . Then C ,Y � ϕ for some face Y ∈ C with B ⊆ χ(X ∩Y ). But Y ⊆ Z

for some facet Z ∈ F (C) and we have X ∩Y ⊆ X ∩ Z. Hence, B ⊆ χ(X ∩ Z) and C ,Z � ϕ by

Lemma 6.2. We can conclude that C ,X �
F D̂Bϕ .

⇒ Again this case is similar but simpler as every facet Y ∈ F (C) is a face.

Theorem 10. �
F ϕ ⇔ � ϕ for any ϕ ∈ L

gloc
D .

Proof. ⇒ Assume that �F ϕ and consider an arbitrary simplicial model C = (C,χ , ℓ) and an arbitrary

face X ∈ C with C ,X ⊲⊳ ϕ . Then, X ⊆ Y for some facet Y ∈ F (C). We have C ,Y ⊲⊳ ϕ by

Lemma 6.1 and C ,Y ⊲⊳F ϕ by Lemma 8. Since �
F ϕ , we have C ,Y �

F ϕ . It follows from

Lemma 9 that C ,Y � ϕ . Hence, C ,X � ϕ by Lemma 6.3. Thus, � ϕ .

⇐ Assume that � ϕ . Then C ,X ⊲⊳ ϕ implies C ,X � ϕ for any face X ∈ C of any simplicial model

C = (C,χ , ℓ). In particular, this is the case for all facets of any simplicial complex C . We can

conclude from Lemmas 8 and 9 that �F ϕ .
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Remark 11. Given that the restriction to facets does not affect the logic of the three-valued semantics, it

is worth noting that boolean constants ⊤ and ⊥ are expressible in L
gloc

K and L
gloc

D in the facet- but not

in the face-semantics. Indeed, there is no formula defined in all faces of all simplicial models. Hence, no

formula can be always true as ⊤ or always false as ⊥. By contrast, a∨¬a can serve as ⊤ and a∧¬a as ⊥
for the facet-semantics. Languages L loc

K and L loc
D , on the other hand, cannot express boolean constants

in any three-valued semantics.

We have shown that three-valued semantics is robust with respect to definability in that the truth value

of a formula does not depend on which of the agents are crashed as long as the formula is defined. In

addition, the monotonicity of definability makes it possible to restrict attention to facets only, in line with

the understanding that only they represent actual global states of the distributed system. The stability of

the three-valued semantics modulo the choice of a partial global state or the restriction to global states

only is, in our view, a strong argument in its favor.

3 Two-valued epistemic semantics for impure complexes

We now present a two-valued semantics for impure complexes. It is inspired by that in [21] (to which

we will compare it in the final Sect. 5), but in this work its role is rather that of a technical tool to enable

us to embed three-valued semantics, and to explain why choices essential in the three-valued setting are

infelicitous or non-existent in the two-valued one.

Without the third truth value “undefined,” definability plays no role: every formula is defined in every

face. We, therefore, need to define only the satisfaction relation. The languages are the same. Further

simplifying the two-valued setting, we will show that the global propositional variables of L
gloc

D are

expressible in the restricted language L loc
D , which therefore suffices.

To distinguish the two-valued from three-valued semantics we write 
 for the former to contrast it

with � that we used for the latter. An astute reader might notice that we use the notation 
 with two

vertical lines for the two-valued semantics and � with three vertical lines for the three-valued one to

make the distinction obvious.

Definition 12 (Two-valued facet satisfaction relation). We define the satisfaction relation 

F by induc-

tion on ϕ ∈ L
gloc

D . Let C = (C,χ , ℓ) and X ∈ F (C).

C ,X 

F a iff a ∈ χ(X)

C ,X 

F pa iff pa ∈ ℓ(X)

C ,X 

F ϕ ∧ψ iff C ,X 


F ϕ and C ,X 

F ψ

C ,X 

F ¬ϕ iff C ,X 1F ϕ

C ,X 

F D̂Bϕ iff C ,Y 


F ϕ for some Y ∈ F (C) with B ⊆ χ(X ∩Y )

As the superscript F suggests, this is a semantics for facets. The reason we give it as the primary in

the two-valued case rather than considering alongside the semantics 
 for arbitrary faces, as we did for

three values, is that the latter is infelicitous, as we show in Prop. 14.

Remark 13. For all four languages, ⊤ := pa ∨¬pa and ⊥ := pa ∧¬pa can serve as boolean constants in

the two-valued semantics.

In contrast to the three-valued semantics �F , the semantics of, for example, implication is now the

standard boolean semantics so that C ,X 

F ϕ → ψ iff C ,X 


F ϕ implies C ,X 

F ψ . It is simply the

version without definability requirements. Similarly, for other propositional connectives and for the dual

distributed knowledge modality:

C ,X 

F DBϕ iff C ,Y 


F
ϕ for all Y ∈ F (C) with B ⊆ χ(X ∩Y ).
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One of the important resulting differences is that, in contrast to the three-valued semantics � (see

Lemma 6), the two-valued face-semantics 
 would not enjoy monotonicity. Take, for example, model C ′

from Fig. 1.iii reprinted here, where we give name X ′ to the edge 0a–0b.

0b

1c

0a

Y ′

X ′

Note that C ′,X ′

 ¬pc whereas C ′,Y ′


 pc. This simultaneously shows the lack of upwards and down-

wards monotonicity for all four of the languages we consider.

Unsurprisingly, this infidelity translates to the real logical differences between the two-valued facet-

and face-semantics, in contrast to Theorem 10 above.

Proposition 14. 
-validity is different from 

F -validity.

Proof. Consider the formula ϕ = K̂a⊤→ K̂a¬pb where a,b ∈ A are two distinct agents. We show that

1F ϕ whereas 
 ϕ , distinguishing the two validities.

To show that 1F K̂a⊤→ K̂a¬pb, consider the following model C – with the only facet being X :

C – : 0a 1b
X

Since a ∈ χ(X), we have C –,X 

F K̂a⊤. But C –,X 1F ¬pb, meaning that C –,X 1F K̂a¬pb. Thus,

overall, C –,X 1F K̂a⊤→ K̂a¬pb.

On the other hand, 
 K̂a⊤→ K̂a¬pb for the simple reason that any face containing an a-vertex makes

¬pb true in that vertex. Indeed, let X be an arbitrary face of an arbitrary model C = (C,χ , ℓ) such that

C ,X 
 K̂a⊤. Then χ(v) = a for some vertex v ∈ X . Since b /∈ χ(v), we are guaranteed that pb /∈ ℓ(v),
which yields C ,v 1 pb and C ,v 
 ¬pb. Finally, since a ∈ χ(X ∩{v}), we have C ,X 
 K̂a¬pb. Since

(C ,X) was arbitrary, we conclude that 
 K̂a⊤→ K̂a¬pb.

Proposition 14 shows that the two-valued face-semantics is infelicitous for impure complexes. You

really do not want to have K̂a⊤→ K̂a¬pb as a theorem. Especially since it creates an asymmetry of local

truth values in light of 1 K̂a⊤→ K̂a pb (for which a singleton a-colored node is a countermodel).

We will therefore, from here on, for the two-valued case consider only the facet-semantics.

Lemma 15. 

F a ↔ K̂a⊤.

Proof. Since all formulas are defined, it is sufficient to show that C ,X 

F a iff C ,X 


F K̂a⊤ for any

facet X ∈ F (C) of any simplicial model C = (C,χ , ℓ). Given that C ,X 

F ⊤, we have the following

equivalences: C ,X 

F a iff a ∈ χ(X) and, further,

a ∈ χ(X) ⇐⇒ a ∈ χ(X ∩X) ⇐⇒ a ∈ χ(X ∩X) and C ,X 

F ⊤ ⇐⇒ C ,X 


F K̂a⊤ (4)

This lemma means that in the two-valued case global atoms are expressible already in L loc
K . Thus, for

the two-valued (facet) semantics 

F , we can restrict ourselves to the language L loc

D (or L loc
K ) without

the loss of expressivity.3 We will from here on only consider language L loc
D for the two-valued semantics.

3This result is not so unlike redefining a propositional variable correcta, stating that agent a is correct, as ¬Ha⊥ in [7],

where Ha is the hope modality.
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Remark 16. Note that �F a ↔ K̂a⊤ also for the three-valued semantics but there ⊤ is only expressible

in the facet-semantics and in presence of global atoms (see Remark 11). Hence, replacing a with K̂a⊤
would not remove global atoms from the language. Indeed, as already mentioned, global atoms are not

three-valued-expressible in L loc
D because no formula of L loc

D is defined in all facets.

4 Translating three-valued into two-valued semantics

We provide a translation from language L
gloc

D into L loc
D . It consists of two parts. For any formula

ϕ ∈ L
gloc

D we define by mutual recursion

• formula ϕ⊲⊳ ∈ L loc
D that determines whether ϕ is defined in some given (C ,X) and

• formula ϕ ♯ ∈ L loc
D that determines whether a defined formula ϕ is true in that (C ,X).

This covers all our tracks in three-valued semantics, as there ϕ may be

• undefined, in which case ϕ⊲⊳ is false and, as we will see, so is ϕ ♯;

• true, in which case both ϕ⊲⊳ and ϕ ♯ must be true;

• false, in which case ϕ⊲⊳ is true but ϕ ♯ is false.

The translation from L
gloc

D to L loc
D also determines one from L loc

D to L loc
D , by removing the

a⊲⊳ and a♯ clauses.

Definition 17 (Translations).

a⊲⊳ := ⊤

p⊲⊳a := K̂a⊤
(¬ϕ)⊲⊳ := ϕ⊲⊳

(ϕ ∧ψ)⊲⊳ := ϕ⊲⊳∧ψ⊲⊳

(D̂Bϕ)⊲⊳ := D̂Bϕ⊲⊳

a♯ := K̂a⊤

p
♯
a := pa

(¬ϕ)♯ := (¬ϕ)⊲⊳∧¬ϕ ♯

(ϕ ∧ψ)♯ := ϕ ♯∧ψ♯

(D̂Bϕ)♯ := D̂Bϕ ♯

The main result to prove here is as follows.

Theorem 18. For any model C = (C,χ , ℓ), facet X ∈ F (C), and formula ϕ ∈ L
gloc

D

C ,X ⊲⊳F
ϕ ⇐⇒ C ,X 


F
ϕ
⊲⊳; (5)

C ,X �
F

ϕ ⇐⇒ C ,X 

F

ϕ
♯. (6)

Proof. We prove both statements by mutual induction on ϕ ∈ L
gloc

D :

Case a Here a⊲⊳ =⊤ and a♯ = K̂a⊤. For (5), both C ,X ⊲⊳F a and C ,X 

F ⊤. For (6),

C ,X �
F a ⇔ a ∈ χ(X)

(4)
⇐⇒ C ,X 


F K̂a⊤ ⇔ C ,X 

F a♯.

Case pa Here p⊲⊳a = K̂a⊤ and p
♯
a = pa. For (6), the statement is trivial since the three-valued and two-

valued definitions of satisfaction coincide for pa. For (5),

C ,X ⊲⊳F pa ⇔ a ∈ χ(X)
(4)
⇐⇒ C ,X 


F K̂a⊤ ⇔ C ,X 

F p⊲⊳a .

Case ¬ϕ Here (¬ϕ)⊲⊳ = ϕ⊲⊳ and (¬ϕ)♯ = (¬ϕ)⊲⊳∧¬ϕ ♯. For (5), the statement follows by IH(5) since

C ,X ⊲⊳F ¬ϕ iff C ,X ⊲⊳F ϕ . Using that, for (6),

C ,X �
F ¬ϕ ⇔ C ,X ⊲⊳F ¬ϕ and C ,X ��F

ϕ
(5),IH(6)
⇐====⇒

C ,X 

F (¬ϕ)⊲⊳ and C ,X 1F

ϕ
♯ ⇔ C ,X 


F (¬ϕ)⊲⊳ and C ,X 

F ¬ϕ

♯ ⇔

C ,X 

F (¬ϕ)⊲⊳∧¬ϕ

♯ ⇔ C ,X 

F (¬ϕ)♯.
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Cases ϕ ∧ψ and D̂Bϕ Here (ϕ ∧ ψ)† = ϕ† ∧ ψ† and (D̂Bϕ)† = D̂Bϕ† for † ∈ {⊲⊳,♯}. Because the

⊲⊳- and ♯-translations work the same way in both cases, the arguments for (5) and (6) are analogous.

We present the proof of the former only for ϕ ∧ψ and of the latter only for D̂Bϕ :

C ,X ⊲⊳F
ϕ ∧ψ ⇔ C ,X ⊲⊳F

ϕ and C ,X ⊲⊳F
ψ

IH(5)
⇐==⇒

C ,X 

F

ϕ
⊲⊳ and C ,X 


F
ψ

⊲⊳ ⇔ C ,X 

F

ϕ
⊲⊳∧ψ

⊲⊳ ⇔ C ,X 

F (ϕ ∧ψ)⊲⊳;

C ,X �
F D̂Bϕ ⇔ C ,Y �

F
ϕ for some Y ∈ F (C) with B ⊆ χ(X ∩Y)

IH(6)
⇐==⇒

C ,Y 

F

ϕ
♯ for some Y ∈ F (C) with B ⊆ χ(X ∩Y ) ⇔ C ,X 


F D̂Bϕ
♯ ⇔ C ,X 


F (D̂Bϕ)♯.

By omitting the first clause in the inductive proof above, we can conclude that Theorem 18 also holds

for the local language L loc
D .

We can also represent the non-standard notion of three-valued validity in two-valued semantics:

Corollary 19. � ϕ ⇔ �
F ϕ ⇔ 


F ϕ⊲⊳ → ϕ ♯ for any ϕ ∈ L
gloc

D .

Proof. It follows from Def. 3 and Theorems 10 and 18.

It should also be noted that the two- and three-valued semantics coincide on pure simplicial mod-

els. In fact, this agreement can serve as an independent objective distinction between pure and impure

models:

Corollary 20. For any pure simplicial model C = (C,χ , ℓ), we have C ,X ⊲⊳F ϕ and

C ,X �
F

ϕ ⇔ C ,X 

F

ϕ for any facet X ∈ F (C) and formula ϕ ∈ L
gloc

D . (7)

Proof. It is easy to show by induction on the construction of ϕ that C ,X 

F ϕ⊲⊳. Indeed, for atoms

both ⊤ and a = K̂a⊤ are true in every facet X of the pure complex C ; similarly B ⊆ A = χ(X ∩X)
ensures the modal clause. The first statement now follows from (5). In view of this, a simple induc-

tion argument shows that for pure models the ♯-translation can be pushed through all connectives and

eventually removed completely: C ,X 

F ϕ ↔ ϕ ♯. Thus, the second statement follows from (6).

In fact, (7) can be viewed as an alternative, functional definition of pure models.

Theorem 21. A simplicial model C = (C,χ , ℓ) is pure iff (7) holds.

Proof. The only-if-direction is proved in Corollary 20. For the if-direction, by contraposition, assume

C is not pure, i.e., there is a facet X ∈ F (C) and agent a ∈ A such that a /∈ χ(X). We, therefore,

have C ,X ��F ¬pa because C ,X 6⊲⊳F ¬pa while, at the same time, C ,X 

F ¬pa because pa /∈ ℓ(X) in

violation of (7).

Example 22. For the simplicial model C in Fig. 1.ix, we have C �
F Ka pb ∧Kapc, while, at the same

time, C 

F ¬Kapb ∧¬Kapc. This disagreement of the two semantics is why the model in Fig. 1.ix

should not be considered pure, despite all its facets having the same dimension 1.

To conclude this section, we give some examples of the translation, and a number of derived propo-

sitions that might further throw some intuitive light on this translation (where we note once more that all

these are also valid for the language L loc
D ).
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Example 23. It is easy to see that (¬pa)
♯ = K̂a⊤∧¬pa and (¬a)♯ =⊤∧¬K̂a⊤, which, modulo abbrevi-

ations and two-valued equivalences, yields 
F (¬pa)
♯ ↔ a∧¬pa and 


F (¬a)♯ ↔¬a.

Consider two agents a,b ∈ A, a simplicial model C = (C,χ , ℓ), and its facet X ∈ F (C).

(Ka pb)
⊲⊳ = (¬K̂a¬pb)

⊲⊳ = (K̂a¬pb)
⊲⊳ = K̂a(¬pb)

⊲⊳ = K̂a p⊲⊳b = K̂aK̂b⊤;

(Ka pb)
♯ = (¬K̂a¬pb)

♯ = (¬K̂a¬pb)
⊲⊳∧¬(K̂a¬pb)

♯ = K̂aK̂b⊤∧¬K̂a(¬pb)
♯ =

K̂aK̂b⊤∧¬K̂a

(
(¬pb)

⊲⊳∧¬p
♯
b

)
= K̂aK̂b⊤∧¬K̂a (p⊲⊳b ∧¬pb) = K̂aK̂b⊤∧¬K̂a

(
K̂b⊤∧¬pb

)
.

Since 

F b ↔ K̂b⊤ by Lemma 15 and 


F K̂b⊤∧¬pb ↔¬(K̂b⊤→ pb), we conclude that

C ,X �
F Ka pb ⇐⇒ C ,X 


F K̂ab∧Ka(b → pb).

This is what we want: for Kapb to be true, a should consider it possible that b is alive, and for all

facets considered possible by a where b is alive, pb should be true. In particular, for Ka pb to be true it is

not necessary that b be actually alive.

From this point on, we will routinely abbreviate K̂b⊤ as b without leaving language L loc
D .

Proposition 24. 

F ϕ ♯ → ϕ⊲⊳ for any ϕ ∈ L

gloc
D .

Proof. It is sufficient to prove, by induction on the formula structure, that for all models C = (C,χ , ℓ)
and all facets X ∈ F (C), if C ,X 


F ϕ ♯, then C ,X 

F ϕ⊲⊳. Since a⊲⊳ = ⊤, the statement is trivial for

global atoms. For local atoms, with p
♯
a = pa and p⊲⊳a = a,

C ,X 

F pa ⇔ pa ∈ ℓ(X) ⇒ a ∈ χ(X)

(4)
⇐⇒ C ,X 


F a.

For ¬ϕ , the statement follows directly from the definition of ♯. The remaining two cases easily follow

by IH. We only show the case of ϕ ∧ψ :

C ,X 

F (ϕ ∧ψ)♯ ⇔ C ,X 


F
ϕ
♯∧ψ

♯ ⇔ C ,X 

F

ϕ
♯ and C ,X 


F
ψ

♯ IH
=⇒

C ,X 

F

ϕ
⊲⊳ and C ,X 


F
ψ

⊲⊳ ⇔ C ,X 

F

ϕ
⊲⊳∧ψ

⊲⊳ ⇔ C ,X 

F (ϕ ∧ψ)⊲⊳.

Proposition 25. 

F (¬¬ϕ)♯ ↔ ϕ ♯ for any ϕ ∈ L

gloc
D .

Proof. By definition, we have

(¬¬ϕ)♯ = (¬¬ϕ)⊲⊳∧¬(¬ϕ)♯ = (¬ϕ)⊲⊳∧¬((¬ϕ)⊲⊳∧¬ϕ
♯) = ϕ

⊲⊳∧¬(ϕ⊲⊳∧¬ϕ
♯).

By standard propositional reasoning, 
F
(
ϕ⊲⊳ ∧¬(ϕ⊲⊳∧¬ϕ ♯)

)
↔

(
ϕ⊲⊳ ∧¬¬ϕ ♯

)
. Therefore, we have



F (¬¬ϕ)♯ ↔ ϕ⊲⊳∧ϕ ♯. The desired statement now follows from Prop. 24.

5 Discussion and conclusion

In this paper, we analyzed and compared four different logical languages for impure simplicial complexes

and four semantics for them: two two-valued and two three-valued epistemic semantics. Our main

findings can be summarized as follows:
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• The two-valued face-semantics 
 is infelicitous.

• The three-valued facet-semantics �
F and face-semantics � produce the same logic and, hence,

can be used interchangeably.

• We provided a faithful embedding from the three-valued facet semantics �F into the two-valued

facet semantics 
F .

• Global propositional variables describing whether agents are alive or dead increase the expressivity

of the language in the three-valued case, but not in the two-valued one.

• The two-valued facet-semantics 

F and the three-valued facet-semantics �

F coincide on pure

simplicial models.

By relating three-valued semantics to two-valued semantics for impure complexes in a purely techni-

cal way, we hope we have filled a gap between publications like [21, 19] on the one hand and publications

like [12, 31] on the other. Clearly, something different is going on here, but what is it exactly? Concern-

ing the truth values, we provided the answer. However, let us elaborate on the other differences between

such approaches. The most striking of them is that the impure complexes of [21, 19] do not have local

propositional variables for the agents (processes). Valuations do not apply to vertices. Instead, valuations

apply to facets only. This is best explained by an example:

Reconsider Fig. 1. In the approach of [21, 19], the modeler has to choose whether the value of pc

in X of Fig. 1.vii is false or true, and, therefore, whether the “original complex” before process c became

inactive, was Fig. 1.i or viii. In the underlying contribution and in [12, 31] this choice is not made and

left open. One could therefore consider Fig. 1.vii as some kind of quotient of Figs. 1.i and viii following

a crash. The choice made in [21, 19] is essential in order to still allow arbitrary values for processes

and keep it possible that agents have positive knowledge. Their two-valued semantics for knowledge is a

special case of the two-valued semantics given in Def. 12: C ,X 

F Kaϕ iff C ,Y 


F ϕ for all Y ∈F (C)
with a ∈ χ(X ∩Y ). Applied to Fig. 1.vii we can then only justify that C ,X 


F Ka pc if C ,X 

F pc and

C ,Y 

F pc, in other words, if the bogus valuation of pc in X made it true there. Otherwise, a does not

know the value of pc.

As shown, the two-valued face semantics is even infelicitous for pure complexes, already for the

simple reason that an atom pa is false in a face X whenever a is not a color in X , but then ‘becomes’ true

if X is contained in a facet Y where pa labels the a vertex. This may suggest an insuperable problem but,

not surprisingly, there are yet more different two-valued face semantics (that also differ from [21, 19]).

To interpret formulas in faces that are not facets we can also use the multi-pointed semantics of [9,

Sect. ‘Local semantics for simplicial complexes’], wherein it is defined that C ,XXX 
 ϕ for a set XXX of

facets, iff C ,X 
 ϕ for all X ∈ XXX . In particular, now consider the set of facets containing a face X .

For a face X that is not a facet we then have that C ,X 
 ϕ iff C ,Y 
 ϕ for (the set of) all facets Y

containing X . (In general, we can even define for arbitrary faces that C ,X 
 ϕ iff C ,star(X)
 ϕ , where

star(X) = {Y ∈C | X ⊆ Y}.) Consequently, in such an approach we would have that in the vertex 0a of

Fig. 1.i atom pc is true (because it is true in both facets) whereas in the vertex also named 0a of Fig. 1.viii

atom pc is false. Multi-pointed semantics are common fare in Kripke model settings, in particular for

model checking applications and in dynamics [14].

For further research, we wish to generalize our setting from simplicial complexes to (semi-)simplicial

sets, and, correspondingly, from standard multi-agent Kripke models to Kripke models where each

group B ⊆ A of agents has its own associated equivalence relation ∼B and where the agents in B to-

gether may know more than the agents in B separately, even when merging their knowledge. In other

words, we may then have that ∼B is strictly contained in
⋂

b∈B ∼b. In modal logic, such models seemed a

rather technical tool so far, merely complicating the construction of canonical models, in works as [21].

But in combinatorial topology, scenarios where a whole is more than the sum of its parts are very natural,
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as amply shown in [19].

Another direction of further research would be the incorporation of dynamics such as in protocols.
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